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The distinguishing feature of the quantum Hall ferromagnet is the identity between electrical and topological
charge densities of a spin distortion. In addition to the wealth of physics associated with Skyrmionic
excitations of the quantum Hall ferromagnet, this identification permits a rather curious coupling of spin
waves to the disorder potential. A wave packet of spin waves has an associated, oscillating dipole charge
distribution, due to the nonlinear form of the topological density. We investigate the way in which this
coupling modifies the conductivity and temperature dependence of magnetization of the quantum Hall ferro-
magnet.@S0163-1829~98!51016-8#

The distinguishing feature of the quantum Hall ferro-
magnet~QHF! is the identity between the topological den-
sity of a spin distortion and the associated electrical
charge density. This identification permits a chemical
potential to stabilize topologically nontrivial groundstate
spin configurations, known as Skyrmions.1 The theoretical
prediction of these states has received substantial experi-
mental support2 and prompted a good deal of theoretical
speculation. The link between topological and electrical
charge densities also produces a curious coupling of
spin waves to the disorder potential. Although a plane-wave
spin distortion carries no charge, a wave packet of
spin waves has an oscillating dipole charge distribution as-
sociated with it, due to the nonlinear form of the topological
density. Spin waves couple to the disorder potential through
this charge distribution. In this paper, we investigate the way
in which this coupling modifies the conductivity and tem-
perature dependence of magnetization of the quantum Hall
state.

The low-energy effective action for the QHF at fil-
ling fractionsn51 and the Laughlin filling fractions is given
by1,3
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n(x) is an O~3!-vector order parameter of unit length, de-
scribing the local polarization of the quantum Hall system.
The first line of Eq.~1! is the usual low-energy effective
action for a ferromagnet.A@n# is the vector potential of a
unit monopole in spin space,r̄ is the electron density (r̄
5n/2p l 2, where l is the magnetic length!, rs is the spin
stiffness, andg is the Zeeman coupling, into which we have
absorbed the electron spin and the Bohr magneton for ease of
notation. The second line of Eq.~1! contains terms arising
due to the identity of charge and topological charge@which is
embodied in Eq.~2!#. The first of these terms is an interac-
tion with the disorder potentialU(x), and the second,
V@J0(x)#, is the Coulomb energy of the charge distribution
J0(x). Equation~1! describes both the low-energy spin and
charge dynamics of the quantum Hall system. The quantiza-
tion of Hall conductivity follows from the final term, the
Hopf term.4

Here we are concerned with the effect of the disorder
potential upon small fluctuations,l5( l 1 ,l 2,0), about the fer-
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romagnetic ground staten̄5(0,0,1); n5( l 1 ,l 2 ,A12u lu2).
The effective action and current, expanded to lowest order in
these fluctuations, are

S5E d2xdt
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We use the complex notation,l 5 l 11 i l 2, l̄ 5 l 12 i l 2. Both
the Coulomb and statistical interactions have been neglected
in writing down Eq.~3!. Although important in determining
the size and shape of the Skyrmion excitations, the former is
less relevant than the remaining terms in its effect upon spin
waves.5 We will show later that the quantization of Hall
conductivity, produced by the Hopf term, is unaffected by
weak disorder. The calculations presented in this paper con-
cern the perturbative effects of weak disorder. It is worth
noting that the effective action, Eq.~3!, is very similar to that
of electrons in a random potential, aside from the unusual
form of the current density and the bosonic nature of the
fields. This similarity is suggestive of the possibility of weak
localization effects. These are not considered here.

We represent the bare, momentum space propagators

^ l̄ (q,ṽ) l (2q,2ṽ)& and ^]m l̄ (q,ṽ)]nl (2q,2ṽ)& by the
diagrams

where E(q)5rsuqu21 r̄gB is the spin energy density. The
disorder interaction is given by

where the frequency integral*dṽ is a shorthand notation for
the bosonic Matsubara frequency summation
1/T (n52`

` . . . uṽ52pn/T . Notice that the scattering of the
impurity potential is entirely elastic, i.e., the energy labels on
the propagators are conserved.

In GaAs heterostructures, the disorder potential felt by the
electrons in the two-dimensional electron gas~2DEG! is due
mainly to Coulomb interaction with ionized donor impurities
in the n-type region.6 This region is separated from the
2DEG by an insulating spacer layer of widthd. One may
obtain an expression for the correlations in the disorder po-
tential by modeling this situation with the potential due to a
random planar distribution of charge at a distanced from the
2DEG. The correlations in the disorder potential in this
model are given by

~4!

wherend is the area density of donor impurities. This simple
model of disorder somewhat overestimates the potential felt
by the 2DEG. Due to Coulomb interactions between the do-
nors, the size of the fluctuations in the disorder potential is
usually much less than would be expected for a totally un-
correlated distribution of charge in the disorder plane. We

follow Fogler and Shklovskii7 and assume that this effect
may be taken into account by interpretingnd in Eq. ~4! as a
density of ‘‘uncorrelated’’ donors, which is much less than
the actual density of donors.

The lowest order contribution of disorder to the self-
energy is

~5!

where
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is a dimensionless measure of the disorder strength. The re-
tarded self-energy is obtained by analytic continuation to real
frequencies with the substitutioni ṽ→v1 id. The real and
imaginary parts of the self-energy so obtained are

ReS~v,p!5Krs
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e22duqu
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The real part of the self-energy can be approximated from
Eq. ~7! in the limit rsupu2, r̄ uv22gBu/2!rs /d2. The lead-
ing order contribution is proportional toupu2 and provides a
correction to the spin-wave stiffnessDrs5ReS/upu2. For
rsupu2. r̄ uv22gBu/2, there is a crossover toupu2lnupu2 de-
pendence. We find

ReS~v,p!.
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for rsupu2, r̄ uv22gBu/2,
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The first of these expressions has been calculated by expand-
ing Eq. ~7! to lowest order inupu2 and by replacing the ex-
ponential factore22duqu with an ultraviolet cutoff 1/2d. The
second expression is calculated exactly from Eq.~7!, setting
v52gB.

The imaginary part of the self-energy may be calculated
exactly whend50, with the result

ImS~v,p!52
K

8
r̄~v/22gB!u~v/22gB!

for rsupu2. r̄ uv22gBu/2,

52
K
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for rsupu2, r̄ uv22gBu/2. ~10!

The integral for finited is much trickier and cannot be car-
ried out analytically. For larged it is exponentially sup-
pressed by a factore22dupu.
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Taken at face value, Eq.~9! implies a threshold disorder
strength at which the renormalized spin stiffness is zero at
zero frequency. We interpret this as indicative of a depolar-
ization transition to a paramagnetic state. A similar sugges-
tion has been made by Fogler and Shklovskii7 in order to
explain the breakdown of spin splitting in high Landau lev-
els. Strictly, the calculations presented here apply only for
weak disorder and smallDrs . That the threshold behavior
suggested here does indeed occur, may be seen in a number
of ways. The most elegant of these is through a Bogomolny
bound type argument.8 The present treatment enables one to
investigate the approach to this threshold.

Optical conductivity.The longitudinal and transverse con-
ductivities are given by the Kubo formula:9

s i j ~v!5
i

v
^Ji~0,ṽ !Jj~0,2ṽ !&u i ṽ→v1 id . ~11!

In order to determine the longitudinal conductivity, we must
evaluate the following diagram:

~12!

where qm5( i Ṽ,q), q̃m5( i Ṽ1 i ṽ,q) and G(q,i Ṽ) is the
full thermodynamic Green’s function. The vertex function
Gab,mn is given by the summation

~13!

In fact, all contributions to the vertex function contain a fac-
tor of qa q̃b and there is considerable simplification in defin-
ing a new, scalar vertex functiong(q,i Ṽ,i Ṽ1 i ṽ):

qa q̃bg~q,i Ṽ,i Ṽ1 i ṽ !5Gab,mn~q,i Ṽ,i Ṽ1 i ṽ !qm q̃n .

This definition of the vertex function is then substituted into
Eqs.~11! and~12! to find the conductivity. After performing
the summation over bosonic Matsubara frequencies and a
few other standard manipulations,9 the real part of the longi-
tudinal conductivity is given by the expression

s~v!5vS en
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~14!

wherenB(x) is the Bose occupation number. The contribu-
tion to the Hall conductivity is zero, on symmetry grounds,

since the current-current correlator^J3J& gives rise to a
factor of q3q in the integrand. Compared with the analo-
gous result for electronic conductivity,9 Eq. ~14! contains an
additional factor ofv2, which ensures that the dc conductiv-
ity is zero. This is due to the fact that the charge fluctuations
in the QHF are dipolar. Ignoring vertex corrections10 ~substi-
tuting g51), Eq. ~14! reduces to

s~v!5vS en
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where A(q,e)522ImGR(q,e) is the spectral function. A
similar calculation of the finite wave-vector conductivity, ne-
glecting vertex corrections, gives

s~v,k!5
1
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In contrast to the zero wave-vector conductivity,s(v,k)
may be nonzero in the absence of disorder.

Equation~15! may now be used, in conjunction with the
spin-wave self-energy, Eqs.~9! and~10!, in order to calculate
the contribution of disorder scattered spin waves to the opti-
cal conductivity. In the absence of disorder, the spectral
function has a singled function peakA(q,e)52pd@r̄e/2
2E(q)#. The effect of disorder is to broaden and shift this
peak. For T!g,v and weak disorder, the product
A(q,e)A(q,e1v), derived from Eqs.~9! and ~10!, is
strongly peaked atr̄e/25E(q) and r̄(e1v)/25E(q) and
may be approximated by

A~q,e!A~q,e1v!'2pd@r̄e/22E~q!#A~q,e1v!

12pd@r̄~e1v!/22E~q!#A~q,e!.

The real part of the longitudinal optical conductivity, calcu-
lated within this approximation, is

s~v!'
K

32prs
2 S en

8p D 2

T2~12e2v/T!e22gB/T. ~16!

At very small frequencyv!KT, the productA(q,e)A(q,e
1v) is no longer resolved into two peaks. The dominant
frequency dependence in Eq.~15! then comes from the
nB(e)2nB(e1v) term. Then

A~q,e!A~q,e1v!'A2~q,e!5
2pd@r̄e/22E~q!#

ImS~q,e!
.

The energy and momentum integrals in Eq.~15! may then be
carried out with the result

s~v!'
1

prs
2K

S en

8p D 2

v2e22gB/T for g@T. ~17!

For typical experimental systems atn51, an upper estimate
for the disorder strength isK;0.1 ~approximatingnd5 r̄)
and the spin stiffnessrs;4K. The conductivities predicted
by Eqs. ~16! and ~17! are vanishingly small and probably
unmeasurable.
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Magnetization.The variation of magnetization with tem-
perature, in the absence of disorder, has been calculated by
Read and Sachdev,5 using a lowest order 1/N expansion. We
extend this calculation to include the effect of disorder. First,
a Hopf map (n5 z̄asabzb , (a51

2 uzau251) is used to recast
the effective action, Eq.~1!, into CP1„Su~2!… form:

S5E d2xdtF i
r̄

2
z̄] tz1rsuDizu21 r̄gB z̄szzG

2E d2xdt@U~x!J0~x!1l~ uzu221!#,

Jn52
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2p
emnl]n z̄a]lza , ~18!

where Di5] i1 iu i . u i is an auxiliary field, introduced in
order to decouple quartic terms in the effective action.l is a
Lagrange multiplier that imposes the constraint. The indices
on za have been suppressed for clarity.

To zeroth order in the 1/N expansion, the constraint is
imposed at the mean-field level in order to self-consistently
determine the average value of the Lagrange multiplierl̄.11

The resulting gap equation is

15^^ z̄z&&5 (
s56

E d2p

~2p!2
dṼḠ~ i Ṽ,p2,s,l̄ !

5 (
s56

E d2p

~2p!2E2`

` de

2p
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where Ḡ( i Ṽ,p2,s,l̄) indicates the disorder average
of the z̄z-Green’s function and A(e,p2,s,l̄)
522ImḠret(e,p2,s,l̄) is the spectral function. We have
carried out the frequency summation in order to obtain the
final expression. The magnetization may also be calculated
to this order and is given by

^^ z̄szz&&5 (
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~20!
To O~1/N), Eq. ~18!, is identical to the sum of two copies of
the spin-wave action, Eq.~3!, with the Zeeman termr̄gB,
replaced withsr̄gB1l̄. The expressions for the self-energy
derived above may be used directly with this replacement. In

the absence of disorder, the spectral function has a singled
function peak: A(e,p2,s,l̄)52pd@r̄e/22E(p2,s,l̄)#,

where E(p2,s,l̄)5rsp
21sr̄gB1l̄. Substitution of this

into Eqs.~19! and~20! reproduces the result of Ref.@5#. The
effect of disorder is to broaden and shift this peak. The real
part of the self-energy produces a renormalization of the spin

stiffnessrs→ r̃ s . Upon direct substitution of Eq.~10!, one
finds that, to lowest order inK, the new position of the peak

is at r̄e/25Ẽ24K2 r̃ sp
2 and so the shift due to the imagi-

nary part of the self-energy may be incorporated as a further
renormalization of the spin stiffness. This is the dominant
effect of weak disorder. The gap equation and magnetization
are given by the disorder free expressions5 with appropri-
ately renormalized spin stiffness.12

The calculation of Ref. 5 shows good agreement with the
experiment,13 except at high temperatures, where the experi-
mentally measured magnetization appears to fall below even
the theoreticalrs50 prediction. Recent work14 has shown
that this discrepancy cannot be explained by the inclusion of
higher orders in the 1/N expansion. Here we have shown that
neither can it be explained by the effects of weak disorder. In
fact, to explain this observation would require spectral
weight to be transferred below the Zeeman gap. This appears
to be impossible so long as the ground state remains ferro-
magnetic. Two possible alternative explanations lie in the
effect of Skyrmions or the inclusion of the correct spin-wave
dispersion at high momenta. The latter approach has pro-
vided a good explanation for the dramatic reduction in mag-
netization with increasing temperature found atn5 1

3 .15 It is
readily incorporated into the lowest order 1/N expansion in
the absence of disorder, by inserting a spectral function with
a d function peak at the correct spin-wave dispersion into
Eqs. ~19! and ~20! and solving the resulting equations nu-
merically.

In conclusion, we have considered the effect of weak dis-
order upon the quantum Hall ferromagnet. The identification
of charge and topological charge of spin-wave distortions
allows a coupling of spins to the disorder potential. The sig-
nature of this coupling in the temperature dependence of
magnetization is a reduction of the effective spin stiffness.
The effect upon conductivity is rather more interesting, al-
though unfortunately it is probably unmeasurably small. We
predict a spin-wave contribution to the longitudinal optical
conductivity at finite temperature.
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