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Spin-1 XXZ chains in a staggered magnetic field
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Phase transitions of the spinXIXZ chain with a single-ion anisotropy in a staggered magnetic field are
studied. We obtain interesting phase diagrams consisting of ferromagnetic, partially ferromagvetti-
ferromagnetidAF) and largeD phases. By using the twist-boundary-condition method, a Gaussian critical line
is found between the AF phase and the lalgghase. A multicritical point lies among the€Y, AF and large-

D phases. An Ashkin-Teller type of bifurcation does not appz0163-182608)51414-2

Haldane’s conjectufehas renewed the interest in the one-
dimensional(1D) quantum spin systems. It is now accepted
that the antiferromagnetic Heisenberg ché&kFHC) with
spin S=1 has an energy gap in the lowest excitation, in
contrast to the S=1/2 case, by many theoretical,
numerica®* and experimentalistudies.

Affleck et al® discovered the valence-bond-soljdBS) For D=\=0, there are ferromagneticA& —1), XY (-1
state which satisfies the ground-state properties ofSth& <A <0), Haldane (6<A<A.,~1.17), and Nel (A,
AFHC. Kennedy and Tasakitransformed theS=1XXZ  <A) phases. The XY-Haldane transiton is of the
chain into the explicit form with a hiddefi, x Z, symmetry,  Berezinskii-Kosterlitz-Thoules$BKT) typel®??2and the
and found that the Haldane gap is generated as a conselaldane-Nel transition belongs to the 2D Ising universality
quence of the complete breaking of tHex Z, symmetry. class®** As A=0 and D>D.~0.42%?" besides four
Oshikawd showed the existence of the hiddépx Z, sym- ~ phases irD =0, there appears the massive la@ghase, in
metry for arbitrary integes. which the unique ground state holds thexZ, symmetry

In the quasi-1D systems, interchain interactions effecdifferently from the Haldane phaseAnd these two phases
tively make a bond-alternating couplifigyr give rise to a  are separated by the Gaussian line. Wheis added, the
staggered magnetic field,from a viewpoint of the mean Haldane phase is cgntlnuously connected to the antlfe_rro-
field. There have been many works on the bond—alternatinﬁlagnet'c(AF) phase® Note that the AF long-range order in
chains, since Affleck and Haldafepredicted that the e AF phaseX#0) is not spontaneously symmetry break-

ground state of the spiS- AFHC undergoes continuous ing, and that the ground state is singlet, while it is doublet in

dimerization transitions 8 times as the bond alternation var- the Neel phase ¥ =0). From the above fact, it is expected

ies. Oshikaw# suggested that the successive transitions arvtahat a Gaussian transition occurs between the largase

caused by repetition of breaking and recovering Zh& Z, and the AP phase.

o . . . We perform numerical calculations f@=1 andD=3,
symmetry. ForS=1, the transition point was estimated in and obtain interesting phase diagratiég. 1). The BKT

Refs. 12-14, and the uni_versal_ity is the salrge class as tht?ansition lines (XY largeD, XY—AF) are determined,
level-1 SU(2) Wess-Zumino-Witten modef: Recently,  sing the level spectroscofyutilized for D=0 in our pre-
the correct phase diagram of tMeXZ type was obtained by yjous papef® The Gaussian critical linélarge D AF) is
Kitazawaet al1® They emphasized the Gaussian critical linefound by means of the twist-boundary-conditigiBC)
between the Haldane phase and the dimer phase. The stughethod® The BKT multicritical structure appears, in which
of the bond-alternating systems has been advancing fasne Gaussian line branches into two BKT lines, and it may
S=3/2,2... M1 reflect a hiddenZ,XZ, symmetry. However, in the stag-
On the other hand, the effect of the staggered magnetigered magnetic field, Kennedy-Tasaki transformation is not
field has not been discussed, except by Alcaraz andpplicable and it seems difficult to characterize the AF phase
Malvezzi?° who examined the ground-state phase transitionsind the large® phase, based on the Kennedy-Tasaki type
of the S=1/2 XXZ chain by numerical calculation. Z,XZ, symmetry. Fortunately, for theS=1 bond-
In the present paper, we study the whole phase diagram @fiternating chain, Kitazawa and Nomtftdéound that, from
the S=1 XXZ chain with a single-ion anisotropy in a stag- the VBS picture, it is possible to distinguish the Haldane
gered magnetic field, whose Hamiltonian is described by phase from the dimer phase by such good quantum numbers
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FIG. 1. Phase diagram f¢a) D=1 and for(b) D=3. The BKT
transitions occur on th¥XY—largeD boundary, and on th¥Y-AF
boundary. The transition between the lafgephase and the AF
phase is of the=1 Gaussian type. The dashed line)orn 0 stands
for the first-order transition.

as parity and time reversal instead of by the hiddgx Z,
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FIG. 2. Two low-lying energies irS;,=0 subspace on the
TBC. The system size is=14, and\ =0.5,D =1. The eigenstates
haveP,=T_ =+1 (O) andP_=T_.=-1 (+), respectively. The
ground state energy of the periodic system is set to be zero.

d o
7 (==K = 6(7.x), 3

d .
v o(7,x)=iK 7 o(7,X), 4)

has internal W1) symmetry. The vertex operato®,
=exp(nv2¢)expimv26) are the primary fields of the Gauss-
ian model, and their scaling dimensions a(,gm=(n2K
+m?K~1)/2. By the identification =+ 27/vV2, 0=6
+2m/v2, the U1l) chargesn,m are restricted to integral
value. Since the scaling dimension of the operaton@asis
K/2, the second term of Eq2) becomes a relevant pertur-
bation forK <4. Wheny ,— +%, (¢)=m/v2. On the other
hand, wheny ,— —=, (¢)=0. The former corresponds to
the Haldane phaséand the AF phase and the latter the
largeD phase. FOK>4, the cosine term is irrelevant agg
is renormalized to 0, that is, the massleé¥ phase. The
BKT transition takes place & =4.

To determine numerically the Gaussian critical ling, (

symmetry, using the TBC. As we see later, the ground state. o) the TBC method is more accurate than the usual phe-

in the AF (Haldang phase is characterized ®,=T,=-1  pomenological renormalization group. Kitazapaid atten-
under the TBC, and in the larde-phase it is characterized tjon to the following operators as

by P,.=T_.=+1 under the TBC(Table ). Thus we can
determine the Gaussian transition from the crossing point of

two low levels with different parity(time reversal as is 05,=v2 cosi, (5)
shown in Fig. 2. \Z
From the field theoretical viewpoint, by the bosonization,
the 1D quantum spin systems are effectively described by the o _ @
2D sine-Gordon model. The Lagrangian in Euclidean space O1,=v2 SN 6)

is given by
From the conformal field theory, the finite-size corrections

_ v 2, Yo of the corresponding energies result in
L 77K [Vo(r,x)]°+ ol cosvV2é(r,x). (2
Herev is the spin-wave velocity, and is a short distance . 2mv Ky, [2m\K22 5
cutoff. The dual fields(r,x) defined as AR L= 15t ST +Oyy) |, (@
TABLE |. Symmetry of the ground state on the TBC.
2mv | K | K2=2
Haldane AF larged AE°(L)= e % (T) +O(y§,) . (8
P, -1 -1 +1 ’
T, -1 -1 +1 Thus these energies cross linearlyygt=0. The boundary

condition on @, 6(7,L)=6(7,00+®P/v2, means the change of
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FIG. 3. Magnetization of the ground state through the PFM 15 4 Spin correlation functions dt\=—2, A\=3, D=1).

phase fixedh =3, D=1. System sizé. =16 is used. System length isL=16. Transverse correlation functiofer=x

. . or y) is denoted by the open circles, and longitudinal correlation
the magnetic charget®/27w at 7=+, that is, (a=2) by the closed circles.

n— n+®/27, m—m.3?33|n the spin notation, this is related

to the TBC(S;,,=e"'?S], . ,=S%). Hence under the
TBC (® =), it is possible to define such operators as Eqs.bo'[h the AF stat¢12) and the Haldane statd1) have the

(5) and (6). same eigenvalueB_=T_= —1. Therefore there is no tran-
Next we discuss the symmetry of the excitations. TheSition between them. On the contrary, the lafyestate(13)
Hamiltonian (1) commutes with Pa=V4PVe and Te has P,=T,=+1. They are summarlzeq in Table 1. _AI—
=V, TV, only for ®=0,m. Here P, T, and V, denote though the above statdd41)—(13) are variational, the dis-

space inversion reflecting on a spin si§¢S,_;), time  C¢rete symmetryP ., T, under the TBC are good quantum

reversal with translation by one sit6" —-S-,,, S numbers, thus they can be used to characterize the Haldane,
NG AF, and largeD phases.

—&, 1), and the unitary operator¢=exp@d>2jL_lij/L) re- . ; . .
o : - ' . We consider the discrete symmetry in numerical results.
spectively. In sine-Gordon language, the symmetry operauolqigure 2 shows two low-lying gnergieszlfg —m=0) of the
tal

for Py is represented by antiperiodic system withh. =14, x=0.5,D=1. The ground
state ha? =T _=+1 on the left side, an®P ,=T,=—-1
p——¢, 0—0, X=X, ©) on the opposite side, as is expected. The level crossing indi-
cates the transition from the larg®phase to the AF phase.
and forTg At the critical point(A=0.5, A=0.4856,D=1), we also
estimate the central charge, and confirm the Gaussian univer-
- sality c=1.000. The whole phase diagrams are shown in Fig.
¢——¢, 60——0+—. (10 1. Each critical point is extrapolated from the system sizes
V2 L=8-16. The BKT multicritical structure strongly suggests
that some hiddeZ, X Z, symmetry exists even in#0. Its
The eigenstat®7,|0) with P, =T,=+1 is the ground state  symmetry is expected to be broken in the ARaldang
under the TBC in the large- phase ,<0), andO7,|0)  phase, and unbroken in the larephase. Unlike the bond-
with P,=T,=—1 is that in the Haldane phasg /{>0). alternating systems, the bifurcation point of the Ashkin-
The Lagrangian(2) is invariant under the transformation Teller type is absent. Far from that, there is no 2D Ising
Yo— —Yg¢,9— ¢+ m/v2. With this transformation, the critical line. The Nel region does not extend in thedirec-
roles of Of,, and O3, are interchanged. tion and it forms a first-order transition line, sinkes con-

The above statement can be justified in another way byugate field to the Nel order. WhenD =3, the first-order
the VBS picture. On the TBC, the variational VBS states intransition line reaches the Gaussian line. This feature cannot
the Haldane, AFX>0), and largedD phases are written as be explained by the double sine-Gordon theory. What the

universality class is at the multicritical point is a future prob-
L-1 lem. AsD is increased, th&Y region reduces and the large-
(a/b]+ b‘LraDH (aijjT+1—bjTajT+1)|0), (11) D region grows. Conversely, the Gaussian line disappears
=1 for D<D..
Finally we remark the partially ferromagnetid®FM)

1"—/[2 (al_.bl)?0) 12 phase whose ground states are doubly degenerateSjyith
[ d =+M, (0<M<L). When the transition goes from theY
phase to the ferromagnetiEerrg phase by way of the PFM
L phase, the magnetization site increases continuously from 0
11 aj*bﬂo), (13 to 1 (see Fig. 3 whereas it jumps from O to 1 on the
j=1 XY-Ferro boundary. Most of the area of the PFM phase is

occupied by the place wheg,,= =L/2. It is instructive to
wherea/ (b]) denotes the Schwinger boson which createsconsider the Ising limitA —co. Within the region|x + 24|
the spin-1/2 ugdown) spin at thejth site. Using the identity <D<\, the ground states are(07010707---) and
Vwa;'b;',vf,za;rb;r, exp(m(j—j’)/2L), it is easy to say that (/0/0/0]0 --). Such ordering behavior survives in the PFM
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phase. We calculate the correlation functiofB;S/")(a We would like to express our thanks to M. Takahashi for
=X,Yy,z) at the point(A=—-2, A=3, D=1) in the PFM  valuable discussions. Most numerical calculations were done
phase, using th&;,,=L/2 ground state of th& =16 sys- by the FACOM VPP500 of the Supercomputer Center, Insti-
tem. They are shown in Fig. 4. The transverse correlatiofute for Solid State Physics, University of Tokyo. This re-

function seems to decay algebraically. The longitudinal corsearch was supported in part by Grants-in-Aid for Scientific
relations with even sites remain finite in long range, and th€ResearciC) No. 09740308 from the Ministry of Education,

odd-site correlations are almost zero. Science and Culture, Japan.
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