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The distinguishing feature of the quantum Hall ferromagnet is the identity between electrical and topological
charge densities of a spin distortion. In addition to the wealth of physics associated with Skyrmionic
excitations of the quantum Hall ferromagnet, this identification permits a rather curious coupling of spin
waves to the disorder potential. A wave packet of spin waves has an associated, oscillating dipole charge
distribution, due to the nonlinear form of the topological density. We investigate the way in which this
coupling modifies the conductivity and temperature dependence of magnetization of the quantum Hall ferro-
magnet[S0163-18208)51016-9

The distinguishing feature of the quantum Hall ferro- xi—yl
magnet(QHF) is the identity between the topological den- + vf dtd?xd?y Jo(x) € ——=J;(y), (1)
sity of a spin distortion and the associated electrical x—y]

charge density. This identification permits a chemical

potential to stabilize topologically nontrivial groundstate Where

spin configurations, known as Skyrmich&he theoretical

prediction of these states has received substantial experi- ev

mental suppoftand prompted a good deal of theoretical Ju:_gfwxn'(‘?vnxaxn)- @
speculation. The link between topological and electrical

charge densities also produces a curious coupling ofi(x) is an Q3)-vector order parameter of unit length, de-
spin waves to the disorder potential. Although a plane-wavecribing the local polarization of the quantum Hall system.
spin distortion carries no charge, a wave packet ofThe first line of Eq.(1) is the usual low-energy effective
spin waves has an oscillating dipole charge distribution asaction for a ferromagnetA[n] is the vector potential of a
sociated with it, due to the nonlinear form of the topological it monopole in spin space? is the electron densityR
density. Spin waves couple to the disorder potential through_ vI21r12, wherel is the magnetic lengih p. is the spin
.this charge_distribut.ion. In th_i; paper, we inve.st.igate the Wakittness, andj is the Zeeman coupling, into which we have
in which this coupling modifies the conductivity and tem- ghgorhed the electron spin and the Bohr magneton for ease of
perature dependence of magnetization of the quantum Hallytation. The second line of E¢l) contains terms arising
state. _ . _due to the identity of charge and topological changhich is
~ The low-energy effective action for the QHF at fil- empodied in Eq(2)]. The first of these terms is an interac-
ling fractionsy=1 and the Laughlin filling fractions is given +tion with the disorder potentiaU(x), and the second,
by"? V[Jo(X)], is the Coulomb energy of the charge distribution
Jo(x). Equation(1) describes both the low-energy spin and

p_ Ps . charge dynamics of the quantum Hall system. The quantiza-
S=J’ dtd®x Eétn-A[n]—7|a#n|2+pr-n tion of Hall conductivity follows from the final term, the
Hopf term?
Here we are concerned with the effect of the disorder
_ 2 _
j dtd™xJo(x)U(x) f dtV[Jo(x)] potential upon small fluctuationbks=(I4,1,,0), about the fer-
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romagnetic ground state_z(o,o,l); n=(11.1,,vI=[I?). follow Fogler gnd Shklovskfi qnd assume that this effect
The effective action and current, expanded to lowest order if?@ b€ taken into account by interpreting in Eq. (4) as a

these fluctuations, are density of “uncprrelated” donors, which is much less than
s the actual density of donors.
_ 2o s TTP . w2 _f 2 The lowest order contribution of disorder to the self-
S fd xdt2I<(2(9t psV pr)I dxdtJy(x)U(x), energy is
&V MV 9 T -
Jﬂzlgé (9,,'(9)\' (3) E(id;’p): +— +——t (5)

- Kp? / #q _ (pxq? e

We use the complex notatiohs=14+il 5, I_zll—ilz. Both @n)ipo)2 — E(q+p) [’

the Coulomb and statistical interactions have been neglecteghere
in writing down Eq.(3). Although important in determining

the size and shape of the Skyrmion excitations, the former is S
less relevant than the remaining terms in its effect upon spin pé

waves. We will show later that the quantization of Hal is a dimensionless measure of the disorder strength. The re-

conduc_tlwty, produced by t_he Hopf term, IS un.affected bytarded self-energy is obtained by analytic continuation to real
weak disorder. The calculations presented in this paper con-

cern the perturbative effects of weak disorder. It is worthiréguencies with the substitution—w+i4. The real and
noting that the effective action, E€B), is very similar to that imaginary parts of the self-energy so obtained are

1

8 2€ ©)

el 5]

of electrons in a random potential, aside from the unusual 5 d’q (pxq)? e~ 2dlq

form of the current density and the bosonic nature of the Rez(w,P)=KPsJ o o7 E(at > (D)

fields. This similarity is suggestive of the possibility of weak (2m)° po (a+p) |al

localization effects. These are not considered here. ) d%q e~ 2dlq

~ We represent the bare,_momentum space propagators Im2(w,p)= Kpsf (277)2(!3>< a)? g2

(I(g,@)I(~0,~w)) and (d,1(q,®)d,I(—q,~w)) by the N

diagrams 1 X 78] pwl2—E(q+p)]. 8)

(Ha@)(=a, =) = —— = ip0/2 — E(q) The real part of the self-gnergy can be approximated from

(8u(q,2)d,l(—q, @) = 4y = m Eq. (7) in the limit pg|p|%, p|w—2gB|/2<p./d?. The lead-

. ing order contribution is proportional i@|? and provides a
where E(q) = p4 |2+ pgB is the spin energy density. The correction to the spin-wave stiffnessps=ReS/|p|. For

disorder interaction is given by ps|p|>>p|w—2gB|/2, there is a crossover {p|2In|p|? de-
. U9 pendence. We find
L dq Bq o revN i - I . o ,
8= [do—t 22 (22 6 [ g — |, —
/ (2m)? (277)22(37f>6 ( 0.8 48 ) ReE(w,p)z};—ps|p|2In M}
~ ™ s
where the frequency integrfilw is a shorthand notation for y —
the  bosonic  Matsubara  frequency  summation for pg|p|*<p|w—2gB|/2,
TS, . ...|5=2-ns7- Notice that the scattering of the Kps |, _
impurity potential is entirely elastic, i.e., the energy labels on ~ 8 p|“In[4[p|*d“]
the propagators are conserved. _
In GaAs heterostructures, the disorder potential felt by the for pgp|*>p |w—2gBJ/2. (9)

electrons in the two-dimensional electron gaBEG) is due
mainly to Coulomb interaction with ionized donor impurities

in the n-type region: This region is separated from the ponential factore= 2419 with an ultraviolet cutoff 1/8. The

ZDE.G by an msul_atmg spacer Iayer_ of V‘_"dm On_e may  second expression is calculated exactly from &g, setting
obtain an expression for the correlations in the disorder pozuzng

tential by modeling this situation with the potential due to a
random planar distribution of charge at a distaddeom the
2DEG. The correlations in the disorder potential in this

. K—
model are given by IM(w,p)=— gp(w/2—gB) 0(w/2—gB)

e nd>2e—2lqld .
2 ) laf (4) for pg|p|*>p|w—2gB]/2,

The first of these expressions has been calculated by expand-
ing Eq. (7) to lowest order inp|? and by replacing the ex-

The imaginary part of the self-energy may be calculated
exactly whend=0, with the result

(Valia)) = (27)%6(a + ) (

K
- 2
whereny is the area density of donor impurities. This simple 8 pelp)

model of disorder somewhat overestimates the potential felt
by the 2DEG. Due to Coulomb interactions between the do-
nors, the size of the fluctuations in the disorder potential isThe integral for finited is much trickier and cannot be car-
usually much less than would be expected for a totally untied out analytically. For largal it is exponentially sup-
correlated distribution of charge in the disorder plane. Wepressed by a factag— 24Pl

for p¢p|2<p|w—2gB|/2. (10)
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Taken at face value, Eq9) implies a threshold disorder since the current-current correlatGdxJ) gives rise to a
strength at which the renormalized spin stiffness is zero afactor of qx q in the integrand. Compared with the analo-
zero frequency. We interpret this as indicative of a depolargous result for electronic conductivityEq. (14) contains an
ization transition to a paramagnetic state. A similar suggesadditional factor ofw?, which ensures that the dc conductiv-
tion has been made by Fogler and ShkloVskii order to ity is zero. This is due to the fact that the charge fluctuations

explain the breakdown of spin splitting in high Landau lev-in the QHF are dipolar. Ignoring vertex correctih&ubsti-
els. Strictly, the calculations presented here apply only fotuting y=1), Eq.(14) reduces to

weak disorder and smallp,. That the threshold behavior ) )

suggested here does indeed occur, may be seen in a number ( ):w(e_v) J d“q |q|2f°° E

of ways. The most elegant of these is through a Bogomolny 8 (2m)? b

bound type argumefitThe present treatment enables one to

investigate the approach to this threshold. X[ng(e+ w)—ng(€)]A(Q,e)A(d, e+ w), (15)
Optical conductivityThe longitudinal and transverse con-

ductivities are given by the Kubo formufa:

where A(q,€)=—2ImGR(q,€) is the spectral function. A
similar calculation of the finite wave-vector conductivity, ne-
glecting vertex corrections, gives

03(@)= = (0@ (0~ D]z 0rs. (1D
S L

In order to determine the longitudinal conductivity, we must o(w,k)= P

8 2m)2) —wbm
evaluate the following diagram: (2m)

(3(0,&).3(0, -&)) . X[ng(e+w)—ng(e)JA(d,e)A(q+K, e+ w).
- (z)zeia/jcmu In contrast to the zero wave-vector conductivity(w,k)

8m may be nonzero in the absence of disorder.

Equation(15) may now be used, in conjunction with the

N ap s [ PO g spin-wave self-energy, Eq&®) and(10), in order to calculate

- (87) ¢ / @np™" Wb the contribution of disorder scattered spin waves to the opti-
X Cog (a1, 863, i + i0)G (g, iQ + i@)G(q, i), (12)  cal conductivity. In the absence of disorder, the spectral

function has a singles function peakA(q,e)=27-r5[p_e/2
—E(q)]. The effect of disorder is to broaden and shift this
peak. For T<g,o and weak disorder, the product

where q,=(iQ,9), 9,=(i0+iw,q) and §(q,iQ) is the
full thermodynamic Green’s function. The vertex function

Tap.uv IS given by the summation A(9,€)A(g,e+w), derived from Egs.(9) and (10), is
B e strongly peaked ape/2=E(q) and p(e+ w)/2=E(q) and
Lo (G i€, 380 + zw) o ¥ may be approximated by
ev ' 3 : .
= Sapdpy + (8—7r) e A(g,e)A(0,et+ w)=2md pel2—E(Q)]A(], e+ w)
B
+278] p(e+ w)/2—E(q)]A(q,€).
+... 4. +... (13 The real part of the longitudinal optical conductivity, calcu-
lated within this approximation, is
— ) ) K [ev)? 2 —wlTyo—2gB/T
In fact, all contributions to the vertex function contain a fac- o(w)~ 32mp2 | B T(1-e e . (19
tor of qaaﬁ and there is considerable simplification in defin- S
ing a new, scalar vertex functiop(q,iQ,iQ +iw): At very small frequencyw<KT, the productA(q,e)A(q, e
- e e i~ — o~ +w) is no longer resolved into two peaks. The dominant
AaApY(AI Q10 +T1w) =T 05,,(0,1Q,1 Q+i0)q,q, . frequency dependence in EL5) then comes from the
This definition of the vertex function is then substituted intoNs(€) —Ng(e+ w) term. Then
Egs.(11) and(12) to find the conductivity. After performing 278 pel2—E(q)]

the summation over bosonic Matsubara frequencies and a A(q,e)A(q,e+ w)~A?(q,e)=

few other standard manipulatiofshe real part of the longi- Im=(q,e)
tudinal conductivity is given by the expression The energy and momentum integrals in Etp) may then be
(ev)2 d%q , (= de carried out with the result
o(w)=w| 5= f |l f 1-[ne(e+w)—ng(e)]
87| J (2m)? =4 1 [ev ® —2gBIT
o(w)~— 8 @ e forg>T. (17)
X R4 GA(q,€)GR(q, e+ w) y(q,e—i 8,6+ w+id) mpsK A OT

—GR(q,6)GR(q, e+ w) y(q,e+i5,e+w+id)], For typical experimental systems &t 1, an upper estimate
(14) for the disorder strength iK~0.1 (approximatingng= p)

and the spin stiffnesps~4K. The conductivities predicted
whereng(x) is the Bose occupation number. The contribu-by Egs.(16) and (17) are vanishingly small and probably
tion to the Hall conductivity is zero, on symmetry grounds, unmeasurable.
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Magnetization.The variation of magnetization with tem- the absence of disorder, the spectral function has a sifigle

perature, in the absence of disorder, has been calculated pynction
Read and Sachdéwsing a lowest order I¥ expansion. We
extend this calculation to include the effect of disorder. First

a Hopf map (1=z_aaaﬁzﬁ, 32 _,|z,|?=1) is used to recast

the effective action, Eql), into CP1(Su2)) form:

Szf d?xdt

[ ;—)z_atz+ pd|Diz|%+ pgBzo?z

- f d2xdf U(x)36(x) + N (|22- 1)1,

ive = —
J,== ﬁeﬂ 9vZaO\Zy (18)

where D;=¢;+16;. 6; is an auxiliary field, introduced i
order to decouple quartic terms in the effective actioiis a
Lagrange multiplier that imposes the constraint. The indice

on z, have been suppressed for clarity.

To zeroth order in the N expansion, the constraint is

peak: A(e,p? o,\)=2md pel2—E(p?,o,\)],
where E(p?,0,)\)=pp?+opgB+\. Substitution of this
into Egs.(19) and(20) reproduces the result of R¢6]. The
effect of disorder is to broaden and shift this peak. The real
part of the self-energy produces a renormalization of the spin

stiffnessps— ps. Upon direct substitution of E¢(10), one
finds that, to lowest order iK, the new position of the peak

is at pe/l2=E—4K?pp? and so the shift due to the imagi-
nary part of the self-energy may be incorporated as a further
renormalization of the spin stiffness. This is the dominant
effect of weak disorder. The gap equation and magnetization
are given by the disorder free expressimsth appropri-

n ately renormalized spin stiffness.

The calculation of Ref. 5 shows good agreement with the
§xperimen11,3 except at high temperatures, where the experi-
mentally measured magnetization appears to fall below even
the theoreticalp,=0 prediction. Recent wotR has shown

imposed at the mean-field level in order to self-consistentlyhat this discrepancy cannot be explained by the inclusion of

determine the average value of the Lagrange multipliét
The resulting gap equation is

_ P
1=(@2)= 3, f(ZWF;ZdQQ(iQ,pZ,o,)\)

d’p (= de , —
2. | Gm) EHB(G)A(e,p ,O,\), (19

where G(iQ,p% o,\) indicates the disorder average

of the zz-Green's function and A(e,p? o,\)

higher orders in the N expansion. Here we have shown that
neither can it be explained by the effects of weak disorder. In
fact, to explain this observation would require spectral
weight to be transferred below the Zeeman gap. This appears
to be impossible so long as the ground state remains ferro-
magnetic. Two possible alternative explanations lie in the
effect of Skyrmions or the inclusion of the correct spin-wave
dispersion at high momenta. The latter approach has pro-
vided a good explanation for the dramatic reduction in mag-
netization with increasing temperature foundvat:.%° It is
readily incorporated into the lowest ordeNléxpansion in

= —2ImG,¢(€,p% 0,\) is the spectral function. We have the absence of disorder, by inserting a spectral function with
carried out the frequency summation in order to obtain the2 6 function peak at the correct spin-wave dispersion into
final expression. The magnetization may also be calculateBds. (19) and (20) and solving the resulting equations nu-

to this order and is given by

— d?
(Eo=3 | T

2 dﬁoa(iﬁ,pz,o,)\_)

2

d’p
(2m)?

=S 4
o==*

= de ,  —
JinnB(e)A(e,p L0, \).

(20

To O(1/N), Eq.(18), is identical to the sum of two co_pies of

the spin-wave action, Eq3), with the Zeeman ternpgB,

replaced withopg B+\. The expressions for the self-energy

merically.

In conclusion, we have considered the effect of weak dis-
order upon the quantum Hall ferromagnet. The identification
of charge and topological charge of spin-wave distortions
allows a coupling of spins to the disorder potential. The sig-
nature of this coupling in the temperature dependence of
magnetization is a reduction of the effective spin stiffness.
The effect upon conductivity is rather more interesting, al-
though unfortunately it is probably unmeasurably small. We
predict a spin-wave contribution to the longitudinal optical
conductivity at finite temperature.
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