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Scaling in a two-component surface-growth model
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We study scaling in kinetic roughening and phase ordering during growth of binary systems. We use a
111-dimensional single-step solid-on-solid model with Ising-like interaction between two components. We
observed that the model exhibits a crossover from an intermediate regime, with effective scaling exponents for
kinetic roughening significantly larger than for the ordinary single-step growth model, to an asymptotic regime
with exponents of the Kardar-Parisi-Zhang class. The crossover time and length are exponentially increasing
with the strength of interactionK. For a given largeK, scaling with enhanced exponents is valid over many
decades. The effective scaling exponents are continuously increasing withK. Surface ordering proceeds up to
the crossover. The average size of surface domains increases during growth with the exponent close to 1/2; the
spin-spin correlation function and the distribution of domains obey scaling with the same exponent.
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I. INTRODUCTION

Growth by vapor deposition is an effective process
producing high-quality materials. The microscopic mech
nisms of growth were intensively studied in the past mai
in the case of homoepitaxial growth.1–3 However, a common
situation in nature as well as in modern technologies is
growth of binary or more component systems. Due to
nonequilibrium nature of growth the properties of the resu
ing film can be very different from the properties of equili
rium bulk material~surface alloys that have no bulk analo
can be formed, highly anisotropic structures can be prepa
etc.!. The problem of growth in a system with two or mo
components is of great practical importance but it is a
interesting from a purely statistical-mechanical point
view, because the growth process may belong to a new
versality class4,5 and such a system might exhibit a noneq
librium phase transition between low- and high-temperat
phases.

There are two interfering phenomena in the growth
binary systems: kinetic roughening and phase ordering. D
ing growth the initially flat surface is becoming rough. Th
is called kinetic roughening. It has been found that this p
cess often fulfills the invariance with respect to scaling
both time and length. Let us consider a surface in
d-dimensional space given by a single-valued funct
h(r ,t) of a d8-dimensional (d5d811) substrate coordinat
r . The surface roughness is described by the surface w

w(t,L)5^Ah̄22h̄2&, wheret is the time,L is a linear size,
and the bar denotes a spatial average,^•••& a statistical aver-
age. The surface width often obeys the dynamical sca
law w(t,L)}La f (t/Lz), with the scaling functionf (x) ful-
PRB 580163-1829/98/58~15!/10003~9!/$15.00
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filling f (x) 5 const.,x@1 and f (x) } xb, x!1 (b5a/z).
Dynamical scaling allows us to classify growth process
into dynamical universality classes according to values
exponentsa and z ~or a and b).6,7 This scaling has been
observed in a wide variety of growth models and many
them belong to the Kardar-Parisi-Zhang~KPZ! universality
class.8 There has been considerable effort in order to fi
different possible universality classes.

On the other hand, the process of ordering in ordin
binary systems with a constant number of particles can l
to phase separation. In the case of phase separation dyn
cal scaling exists as well, e.g., in the Ising model at lo
temperatures.9 In phase ordering, the characteristic lengthD
is the average size of domains formed by particles of o
type. It increases with time as a power law,D}tc. The dy-
namics can be classified according to values of the expo
c. Phase ordering is usually a bulk process. However,
can also study growth-induced ordering at surfaces. In
case the evolution of the average domain size on the sur
is of interest.

On the microscopic level, growth is usually investigat
using discrete growth models. Although several growth m
els for binary systems were introduced in various conte
e.g., for the study of phase separation during molecular-be
epitaxy,10 or growth of binary alloys,11 our understanding of
growth of composite systems is still at the beginning.
particular, little is known so far about kinetic roughening
two-component growth models. This problem was proba
first considered by Ausloos, Vandewalle, and Cloots.4 They
introduced a generalization of the Eden model and coine
magnetic Eden model, which contains two types of partic
with the probabilities of growth given by the Ising-like inte
action. Ausloos, Vandewalle, and Cloots suggested that
10 003 © 1998 The American Physical Society
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10 004 PRB 58KOTRLA, SLANINA, AND PŘEDOTA
magnetic Eden model does not belong to the KPZ univer
ity class. Recently El-Nashar, Wang, and Cerdeira5 studied
kinetic roughening in a ballisticlike two-component grow
model with a varying probability for deposition of a give
type of particle. They observed that the exponentb changes
with the probability and argued that kinetic roughening
longer follows the KPZ scaling law. Although the phase o
dering was apparently present it was not studied in th
works.

In this paper we concentrate on the situation where b
processes, kinetic roughening as well as phase ordering
important and affect each other. We investigate scaling
both roughening of the surface and phase ordering. We u
one-dimensional two-component single-step solid-on-s
growth model that we recently introduced.12 It is particularly
convenient for the study of asymptotic scaling behavi
Here we present results of extensive numerical simu
tions that complement preliminary results publish
elsewhere.12,13

The paper is organized as follows. In Sec. II, our mo
and the measured quantities are defined. In Sec. III, resul
our Monte Carlo simulations are described. Section IV c
tains a discussion. Finally, a summary is given in Sec. V

II. MODEL AND MEASURED QUANTITIES

A. Modeling two-component growth

There is a large variety of single-component growth mo
els that can be potentially generalized to the multicompon
case. Moreover, there are different possible means of ge
alization. One usually tries to use a model which is as sim
as possible and still contains important features. Our aim
to find such a model for the study of scaling during tw
component growth.

The commonly used approximation is a discrete mo
with the so-called solid-on-solid~SOS! condition. It means
that the surface is described by a single-valued discrete f
tion h( i ). The indexi is the horizontal coordinate that labe
sites of the substrate. The rates for elementary growth
cesses depend usually only on the values ofh in a neighbor-
hood of the initial and, in the case of diffusion, possibly a
of the final position of a particle. The situation is more co
plex for a two-component system because the rates o
ementary growth processes depend not only on the geom
but also on the local composition. In practice it means t
we need to store more information, e.g., the composition
an additional data array. Let us denote the type of a part
by a variables that can have value11 or 21. The geom-
etry of the surface at timet is described by the function
h( i ,t) and the composition of the deposit is represented b
function s( i ,y), where the two variablesi and y are hori-
zontal and vertical coordinate of a particle, respectively. T
variabley is restricted only to values from 1 toh( i ,t).

Storing the composition of the whole deposit is possi
only for relatively small sizes of the substrate and not
many monolayers~ML ! of deposited particles. When w
study scaling phenomena where the behavior for very la
samples and long times~i.e., many ML! is investigated, too
much memory would be required. However, when bulk p
cesses can be neglected, it is sufficient to remember only
composition within a certain finite depth under the surfa
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because deeper layers cannot affect surface growth.
complication is that the depth that should be stored is
general not well defined and, in principle, it may be unlim
ited. For example, to describe the rate for a process in wh
a particle is moving from or to the bottom of a step we ne
to store the composition in the depth equal to the maxim
step size. But it is known that in some models of MB
growth14 based on an unrestricted SOS model steps of
arbitrary size can be present. Natural solution of this tech
cal obstacle is to use so-called restricted SOS mode
which possible configurations are limited by an addition
constraintuh( i )2h( j )u<N; i and j being nearest neighbor
andN a given integer.

B. Two-component single-step model

Our model is based on the simplest restricted SOS mo
the so-called single-step solid-on-solid model. The differen
of heights between two neighboring sites is restricted to11
or 21 only. The advantage of this choice is that if we restr
ourselves to nearest-neighbor interactions between part
then we can define rates for elementary moves of parti
using only the composition on the surface. Hence, the ra
at any time are given by the surface profileh( i ,t) and the
compositiononly on the surface, which is described by th
field s( i ,t) of the same dimensionality ash( i ,t). We call
such a model thetwo-component single-step~TCSS! model.

The growth rules depend in general on the physical s
ation under study. We consider a rather simple case t
however, allows us to evaluate the effect of ordering on
netic roughening. As indicated above, we do not allow p
cesses that lead to exchange of particles in bulk. This is w
justified because rates for such processes are usually se
orders of magnitude lower than for processes on the surf
We also do not include surface diffusion. This is a serio
restriction from the point of view of application to epitaxia
growth. However, it is well known that the study of scalin
in models with diffusion is demanding on computer pow
already in the case of one-component growth14 and that it is
difficult to obtain results with good statistics. We consid
rather, the condensation-evaporation dynamics. Moreo
we restrict ourselves here to the pure growth situati
Evaporation can be included but we expect that it will n
change the scaling behavior provided deposition occurs m
frequently than evaporation, i.e., the average surface he
is not constant.

Hence, particles are only added during the evolution. D
to the single-step constraint a particle can be added only
site at a local minimum of height. We call such site t
growth site. Once the position and the type of the particle
selected, they are fixed forever. The probability of addin
particle of types to a growth sitei depends only on its loca
neighborhood and is controlled by the change of energy
the system after deposition of a new particle. The energ
given by Ising-like interaction. The probability is propo
tional to exp$2DE(i,s)/kBT%, wherekB is Boltzmann’s con-
stant, T is temperature, andDE( i ,s) is the change of
energy.15

We describe our growth model for simplicity in 111 di-
mensions but it can be straightforwardly generalized to a
dimension. Several realizations of the single-step geom
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PRB 58 10 005SCALING IN A TWO-COMPONENT SURFACE-GROWTH MODEL
are possible in 111 dimensions~Fig. 1! leading to three
different variants of the TCSS model. They differ in th
number of nearest neighbors of a new particle. While in va
antB @Fig. 1~b!# there is an ambiguity in the type of a new
deposited particle if two neighbors are of opposite types,
is not the case in variantA @Fig. 1~a!# in which the number of
nearest neighbors is odd. We expect that the effect of or
ing on dynamics is stronger for variantA than for variantB.
VariantC @Fig. 1~c!# is technically slightly more complicate
to simulate due to the varying number of nearest neighb
of a deposited particle. Therefore, we consider variantA with
three nearest neighbors, which is represented as stackin
rectangular blocks with the height equal to double the wi
@Fig. 1~a!#. Nevertheless, we expect similar asymptotic sc
ing behavior for all three variants.

The expression for the energy change is16

DE~ i ,s!

kBT
52Ks@s~ i 21!1s~ i !1s~ i 11!#2Hs.

~1!

Here, K is a dimensionless coupling strength andH is the
bias leading to preferential deposition of particles of a
lected type (11 for positive,21 for negativeH). In anal-
ogy with magnetic systems we will callH an external field.
The sums( i 21)1s( i )1s( i 11) contains types of par
ticles on the surface within nearest neighbors of the gro
site ~which are three in the chosen variant: left, bottom, a
right!; see Fig. 2.

FIG. 1. Three realizations of the single-step geometry in 111
dimensions. Dashed lines indicate positions where a new par
can be deposited.
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C. Measured quantities and simulation procedure

The evolution of surface morphology is affected by co
position of the surface and vice versa. We measure quant
describing both aspects. The surface morphology is cha
terized by the surface widthw(t,L) defined in the Introduc-
tion, and by the height-difference correlation functio
G(r ,t)5 (1/L) ( i 51

L ^@h( i 1r ,t)2h( i ,t)#2&, which is ex-
pected to obey a scaling relation6,7 G(r ,t)}r 2ag(r /t1/z),
with the scaling functiong(x) constant forx!1 andg(x)
}x22a for x@1. In the case of phase ordering we restr
ourselves to the composition of the surface, because on
affects the evolution of the surface profile. We measure t
quantities defined on the surface:~i! the average of surface
domain sizes, and~ii ! the correlation functionS(r ,t) analo-
gous to the spin-spin correlation function used in magne
systems. We call the surface domain a compact part of
surface composed of particles of the same type. The siz
the domaind is measured along the surface. The average
of the surface domains depends on time, on the strengt
coupling, on the external field, and also on the initial co
position of the substrate. We denote the statistical averag
this quantity byD5^d&. The correlation functionS(r ,t) is
defined as follows:S(r ,t)5 (1/L) ( i 51

L ^s( i 1r ,t)s( i ,t)&.
We performed simulations for various values of the co

pling strengthK.0 and mainly for zero external fieldH.
System sizes ranged fromL5250 to L580 000, and the
number of monolayers deposited was up to 33105, and for
small systems up to 43106 ML. We measured timet of the
simulation in ML. A statistical average was obtained by a
eraging over a varying number of independent runs@from ten
for L580 000 up to several thousand forL5250].

Growth starts on a flat surface,17 however, in two-
component models the evolution strongly depends on
initial composition of the substrate.13 Here we consider two
possibilities:~i! a neutral substrate, i.e., substrate without a
interaction with deposited particles~in this case the system
orders spontaneously from the beginning!, and ~ii ! an alter-
nating substrate, with the alternating types of particles. T
case of a homogeneous substrate composed of one typ
particles is reported elsewhere.13

III. RESULTS

A. Evolution of morphology

Figure 3 shows examples of time evolution of the surfa
morphology and composition for selected coupling streng

FIG. 2. Example of configuration with two types of particle
~dark and light gray! in the considered realization of the single-st
model. Dashed lines indicate positions where a new particle ca
deposited.

le



c
tio
ns

or
d
op
id
, f
s
io
ro
e
n
b
a

te

st
n
a

s

c
tic

dth

tion

ed
is

s in

a

ex-
an

e

th
of

e

r to
r
t-

r

l
our

ps.

ra
ro

d
i

en

f

10 006 PRB 58KOTRLA, SLANINA, AND PŘEDOTA
and external fields. Note that the times for which surfa
profiles are shown increase as a power law. Visual inspec
of many configurations leads to the following observatio
In the case of zero external field~upper panel!, we can see
that with increasing coupling the surface is becoming m
and more rough~faceted! and at the same time more an
more clean columnar structures are formed; the anisotr
induced by growth is more pronounced. The average w
of the columns increases with time. We can also see that
a given time, the average width of the column is decrea
with the coupling strength. This seems to be in contradict
with the expectation that ordering should be more p
nounced for stronger coupling. Notice also that for larg
coupling there is correlation between the domain walls a
the local minima of the surface. Both these effects can
explained from the dynamical rules of the model. We sh
discuss this point further in Sec. IV.

The lower panel demonstrates the effect of a small ex
nal field. We can see that for small coupling (K50.5) an
external field does not cause a significant change of the
ichiometry. The effect of the field is canceled by fluctuatio
during growth. However, for the larger coupling an extern
field leads to an excess of one component.

B. Kinetic roughening

The ordinary~one-component! single-step model belong
to the Kardar-Parisi-Zhang universality class8 with the expo-
nents a (KPZ)5 1

2 , b (KPZ)5 1
3 , (z(KPZ)5 3

2 ) in 111 dimen-
sions. In this subsection we investigate the existence of s
ing and the values of scaling exponents for kine
roughening in the TCSS model.

FIG. 3. Examples of evolution of the surface profile for seve
values of the coupling,K50.5, 1.0, 1.5, 2.0, and zero and nonze
external field~upper panel,H50; lower panel,H50.02). Surface
profiles at selected times increasing as powers are indicate
black lines; only part of the grown material close to the surface
shown at a given time. Dark and light gray correspond to differ
types of particles. The system size isL5300.
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1. Surface width

We start with the time dependence of the surface wi
from which we can measure the effective exponentbeff . In
order to avoid the finite-size effects caused by the satura
of the surface width we used a large system sizeL
580 000. We have found that the behavior observ
changes with the strength of coupling. When the coupling
weak, the evolution of the roughness is almost the same a
the ordinary single-step model, e.g., forK50.3 the increase
of w(t) can be well fitted over time of the simulation by
power law w(t)}tbeff with the exponentbeff50.33, very
close to the KPZ valuebKPZ5 1

3 ~cf. Ref. 12!. For somewhat
larger coupling we have observed that the surface width
hibits a crossover in time. At first the width increases with
effective exponentbeff.1/3, but after certain timetcross it
crosses over back tob (KPZ)5 1

3 . This can be clearly seen in
Fig. 4 ~curves forK50.7, 1.0, and 1.3) where we plotted th
time dependence of the quantityw(t)/t1/3 for several cou-
plings in order to compare evolution of the surface wid
with the KPZ behavior. Notice also that the absolute value
w at a given time increases withK. The crossover from the
regime with the enhancedbeff to the regime withb5 1

3 is
definitely not a finite-size effect. We checked that the tim
tcross is the same for different system sizes.

From Fig. 4 we can also see thattcross is increasing with
the coupling. We were not able to observe the crossove
the KPZ behavior for couplingK>2 on the time scale of ou
simulations.18 In order to estimate the time needed we plo
ted the dependence oftcrosson K ~Fig. 5!. It can be fitted as
tcross(K)}e8.4K. When we extrapolate this data toK52 we
get tcross(K52).106, which is longer then the time of ou
simulation.

We found that for anyK.0.7 there is a time interva
extending over several decades in which we can well fit
data as a power law with the exponentbeff.1/3, before there
is the crossover to the KPZ behavior or our simulation sto
The question remains as to whetherbeff goes to a specific
value for largeK. We did not find any indication thatbeff

l

by
s
t

FIG. 4. Surface widthw divided by t1/3 vs time t for several
values of the coupling constant,K5 0.7 (* ), 1.0 (h), 1.3 (L),
2.0 (n), 3.0 (s) and zero external field,L580 000. Inset: The
effective scaling exponentbeff before crossover as a function o
coupling.



n
t

gh
ce
s
lc
c

-

te
pa
io

ic

-

ve

th

fied.
an-
for
en
er-
ades
en
po-
ere
that
the

ion

,

tic
ny

l

f

in
s-

PRB 58 10 007SCALING IN A TWO-COMPONENT SURFACE-GROWTH MODEL
saturates to a certain value, at least for the investigated ra
of the coupling constant 0,K,3. The effective exponen
beff is an increasing function ofK ~see inset in Fig. 4!. We
attribute the rather large value ofbeff for strong coupling to
pinning of the surface at domain boundaries.

2. Height-difference correlation function

The second exponent for kinetic roughening is the rou
ness exponenta. It can be calculated from the dependen
of the saturated surface width on the system size. We u
here an alternative and often more accurate way. We ca
late a from the spatial dependence of the height-differen
correlation functionG(r ,t)}r 2a in the long-time limit.

The obtained exponentsa also depend on coupling. Ex
ponenta has a value close toa (KPZ)5 1

2 for weak coupling.
For stronger coupling, we have found that when the sys
is sufficiently large there is a crossover behavior in the s
tial dependence of the height-difference correlation funct
~see Fig. 6!. On a small length scale it increases faster thanr ,
and for a sufficiently largeK we can fit it as a power law
r 2aeff with an effective exponentaeff.

1
2 . However, if the

distance is larger than a certain lengthl cross, the form of the
function crosses over to power law with the exponent wh
is close to1

2 , i.e., to the KPZ behavior~cf. data forK51 in
Fig. 6!.

If the coupling is strong (K>2) we do not see the cross
over but only the larger exponentaeff'1. We expect that
this is because even the system sizeL580 000 and the time
262 144 ML are not large enough to get into the crosso
regime. We have found thataeff is increasing smoothly with
the strength of coupling froma (KPZ)5 1

2 to a value slightly
less than 1~inset in Fig. 6!. The valuea51 is a natural limit
imposed by the single-step constraint.

3. Scaling

Having both exponentsa and b, we can try to verify
scaling. For weak coupling, the exponents are close to

FIG. 5. Crossover timetcrossfor the crossover in the behavior o
the surface roughness (L), saturation timetsat for saturation of the
average domain size (h), saturated value of the average doma
sizeDsat (* ), and saturated value of the correlation lengthjsat

s (s)
vs couplingK.
ge

-

ed
u-
e

m
-

n

h

r

e

KPZ exponents and scaling with these exponents is satis
For larger coupling, when the crossover is observed, we c
not get scaling for all times and lengths, nevertheless
long times and large lengths the KPZ scaling is valid. Wh
coupling is sufficiently strong then the behavior charact
ized by the enhanced exponents extends over many dec
of time and length and looks practically as asymptotic. Th
we can ask ourselves if there is scaling with the new ex
nents that is satisfied on this scale. In order to show that th
is scaling, we should get a data collapse. We have found
indeed we get the data collapse over many decades in
strong-coupling regime (K>2). As an example we show in
Fig. 7 the data collapse of the height-difference correlat
function G(r ,t) obtained forK52 with exponentsa50.97
and z51.98. For differentK we need different exponents
e.g., forK53 we get the best data collapse fora50.99 and
z51.7. The question remains what is the true asympto
scaling in the strong-coupling regime. We expect that for a
K there is a crossover to the KPZ scaling~althoughtcrossmay
be astronomically large!, and the asymptotic behavior wil
belong to the KPZ class.

FIG. 6. The height-difference correlation functionG(r ,t) for
couplingsK50.7, 1.0, 2.0, and 3.0 after 262 144 ML were depo
ited, L580 000. Inset: Effective exponentaeff before crossover as
function of coupling.

FIG. 7. Data collapse of the correlation functionG(r ,t) for
couplingK52 obtained for exponentsa50.97 andz51.97.
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C. Phase ordering

1. Time evolution of surface domains

The time evolution of the average surface domain sizeD
for several values of the coupling constant is shown in Fig
We can see that the behavior again depends onK. For small
coupling, D at first increases; however, after some tim
tsat
(D)(K) the surface domain size saturates to a valueDsat(K).

We have checked that the saturation is not a finite-size ef
~see Ref. 12—inset in Fig. 3!, but it is an intrinsic property of
the model. Both the timetsat

(D)(K) and the saturated valu
Dsat(K) rapidly increase withK ~Fig. 5!. We have found that
the dependence onK can be well fitted by exponential func
tions: Dsat(K);e(2.9160.06)K and tsat

(D)(K);e(7.6760.06)K. We
were not able to observe saturation forK52 because of a
prohibitively long simulation time needed. Hence, forK>2
the domain size increases over the time of our simulat
But we believe that the evolution of the surface domains
analogous to the evolution of domains in the on
dimensional Ising model and that in the long-time limit
will saturate for anyK ~Ref. 19!.

The evolution of domains is strongly affected by the in
tial conditions and a certain transition time is needed bef
a value independent on the initial state is reached. This p
nomenon is similar to what we have observed in the cas
the surface width. The transition time is increasing with co
pling and can be quite long, e.g., forK53 it is several hun-
dred ML.

We have found that forK>1 there is a time interval in
which the increase of the average domain size can be fi
by a power law,D(t,K)}tceff(K) with an exponentceff de-
pending onK. For largeK, the exponentceff seems to satu
rate to a value slightly smaller than12 ~see inset in Fig. 8!.
This is the same exponent as for the Ising model with
nonconserved order parameter.9

2. Distribution of surface domain sizes

The average surface domain size contains informa
about the formation of domains during growth. However

FIG. 8. Time evolution of average surface domain size for c
pling constantsK5 0.7 (* ), 1.0 (h), 1.3 (L), 2.0 (n), 3.0 (s)
and zero external field,L580 000. Inset: Effective exponentceff as
function of couplingK.
.
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is not clear solely from that quantity whether the doma
form a kind of periodic structure with a typical doma
length or if the domain sizes are more random. In order
obtain more information about the domains, we measured
probability distributionP(d,t) of the domain sized as a
function of time. We performed simulations for three valu
of coupling K51, K52, and K53, the system sizeL
51000, and times up to 32 768 ML. To get good statist
we had to make the average over 10 000 independent r
We observed that at initial times there is a rather sharp as
metric peak with the position shifting to higher values ofd
with increasing time. During the time evolution the amp
tude of the peak decreases and the peak becomes broade
eventually disappears. The time scale for this behavior
pends onK.

We try to rescale our data extending over many orders
magnitude and to see whether or no there is scaling.
applied a scaling formula of the form

P~d,t !5F„d/D~ t !…/D~ t !, ~2!

with a scaling functionF. The average domain sizeD(t) is
in fact equal to the average computed from the distribut
P(d,t).

In Fig. 9 the rescaled distribution of domain sizes forK
51 is shown as a function of the variablex5d/D, for times
from 4 to 32 768. We can see that the peak at arounx
50.4 exists only for short times and for a time of approx
mately t564 it changes to a small plateau that vanishes
longer times. The distribution of domain sizes at long tim
converges to a function that we found to be well fitted by
exponential. Moreover, we found that the peak vanis
around the timetsat

(D) when the average domain size saturat
The results forK52 are shown in Fig. 10. We can se

that the scaling formula~2! is satisfied from times 8 to 6144
The data for longer times are not shown here because
10 000 independent runs they still have too much noise.
scaling functionF(x) has a maximum again nearx50.4.
This indicates the creation of a quasiregular domain str
ture, but the distribution has a very broad tail for largerx

- FIG. 9. Distribution of domain sizes forK51 and times 4~j!,
8 ~d!, 16 ~v!, 32 ~s!, 64 ~h!, 128 ~L!, 256 ~3!, 512 ~,!, 1024
~1!, 6144 ~n!, 32768 ~m!. Inset: Detail of the distribution. The
symbols are the same as in the main graph.
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extending up tox.4, which makes the domain structu
irregular. We compared the scaling for different values ofK.
For times shorter than the saturation time the scaling fu
tion does not depend onK, which is demonstrated in th
inset in Fig. 10 forK51.0, 2.0, and 3.0.

Behavior similar to that in the strong-coupling regime w
observed for the kinetic Ising model in one dimension. N
merical simulations of the Ising model at zero temperatur20

show that the distribution of domain sizes obeys the form~2!
with a peak aroundd/D.0.4. Also, the form of the function
F(x) found in Ref. 20 looks very similar to our results. O
the contrary, for any nonzero temperature it may be sho
analytically that the distribution of domain sizes in equili
rium, i.e., in the infinite time limit, is exponential~see, e.g.,
Ref. 21!. Analytical results for the zero-temperature kine
Ising model22 give asymptotic resultsF(x).px for x→0
and F(x).exp(2Ax1B) for x→`, with A5 1

2 z(3/2)
51.306 18 . . . , andB50.597 . . . , which is in good agree-
ment with our results, as Fig. 10 shows.

Summing up, we should again distinguish two time
gimes. At initial times, the form of the distribution of doma
sizes as a function ofx does not change and it is characte
ized by a pronounced peak. Scaling~2! holds and the only
change during the time evolution is the increase of the a
age domain sizeD. When D begins to saturate, the pea
vanishes and, in the saturated regime, the distribution of
main sizes is exponential. The reason that, in the cas
strong coupling (K52.0,3.0), the peak remained for a
times observable is simply that the duration of the simulat
is still much shorter than the saturation time.

3. Correlation function

The correlation function S(r ,t)5 (1/L) ( i 51
L ^s( i

1r ,t)s( i ,t)& decays nearly exponentially with the distan
r . The decay is characterized by the correlation len

FIG. 10. Distribution of domain sizes forK52 and times 8
(d), 32 (s), 64 (h), 128 (L), 256 (3), 512 (,), 1024 ~1!,
6144 (n). The solid lines are exact results for the kinetic Isi
model, Ref. 21, in the limit of small and larged/D. Inset: Distri-
bution of domain sizes forK51 at time 16~1!, for K52 at time
256 (3), and forK53 at time 4096 (s).
c-

-
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-

r-

o-
of

n

h

js(t,K), which we computed by fitting the data to the fun
tion exp@r/j s(t)# in the interval (0,r s) in which the decay is
well described by an exponential. According to our expe
ence, a good recipe for fixing the interval (0,r s) is to find the
distancer s(t) as the minimal distance for whichS„r s(t),t…
<0.05. This is done for a given time and coupling.

The time behavior of the correlation lengthjs(t,K) is
similar to that of the average domain sizeD(t,K). It in-

creases in time as a power lawjs(t,K)}tkeff(K) ~we found
keff.0.5 for K52). For a small coupling constan
K, js(t,K) saturates to a finite valuejsat

s at about the same
time tsat

(D) as the saturation of the average surface domain
occurs. The saturation for large values ofK cannot be seen
because the simulation time is insufficient. The depende
of the saturated correlation lengthjsat

s on K is shown in Fig.
5. It can be fitted by an exponential,jsat

s .e(3.2960.03)K. This
behavior is similar to what was observed forDsat ~cf. Fig. 5!.

For times shorter thantsat
(D) we observed the following

scaling:S(r ,t)5S̄(r /tn), the value of exponentn for K52
is n50.465~Fig. 11!. The functionS̄(x) was found to have
the form S̄(x)5exp(2bx2ax2) where the parametersa,b
were fitted asa52.660.1 andb51.8660.09. This behavior
agrees with analytical results for the zero-temperature kin
Ising model.23 The correlation functionsS(r ,t) at times
larger thantsat

(D) do not depend on time but they depend onK.
These functionsSsat(r ,K) can be also scaled into a univers
form using the saturated correlation lengthSsat(r ,K)
5S̃„r /jsat

s (K)….

IV. DISCUSSION

The crossover in the surface width as well as in t
height-difference correlation function is clearly related to t
stopping of phase ordering on the surface. We observed
the time for saturation of a domain sizetsat

(D) is approximately
proportional to the timetcross for a crossover to the KPZ

FIG. 11. Spin-spin correlation functionS(r ,t) as function of
r /tn for K52 in times 512 (s), 1024, (h), 6144 (L), 32768
(3), 65536 (n), 131072 (1). The solid line is the fit with func-
tion exp(2bx2ax2), a52.6,b51.86 ,x5r /tn, n50.465.
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exponentb51/3 in the evolution of the surface width~Fig.
5!. Due to the progressively increasing time and system
needed for the simulation we cannot decide from our d
whether the crossover is present for any coupling, or if th
is a phase transition at a certain critical couplingKc , and for
K.Kc the exponents remain enhanced. However, we do
lieve that the crossover is present for any value ofK, but it is
difficult to see it for strong coupling becausetcross is larger
than the reasonable simulation time.

The most striking features in the surface morphology
the pyramids or teeth observed for a sufficiently strong c
pling (K>1.5). This can be understood from the grow
rules of the model. Let us consider a growth site with
nearest neighbors of the same type. The probability tha
will be occupied by a new particle is}(e3K1e23K). The
first terme3K gives the probability that a new particle will b
of the same type as the old ones. This is much larger than
second term corresponding to the probability that a new p
ticle will be of the opposite type. The creation of new d
main walls is thus strongly inhibited and growth procee
preferably by adding the particles of the same type. On
other hand, the probability of occupying a growth site nex
the boundary between two domains is}(eK1e2K), i.e.,
smaller than the growth probability inside the doma
Hence, growth inside the domain is preferable. This lead
the formation of pyramidlike features composed of one ty
of particles with facets of maximal slope and domain wa
in the bottoms of the valleys. In other words, growth
pinned by domain walls. This is in accord with the results
nonhomogeneous growth, where the presence of the inho
geneity leads to the formation of a dip in the surface.24,25

At the same time, if we observe the deposition of partic
next to a domain wall, we can see that the wall movemen
due to deposition of a particle of the opposite type, wh
has probability}e2K, while no movement has probabilit
}eK. That is why the wall movement is very slow for larg
K. The surface domains with slowly moving walls result
long vertical lamellae~cf. Fig. 3!. This leads to the seem
ingly surprising fact that the width of lamellae of differe
types of particles for a given time decreases with the c
pling, as we observed for growth with initial conditions fixe
by neutral substrate.26 This is also the reason for longer tra
sient times for largerK.

All reported exponents were obtained for zero exter
field. A nonzero external field leads to surface~as well as
bulk! magnetization, or in the context of alloy growth,
changing stoichiometry. We can still define exponentc for
growth of the dominant domain size as well as exponents
kinetic roughening. The effect of this symmetry breaking
the values of exponents remains to be studied.

V. CONCLUSION

We have investigated the interplay between phase or
ing and kinetic roughening using the 111-dimensional two-
component single-step SOS growth model. We examined
validity of scaling for both phenomena and measured
effective scaling exponents.

We observed two situations depending on the strengt
couplingK between two types of particles. For a modera
e
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sufficiently strong (K.0.3) but not very large (K,1.8) cou-
pling, there is a crossover in time and spatial behavior
geometrical characteristics of the surface profile. The eff
tive exponentsa andb for times shorter thantcrossare sig-
nificantly larger than the KPZ exponents. After a crosso
the KPZ exponents were observed. Surface ordering p
ceeds only up to a finite timetsat

D (K), after which it stops.
Crossover timetcross is proportional totsat

D (K) and both are
exponentially increasing with the coupling strength. F
strong coupling (K>2), we observed only enhanced exp
nents and ordering continued up to the longest simula
time. However, we believe that this difference is only due
the finite time of our simulation, and that ordering will eve
tually stop and the crossover to the KPZ behavior will occ
for any coupling.

The intermediate growth regime is connected with surfa
phase ordering. It results in enhanced and more rapid kin
roughening. There is also a crossover in geometrical cha
teristics with increasing coupling for a fixed time and leng
scale. Scaling exponents are continuously increasing withK.
We found that, for sufficiently strong coupling, scaling wi
enhanced exponents is satisfied over many decades.

During phase ordering, the average size of the surf
domainsD increases in time asD}tc with the exponentc
close to 1/2. The spin-spin correlation function and the d
tribution of domain sizes obey scaling with the same ex
nent. Our results for the surface ordering in the intermed
regime are in agreement with the known results for a o
dimensional kinetic Ising model with the nonconserved or
parameter at zero temperature. We expect that the phas
dering on the surface is essentially described by the kin
Ising model for any coupling. Domain growth stops wh
the average domain size reaches the equilibrium correla
length. This is reflected in turn by a crossover in effecti
exponents for kinetic roughening.

Our results lead to conclusion that in 111 dimensions
there is no new universal behavior and that the TCSS mo
belongs to the KPZ universality class for any value of co
pling. However, since the crossover time and the correla
length are increasing exponentially with coupling, the n
behavior in the intermediate regime can be dominant
practically relevant times and length scales.

It is of interest to study the TCSS model in 211 dimen-
sions. If the analogy with the kinetic Ising model is val
also here, the size of surface domains will not be restric
and it will diverge for some critical value ofK. Then a new
universal behavior may be observed. Furthermore, one
expect that in 211 dimensions a phase transition in kinet
roughening exists. It would be also desirable to explore s
ing in different growth models for binary systems, in partic
lar, in models with the surface diffusion.
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