Effect of Pr scattering on the penetration depth λ_{ab} **in** $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ **single crystals**

X.-G. Li

Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan and Structure Research Laboratory, University of Science and Technology of China, Anhui 230026, China

X. F. Sun

Structure Research Laboratory, University of Science and Technology of China, Anhui 230026, China

Y. H. Toh, Y. Y. Hsu, and H. C. Ku

Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan

(Received 22 October 1997)

Four superconducting single crystals near the optimum-doped region $(x=0, 0.11, 0.17,$ and 0.28) for the $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ system were chosen for detailed structural and magnetic measurements, in order to study the effect of Pr scattering on the temperature dependence of the ab -plane penetration depth λ_{ab} . The penetration depth for these incommensurate modulated single crystals follows a $T²$ behavior at low temperature, and then crossover to a linear *T* dependence at the characteristic temperature *T**. Variation of linear *T* region and *T** with increasing Pr content indicates that Pr acts as a strong scattering center that modifies the local density of states of the system. The present result is consistent with the prediction for disorder-affected d -wave superconductors. $[$0163-1829(98)01326-5]$

I. INTRODUCTION

It is extremely important to understand the symmetry of high- T_c superconductors. Studies on the electromagnetic penetration depth λ at a temperature well below T_c are beginning to yield a consistent picture on the pairing state of high- T_c systems.^{1–11} For example, recent penetration depth measurements on high-quality single crystals of $YBa_2Cu_3O_{7-v}$ and $Bi_2Sr_2CaCu_2O_{8+\delta}$ gave strong support to *d*-wave symmetry.² In YBa₂Cu₃O_{7-y}, the temperature dependence of the penetration depth was found to be linear in a wide temperature range, $1,2$ while some other experiments often show a T^2 dependence^{3–9} instead of the linear *T* characteristic expected for a clean *d*-wave superconductor. The discrepancy can be interpreted qualitatively as due to impurity or disorder scattering for a dirty *d*-wave superconductor. Particularly, Hirschfeld and Goldenfeld 10 predicted that there exists a crossover temperature T^* at which the dependence changes from the T to T^2 law due to impurity defect and disorder scattering. Recently, the temperature dependence of the penetration depth on T_c in Bi₂Sr₂CaCu₂O_{8+ δ} was reported.¹¹ Samples with a maximum T_c show a linear behavior, while those with significantly reduced T_c follow a quadratic law. Since only the oxygen content δ is changed, it is not clear why the penetration depth follows a linear law in some samples, but not in all samples.

In order to study the effect of disorder substitution on the temperature dependence of the penetration depth, the $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ system is a good candidate due to the similar ionic radius of $Pr³⁺$ of 1.126 Å compared with Ca^{2+} of 1.12 Å. There have been many previous studies on the Pr-substituted systems.^{12–14} However, previous studies are all on polycrystalline samples, which present very strong impurity scattering. In this paper, impurity-free clean singlecrystal penetration depth data on the Pr-substituted $Bi_2Sr_2Ca_{1-x}R_xCu_2O_{8+\delta}$ system are reported.

II. EXPERIMENTS

Single crystals of the $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ system were grown using the standard self-flux method. High-purity Bi_2O_3 , $SrCO_3$, $CaCO_3$, Pr_6O_{11} , and CuO powders with the off-stoichiometric ratio were mixed, ground, and calcined in air for 1 day. The reacted powders with excess $Bi₂O₃$ included as a flux were then used for crystal growth. The details for crystal growth will be described elsewhere.¹⁵ The actual composition of the as-grown single crystals was determined from an energy dispersive x-ray (EDX) analysis using a Leica Steroscan 440 scanning electron microscopy. The average size of the single crystals was $4 \text{ mm} \times 2 \text{ mm} \times 0.04$ mm. All single crystals were post-annealed at 360 °C in air for 3 days to ensure sample homogeneity.

Single-crystal x-ray data were obtained with a Rigaku Rotaflex 18-kW rotating anode x-ray diffractometer using graphite monochromatized Cu $K\alpha$ radiation with a scanning rate of $0.5^{\circ} - 1^{\circ}$ in 2θ per minute. For the *a*-axis and *b*-axis x-ray diffraction measured in the transmission fashion, a fiber sample attachment with a divergence slit of 1/6° was used. All x-ray diffraction data were collected through careful alignment of the *a*, *b*, and *c* axes of the crystals. The anisotropic magnetic susceptibility $\chi_{ab}(T)$ and magnetization $M_{ab}(H)$ measurements were carried out with a μ -metalshielded Quantum Design $MPMS₂$ superconducting quantum interference device $(SQUID)$ magnetometer down to 5 K in an applied magnetic field from 1 G to 10 kG.

III. RESULTS AND DISCUSSION

Four superconducting single crystals near the optimumdoped region $(x=0, 0.11, 0.17,$ and 0.28) for the

FIG. 1. X-ray diffraction pattern of orthorhombic (00*l*) lines for $Bi_2Sr_2Ca_{0.72}Pr_{0.28}Cu_2O_{8+\delta}$ single crystal.

 $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ system were chosen for detailed studies. Figure 1 shows a typical *c*-axis x-ray diffraction pattern for the single-crystal $Bi_2Sr_2Ca_{0.72}Pr_{0.28}Cu_2O_{8+\delta}$. No impurity lines were observed, and the Bi-2212-type $(00l)$ diffraction lines give an orthorhombic *c* parameter of 30.701 Å. The *b*-axis diffraction pattern in Fig. 2 gives a *b* parameter of 5.439 Å and an incommensurate modulation along the *b* axis with period $s = 4.56$. No modulation was observed along the orthorhombic *a* axis $(a=5.435 \text{ Å})$.

The orthorhombic unit-cell volume increases from 902.3 Å³ for $x=0$ to 907.6 Å³ for $x=0.28$ and 912.1–922.5 Å³ for $x=1$,¹⁶ due to extra incorporated oxygen and a slightly larger ionic radius of Pr^{3+} of 1.126 Å compared with Ca^{2+} of 1.12 Å. The incommensurate modulation period along *b* axis decreases from $s=4.76$ for $x=0$ to 4.56 for $x=0.28$ and 4.16 for $x=1$, and the c parameter decreases monotonically from 30.849 Å for $x=0$ to 30.701 Å for $x=0.28$ and 30.267–30.363 Å for $x=1$.¹⁶ The decreasing *c* parameter is probably due to one or more of the following reasons: (i) With increasing Pr content, the incorporated oxygen with positive charge in the $Bi₂O₃$ double layers increases and, consequently, causes the slab sequence SrO-BiO-BiO-SrO to

FIG. 2. X-ray diffraction pattern of orthorhombic (0*k*0) lines for a $Bi_2Sr_2Ca_{0.72}Pr_{0.28}Cu_2O_{8+\delta}$ single crystal. Incommensurate modulation lines are denoted by $\pm 2\Delta$.

FIG. 3. Molar magnetic susceptibility $\chi_{ab}(T)$ with low applied magnetic field parallel to the *c* axis of superconducting $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ single crystals ($x=0.11,0.28$) in fieldcooled (FC) and zero-field-cooled (ZFC) modes.

shrink. (ii) With Pr doping, an additional band crosses the Fermi level, grabbing holes from the Cu-O d_{σ} -*p* band. The attractive interaction should result in the decrease of the separation between two $CuO₂$ layers. (iii) With predominant $Pr³⁺$ character, there may still exist some $Pr⁺⁴$ character¹⁶ with a smaller ionic size compared with Ca^{2+} .

The *ab*-plane magnetic susceptibility $\chi_{ab}(T)$ with a 5-G low field parallel to the *c* axis of $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ single crystals as shown in Fig. 3 gives a superconducting transition temperature T_c of 88 K for $x=0.11$ and 71 K for $x=0.28$. Since a T_c of 86 K was observed for $x=0$ and 84 K for $x=0.17$, the optimum-doped composition is near $x=0.1$. Single crystals with $x=0.17$ and 0.28 are in the underdoped region and $x=0$ is already in the overdoped region. A metal-insulator transition occurred around $x=0.6$, and $Bi_2Sr_2PrCu_2O_{8+\delta}$ (x=1) is an insulator without long-range Pr ordering down to 0.5 K .¹⁶ The diamagnetic response signal decreases systematically with increasing Pr concentration due to the damaging effect on the coherence of the two $CuO₂$ layers by the randomly distributed Pr ions between these two layers. Smaller field-cooled (FC) signal as compared with the zero-field-cooled (ZFC) signal indicated the flux trapping by single-crystal defects during the field-cooled process.

The *ab*-plane magnetization curves $M_{ab}(H,T)$ for four single crystals were measured with $T < T_c$. Figure 4 shows $M_{ab}(H, 5 \text{ K})$ for four samples at 5 K. The *ab*-plane lower critical field H_{c1}^{ab} , defined as the field at which flux first penetrates, can be estimated from the $M(H)$ curves as a deviation from the linear *M*-*H* behavior corresponding to the Meissner state. For $H \leq H_{c1}$, the magnetization is reversible and no hysteresis loop was observed. For $H > H_{c1}$, the fact that the observed hysteresis loops for these single crystals are near symmetrical denies the effect of surface barriers on the determination of H_{c1} .^{17,18} The *ab*-plane H_{c1}^{ab} (5 K) thus estimated are 255 G for $x=0$, 170 G for $x=0.11$, 130 G for $x=0.17$, and 95 G for $x=0.28$. For $x=0.11$, increasing temperature gives a lower H_{c1}^{ab} of 74 G at 10 K, 42 G at 15 K, 22 G at 20 K, and 12 G at 30 K (Fig. 5). Due to the low H_{c1}^{ab} values, a zero-field de-Gaussing procedure is thoroughly applied before every measurement to ensure the data quality.

FIG. 4. Magnetization curves *Mab*(*H*) for $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ single crystals (x=0, 0.11,0.17,0.28) at 5 K. The lower critical field is denoted as H_{c1}^{ab} .

The *ab*-plane lower critical field H_{c1}^{ab} allow one to estimate the *ab*-plane penetration depth λ_{ab} using he equation $H_{c1} = \Phi_0 \ln \kappa / 4 \pi \lambda^2$, where Φ_0 is the fluxoid and κ is the Ginzburg-Landau parameter. Using κ of 130 from the parent compound $Bi_2Sr_2CaCu_2O_{8+\delta}$ (Ref. 11) for all compounds, the estimated λ_{ab} (5 K) is 1800 Å for $x=0$, 2200 Å for *x* $=0.11$, 2500 Å for $x=0.17$, and 2900 Å for $x=0.28$. The extrapolated λ_{ab} (0 K) of 1650 Å for the parent compound $Bi_2Sr_2CaCu_2O_{8+\delta}$ is very close to the value reported using other measurement techniques.³

The temperature dependences of the penetration depth $\lambda_{ab}(T)$ for four single crystals with a magnetic field perpendicular to the $CuO₂$ layers are shown collectively in Fig. 6. At lower temperature $[T<(0.2-0.3)T_c]$, all samples show a T^2 behavior. However, a crossover from a T^2 to *T* dependence was observed at the crossover temperature *T** \sim (0.2–0.3) T_c . When the temperature is approaching T_c , λ_{ab} diverges as expected. The linear *T* region is extremely long from *T** of 16.5 to 55 K for the undoped parent compound $Bi_2Sr_2CaCu_2O_{8+\delta}$, and this linear region shrinks sharply with Pr doping as shown in Fig. 6.

For the clean *d*-wave superconductors with line nodes on

FIG. 6. Temperature dependence of the penetration depth λ_{ab} for $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ single crystals $(x=0,0.11,0.17,0.28)$. The crossover temperature from a T^2 behavior to *T* dependence is denoted by *T**.

the Fermi surface, theory predicts a linear *T* dependence penetration depth $\lambda \propto T^p$ ($p=1$) at all temperatures.¹⁰ However, in the present study using impurity-free clean single crystals, the presence of structural modulation and defects for the Bi-2212-type phase and the Pr random disordering effect in the Ca site, the defect and disorder scattering will force the clean-limit picture with linear *T* dependence to be observed only at higher temperature range, and a crossover to a scattering dominated T^2 dependence ($p=2$) is expected at lower temperature.¹⁰ Such a behavior was observed in the present studies. As shown in Fig. 7, regardless of the T_c variation from the overdoped to underdoped region, *T** monotonically increases from 16.5 K for $x=0$ to 18.9 K for $x=0.11$, 21.6 K for $x=0.17$, and 24.0 K for $x=0.28$. The T^* values of $(0.19-0.33)T_c$ are consistent with the theoretical predicted range of $(0.12-0.27) T_c$.¹⁰ The reduction of linear *T* region and the variation of T^* with increasing Pr content indicates that Pr acts as a strong scattering center in the Pr-doped $Bi_2Sr_2Ca_{1-x}Pr_xCu_2O_{8+\delta}$ system, which modifies the local density of states in the system and is consistent with the prediction for disorder-affected *d*-wave superconductors.

FIG. 5. Magnetization curves $M_{ab}(H)$ for a $Bi_2Sr_2Ca_{0.89}Pr_{0.11}Cu_2O_{8+\delta}$ single crystal at 10, 15, 20, and 30 K.

FIG. 7. Variation of the superconducting transition temperature T_c and crossover temperature T^* for the $\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Pr}_x\text{Cu}_2\text{O}_{8+\delta}$ system.

IV. CONCLUSIONS

In conclusion, using impurity-free clean single crystals, the Pr disorder in the $Bi_2Sr_2Ca_{1-x}Pr_xCr_2O_{8+\delta}$ system acts as the scattering center and increases the crossover temperature *T** from a quadratic to linear temperature dependence of the penetration depth λ_{ab} , which is consistent with the theoreti-

- ¹G. Y. Lee, K. M. Paget, T. R. Lemberger, S. R. Foltyn, and X. D. Wu, Phys. Rev. B 50, 3337 (1994).
- ² J. Mao. D. H. Wu, J. L. Peng, R. L. Greene, and S. M. Anlage, Phys. Rev. B 51, 3315 (1995).
- 3D. A. Bonn and W. N. Hardy, in *Physical Properties of High Temperature Superconductivity V*, edited by D. M. Ginsberg (World Scientific, Singapore, 1996), p. 7.
- 4Z. X. Ma, R. C. Taber, L. W. Lombardo, A. Kapitulnik, M. R. Beasley, P. Merchant, C. B. Eom, S. Y. Hou, and J. M. Phillips, Phys. Rev. Lett. **71**, 781 (1993).
- ⁵F. Arberg and J. P. Carbotte, Phys. Rev. B **50**, 3250 (1994).
- 6 J. P. Carbotte and C. Jiang, Phys. Rev. B 48 , 4231 (1993).
- 7 M. I. Salkola, A. V. Balatsky, and D. J. Scalapino, Phys. Rev. Lett. 77, 1841 (1996).
- 8D. Achkir, M. Poirier, D. A. Bonn, R. Liang, and W. N. Hardy, Phys. Rev. B 48, 13 184 (1993).
- ⁹A. Maeda, T. Shibauchi, N. Kondo, K. Uchinokura, and M. Kobayashi, Phys. Rev. B 46, 14 234 (1992).

cally predicted behavior in defect and disorder-affected *d*-wave superconductors.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation and the National Science Council under Contract Nos. NSC87-2112-M007-007 and NSC87-2112-M007-025.

- $10P$. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993).
- ¹¹O. Waldmann, F. Steinmeyer, P. Muller, J. J. Neumeier, F. X. Regi, H. Savary, and J. Schneck, Phys. Rev. B **53**, 11 825 $(1996).$
- 12Y. Gao, P. Pernambuco-Wise, J. E. Crow, J. O'Reilly, N. Spencer, H. Chen, and R. E. Salomon, Phys. Rev. B 45, 7436 (1992).
- 13V. P. S. Awana, S. K. Agarwal, A. V. Narlikar, and M. P. Das, Phys. Rev. B 48, 1211 (1993).
- 14V. P. S. Awana, L. Menon, and S. K. Malik, Phys. Rev. B **51**, 9379 (1995); **53**, 2245 (1996).
- 15 X.-G. Li (unpublished).
- 16H. C. Ku, T. I. Hsu, Y. Y. Hsu, T. J. Lee, K. W. Yeh, Y. Huang, J. Y. Lin, S. J. Chen, H. D. Yang, Y. Y. Chen, J. C. Ho, and X.-G Li, Chin. J. Phys. 35, 903 (1997).
- ¹⁷L. Burlachkov, Phys. Rev. B **47**, 8056 (1993).
- 18L. Fabrega, J. Fontcuberta, B. Martinez, and S. Pinol, Phys. Rev. B 50, 3256 (1994).