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We study the lateral transport of two-dimensional randomly layered media in the presence of isotropic
randomness. The hopping anisotropy is also included. Equilibration length and channel occupation number are
calculated by using both the recursive Green’s-function method and the rate-equation approach. Our results
show clearly a transition from ergodic to nonergodic transport as the number of layers increases. This describes
a dimensional-crossover behavior from two-dimensional-like anisotropic hopping systems to one-dimensional-
like randomly layered media.@S0163-1829~98!52114-5#

The study of transport and localization properties of ran-
domly layered media with isotropic randomness~RLMIR!
has been a challenging task due to the presence of both layer
randomness and isotropic randomness. However, their inter-
play has been shown to give rise to many transport phenom-
ena not seen in other disordered systems.1–3 Physical ex-
amples of RLMIR are the Earth’s subsurface and random
superlattices with lateral inhomogeneities. The layer random-
ness makes transport in such systems anisotropic. Previous
calculations on three-dimensional~3D! systems have indi-
cated that, when the ratio of the strength of layer randomness
to that of isotropic randomness is larger than a certain critical
value, the system is 1D-like and all states are localized.1

Also, in the previous studies of lateral transport on 2D sys-
tems, it has been found that the transport is nonergodic in
channel space due to the existence of a dominant channel.2,3

As a function of propagating channelsMc , it has also been
found that the averaged number of occupied channels exhib-
its a finite-size scaling behavior that is intermediate between
1D and 2D, i.e.,̂ Noc&'AMc.

2 All these transport behaviors
suggest that RLMIR is different in nature from other disor-
dered systems, including anisotropic hopping systems~AHS!
where the anisotropy arises purely from the hopping
integrals.4 For AHS, it has been shown that Anderson local-
ization transition occurs in 3D independent of the anisotropy
and the isotropic transport behaviors can be recovered after
some proper rescaling of lengths in different directions.4

Thus, we have two types of anisotropic systems with entirely
different transport properties.

There are two important questions we would like to ad-
dress in this work. Firstly, we cannot exclude the possibility
that the behavior̂Noc&'AMc found in Ref. 2 describes only
a crossover behavior due to the small number of propagating
channels, i.e., max$Mc'25%, involved in the calculations.2 If
this is the case, what is the true property of the 2D RLMIR?
Secondly, does there exist any connections between RLMIR
and AHS and what is the crossover behavior between these
two types of anisotropic systems? In order to answer these
questions, we consider a system which has both layer ran-
domness and hopping anisotropy. Such a system can possess
a maximum number of propagating channels, i.e., max$Mc%
5number of layers, and enables us to study the crossover
between RLMIR and AHS. We use the following tight-
binding Hamiltonian to describe the RLMIR:
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wherea,b are site indices, and@a,b# indicatesa andb are
nearest neighbors. The lattice constant is set to be unity. We
assume that the nearest-neighbor hopping integrals are dif-
ferent in different directions. For a 2D system, we choose the
z axis as the layering direction and thex axis as the lateral
direction. For convenience, we settx51 as the energy scale
and have chosentz!tx in our calculations. The site energy
«a consists of two parts:

«a5hz1da . ~2!

hz describes the layer energy and is a constant for all sites
lying in a given layer at fixedz, but varies randomly asz
varies with a flat distribution of widthW1 . da is a random
number that varies independently from site to site with a flat
distribution W. W1 and W measure the strengths of layer
randomness and isotropic randomness, respectively. The
AHS is recovered whenW150. In the presence ofW1 , all
states are localized along thez direction. These localized
wave functions act as overlapped channels for the propaga-
tion of waves along thex direction. For any particular layer
configuration of aN-layer system, i.e., a given set of$hz% for
z51,2, . . . ,N, one can solve the 1D eigenvalue problem
along thez direction and obtain a set ofN eigenfunctions
wn(z) and eigenvaluesEn . The wave energy can be written
asE5En12 coskn , wherekn is the wave vector of thenth
channel for the propagation along thex direction. When
uE2Enu.2, kn is imaginary and the channel is denoted
‘‘evanescent.’’ WhenuE2Enu,2 andkn is real, the channel
is denoted ‘‘propagating.’’ The Fermi-energyE is set to be 0
in our calculations. In the previous 2D study withtx5tz51,
strongly localized channel functions were produced by using
a largeW1 (W1515). This made most of the channels non-
propagating and severely limited the study of lateral trans-
port to a small number of propagating channels. This diffi-
culty is overcome by choosingtz!tx . Since the localization
length of wn(z) scales with21/ln(tz), strongly localized
channel wave functions can be achieved withtz!1 even
whenW1<1. Thus, we can have all channels propagating in
thex direction. In this case the strength of layer randomness
is measured by the dimensionless ratioW1 /tz .
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In this work, we study the finite-size scaling behavior of
the averaged occupied channels^Noc& at various ratios of
W1 /tz by using both the recursive Green’s-function~RGF!
method5 and the classical rate equation~CRE! approach.3 In
the RGF calculations, we connect the disordered sample of
lengthL, whereWÞ0, to two pure leads on both sides of the
sample. These leads have the same layer configuration and
anisotropy intx and tz but W50. The transmission ampli-
tudestnm with incoming wave at themth channel and out-
going wave at thenth channel form aN3N matrix and can
be calculated numerically using the RGF method.5 In our
calculations, a periodic boundary condition is used in thez
direction. It has been shown analytically that when sample
length L is larger than some equilibration length,Leq,
tnm has the asymptotic form

tnm~L !>2exp~2l1L !a1,n~L !g1* ~m!,

where 1/l1 is the localization length of the system and
g1(m) is the normalized eigenvector oft1t corresponding to
the largest eigenvalue 2/cosh(2l1L).3,6 The normalized vec-
tor a1,n(L) is related tog1(m) by a unitary transformation
arising from the isotropic scattering. For each chosen layer
configuration,g1(m) depends only on the configuration of
isotropic randomness@da in Eq. ~2!# in the region
0,L,Leq and becomes a fixed vector whenL.Leq. There-
fore, the value ofLeq can be determined from the length
where the ratiostnm(L)/tnl (L)>g1* (m)/g1* (l ) becomeL
independent. From this relation we can obtain the relative
occupation probability in thenth outgoing channel as
un(L)5utnm(L)u2/(n51

N utnm(L)u2>ua1,n(L)u2, which is in-
dependent of the incoming channelm.3 In this asymptotic
region, the statistics ofun(L) are stationary and the relative
channel occupation distribution can be obtained by taking
the average inL, i.e., ūn[^un(L)&L.Leq

. The average num-

ber of occupied channels is defined asNoc51/((nūn
2).2 For

AHS, it is expected that all the channels are evenly distrib-
uted andNoc>N. This ergodic property makes the AHS in
the same universality class as the other isotropic systems,
whereas for the RLMIR, the distribution of channels is not
ergodic.2,3 In particular, if the system is 1D-like, we would
expect thatNoc approaches a constant value in the largeN
limit.

For a given layer configuration$hz%, the statistics ofun
can be obtained by the following two equivalent samp-
ling procedures:~I! sampling at differentL.Leq in a single
configuration of$da% in Eq. ~2!, and~II ! sampling at a fixed
L.Leq with different configurations of$da%. For all the cal-
culations discussed below, we have setW51 andtz50.01.
The equivalence of the two sampling procedures can be dem-
onstrated by the following example. We consider a three-
layer system with layer energies,h150, h251.5, and
h3520.5. The corresponding channel energies areE1
50.000 13,E251.500 12, andE3520.500 25, withn51
as the dominant channel. The distribution function ofu1 /u2
obtained from procedures~I! and ~II ! is plotted in Fig. 1 in
solid circles and triangles, respectively, in logarithmic scale.
Similarly, the distribution function ofu3 /u1 is plotted in
open circles and triangles for procedures~I! and~II !, respec-

tively. In each sampling, 6000 data points were collected.
The equivalence of two sampling procedures is evident.

For RLMIR with a given layer numberN and layer ran-
domnessW1 , we have to take a configurational average of
Noc over many different layer configurations. The averaged
value^Noc& is then calculated as a function ofN. In order to
cover from strong to weak layer randomness, we have cho-
sen W151, 0.1, and 0.01, orW1 /tz5100, 10, and 1. For
each case the values ofN we have studied areN52M with
M51,2, . . . , and 7. ForW150.1 and 0.01, the sampling
procedure~I! was used. The relative channel occupation dis-
tribution is averaged inL from Leq to Leq15000. The num-
ber of layer configurations ranges from 1000 to 50 with in-
creasingN. For the case of strong layer randomnessW1
51, sampling procedure~I! becomes less effective due to
weak channel hoppings and procedure~II ! was adopted. The
layer configuration ranges from 500 to 50. At each layer
configuration, five configurational averages for the isotropic
randomness were performed. The results of our calculations
are shown in Fig. 2 in solid triangles, diamonds, and circles
for W151, 0.1, and 0.01, respectively. The standard devia-
tions are also shown if their values are greater than the sym-
bol size. For the case of strong layer randomnessW151,
^Noc& saturates to the value 5 when the number of layers is
greater than 16. Similar is the case ofW150.1. However, the
saturation value of̂Noc& (>21) and the crossover widthNc
(>32) both became larger. In the AHS limit whenW1 /tz
becomes small, both values will diverge as indicated in the
case of W150.01. These results show clearly that the
RLMIR is 1D-like in the largeN limit. In fact, for any layer
randomnessW1 /tz , there always exists a crossover width
Nc , below which the lateral transport is ergodic and above
which it becomes nonergodic. Thus the AHS~or other iso-
tropic random systems! is unstable against any layer random-
ness. It will crossover to the RLMIR when the number of
layers becomes large. These results give the definitive an-
swers to the questions addressed in this work.

The crossover from the ergodic to nonergodic regime is
more transparent in the distribution function of the averaged

FIG. 1. At W51 and tz50.01 with channel energiesE1

50.000 13,E251.500 12, andE3520.500 25, the distributions of
ln(u1 /u2) and ln(u3 /u1) are plotted in solid and open symbols, re-
spectively. The ‘‘circles’’ and ‘‘triangles’’ denote the results of
sampling procedure~I! and ~II !, respectively.
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occupied channelsPN(Noc). In Fig. 3, we plot~in solid sym-
bols! PN(Noc) for the cases ofW150.1, N54, 8, and 16 in
circles, triangles, and diamonds, respectively. For this case
of N54, the distribution is peaked atNoc54. This implies
that the system is in the ergodic regime. With increasingN,
the peak position is shifted towards a lower value thanNoc
5N together with a larger variance. The nonergodic regime
is reached whenN.Nc'32. In this regime,PN(Noc) seems
to saturate to a fixed distribution independent ofN. This is
shown in the inset of Fig. 3, wherePN(Noc) is plotted for the
case ofN532 and 64 in solid inverse triangles and squares,
respectively. In Fig. 4, we plot the probability distribution of
Leq, PE(Leq), for the case ofW150.1, N54, 8, and 16 in
circles, triangles, and diamonds, respectively~all solid sym-
bols!. These functions can be described by an inverse gamma
function of the form

PE~Leq!5@ba/G~a!#Leq
2a21 exp~2b/Leq!

as shown by the dashed curves.7 The values ofb varies from
7423 to 44 086, whereas the decay exponenta is within
7.060.2 insensitivity to the parametersW1 andN. The vari-
ance of this distribution function also increases withN.
However, we do not see the sign of saturation in this case.
This is expected because it takes longer for a channel far
away from the dominant channel to reach equilibrium. Thus,
for a sample of fixedL, the lateral transport is determined
mainly by the transport in the transient region whenN be-
comes large so thatL,Leq. In this region, other eigenvec-
tors of t†t become important.

We have also studied this problem independently by using
the classical rate equation~CRE! approach, which was pro-
posed to describe the lateral transport in the limit of strong
layer randomness.3 Its validity has been demonstrated in a
quantitative way for the case of two channels.3 Here, we
apply it to many-channel systems. In this approach, the
Hamiltonian of Eqs.~1! and ~2! are written in the channel
representation usingEn and wn . The isotropic randomness
gives rise to both the localization of each channel and the
hopping among channels. Due to the small overlap between
two channels, the hopping among channels can be treated
incoherently. Therefore, the probabilityPn(L) of occupying
the nth channel at distanceL from the injection point satis-
fies the following equations

dPn

dL
5 (

mÞn

N

~wnmPm2wmnPn!2
2Pn

jn
, ~3!

where,wnm is the channel hopping rate, describing the prob-
ability of hopping from channelm to n per unit sample
length. From the Born approximation, the hopping rate can
be written as

wnm5
pW2

6nm
r1D~E2En!(

z
uwn~z!wm~z!u2, ~4!

wherenm is the wave velocity of channelm, i.e., nm5@4
2(E2Em)2#1/2, and r1D(E2En)51/(pnn) is the 1D den-
sity of state per site.8 The 1D localization lengthjn of the

FIG. 2. At W51 andtz50.01, the average number of occupied
channels is plotted as a function of sample widthN for the cases of
W151 ~triangles!, 0.1 ~diamonds!, and 0.01~circles!. The solid and
open circles denote the results of recursive Green’s-function and
rate equation calculations, respectively.

FIG. 3. At W51, W150.1, andtz50.01, the distribution func-
tion of the number of occupied channels is plotted for the sample
width N54 ~circles!, 8 ~triangles!, and 16~diamonds!. The cases of
N532 ~inverse triangles! and N564 ~squares! are shown in the
inset. The solid and open circles denote the results of recursive
Green’s-function and rate equation calculations, respectively.

FIG. 4. At W51, W150.1, andtz50.01, the distribution func-
tion of the equilibration lengthLeq is plotted for the sample width
N54 ~circles!, 8 ~triangles!, and 16~diamonds!. The solid and open
circles denote the results of recursive Green’s-function and rate
equation calculations, respectively.
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nth channel is determined by the channel energyEn and the
effective randomnessW̄n5W((zuwn(z)u4)1/2 and can be cal-
culated by using the standard transfer-matrix method.9

The solution of Eq. ~3! has the form Pn(L)
5( iaiVi(n)exp(2giL), where g i represents thei th eigen-
value of the matrix2qnm52wnm1(( lÞnwln12/jn)dnm on
the right-hand side of Eq.~3!. Vi(n) is the corresponding
normalized eigenvector with(nVi(n)51. The coefficient
ai ’s are determined by the initial conditionPn(0). For a
single injection channelm, we havePn(0)5dnm . In the
largeL limit, Pn(L) is dominated by the term with the long-
est decay length, say 1/g1 , and the eigenvectorV1(n) deter-
mines the asymptotic channel occupation ratios, i.e.,
Pn /Pm5V1(n)/V1(m), which are independent of initial
condition. This ratio is equivalent toūn / ūm in the RGF
method. The equilibration lengthLeq can be determined from
the condition thatPn(Leq)/Pm(Leq)>V1(n)/V1(m) for all
possible injection channels. The number of occupied chan-
nels becomesNoc51/@(nV1

2(n)#.
In the limit of tz!1, by using perturbation theory, it

can be shown that the equilibration length for themth
injection channel has the form Leq(m)'2(am
2a1)21 ln@wm1w1m/(am2a1)

2#, where a i[2/j i . If we use
l m1 to denote the separation between channelsm and 1 and
the asymptotic properties ofam ,a1}W2 and wm15w1m

}W2tz
2l m1, we have Leq(m)'2@4l m1 /(am2a1)# ln tz1C,

whereC is independent oftz . Thus,Leq is determined by the
largest value ofLeq(m) for all m greater than 1. In the case
of the three-layer system discussed earlier, we foundLeq
'21008 lntz12266. This analytic result agrees well with
the result of RGF calculations, which givesLeq'
21046 lntz12211 for tz,0.01. This result exhibits an in-
verse proportionality between the equilibration length and

the localization of channel wave functions in the regime of
strong layer randomness. Also, from the dominant eigenvec-
tor V1 , we found ln@V1(1)/V1(2)#58.5 and ln@V1(3)/V1(1)#5
24.8. These values are close to the peak positions of 8.2 and
24.9 in the distribution of ln(u1 /u2) and ln(u3 /u1) shown in
Fig. 1, respectively.

In the study of finite-size scaling, we have repeated all the
calculations carried out by the RGF method. We have per-
formed 2000 to 500 layer configurations with increasingN.
The results of̂ Noc& are shown in Fig. 2 by open symbols in
triangles, diamonds, and circles for the cases ofW151, 0.1,
and 0.01, respectively. For the cases ofW151 and 0.1,
crossover from ergodic to nonergodic regime are also evi-
dent. In the case of weak layer randomness,W150.01, large
overlaps between channel wave function make CRE invalid.
As a result, it overestimates the value ofNoc. Therefore, we
do not see the crossover occur even whenN5128. The dis-
tribution function forNoc is plotted by open symbols in Fig.
3 for the case ofW150.1 andN54 ~circles!, 8 ~triangles!
and 16 ~diamonds!, N532 ~inverse triangles! and 64
~squares!. The last two are shown in the inset. The distribu-
tion of Leq is shown in Fig. 4 in open triangles for the case of
W150.1 andN58. All these distribution functions agree
with the results of RGF calculations.

In summary, from both RGF and CRE calculations, we
have demonstrated clearly a crossover from ergodic to non-
ergodic transport in RLMIR. The AHS is unstable against
the introduction of layer randomness. A dimensional cross-
over from 2D-like to 1D-like transport will occur when the
number of layers becomes large.
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