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Dimensional-crossover behavior in randomly layered media
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We study the lateral transport of two-dimensional randomly layered media in the presence of isotropic
randomness. The hopping anisotropy is also included. Equilibration length and channel occupation number are
calculated by using both the recursive Green’s-function method and the rate-equation approach. Our results
show clearly a transition from ergodic to nonergodic transport as the number of layers increases. This describes
a dimensional-crossover behavior from two-dimensional-like anisotropic hopping systems to one-dimensional-
like randomly layered medidaS0163-182@08)52114-5

The study of transport and localization properties of ran-
domly layered media with isotropic randomneg&®LMIR) H=2> e,ala,+ 2 tuzanag, (1)
has been a challenging task due to the presence of both layer “ L]
randomness and isotropic randomness. However, their inté{yhere a3 are site indices, anfl,8] indicatesa and B8 are
play has been shown to give rise to many transport phenonhearest neighbors. The lattice constant is set to be unity. We
ena not seen in other disordered systemisPhysical ex- assume that the nearest-neighbor hopping integrals are dif-
amples of RLMIR are the Earth’s subsurface and randonerent in different directions. For a 2D system, we choose the
superlattices with lateral inhomogeneities. The layer randomz axis as the layering direction and tkeaxis as the lateral
ness makes transport in such systems anisotropic. Previodgection. For convenience, we dgt=1 as the energy scale

calculations on three-dimensionedD) systems have indi- and have choseh<t, in our calculations. The site energy
cated that, when the ratio of the strength of layer randomness consists of two parts:

to that of isotropic randomness is larger than a certain critical
value, the system is 1D-like and all states are localized. £,=1n,+0,. 2)
Also, in the previous studies of lateral transport on 2D sys-
tems, it has been found that the transport is nonergodic in, describes the layer energy and is a constant for all sites
channel space due to the existence of a dominant ch&dnel.lying in a given layer at fixec, but varies randomly az
As a function of propagating channeis., it has also been varies with a flat distribution of widtW,. &, is a random
found that the averaged number of occupied channels exhiwmber that varies independently from site to site with a flat
its a finite-size scaling behavior that is intermediate betweedistribution W. W; and W measure the strengths of layer
1D and 2D, i.e.{Noo)~M..2 All these transport behaviors randomness and isotropic randomness, respectively. The
suggest that RLMIR is different in nature from other disor- AHS is recovered wheiV;=0. In the presence oy, all
dered systems, including anisotropic hopping systehmtS) states are localized along ttedirection. These localized
where the anisotropy arises purely from the hoppingwave functions act as overlapped channels for the propaga-
integrals® For AHS, it has been shown that Anderson local-tion of waves along the& direction. For any particular layer
ization transition occurs in 3D independent of the anisotropyconfiguration of éN-layer system, i.e., a given set{f,} for
and the isotropic transport behaviors can be recovered afté=1,2, ... N, one can solve the 1D eigenvalue problem
some proper rescaling of lengths in different directibns. along thez direction and obtain a set df eigenfunctions
Thus, we have two types of anisotropic systems with entirelypn(2z) and eigenvalueg,. The wave energy can be written
different transport properties. asE=E,+2 cosk,, wherek, is the wave vector of thath
There are two important questions we would like to ad-channel for the propagation along thxedirection. When
dress in this work. Firstly, we cannot exclude the possibility|E—E,|>2, k, is imaginary and the channel is denoted
that the behaviofNy¢) ~ JM, found in Ref. 2 describes only “evanescent.” WherlE—E,|<2 andk,, is real, the channel
a crossover behavior due to the small number of propagatinig denoted “propagating.” The Fermi-energyis set to be 0
channels, i.e., mgM ~25}, involved in the calculation$lf ~ in our calculations. In the previous 2D study with=t,=1,
this is the case, what is the true property of the 2D RLMIR?strongly localized channel functions were produced by using
Secondly, does there exist any connections between RLMIR largeW,; (W;=15). This made most of the channels non-
and AHS and what is the crossover behavior between theggropagating and severely limited the study of lateral trans-
two types of anisotropic systems? In order to answer thesport to a small number of propagating channels. This diffi-
questions, we consider a system which has both layer rargulty is overcome by choosing<t,. Since the localization
domness and hopping anisotropy. Such a system can possdesgth of ¢,(z) scales with —1/In(t), strongly localized
a maximum number of propagating channels, i.e., {fdak  channel wave functions can be achieved witke1 even
=number of layers, and enables us to study the crossovavhenW;=<1. Thus, we can have all channels propagating in
between RLMIR and AHS. We use the following tight- thex direction. In this case the strength of layer randomness
binding Hamiltonian to describe the RLMIR: is measured by the dimensionless ratg/t,.
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In this work, we study the finite-size scaling behavior of 0.20
the averaged occupied channéld,,) at various ratios of
W, /t, by using both the recursive Green’s-functiRGFH
method and the classical rate equati6BRE) approach? In S o5 ;“A
the RGF calculations, we connect the disordered sample of g A
lengthL, whereW# 0, to two pure leads on both sides of the & 3 '.A
sample. These leads have the same layer configuration andS 449 | ey 4 o
anisotropy int, andt, but W=0. The transmission ampli- g’ %oo % H .
tudest,,,, with incoming wave at thenth channel and out- 9 © %@ .
. . Qo Id
going wave at theath channel form NN matrix and can 2 005 6 %@5, .
be calculated numerically using the RGF metfda. our e N ?g@ t
calculations, a periodic boundary condition is used inzhe 5 & %’.
direction. It has been shown analytically that when sample 0.00 4 f f h

length L is larger than some equilibration lengtheg, —20 -10
t,m has the asymptotic form

FIG. 1. At W=1 and t,=0.01 with channel energieg&,
tnm(L)EzeXF(_)\lL)al,n(L)gz’f(m)i =0.000 13,E,=1.500 12, andE;= —0.500 25, the distributions of
In(6,/6,) and In@;/6,) are plotted in solid and open symbols, re-
spectively. The “circles” and “triangles” denote the results of
where 1k, is the localization length of the system and sampling procedurél) and(Il), respectively.
g.(m) is the normalized eigenvector tft corresponding to
the largest eigenvalue 2/cosh¢?).>® The normalized vec-
tor a; 5(L) is related tog;(m) by a unitary transformation
arising from the isotropic scattering. For each chosen lay
configuration,g;(m) depends only on the configuration of
isotropic randomnesgé$, in Eg. (2)] in the region
0<L<Lgqand becomes a fixed vector whe L .,. There-
fore, the value ofL.y can be determined from the length
where the ratiog,(L)/t,(L)=g* (m)/g% (/) becomeL cover from strong to weak layer randomness, we have cho-
independent. From this relation we can obtain the relativesenwlzl' 0.1, and 0.01, oW, /t,=100, 10, and 1. For

; P : each case the values Nf we have studied ari=2M with
occupation probability in thenth outgoing channel as - _ :
en(l—):|tnm(|—)|2/2r’;l:1|tnm(l—)|25|a1,n(|—)|21 Wwhich is in- M=1,2, ..., and 7. FowW;=0.1 and 0.01, the sampling

dependent of the incoming chanmel® In this asymptotic procedurgl) was used. The relative channel occupation dis-

. - . .~ tribution is averaged i from Loqt0 Lqt+5000. The num-
region, the statistics of,(L) are stationary and the relative ber of layer configgurations rangeqes froer% 1000 to 50 with in-

channel occupation distribution can be obtained by takin%reasin

O gN. For the case of strong layer randomnéNs
the average i, i.e., 6,=(6n(L))L~L , The average num- _, " samniing procedurél) becomes less effective due to
ber of occupied channels is definedMg=1/(2,62).2 For  weak channel hoppings and proced(i¢ was adopted. The
AHS, it is expected that all the channels are evenly distribdayer configuration ranges from 500 to 50. At each layer
uted andN,.=N. This ergodic property makes the AHS in configuration, five configurational averages for the isotropic
the same universality class as the other isotropic systemsandomness were performed. The results of our calculations
whereas for the RLMIR, the distribution of channels is notare shown in Fig. 2 in solid triangles, diamonds, and circles
ergodic?? In particular, if the system is 1D-like, we would for W;=1, 0.1, and 0.01, respectively. The standard devia-
expect thatN,. approaches a constant value in the lakge tions are also shown if their values are greater than the sym-
limit. bol size. For the case of strong layer randomnégs=1,

For a given layer configuratiof,}, the statistics o, (N, saturates to the value 5 when the number of layers is
can be obtained by the following two equivalent samp-greater than 16. Similar is the caseW#f =0.1. However, the
ling procedures(l) sampling at different. >L4in a single  saturation value ofN,c) (=21) and the crossover widt,
configuration of{ §,,} in Eq. (2), and(ll) sampling at a fixed (=32) both became larger. In the AHS limit whéM, /t,
L>L ¢, with different configurations of ,}. For all the cal- becomes small, both values will diverge as indicated in the
culations discussed below, we have ¥ét1 andt,=0.01. case of W;=0.01. These results show clearly that the
The equivalence of the two sampling procedures can be denRLMIR is 1D-like in the largeN limit. In fact, for any layer
onstrated by the following example. We consider a threerandomnesdV, /t,, there always exists a crossover width
layer system with layer energiesy;=0, 7,=1.5, and N, below which the lateral transport is ergodic and above
73=—0.5. The corresponding channel energies &g  which it becomes nonergodic. Thus the AK& other iso-
=0.000 13,E,=1.500 12, andEz=—0.500 25, withn=1  tropic random systemss unstable against any layer random-
as the dominant channel. The distribution functiorgef 6, ness. It will crossover to the RLMIR when the number of
obtained from procedurd$) and (ll) is plotted in Fig. 1 in  layers becomes large. These results give the definitive an-
solid circles and triangles, respectively, in logarithmic scaleswers to the questions addressed in this work.

Similarly, the distribution function off;/6, is plotted in The crossover from the ergodic to nonergodic regime is
open circles and triangles for procedutesand(ll), respec- more transparent in the distribution function of the averaged

tively. In each sampling, 6000 data points were collected.
of he equivalence of two sampling procedures is evident.
For RLMIR with a given layer numbeN and layer ran-

domnessW,, we have to take a configurational average of

N, over many different layer configurations. The averaged
value{N,) is then calculated as a function Nf In order to
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FIG. 2. AtW=1 andt,=0.01, the average number of upi L
: dt,=0.01, the average number of occupied o~ - pv\w—1 W, =0.1, andt,=0.01, the distribution func-
channels is plotted as a function of sample wiblttior the cases of . o ) .
- . - . . tion of the equilibration lengtl., is plotted for the sample width
W, =1 (triangles, 0.1 (diamond$, and 0.01(circles. The solid and . : a°. .
) . , : =4 (circles, 8 (triangles, and 16(diamond$. The solid and open
open circles denote the results of recursive Green's-function and. . ) .
circles denote the results of recursive Green's-function and rate

rate equation calculations, respectively. equation calculations, respectively

ggfsl;p;e?l\? har;g:a[{@h,é( '(\:Ia";)é;no\c'/:\;g'_% \iveNFﬂo}'%Sglr:% slyGrr:I:] as shown by the dashed curVeBhe values of3 varies from
. N(Nod : 1752 TR . 7423 to 44 086, whereas the decay exponent within
circles, triangles, and diamonds, respectively. For this €ase o, o insensitivity to the parametev¥, andN. The vari
_ . . . . _ . . . S . 1 . =

?r:a';lt_hg'sthsete%s'i(g?rl]ﬂ:ﬁg (Iasr Fz)edaidéerg ?r‘rcl)fa_\éll\./i:r-]hilsclrrgapsltliis ance of this distribution function also increases wih

the eakyosition i shiftedgtowardg a I(')wer value t 9 However, we do not see the sign of saturation in this case.
—Nri tﬁ ith a | : Th di N?’@. This is expected because it takes longer for a channel far
- O%ederhW'N:‘Nang v;e\rlta;]r_]ce. he nonilrgo IC reglmeaway from the dominant channel to reach equilibrium. Thus,
IS reached whely >N~ oe. I |s_reg|mePN( od) SEEMS  tor a sample of fixed., the lateral transport is determined
to saturate to a fixed distribution independenth\of This is mainly by the transport in the transient region whérbe-
shown in the inset of Fig. 3, whef(No) is plotted for the comes large so thdt<L.,. In this region, other eigenvec-
case ofN=232 and 64 in solid inverse triangles and squares, .« ¢ttt become imporetqant '

respectively. In Fig. 4, we plot the probability distributio_n of We have also studied this problem independently by using
L.eq'l PE&",EQ)’ Ifor thedc(;;t_se Om(ljlzo'l' NT.4é18’ a?g 16 in the classical rate equatiqi®RE) approach, which was pro-
circies, triangles, and diamonds, respec vty solid sym- osed to describe the lateral transport in the limit of strong
bolg. These functions can be described by an inverse gamrr{)gyer randomness|ts validity has been demonstrated in a

function of the form quantitative way for the case of two channelslere, we
apply it to many-channel systems. In this approach, the

Pe(Leg=[BYT ()L * exp —BIL o Lo
elleg =[A*T (@)]Leq A= Plleq Hamiltonian of Eqgs.(1) and (2) are written in the channel
2.0 . , , representation using, and ¢,,. The isotropic randomness
0.10 e gives rise to both the localization of each channel and the
. W, hopping among channels. Due to the small overlap between
15l ° gﬁ.i’ | two channels, the hopping among channels can be treated
008 L ;vj * . | incoherently. Therefore, the probabiliB,(L) of occupying
° . 53‘;7%_ the nth channel at distancke from the injection point satis-
3 o ‘ e W, fies the following equations
z 10 r - a , @g’
~ 4 0.00 ., B N
o o Lo 16 32 48 dP, 2P,
. 2 G = 2 (WomPm=WindPr) - o 3
05 o* £ m#n n
ot Aﬁ‘ 4 . where,w,,, is the channel hopping rate, describing the prob-
s 3 sese0cot®eg, ability of hopping from channem to n per unit sample
& get’Qes *e0 . . .
0.0 OML‘ ““89” o '916 length. From the Born approximation, the hopping rate can
Noc be written as
2
FIG. 3. AtW=1, W;=0.1, andt,=0.01, the distribution func- TW
: : Worm="g,—~ P1o(E-En) 2 en(Den@% (@)
m

tion of the number of occupied channels is plotted for the sample
width N=4 (circles, 8 (triangleg, and 16(diamonds$. The cases of ) ] .
where v, is the wave velocity of channeh, i.e., v,=[4

N=232 (inverse trianglesand N=64 (squares are shown in the | .
inset. The solid and open circles denote the results of recursive- (E—E)2]¥2, and p;p(E—E,) = 1/(mv,) is the 1D den-
sity of state per sité.The 1D localization lengttg, of the

Green’s-function and rate equation calculations, respectively.
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nth channel is determined by the channel endfgyand the  the localization of channel wave functions in the regime of
effective randomnesd/,=W(Z,| ¢n(2)|*)¥? and can be cal- strong layer randomness. Also, from the dominant eigenvec-
culated by using the standard transfer-matrix method. tor V4, we found InV,(1)V,(2)]=8.5 and IfV,(3)V4(1)]=

The solution of Eg. (3) has the form P,(L) —4.8. These values are close to the peak positions of 8.2 and
=3,a;Vi(n)exp(—vyL), where y; represents théth eigen- —4.9 in the distribution of Ing,/6,) and In@5/6;) shown in
value of the matrix— g, m=—Wnm+ (2| 2 nWin + 2/£,) Spmon  Fig. 1, respectively.
the right-hand side of Eq(3). V;(n) is the corresponding In the study of finite-size scaling, we have repeated all the

normalized eigenvector witfE,V,(n)=1. The coefficient calculations carried out by the RGF method. We have per-
a;'s are determined by the initial conditioR,(0). For a formed 2000 to 500 layer configurations with increasig
single injection channein, we haveP,(0)=6,,. In the  The results of N,¢) are shown in Fig. 2 by open symbols in
largeL limit, P,(L) is dominated by the term with the long- triangles, diamonds, and circles for the case¥Vgf-1, 0.1,
est decay length, say 1/, and the eigenvectdr,(n) deter- and 0.01, respectively. For the casesWf{=1 and 0.1,
mines the asymptotic channel occupation ratios, i.e.crossover from ergodic to nonergodic regime are also evi-
Pn/Pm=V1(n)/V,(m), which are independent of initial dent. In the case of weak layer randomn&¥s=0.01, large
condition. This ratio is equivalent t@,/6,, in the RGF overlaps bet_ween chgnnel wave function make CRE invalid.
method. The equilibration length,, can be determined from AS a result, it overestimates the valuelgf;. Therefore, we
the condition thatP,(Leg)/Pm(Leg=V1(n)/Vy(m) for all dp nqt see thg crossover occur even whien128. Thg d|§—
possible injection channels. The number of occupied chanffibution function forN is plotted by open symbols in Fig.
nels becomedl, .= 1/[2an(0)]- 3 for the case ofwv;=0.1 andN=4 (cwclgs), 8 (triangles

In the limit of t,<1, by using perturbation theory, it @nd 16 (diamonds, N=32 (inverse triangles and 64
can be shown that the equilibration length for thgh  (Squares The last two are shown in the inset. The distribu-
injection ~ channel has  the  form L{m)~—(ap, tion of L¢qis shown in Fig. 4 in open tnqngles for_ the case of
—ap) "t IN[WogWy/(am— a7)?], Where a;=2/¢;. If we use W;=0.1 andN=8. All these d|_str|but|on functions agree
|, to denote the separation between channelsnd 1 and  With the results of RGF calculations. _
the asymptotic properties of,,a;cW? and W, =Wy, A In (sjummary, frc()jm IbOt? RGF and CRfE calculact;_ons, we
ocWZtilml, we. have Lo(m)~ - [ 4l /(am— az)JIn 4,4, ave demonstrated clearly a crossover from ergodic to non

ergodic transport in RLMIR. The AHS is unstable against
whereC is independent of, . Thus,Lqis determined by the g P g

the introduction of layer randomness. A dimensional cross-
largest value of(m) for all m greater than 1. In the case qyer from 2D-like to 1D-like transport will occur when the
of the three-layer system discussed earlier, we fouggd number of layers becomes large.

~—1008 Int,+2266. This analytic result agrees well with

the result of RGF calculations, which gives g~ The authors thank P. Sheng for discussions. We also wish
—1046 Int,+2211 fort,<0.01. This result exhibits an in- to acknowledge the support of Hong Kong RGC Grant No.
verse proportionality between the equilibration length andHKUST 686/96P.
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