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The recent experimental observation of a metal-insulator transition in two dimensions prompts a reexami-
nation of the theory of disordered interacting systems. We argue that the existing theory permits the existence
of a metallic phase and propose a number of experiments such as magnetoconductance and tunneling in the
presence of a parallel field, which should provide diagnostic tests as to whether a given experimental system is
in fact in this regime. We also comment on a generic flow diagram which predicts a maximum metallic
resistivity. @S0163-1829~98!52616-1#

The discovery by Kravchenko and co-workers1,2 of a
metal-insulator transition~MIT ! in a two-dimensional~2D!
system ~Si-MOSFET!, where MOSFET represents metal-
oxide-semiconductor field-effect transistor, and its confirma-
tion by other workers using different device designs3 and
materials4,5 have generated much excitement because the
conventional wisdom has been that all states are localized in
two dimensions. Up to now the discussion of this phenom-
enon has been mainly based on the one parameter scaling
theory of localization of noninteracting particles,6 even
though the relevance of the interaction has been stressed
within a phenomenological approach to scaling.7 The possi-
bility of unusual superconductivity8 or spin-orbit scattering9

has also been raised. On the other hand, within the scaling
theory which includes the combined effect of interaction and
disorder10,11 a 2D disordered system may remain metallic
even in the limit of zero temperature.12 In two dimensions
the expansion parameter is the dimensionless resistance per
squareRh defined asg5 (e2/ph) Rh . For weak disorder
(g!1) the scaling is towards a metallic state
(dRh /dT.0!.11,12 Furthermore, the theory predicts that a
magnetic field, via the Zeeman splitting, will drive the sys-
tem towards an insulating state.11,13 This is in agreement
with experiment.2 It is, therefore, useful to revisit this theory
in light of the recent experimental development. One reason
why the theory has not received general acceptance is that
the scaling equations have the peculiar feature that the scal-
ing variables diverge at some finite value of the length scale
and the theory becomes uncontrolled. While this is certainly
true in the vicinity of the MIT whereg'1, in this paper we
reconsider the problem of 2D metallic behavior and argue
that for weak disorder the theory remains under control over
a large temperature range, provided the renormalization of
the energy scale~relative to the length scale! is taken into
account. In fact, this renormalization allows the possibility of
a metallic state with finite resistance in two dimensions, in
contrast to the scaling theory of localization, which permits
only an insulator or a perfect metal ground state. We then
study the magnetoresistance and tunneling density of states
in the presence of a magnetic field, and point out that these
are excellent diagnostic tools to extract key parameters and

to test the applicability of the theory. At the end we shall
discuss the MIT within the context of our theory of the me-
tallic phase and comment on the effects of various symmetry
breaking perturbations on the scenario we are proposing. Our
main goal is to stimulate experimentalists to further study the
metallic state both in the systems which have been studied
up to now and possibly in other promising materials which
we will discuss.

We begin by summarizing the results of the scaling theory
of interacting disordered systems.10–15 In addition to the di-
mensionless resistanceg, the theory is characterized by the
coupling constantsg2, gc , andZ which obey the following
scaling equations:
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wherey52 lnl describes a rescaling of the length scale so
that momenta in the rangelk0

2,k2,k0
2 are integrated out,

wherek0'(vFt)21 is the short distance cutoff witht being
the elastic scattering time. The parameterZ describes a re-
scaling of the energy scale,Zg2 is related to the scattering
amplitude in the triplet particle-hole channel, whileZgc is
related to the singlet particle-particle~Cooper channel! am-
plitude. These parameters can be interpreted in the context of
the Fermi liquid theory.16,17 For example, the specific heat
linearT coefficient is modified byZ, so thatZ plays the role
of m* /m. The uniform magnetic susceptibility is given by
xs /xs

05Z(11g2) so thatg2 plays the role of the Landau
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parameter2Aa
0 . The key quantity in this theory is the diffu-

sion propagation, which has a pole of the form (Dq2

2 iZv)21, whereD is related to the conductivitys ~which
equalsRh

21 in 2D! by s5n0D; n0 is the bare density of
states. In the context of the Fermi liquid theory, the diffusion
pole can be written in the form (DQq22 iv)21, whereDQ
5D/Z has the interpretation of the quasiparticle diffusion
constant. Equations~1!–~3! are derived to linear order ing
and in the Cooper amplitudegc but include all orders in the
interaction amplitudeg2. The exception is Eq.~4! for gc
where the last term is quadratic ingc and independent ofg.
This term renormalizesgc downwards, so that forgc.0, gc
becomes less important with scaling and can be neglegted for
much of our subsequent discussions. The term 111 in Eq.
~1! is written in a way to remind us that weak localization
and the singlet particle-hole channel in the case of Coulomb
interaction give equal contributions to the enhancement of
resistivity upon scaling. The next term is the contribution
from the triplet particle-hole amplitude which has the oppo-
site effect of reducing resistivity. According to Eqs.~2! and
~3! both g2 andZ grow upon scaling. In fact, the growth is
so rapid that they diverge at a finite scaley0, so that neary0
they behave asg2;(y02y)21 and Z5(y02y)23. This di-
vergence signals the breakdown of the perturbative scaling
equations. Here we want to make two important points:~1!
the divergence ofZ is, in fact, a necessary condition for the
existence of a metallic state in two dimensions; and~2! due
to the rapid growth ofZ there is a wide range of temperature
where the scaling equations are valid and the system behaves
like a metal. The key point is that the growth ofZ forces us
to perform scaling in an anisotropic manner ink space and
energy space, a familiar situation in dynamical scaling. As
we mentioned earlier, the key quantity is the diffusion pole
(Dq22 iZv)21. The scaling procedure then consists of inte-
grating out the following regions in momentum space and
energy space:13

lk0
2,k2,k0

2 ; lk0
2,

Z

D
v,k0

2 .

For Z growing with scaling, the energy or temperature scale
decreases rapidly with scaling, and is given by

T5lDk0
2/Z~l!. ~5!

Strictly speaking, this formula needs further correction when
Z25Z(11g2) becomes much greater thanZ, because the
energy denominator (Dq22 iZ2v) also appears in some in-
termediate steps. However, the qualitative point that the tem-
perature scale can go all the way to zero remains valid. This
is important because in one parameter scaling, the point has
been made that the theory scales to either an insulator or a
perfect metal (Rh→0) in two dimensions, because theb
function is always nonzero.7 The divergingZ at y5y0 al-
lows us to escape from this conclusion because, in principle,
one can reach the pointy5y0 with g finite, so that according
to Eq. ~5! the system maintains a finiteRh asT→0.

The next question is whether a metallic state can be real-
ized in a region of parametric space and temperature where
Eqs. ~1!–~3! are valid. From Eqs.~2! and ~3! it is apparent

that the effective expansion parameter in the theory isgg2.
Then by starting with a sufficiently smallg, it is possible to
integrate Eqs.~1!–~3! until gg2 becomes of order unity.
Since Z diverges as (y02y)23, much faster thang2;(y0

2y)21, the scaling can proceed to a rather low temperature
beforegg2'1 and the perturbative equations break down.
By making the assumptions thatg approaches a constant
linearly in (y2y0) we conclude, using Eq.~5!, that the low-
temperature behavior of the resistivity is given byRh(T)
5R01cT1/3 with c.0. @Note that at very low temperature,
when gg2'1, the assumption thatgc is negligible is no
longer valid and indeedgc approaches a fixed point value
gc* 51 for g2→`. This would change the behavior ofZ,
leading toZ;(y02y)23/5. This, in turn, modifies the tem-
perature dependence ofRh5R01c8T5/3 when the regime
gc.1 is reached before getting out of the range of validity
of Eqs.~1!–~4!.# To summarize, for sufficiently smallg, we
expect that initiallyg will exhibit lnT correction over a broad
temperature range. Ifg2 is sufficiently large to begin with,
the lnT correction is metalliclike. Ifg2 starts out small, the ln
correction resembles weak localization, but will change sign
below a certain temperature scale wheng2 has grown suffi-
ciently to overwhelm the localization term and the singlet
contribution in Eq.~1!. At a still lower temperature the re-
sistivity drops rapidly, perhaps asT1/3 ~and possibly crossing
over to T5/3) before the one loop scaling equations break
down.18 This qualitative behavior has been confirmed20 by
numerical integration of Eqs.~1!–~4!. The point we wish to
emphasize is that these equations predict a metallic behavior
down to very low temperature in a region of parameter space
where the one loop scaling equations remain reliable. Thus
the existence of a metallic state over an experimentally ac-
cessible temperture range should not in itself be a great sur-
prise.

We have seen that the key ingredient in arriving at a me-
tallic state is the existence of a largeg2. The question is
whether g2 can be directly measured experimentally. We
have mentioned that the uniform magnetic susceptibility pro-
vides a measurement ofZ(11g2). However, this is a diffi-
cult, though not impossible, experiment in a two-dimensional
electron gas.21 Instead, we find that magnetoresistance and
tunneling in the presence of a parallel field provide direct
measurements ofg2. A parallel field provides a Zeeman
splitting of the spin states which cut off theSz561 parts of
the triplet particle-hole channel as well as theSz50 part of
the triplet and singlet particle-particle channel. This gives
rise to positive magnetoresistance. The contribution coming
from the particle-hole channel was calculated in the weak-
coupling limit in Ref. 22. This calculation was later extended
to strong scattering amplitudes.23 Here we further extend this
calculation to include the effect of the energy renormaliza-
tion Z. In analogy with the Fermi liquid theory, we expect

the spin splitting of the quasiparticle to be given byṼs

5(11g2)Vs , whereVs5gLmBH. Therefore the diffusion

pole should be modified to (DQq22 iv2 i ṼsSz)
21 for the

Sz561 components of the triplet particle-hole channel. In-
serting this modification into the expression for theSz561
contribution to the conductivity, we find
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The parametersD, Z, andg2 in this equation are scale de-
pendent. Noting that the contributions for smallH are domi-
nated by smallk andv, we evaluate these parameters at the
scalel given by Eq.~5!. The integrals are then performed
following Ref. 22. In particular, we find that for smallH,

s~H,T!2s~0,T!520.084
e2

ph
g2~g211!S gLmBH

kT D 2

.

~7!

We recover the weak-coupling limit by settingg2→F/2
where F!1 is the interaction parameter in Ref. 22.
If we include the Cooper channel contribution, we will
find an additional contribution of20.084(e2/ph) gc(g2
11)2(gLmBH/kT)2. The above treats the effect of spin
splitting only and is appropriate forH parallel to the plane.
For perpendicular field we have, in addition to Eq.~7!, the
usual weak localization negative magnetoresistance. In this
case there is an additional contribution proportional togc but
now the orbital field scale given byVH54DeH/c also en-
ters as a cutoff and the magnetic-field dependence from this
term is more complicated. Since in the weak-coupling re-
gime we expectgc to scale to weak coupling, we shall con-
centrate on Eq.~7!. The main point is that the quadratic in
the H term in parallel field magnetoresistance provides a
measurement of the parameterg2. It will be very interesting
to see if this parameter is indeed large in the metallic
MOSFET samples and whether it increases with decreasing
temperature. The available data are not systematic enough to
answer these questions in the metallic regime. Most of the
experiments on magnetoresistance are close to the MIT and
for fields with Vs>kT. Qualitatively, the~positive! magne-
toresistance increases as one moves away from the MIT.3

This is in agreement with our expectation thatg2 should
consistently increase in order to establish a metallic phase.

Another way to measureg2 is by tunneling experiment. It
was pointed out that the tunneling density of states exhibits
additional structure between the energy scales of the bare
spin splittinggLmBH and the enhanced spin splitting due to
interaction effects.23 Following the Fermi liquid analogy, this

second energy scale should be given byṼs . In particular, in
two dimensions the derivative of the tunneling density of
states has logarithmic singularities atv5gLmBH and v
5(11g2)gLmBH. Thus tunneling gives a direct measure-
ment ofg2. Recently a new technique has been developed to
tunnel into a 2D electron gas.24 It will be very interesting to
apply it to the new metallic samples.

As the field is increased, we expect a crossover to the
strong Zeeman splitting universality class. The detailed
crossover is complicated, but the high field limit is one of the
few fixed points that is controlled. The system always scales

to an insulator, and in the weak disorder limit, a universal
logarithmic temperature dependence was predicted:13 s(T)
5s01(e2/ph)(222ln2)ln(Tt). As far as we know, this
prediction has never been tested. The new MOSFET samples
offer an ideal testing ground for this prediction.

Up to now, we have limited our discussion to the weak
disorder case, when Eqs.~1!–~4! remain valid. We now com-
ment on the possibility of the existence of a nontrivial fixed
point if somehow the scaling equations can be extended to
strong coupling. In Ref. 19 the two loop contribution to the
scaling equations was evaluated under the assumption of
g2@1 but for smallgg2. The two loop scaling equations of
Ref. 19 indeed exhibit a nontrivial fixed point. From this
fixed point two separatrices originate ending atg250 and
g25`. Since the interesting part of the flow diagram is not
in the weak-coupling regime, the scaling equations and the
details of the flow cannot be trusted. Nevertheless, the struc-
ture of the flow may be generic. Here we wish to make some
general comments. If the initialg2 is not too large, the sys-
tem exhibits a metal-to-insulator transition. An interesting
feature of this flow is that on the metallic side of the sepa-
ratrix the system reaches infiniteg2 andZ at a finite scalel
as in one loop order. Thus the discussion we gave earlier in
this paper still holds and a metallic state with finiteRh is
possible atT50. In fact, the metallic state in the lowT limit
exhibits a maximum metallic resistivity given byrM

5(ph/e2)gM , wheregM is the value ofg on the separatrix
at g25`. ThisgM is, in general, smaller than the valueg* at
the fixed point. Experimentallyr* 5(ph/e2)g* is deter-
mined as the resistance which separates the metallic and in-
sulating states at higher temperature. This feature seems to
be consistent with currently available data. For example, the
data of Ref. 1 yieldsrM'0.1(h/e2) andr* '2(h/e2).

The scaling behavior near the MIT will be controlled both
by the existence of a fixed point at finiteg* andg2* and by
the runaway towardsg.gM andg25`. Then one can show

that Rh5 r̃ @T/(dn)nz#, wheredn is the deviation from the
critical density and the critical indicesn and z are deter-

mined by the fixed point.r̃ is a scaling function and accord-

ing to the previous discussionr̃ (`)5(ph/e2)g* and r̃ (0)
5(ph/e2)gM .

Besides the magnetic field, other symmetry breaking per-
turbations have relevant effects on our picture of the 2D
metallic phase. Spin flip scattering by magnetic impurities
will cause a crossover to a lowT insulating phase. The effect
of spin-orbit ~SO! scattering is more intriguing. Ind52,
intrinsic SO coupling or SO scattering by impurities only
affects the out of plane component of the spin.25 In this case
the one loop equations26 still lead to a diverging behavior of
the (Sz50) triplet amplitude and a metallic phase at lowT.
We suggest that the above discussion on the MIT applies in
this case even though the 2D SO could result into a different
universality class. A much more dramatic effect on our
theory of the metallic phase is the SO scattering deriving
from possible asymmetry of the confining potential since it is
equivalent to a 3D SO coupling and cutoff all triplets.27 If
this coupling is sizable, the theory predicts an insulating be-
havior at zero temperature,28 at least in the limit in which the
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SO band splitting is less than the inverse elastic scattering
time. In our opinion, evidences of 2D or 3D SO are still
lacking.

The scenario we outlined in this paper has the advantage
of permitting a metallic state in two dimensions and there-
fore a metal-insulator transition. However, given the uncer-
tainties of the strong-coupling theory, a good strategy is to
approach the MIT from the metallic side and try to gain a
thorough understanding of the metallic state. This motivates
us to propose magnetic susceptibility, magnetoresistance,
and tunneling experiments as ways to directly measure the
key parameters of the theoryg2 andZ. We also worked out
the qualitative behavior of the temperature dependence of the
resistivity, in a regime where the theory is valid. Here our
results do not compare favorably with experiments. The data
of Refs. 1 and 4 have been fitted to the formr(T)5r0
1r1exp(2T0 /T). This is very different from the lnT depen-

dence followed by a low-temperature power law that we pre-
dict. Furthermore, the parameterT0 appears to scale with the
Fermi energy which is relatively small in these low density
systems. Thus the possibility remains that some physics on
the scale of the Fermi energy is playing the dominant role
and the data are far from the low-energy scaling regime we
considered here. We believe these questions can be ad-
dressed by more detailed studies of the metallic state along
the lines suggested in this paper. Yet another possible re-
search direction to confirm the theory here presented is to
study 2D systems whereg2 is expected to be large to begin
with, such as almost ferromagnetic metallic thin films. Ex-
amples are weak ferromagnets such as MnSi or TiBe2, if the
ferromagnetism can be suppressed by alloying.29,30
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