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We study scaling in kinetic roughening and phase ordering during growth of binary systems. We use a
1+1-dimensional single-step solid-on-solid model with Ising-like interaction between two components. We
observed that the model exhibits a crossover from an intermediate regime, with effective scaling exponents for
kinetic roughening significantly larger than for the ordinary single-step growth model, to an asymptotic regime
with exponents of the Kardar-Parisi-Zhang class. The crossover time and length are exponentially increasing
with the strength of interactioK. For a given largeK, scaling with enhanced exponents is valid over many
decades. The effective scaling exponents are continuously increasing whrface ordering proceeds up to
the crossover. The average size of surface domains increases during growth with the exponent close to 1/2; the
spin-spin correlation function and the distribution of domains obey scaling with the same exponent.
[S0163-18298)02039-9

[. INTRODUCTION filing f(x) = const.,x>1 and f(x) « x#, x<1 (B=alZ).
Dynamical scaling allows us to classify growth processes
Growth by vapor deposition is an effective process forinto dynamical universality classes according to values of
producing high-quality materials. The microscopic mecha-exponentse and z (or « and 8).%’ This scaling has been
nisms of growth were intensively studied in the past mainlyobserved in a wide variety of growth models and many of
in the case of homoepitaxial growth® However, a common them belong to the Kardar-Parisi-Zhafi§PZ) universality
situation in nature as well as in modern technologies is thelass® There has been considerable effort in order to find
growth of binary or more component systems. Due to thelifferent possible universality classes.
nonequilibrium nature of growth the properties of the result- On the other hand, the process of ordering in ordinary
ing film can be very different from the properties of equilib- binary systems with a constant number of particles can lead
rium bulk material(surface alloys that have no bulk analog t0 phase separation. In the case of phase separation dynami-
can be formed, highly anisotropic structures can be prepare§@l scaling exists as well, e.g., in the Ising model at low

etc). The problem of growth in a system with two or more f[emperature%.ln p_hase orderir_lg, the characterist?c length
: ; ds the average size of domains formed by particles of one

type. It increases with time as a power ladt?. The dy-

view, because the growth process may belong to a new unpamics can be classified according to values of the exponent
i . Phase ordering is usually a bulk process. However, one

versality clas$® and such a system might exhibit a nonequi- . ) .
L . . can also study growth-induced ordering at surfaces. In this
librium phase transition between low- and high-temperature

case the evolution of the average domain size on the surface
phases. . . . is of interest.
There are two interfering phenomena in the growth of

. o . ) On the microscopic level, growth is usually investigated
binary systems: kinetic roughening and phase ordering. Dufgging giscrete growth models. Although several growth mod-

ing growth the initially flat surface is becoming rough. This g|s for binary systems were introduced in various contexts,
is called kinetic roughening. It has been found that this Proe g., for the study of phase separation during molecular-beam
cess often fulfills the invariance with respect to scaling inepitaxy,lo or growth of binary alloy£? our understanding of
both time and length. Let us consider a surface in &rowth of composite systems is still at the beginning. In
d-dimensional space given by a single-valued functionyarticular, little is known so far about kinetic roughening in
h(r,t) of ad’-dimensional §=d’+1) substrate coordinate tyo-component growth models. This problem was probably
r. The surface Eughness is described by the surface widtfyst considered by Ausloos, Vandewalle, and CldoThey
w(t,L)=(\h?—h?), wheret is the time,L is a linear size, introduced a generalization of the Eden model and coined a
and the bar denotes a spatial average) a statistical aver- magnetic Eden model, which contains two types of particles
age. The surface width often obeys the dynamical scalingvith the probabilities of growth given by the Ising-like inter-
law w(t,L)ecL*f(t/L?), with the scaling functiorf(x) ful- action. Ausloos, Vandewalle, and Cloots suggested that the

interesting from a purely statistical-mechanical point of
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magnetic Eden model does not belong to the KPZ universalbecause deeper layers cannot affect surface growth. The
ity class. Recently El-Nashar, Wang, and Cerdestadied  complication is that the depth that should be stored is in
kinetic roughening in a ballisticlike two-component growth general not well defined and, in principle, it may be unlim-
model with a varying probability for deposition of a given ited. For example, to describe the rate for a process in which
type of particle. They observed that the expon@rthanges a particle is moving from or to the bottom of a step we need
with the probability and argued that kinetic roughening noto store the composition in the depth equal to the maximum

longer follows the KPZ scaling law. Although the phase or-step size. But it is known that in some models of MBE
dering was apparently present it was not studied in thesgrowtht* based on an unrestricted SOS model steps of an
works. arbitrary size can be present. Natural solution of this techni-
In this paper we concentrate on the situation where botlgal obstacle is to use so-called restricted SOS model in
processes, kinetic roughening as well as phase ordering, ajghich possible configurations are limited by an additional

important and affect each other. We investigate scaling irconstraint/h(i)—h(j)|<N;i andj being nearest neighbors
both roughening of the surface and phase ordering. We useghdN a given integer.

one-dimensional two-component single-step solid-on-solid
growth model that we recently introduc&lt is particularly _
convenient for the study of asymptotic scaling behavior. B. Two-component single-step model

Here we present results of extensive numerical simula- oyr model is based on the simplest restricted SOS model,
tions that complement preliminary results publishedihe so-called single-step solid-on-solid model. The difference
elsewheré? _ _ of heights between two neighboring sites is restricted- tb
The paper is organized as follows. In Sec. Il, our modely, — 1 only. The advantage of this choice is that if we restrict
and the measured quantities are defined. In Sec. Ill, results @fyrselves to nearest-neighbor interactions between particles
our Monte Carlo simulations are described. Section IV conthen we can define rates for elementary moves of particles
tains a discussion. Finally, a summary is given in Sec. V. sing only the composition on the surface. Hence, the rates
at any time are given by the surface profiléi,t) and the
Il. MODEL AND MEASURED QUANTITIES compositiononly on the surface, which is described by the
field o(i,t) of the same dimensionality a%i,t). We call
such a model théwo-component single-stdpCSS model.
There is a large variety of single-component growth mod- The growth rules depend in general on the physical situ-
els that can be potentially generalized to the multicomponerdtion under study. We consider a rather simple case that,
case. Moreover, there are different possible means of genehowever, allows us to evaluate the effect of ordering on ki-
alization. One usually tries to use a model which is as simpl@aetic roughening. As indicated above, we do not allow pro-
as possible and still contains important features. Our aim igsesses that lead to exchange of particles in bulk. This is well
to find such a model for the study of scaling during two- justified because rates for such processes are usually several
component growth. orders of magnitude lower than for processes on the surface.
The commonly used approximation is a discrete modeWe also do not include surface diffusion. This is a serious
with the so-called solid-on-solidSOS condition. It means restriction from the point of view of application to epitaxial
that the surface is described by a single-valued discrete fungrowth. However, it is well known that the study of scaling
tion h(i). The index is the horizontal coordinate that labels in models with diffusion is demanding on computer power
sites of the substrate. The rates for elementary growth prcalready in the case of one-component gradnd that it is
cesses depend usually only on the valueb of a neighbor-  difficult to obtain results with good statistics. We consider,
hood of the initial and, in the case of diffusion, possibly alsorather, the condensation-evaporation dynamics. Moreover,
of the final position of a particle. The situation is more com-we restrict ourselves here to the pure growth situation.
plex for a two-component system because the rates of eEvaporation can be included but we expect that it will not
ementary growth processes depend not only on the geometghange the scaling behavior provided deposition occurs more
but also on the local composition. In practice it means thafrequently than evaporation, i.e., the average surface height
we need to store more information, e.g., the composition ins not constant.
an additional data array. Let us denote the type of a particle Hence, particles are only added during the evolution. Due
by a variableos that can have value-1 or —1. The geom- to the single-step constraint a particle can be added only on a
etry of the surface at timé is described by the function site at a local minimum of height. We call such site the
h(i,t) and the composition of the deposit is represented by growth site. Once the position and the type of the particle are
function o(i,y), where the two variables andy are hori-  selected, they are fixed forever. The probability of adding a
zontal and vertical coordinate of a particle, respectively. Theparticle of typeo to a growth sité depends only on its local
variabley is restricted only to values from 1 tu(i,t). neighborhood and is controlled by the change of energy of
Storing the composition of the whole deposit is possiblethe system after deposition of a new particle. The energy is
only for relatively small sizes of the substrate and not toogiven by Ising-like interaction. The probability is propor-
many monolayersSML) of deposited particles. When we tional to ex§—AE(i,0)/kgT}, wherekg is Boltzmann's con-
study scaling phenomena where the behavior for very largstant, T is temperature, and\E(i,o) is the change of
samples and long time&e., many ML) is investigated, too energy'®
much memory would be required. However, when bulk pro- We describe our growth model for simplicity int1L di-
cesses can be neglected, it is sufficient to remember only theensions but it can be straightforwardly generalized to any
composition within a certain finite depth under the surfacedimension. Several realizations of the single-step geometry

A. Modeling two-component growth
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FIG. 2. Example of configuration with two types of particles
(dark and light grayin the considered realization of the single-step
model. Dashed lines indicate positions where a new particle can be
deposited.

C. Measured quantities and simulation procedure

The evolution of surface morphology is affected by com-
position of the surface and vice versa. We measure quantities
describing both aspects. The surface morphology is charac-
terized by the surface widtw(t,L) defined in the Introduc-
tion, and by the height-difference correlation function
G(r,t)= (1) =F_([h(i+r,t)—h(i,1)]?), which is ex-
pected to obey a scaling relatfoh G(r,t)«r2eg(r/t*?),
with the scaling functiorg(x) constant forx<<1 andg(x)

x 2% for x>1. In the case of phase ordering we restrict
ourselves to the composition of the surface, because only it
o ) ) affects the evolution of the surface profile. We measure two
_ FIG. 1. Three realizations of the single-step geometry#11 o antities defined on the surfag@) the average of surface
dimensions. Dashed lines indicate positions where a new pamdaomain sizes, andi) the correlation functiors(r,t) analo-
can be deposited. gous to the spin-spin correlation function used in magnetic
systems. We call the surface domain a compact part of the
are possible in 1 dimensions(Fig. 1) leading to three surface composed of particles of the same type. The size of
different variants of the TCSS model. They differ in the the domaird is measured along the surface. The average size
number of nearest neighbors of a new particle. While in variof the surface domains depends on time, on the strength of
antB [Fig. 1(b)] there is an ambiguity in the type of a newly coupling, on the external field, and also on the initial com-
deposited particle if two neighbors are of opposite types, thigosition of the substrate. We denote the statistical average of
is not the case in varia® [Fig. 1(&)] in which the number of  this quantity byD =(d). The correlation functiors(r,t) is

nearest neighbors is odd. We expect that the effect of ordegtefined as followsS(r,t) = (1/L) EiL:1<<T(i +r,t)o(i,tb)).
ing on dynamics is stronger for variatthan for variant. We performed simulations for various values of the cou-
VariantC [Fig. 1(c)] is technically slightly more complicated pjing strengthk >0 and mainly for zero external fielH.

to simulate due to the varying number of nearest neighborgystem sizes ranged from=250 to L=80 000, and the

of a deposited particle. Therefore, we consider vardawith number of monolayers deposited was up to BF, and for
three nearest neighbors, which is represented as stacking gf 5| systems up to%10° ML. We measured time of the
rectangular blocks with the height equal to double the widthg;,iation in ML. A statistical average was obtained by av-
[Fig. l(a)].. Nevertheless, we _expect similar asymptotic Scal'eraging over a varying number of independent rfrem ten
ing behavior f°F all three variants. . for L=80 000 up to several thousand for 250].
The expression for the energy chang® is Growth starts on a flat surfa¢é, however, in two-
component models the evolution strongly depends on the
AE(i,0) initial composition of the substraté.Here we consider two
— = —Ko[o(i—-1)+o(i)+a(i+1)]-Ho. possibilities:(i) a neutral substrate, i.e., substrate without any
keT interaction with deposited particlém this case the system
@ orders spontaneously from the beginningnd (ii) an alter-
nating substrate, with the alternating types of particles. The
Here, K is a dimensionless coupling strength ardis the case of a homogeneous substrate composed of one type of
bias leading to preferential deposition of particles of a separticles is reported elsewhere.
lected type (1 for positive,—1 for negativeH). In anal-
ogy with magnetic systems we will cal an external field. Il. RESULTS
The sumo(i—1)+o(i)+o(i+1) contains types of par-
ticles on the surface within nearest neighbors of the growth
site (which are three in the chosen variant: left, bottom, and Figure 3 shows examples of time evolution of the surface
right); see Fig. 2. morphology and composition for selected coupling strengths

A. Evolution of morphology
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FIG. 4. Surface widthw divided by t*® vs timet for several
values of the coupling constar,= 0.7 (*), 1.0 @), 1.3 (¢),
2.0 (A), 3.0 (O) and zero external field, =80 000. Inset: The
effective scaling exponens.; before crossover as a function of
FIG. 3. Examples of evolution of the surface profile for severalcoupling.
values of the coupling{=0.5, 1.0, 1.5, 2.0, and zero and nonzero
external field(upper panelH=0; lower panelH=0.02). Surface 1. Surface width
profiles at selected times increasing as powers are indicated by
black lines; only part of the grown material close to the surface is We start with the time dependence of the surface width
shown at a given time. Dark and light gray correspond to differenfrom which we can measure the effective exponggt. In
types of particles. The system sizelis-300. order to avoid the finite-size effects caused by the saturation
of the surface width we used a large system slze
and external fields. Note that the times for which surface , B80000. We have found that the behavior observed

profiles are shown increase as a power law. Visual inspectioﬁhanges with the strength of coupling. When the coupling is

of many configurations leads to the following observations wealk, the evolution of the roughness is aimost the same as in
y 9 ) 9 the ordinary single-step model, e.g., #r 0.3 the increase
In the case of zero external fieldpper panel we can see

o i . . X of w(t) can be well fitted over time of the simulation by a
that with increasing coupling the surface is becoming morepower law w(t)<tée with the exponentB.s=0.33, very
e . 1

and more roughfaceted and at the same time more and close to the KPZ valugkP?=1 (cf. Ref. 12. For somewhat
more clean columnar structures are formed; the anisotropis ger coupling we have observed that the surface width ex-
induced by growth is more pronounced. The average widthyjpits a crossover in time. At first the width increases with an
of the columns increases with time. We can also see that, fQfffective exponenBeq>1/3, but after certain timé, s it

a given time, the average width of the column is decreasegygsses over back 8P =1. This can be clearly seen in
with the coupling strength. This seems to be in contradictiorrig. 4 (curves fork =0.7, 1.0, and 1.3) where we plotted the
with the eXpeCtation that Ordering should be more Protime dependence of the quar‘]tiﬂy(t)/t]-/3 for several cou-
nounced for stronger coupling. Notice also that for largerplings in order to compare evolution of the surface width
coupling there is correlation between the domain walls angyith the KPZ behavior. Notice also that the absolute value of
the local minima of the surface. Both these effects can bgy at a given time increases with. The crossover from the
explained from the dynamical rules of the model. We shallegime with the enhancefqy to the regime with3=1% is

discuss this point further in Sec. IV. definitely not a finite-size effect. We checked that the time
The lower panel demonstrates the effect of a small extery___ is the same for different system sizes.
nal field. We can see that for small coupling<0.5) an From Fig. 4 we can also see thgf,eis increasing with

external field does not cause a significant change of the stgpe coupling. We were not able to observe the crossover to
ichiometry. The effect of the field is canceled by fluctuationsine Kpz behavior for coupling =2 on the time scale of our
during growth. However, for the larger coupling an externalsimylations® In order to estimate the time needed we plot-
field leads to an excess of one component. ted the dependence tf,.s0n K (Fig. 5). It can be fitted as
terosd K)€3%. When we extrapolate this data ko=2 we
getteosd K=2)>10°, which is longer then the time of our
simulation.

The ordinary(one-componentsingle-step model belongs ~ We found that for anyK>0.7 there is a time interval
to the Kardar-Parisi-Zhang universality clasgth the expo-  extending over several decades in which we can well fit our
nents a(KPA=1 gKPA=1 (z(KPO=3) in 1+1 dimen- dataas a power law with the exponght> 1/3, before there
sions. In this subsection we investigate the existence of scais the crossover to the KPZ behavior or our simulation stops.
ing and the values of scaling exponents for kineticThe gquestion remains as to wheth@yg; goes to a specific
roughening in the TCSS model. value for largeK. We did not find any indication thaBq

B. Kinetic roughening
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FIG. 5. Crossover timé,ssfor the crossover in the behavior of  FiG. 6. The height-difference correlation functi@(r,t) for
the surface roughnessX(), saturation time, for saturation of the  couplingsk =0.7, 1.0, 2.0, and 3.0 after 262 144 ML were depos-
average domain sizel (), saturated value of the average domain jted, L =80 000. Inset: Effective exponent before crossover as
sizeDgy (*), and saturated value of the correlation length(O) function of coupling.
vs couplingK.
KPZ exponents and scaling with these exponents is satisfied.

or larger coupling, when the crossover is observed, we can-

saturates to a certain value, at least for the investigated rané;?ot get scaling for all times and lengths, nevertheless for
of the coupling constant OK<3. The effective exponent long times and large lengths the KPZ scaling is valid. When

'89“.[')5 an ;]ncrea;mgl] functloln K (se];e inset in Fig. )|4 We coupling is sufficiently strong then the behavior character-
attribute the rather large value By for strong coupling 10 ;o4 py the enhanced exponents extends over many decades
pinning of the surface at domain boundaries. of time and length and looks practically as asymptotic. Then
we can ask ourselves if there is scaling with the new expo-
2. Height-difference correlation function nents that is satisfied on this scale. In order to show that there
The second exponent for kinetic roughening is the roughiS scaling, we should get a data collapse. We have founq that
ness exponent. It can be calculated from the dependenceldeed we get the data collapse over many decades in the
of the saturated surface width on the system size. We usedjong-coupling regime=2). As an example we show in
here an alternative and often more accurate way. We calc-'9: 7 the data collapse of the height-difference correlation
late a from the spatial dependence of the height-differencdunction G(r,t) obtained fork =2 with exponentsy=0.97
correlation functionG(r,t)=r2¢ in the long-time limit. and z=1.98. For different< we need different exponents,

The obtained exponents also depend on coupling. Ex- €9~ fork=3 we get the best data collapse te~0.99 and
ponenta has a value close ta®P? =1 for weak coupling. 2~ 1.7. The question remains what is the true asymptotic

For stronger coupling, we have found that when the systergcaling in the strong-coupling regime. We expect that for any
is sufficiently large there is a crossover behavior in the spal there is a crossover to the KPZ scali@gthoughtcossmay
tial dependence of the height-difference correlation functiorP® astronomically large and the asymptotic behavior will
(see Fig. 6. On a small length scale it increases faster than °€l0ng to the KPZ class.

and for a sufficiently larg&k we can fit it as a power law 10°

r2eef with an effective exponentre;>3. However, if the
distance is larger than a certain lendiths., the form of the . o 12062144
function crosses over to power law with the exponent which ™ | = 1-32768
is close to3, i.e., to the KPZ behaviofcf. data forK=1 in e
Fig. 6). 10° | ey %‘a

If the coupling is strongi{=2) we do not see the cross- &
over but only the larger exponeni~1. We expect that %10_3 | '%
this is because even the system dize80 000 and the time 5 KA
262 144 ML are not large enough to get into the crossover %
regime. We have found thal. is increasing smoothly with 10 Vs,
the strength of coupling fronx(KP?=1 to a value slightly v,
less than Linset in Fig. 6. The valuea=1 is a natural limit o | s
imposed by the single-step constraint. a

107 10 I 0 e 10 0 0
3. Scaling rlt
Having both exponents and 8, we can try to verify FIG. 7. Data collapse of the correlation functi@yr,t) for

scaling. For weak coupling, the exponents are close to theouplingK =2 obtained for exponents=0.97 andz=1.97.
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FIG. 8. Time evolution of average surface domain size for cou- FIG. 9. Distribution of domain sizes fa¢=1 and times 4l),
pling constant = 0.7 (*), 1.0 @), 1.3 (¢), 2.0 (A), 3.0(©) 8(®), 16 (), 32(0), 64 (0), 128(¥), 256 (X), 512(V), 1024
and zero external field,=80 000. Inset: Effective exponetitgsas  (+), 6144 (A), 32768 (A). Inset: Detail of the distribution. The
function of couplingK. symbols are the same as in the main graph.

C. Phase ordering is not clear solely from that quantity whether the domains
form a kind of periodic structure with a typical domain
length or if the domain sizes are more random. In order to
The time evolution of the average surface domain §ize obtain more information about the domains, we measured the
for several values of the coupling constant is shown in Fig. 8probability distributionP(d,t) of the domain sized as a
We can see that the behavior again dependK oRor small  function of time. We performed simulations for three values
coupling, D at first increases; however, after some timeof coupling K=1,K=2, and K=3, the system size.
tgta’t)(K) the surface domain size saturates to a valygK). =1000, and times up to 32 768 ML. To get good statistics
We have checked that the saturation is not a finite-size effesve had to make the average over 10 000 independent runs.
(see Ref. 12—inset in Fig.)3but it is an intrinsic property of We observed that at initial times there is a rather sharp asym-
the model. Both the time{2)(K) and the saturated value metric peak with the position shifting to higher valuescof
D.(K) rapidly increase wittk (Fig. 5. We have found that With increasing time. During the time evolution the ampli-
the dependence df can be well fitted by exponential func- tude of the peak decreases and the peak becomes broader and
tions: D gy(K)~e29L006K gng tggt)(K)~e(7-67i°-°6)K. Wwe eventually disappears. The time scale for this behavior de-

were not able to observe saturation =2 because of a Pends orK. .
prohibitively long simulation time needed. Hence, for2 We try to rescale our data extending gver many orders of

the domain size increases over the time of our simulationMadnitude and to see whether or no there is scaling. We

But we believe that the evolution of the surface domains iPPlied a scaling formula of the form
analogous to the evolution of domains in the one- B
dimensional Ising model and that in the long-time limit it P(d,t)=F(@/D(1))/D(v), 2

will saturate for anyK (Ref. 19. ~ with a scaling functiorF. The average domain si2(t) is

~ The evolution of domains is strongly affected by the ini-jy fact equal to the average computed from the distribution
tial conditions and a certain transition time is needed beforg( ).

a value independent on the initial state is reached. This phe- |, Fig. 9 the rescaled distribution of domain sizes for
nomenon is similar to what we have observed in the case of 1 j5 shown as a function of the variable=d/D, for times
the surface width. The transition time is increasing with coU-om 4 to 32 768. We can see that the peak at aroxind
pling and can be quite long, e.g., flr=3 it is several hun- — 4 exists only for short times and for a time of approxi-
dred ML. . . _ matelyt=64 it changes to a small plateau that vanishes for
We have found that fok=1 there is a time interval in  |5nger times. The distribution of domain sizes at long times
which the increase of the average domain size can be f'tteélonverges to a function that we found to be well fitted by an
by a power law,D(t,K)xt?e(X) with an exponent/es de-  exponential. Moreover, we found that the peak vanishes

pending orK. For largeK, the exponentle; seems to satu-  around the time!2) when the average domain size saturates.

1. Time evolution of surface domains

rate to a value slightly smaller thah (see inset in Fig. B The results fork =2 are shown in Fig. 10. We can see
This is the same exponent as for the Ising model with &nat the scaling formulé?) is satisfied from times 8 to 6144.
nonconserved order parameter. The data for longer times are not shown here because after

10 000 independent runs they still have too much noise. The
scaling functionF(x) has a maximum again near=0.4.

The average surface domain size contains informatiohis indicates the creation of a quasiregular domain struc-
about the formation of domains during growth. However, itture, but the distribution has a very broad tail for larger

2. Distribution of surface domain sizes
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FIG. 10. Distribution of domain sizes fd=2 and times 8 FIG. 11. Spin-spin correlation functiod(r,t) as function of

(@), 32 (O), 64 (O), 128 (), 256 (X), 512 (V), 1024(+),  r/t” for K=2 in times 512 ), 1024, (J), 6144 (¢), 32768
6144 (A). The solid lines are exact results for the kinetic Ising (x), 65536 (), 131072 (). The solid line is the fit with func-
model, Ref. 21, in the limit of small and largD. Inset: Distri- tion expbx—ax), a=2.6,b=1.86 x=r/t*, v=0.465.

bution of domain sizes foK=1 at time 16(+), for K=2 at time

256 (X), and forK=3 at time 4096 Q).

£5(t,K), which we computed by fitting the data to the func-

tion exdr/é%(t)] in the interval (O;g) in which the decay is
extending up tox=4, which makes the domain structure well described by an exponential. According to our experi-
irregular. We compared the scaling for different value&of  ence, a good recipe for fixing the interval(g,is to find the
For times shorter than the saturation time the scaling funcdistancer(t) as the minimal distance for whicB(r 4(t),t)
tion does not depend oK, which is demonstrated in the <0.05. This is done for a given time and coupling.
inset in Fig. 10 forK=1.0, 2.0, and 3.0. The time behavior of the correlation leng#i(t,K) is

Behavior similar to that in the strong-coupling regime wassimilar to that of the average domain sipt,K). It in-

obst_arved_ for th_e kinetic Ising model in one dimension. Nu'creases in time as a power lag(t,K) =t (we found
merical S|mulat|_on_s of_the Ising mpde] at zero temperature k=05 for K=2). For a small coupling constant
show that the distribution of domain sizes obeys the f@m K, £%(t,K) saturates to a finite valug,, at about the same

with a peak around/D=0.4. Also, the form of the function timet2) as the saturation of the average surface domain size
F(x) found in Ref. 20 looks very similar to our results. On sat Y

the contrary, for any nonzero temperature it may be Showrgccurs. Tthhe sgtur?t;c.)n f(tqr Iar.gel V3.|l#§§?©ff&_l;_];’:0t dbe segn
analytically that the distribution of domain sizes in equilib- ecause the simufation ime 1S Insufficient. The dependence

rium, i.e., in the infinite time limit, is exponentigbee, e.g., of the saturated correlation lenggf, onK is shown in Fig.

i S (3.2950.03K Thi
Ref. 21). Analytical results for the zero-temperature kinetic 5- It can be fitted by an exponentiaf, =~ ¢ X. This
Ising modef? give asymptotic result§(x)=mx for x—0  behavior is similar to what was observed g, (cf. Fig. 5.

and F(x)=exp(-Ax+B) for x—o, with A=17(3/2) For times shorter than{3) we observed the following
=1.306B..., andB=0.597 ..., which is in good agree- scaling:S(r,t)=S(r/t"), the value of exponent for K=2
ment with our results, as Fig. 10 shows. is »=0.465(Fig. 11). The functionS(x) was found to have

Summing up, we should again distinguish two time re-ihe form S(x) = exp(—bx—ax) where the parametera,b

gimes. Atinitial times, the form of the distribution of domain | .t oe — 2 640 1 andb=1.86+ 0.09. This behavior

_slz(ejsbas a function ogdoeskn%t c?angre]: T‘;d It 'j ::hharaclter- agrees with analytical results for the zero-temperature kinetic
1z€d by a pronounced peax. .Ca.'f@ olds and the only Ising modef® The correlation functionsS(r,t) at times
change during the time evolution is the increase of the aver- (D) .
age domain sizd&d. WhenD begins to saturate, the peak Iargertharts_at do not depend on time but they dependl@n
vanishes and, in the saturated regime, the distribution of do‘[hese fupctlo?fsa(r,lf) ctar:j be alsci stpaledl Into & unl\éersal
main sizes is exponential. The reason that, in the case 6?["‘ ussmg e saturated correlation lengtB(r.K)
strong coupling K=2.0,3.0), the peak remained for all =S(r/£s(K)).
times observable is simply that the duration of the simulation
is still much shorter than the saturation time.

IV. DISCUSSION

The crossover in the surface width as well as in the
height-difference correlation function is clearly related to the
The correlation  function S(r,t)= (1/L) E=‘=1<0'(i stopping of phase ordering on the surface. We observed that
+r,t)o(i,t)) decays nearly exponentially with the distancethe time for saturation of a domain sitgt) is approximately
r. The decay is characterized by the correlation lengthproportional to the timet.s for a crossover to the KPZ

3. Correlation function
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exponent3=1/3 in the evolution of the surface widflrig.  sufficiently strong K>0.3) but not very largeK <1.8) cou-
5). Due to the progressively increasing time and system sizeling, there is a crossover in time and spatial behavior of
needed for the simulation we cannot decide from our datgeometrical characteristics of the surface profile. The effec-
whether the crossover is present for any coupling, or if thereive exponentsy and 3 for times shorter thaigssare sig-
is a phase transition at a certain critical couplitig, and for  njficantly larger than the KPZ exponents. After a crossover
K>K, the exponents remain enhanced. However, we do behe KPZ exponents were observed. Surface ordering pro-

Ii(_av_e that the crossover is present for any vaIch_)but itis  ceeds only up to a finite time,(K), after which it stops.
difficult to see it for strong coupling becausg,ssis larger Crossover time o, is proportional totSDa(K) and both are
than the reasonable simulation time. . . . . .

The most striking features in the surface morphology areexponentlally Increasing with the coupling strength.  For

the pyramids or teeth observed for a sufficiently strong couStrong coupling K=2), we observed only enhanced expo-

pling (K=1.5). This can be understood from the growth nentsHand ordenngbclc_Jntanﬁd uﬁ. t(()j_f‘;he Iong_est sllm(;llatlon
rules of the model. Let us consider a growth site with allime- However, we believe that this diiference is only due to

nearest neighbors of the same type. The probability that ithe finite time of our simulation, and that orderin_g wiI_I even-
will be occupied by a new particle is(e3K+e3K). The tually stop an_d the crossover to the KPZ behavior will occur
first terme®  gives the probability that a new particle will be for any coupling. o _

of the same type as the old ones. This is much larger than the The intermediate growth regime is connected with surface
second term corresponding to the probability that a new parPhase ordering. It results in enhanced and more rapid kinetic
ticle will be of the Opposite type. The creation of new do- roughening. There is also a crossover in geometrical charac-
main walls is thus strongly inhibited and growth proceedsteristics with increasing coupling for a fixed time and length
preferably by adding the particles of the same type. On thecale. Scaling exponents are continuously increasing Kuvith
other hand, the probability of occupying a growth site next towe found that, for sufficiently strong coupling, scaling with
the boundary between two domains ageX+e ), i.e., enhanced exponents is satisfied over many decades.
smaller than the growth probability inside the domain. During phase ordering, the average size of the surface
Hence, growth inside the domain is preferable. This leads tdomainsD increases in time aB«t? with the exponenis

the formation of pyramidlike features composed of one typeciose to 1/2. The spin-spin correlation function and the dis-
of particles with facets of maximal slope and domain wallstripytion of domain sizes obey scaling with the same expo-
in the bottoms of the valleys. In other words, growth isnent. Our results for the surface ordering in the intermediate
pinned by domain walls. This is in accord with the resglts ONregime are in agreement with the known results for a one-
nonhomogeneous growth, where the presence of the inhom@;mensional kinetic Ising model with the nonconserved order

geg‘?;[% leads tct)' the f]?rmatlt())n of atﬁ'pdm thgtgurfé;bé? ficl sparameter at zero temperature. We expect that the phase or-
€ same ime, Itwe observe the deposition of particie: dering on the surface is essentially described by the kinetic
next to a domain wall, we can see that the wall movement S<ina model for anv counling. Domain arowth stops when
due to deposition of a particle of the opposite type, which g 'y coupiing. growtn P .
i K the average domain size reaches the equilibrium correlation
has probability<e

, while no movement has probability g . . :
K . : length. This is reflected in turn by a crossover in effective
«e". That is why the wall movement is very slow for large o .

exponents for kinetic roughening.

K. The surface domains with slowly moving walls result in our results lead to conclusion that int1 dimensions

long vertical lamellag(cf. Fig. 3. This leads to the seem- there is no new universal behavior and that the TCSS model

ingly surprising fact that the width of lamellae of different bel he KPZ uni litv ol ¢ | f
types of particles for a given time decreases with the couP€!0ngs to the universality class for any value of cou-

pling, as we observed for growth with initial conditions fixed PliNg. However, since the crossover time and the correlation
by neutral substrat® This is also the reason for longer tran- /€ngth are increasing exponentially with coupling, the new

sient times for largeK. behavior in the intermediate regime can be dominant for
All reported exponents were obtained for zero externaPractically relevant times and length scales. .
field. A nonzero external field leads to surfa@s well as It is of interest to study the TCSS model ir-2 dimen-

bulk) magnetization, or in the context of alloy growth, to sions. If the analogy with the kinetic Ising model is valid
changing stoichiometry. We can still define expongntor  also here, the size of surface domains will not be restricted
growth of the dominant domain size as well as exponents foand it will diverge for some critical value d€. Then a new
kinetic roughening. The effect of this symmetry breaking onuniversal behavior may be observed. Furthermore, one can
the values of exponents remains to be studied. expect that in 21 dimensions a phase transition in kinetic
roughening exists. It would be also desirable to explore scal-
ing in different growth models for binary systems, in particu-

lar, in models with the surface diffusion.
V. CONCLUSION

We have investigated the interplay between phase order-
ing and kinetic roughening using thet1-dimensional two-

component single-step SOS growth model. We examined the ACKNOWLEDGMENTS
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