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The many-body dielectric formalism is applied for the laterally confined nondegenerate electron system over
the liquid helium surface. The density-density response function dependent on the wave number and frequency
for the multisubband quasi-one-dimensional~Q1D! system is evaluated within the random-phase approxima-
tion for arbitrary values of wave number and subband index. The spectra of both intrasubband and intersub-
band plasmons are obtained in the limit of small wave numbers and low temperatures. The intrasubband
plasmon dispersion is almost soundlike and similar to that of intrasubband plasmons in degenerate Q1D
systems and in the Q1D electron chain. The intersubband mode is optical-like with frequency close to the
one-electron frequency related to the lateral parabolic confinement. Intra- and intersubband magnetoplasmon
frequencies are also derived. Our results are compared with recent spectroscopic experiment.
@S0163-1829~98!50502-4#

A collective excitation spectrum is one of the main fea-
tures of charge systems which depends crucially on the sys-
tem dimensionality. As is well known, the dispersion law of
two-dimensional~2D! electron systems does not show a gap
for a zero wave number in contrast to plasma oscillations in
3D. Hence the great interest in studying plasma oscillations
in quasi-one-dimensional~Q1D! electron systems especially
in view of the great technological progress in the fabrication
of semiconductor structures where motion of carriers is lat-
erally restricted and they behave like a degenerate Q1D sys-
tem at large densities. Collective oscillations in a degenerate
Q1D electron system were investigated rather intensively
during the last years both theoretically1–9 and
experimentally.10 Das Sarma and co-workers2–4 and Hu and
O’Connell,5 by using the many-body dielectric formalism,
derived the dielectric function dependent on frequency and
wave number for the Q1D degenerate electron system and
employed some approaches for the calculation of the spec-
trum of plasma oscillations in multisubband Q1D systems,
which allowed them to consider plasma oscillations not only
in isolated quantum wires but also in quantum-wire
superlattices.3,7 Plasmons have been also investigated within
the hydrodynamic model by solving the equation of motion
and the continuity equation in the case of a lateral parabolic
confinement8 and by considering the strip geometry.9

Theoretical and experimental studies of Q1D systems in
semiconductors stimulated interest for realizing Q1D elec-
trons using the well-known nondegenerate surface electrons
~SE’s! on the liquid helium surface.11 Such aclassicalQ1D
electron system can be used for the understanding of differ-
ent physical phenomena including collective excitations.
Very recently, mobility data of SE’s in Q1D arrays over a
suspended thick helium film14 and conductivity
measurements,15 as well the observation of magnetoplasma
resonances,16 in the system of SE’s on helium in microfab-
ricated channels have been reported.

In this paper, we investigate from a theoretical point of
view the collective excitation spectrum of the electron sys-
tem confined to a parabolic potential in a Q1D channel on
the liquid-helium surface in the framework of the many-body
dielectric formalism. We consider a solitary channel filled

with superfluid helium and formed between two polymer
sheets meeting at sharp angle.12 Due to the action of a large
holding electric fieldE' along thez direction, electrons are
located mainly near the bottom of the channel. The liquid
surface profile has approximately a semicircular form which
can be described asz5R(12A12y2/R2).y2/2R for y
!R where R is the curvature radius for the liquid in the
channel. If one moves the electron from the bottom of the
channel (y50), it is subjected to the potentialU(y)
5eE'z(y).mv0

2y2/2 leading to its confinement in they
direction with a characteristic frequencyv05AeE' /mR.
Hence the electron motion along they direction has an os-
cillatorylike behavior and a Q1D multisubband electron sys-
tem is formed on the helium surface with free electron mo-
tion along thex direction. In the presence of a magnetic field
B along thez axis,13 the one-electron wave function and the
energy spectrum can be written ascn,l ,kx

5exp(ikxx)wn(y)xl(z)/ALx and En,l5\2kx
2/2m* 1(n

11/2)\V1D l , respectively, wherekx is the 1D electron
wave number,Lx is the size of the system in thex direction,
andx l(z) andD l for n50,1,2, . . . ,l 51,2,3, . . . indicate
the electron wave function and eigenenergy in thez direc-
tion. The effective electron mass ism* 5m(V/v0)2 and the
hybrid frequency isV25v0

21vc
2 , with vc5eB/mc. The

mean electron distance^z& from the surface well satisfies the
condition^z&!R which allows treating thex l andD l in the
same manner as for SE’s over a flat surface.17 The energy
gap between the ground (l 50) and the first excited (l 51)
surface levels is more than 10 K for holding fields above
1000 V/cm. For this reason we can disregard the possibility
of electron escape from ground level in the temperature
range below 1 K and restrict ourselves by the consideration
of the ground surface state withl 50. The wave function
describing the electron motion along they direction is

wn~y!5
1

p1/4yB
1/2

1

A2nn!
expS 2

~y2Y!2

2yB
2 D HnS y2Y

yB
D , ~1!

whereyB5A\/mV, Y52\vckx /mV2 plays the role of the
center of the electron orbit, andHn(t) is the Hermite poly-
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nomial. It can be shown that the inequalityA^yn
2&!R is ful-

filled in a wide range of holding fields giving support to the
use of the parabolic potential approximation for confinement
in they direction and typical values ofA^yn

2& are of the order
of 1026– 1025 cm even forn;102.11

First we consider the case ofB50. So, Y50, V5v0 ,
and yB coincides with the localization length
y05A\/mv0.17 The general expression for the dielectric
function in the multisubband Q1D electron system can be
written as2,5

e i j ,nn8~v,qx!5d ind jn82v i j ,nn8~qx!Pnn8~v,qx!, ~2!

wherePnn8(v,qx) is the density-density response function,
d ik is the Kronecker symbol, andv i j ,nn8 are the matrix ele-
ments of the Coulomb interactionV5e* 2/ur2r 8u acting be-
tween electrons, with a renormalized chargee* 5@2e2/(1
1«)#1/2 where«.1.0572 is the helium dielectric constant,
located at coordinatesr5$x,y,z% andr 85$x8,y8,z8%. In or-
der to obtain the expression forv i j ,nn8 , we need to evaluate
the Fourier transform of the electron-electron interaction.
Disregarding small electron displacements along thez direc-
tion ~of order ofy2/R), we easily obtain the expression2

V0~qx ,y2y8!52~e* 2/Lx! K0~ uqxuuy2y8u!, ~3!

whereK0(x) is the modified Bessel function. In the bare 1D
case (y5y8), V0(qx,y2y8) diverges logarithmically for all
qx . However, the finite scale of the electron localization
along they axis, even in the one-electron approximation,
allows us to find a finite value of the matrix elements of the
Coulomb interaction by simply averagingV0(qx ,y2y8)
over wn(y), which come from the confinement potential:

v i j ,nn8~qx!5E dyE dy8w i~y!w j~y!

3V0~qx ,y2y8!wn~y8!wn8~y8!. ~4!

Hu and O’Connell5 have shown that the integrals in Eq.~4!
can be calculated analytically forB50 giving a nonzero
result wheni 1 j 1n1n8 is even and zero when the sum is
odd. In particular,

v00,00~qx!5
e* 2

Lx
expS qx

2y0
2

4 DK0S qx
2y0

2

4 D .
e* 2

Lx
ln

1

uqxy0u
~5!

in the limit of qx→0.
The density-density response functionPnn8(v,qx), which

appears in Eq.~2!, can be taken in the random-phase ap-
proximation ~RPA! as the noninteracting response function
of the multisubband system given as

Pnn8
~0!

~v,qx!5 (
kx ,s

f 0~Ekx
1Dn!2 f 0~Ekx1qx

1Dn8!

\v1Ekx
1Dn2Ekx1qx

2Dn81 id
, ~6!

whereDn5\v0(n11/2), Ekx
5\2kx

2/2m, d is a infinitesimal

positive, ands is the spin index. In degenerate Q1D electron
systems,f 0(Ekx

1D i) is simply the Fermi function which is
usually approximated by the step function. However, for the
nondegenerate electron systemf 0 is taken as the Boltzmann
function f 0(Ekx

1Dn)5exp@2(Ekx
1Dn)/T#, normalized by

the condition(n,kx ,s f 0(Ekx
1Dn)5N, whereN is the total

number of particles. Making the substitutions, the general
expression of the response function for arbitraryqx , n, and
n8 reads as

Pnn8
~0!

~v,qx!5
22N@exp~2n\v0 /T!U~znn8

~2 !
!2exp~2n8\v0 /T!U~znn8

~1 !
!#

\qxuT@11coth~\v0/2T!#
, ~7!

where uT5A2T/m is the electron thermal velocity
and znn8

(6)(qx)5lnn86\qx/2muT with lnn85 (v/qxuT)@1
1 (v0/v) (n2n8)#. The functionU(z) is given by the in-
tegral

U~z!5
1

Ap
E

2`

` exp~2y2!dy

y2z2 id
. ~8!

Note that this function is related to the well-knownW func-
tion which appears in the plasma theory18

W~z!5
1

Ap
E

2`

` yexp~2y2!dy

y2z2 id

through the following equations:U(z)5 (1/z) @W(z)21#
and ]U(z)/]z 522W(z), where Re@W(z)#51

22ze2z2
*0

z exp(t2)dt and Im@W(z)#5Apze2z2
.

In the limit qx!kx ~note that in nondegenerate systems,
kx;kT5A2mT/\), the response function can be written as

Pnn8
~0!

~v,qx!.2
N@exp~2n\v0 /T!1exp~2n8\v0 /T!#

T@11coth~\v0/2T!#

3FW~lnn8!1S exp~2n\v0 /T!2exp~2n8\v0 /T!

exp~2n\v0 /T!1exp~2n8\v0 /T!
D muT

\qx
U~lnn8!G . ~9!
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The plasmon spectrum of the multisubband system is deter-
mined by the roots of the equation

detue i j ,nn8u50. ~10!

At temperaturesT,1 K, the energy gap\v0 between sub-
bands with differentn is of the order ofT ~Ref. 11! and the
occupation of all subbands have to be taken in account. In
such conditions, Eq.~10! can be solved, in the general case,
only by numerical methods. Analytical solutions become,
however, possible at low temperaturesT!\v0 where only
the ground subbandn50 is occupied by the electrons.

We here restrict ourselves to a two-subband model and
considern, n850, 1. In this case Eq.~10! splits into two
independent equations

12v00,00P00
~0!~v,qx!50, ~11a!

12v01,01@P01
~0!~v,qx!1P10

~0!~v,qx!#50 ~11b!

and the coupling between collective modes appears only if
one takes into account higher subbands. Equation~11a! gives
the intrasubband longitudinal plasma excitations with
charge-density oscillations in thex direction~along the chan-
nel axis! and Eq.~11b! determines the frequency ofintersub-
bandexcitations in they direction. Puttingv5vq2 igq we
obtain, from Eq.~11a! and through Eqs.~5! and ~9!, the
following expression for the dispersion law of intrasubband
plasmons in the limit ofvq /uqxuTu@1 anduqxy0u!1:

v l
25

2e* 2qx
2

ma
ln

1

uqxy0u
, ~12!

where a5Lx /N is the average distance between electrons
along thex direction. Note that the conditionv l /qxuT@1, as
can be easily shown, is equivalent to the conditionT!e2/a.
As is seen from Eq.~12!, Q1D intrasubband plasmons have
approximately a soundlike dispersion with sound velocity
cp

2.2e* 2/ma. Furthermore, they0 dependence of the dis-
persion law appears only in the logarithmic factor and hence
cannot affect significantly the plasma spectrum. This result
enforces the use of the one-electron wave function, given in
Eq. ~1!, for the evaluation of the matrix elements of the Cou-
lomb potential in interacting systems.

We point out that a similar structure of the plasma disper-
sion has also been obtained for intrasubband plasmons in
degenerate Q1D systems, even when another kind of electron
confinement for the motion alongy direction was employed.2

This allows us to state that the dispersion law, given by Eq.
~12!, is quite general. Also remarkable is the fact that the
spectrum of longitudinal plasma oscillations in the Q1D
electron chain in the quasicrystalline approximation, ob-
tained from the condition of compatibility of the equations of
motion,19,20 is given in the limit ofuqxau!1 by the expres-
sion

v l
25

2e* 2qx
2

ma
ln

1

uqxau
, ~13!

which is almost the same as the dispersion law in an itinerant
electron system, but nowa replacesy0 in the logarithmic
factor. We observe also that the plasma dispersion in the

itinerant phase coincides with the longitudinal branch of the
spectrum of the 2D Wigner crystal.

The intersubband plasmon spectrum in the limit of small
qx , which follows from Eq. ~11b! and taking v01,01
.e* 2/Lx ,5 can be written as

v t5v0H 12
T

\v0
F11A11S 11

2aT

e* 2 D \2qx
2

mT G J . ~14!

The frequency of this mode starts from the frequencyv0 of
the confinement potential atqx50 and is slightly shifted, as
qx increases, by the small quantity 2T/\v0 . This is a mani-
festation of the effect of depolarization shift in Q1D
systems.5 For a sake of comparison, one could remember that
the dispersion of transverse oscillations, calculated in the
quasicrystalline approximation, starts from the frequencyv0
atqx50 and decreases with increasingqx .11,20Equation~14!
exhibits similar behavior ofv t(qx) in the itinerant phase.
Note also that the Landau damping is small,gq!vq , for the
modes described by Eqs.~12! and ~14!.

Now, we use the same approach to study the influence of
a magnetic field on the dielectric response of the nondegen-
erate Q1D electron system. In the presence of a magnetic
field applied in thez direction, the matrix elements of the
Coulomb interaction will also depend onkx becausewn(y) is
dependent onkx through Y. Hence the calculation of the
spectrum of collective modes becomes intractable. To over-
come this difficulty, Li and Das Sarma4 proposed a pertur-
bation scheme which allows expandingwn(y) in a series of
Y, and a general method of expansion was developed later
by Wendler and Grigoryan.6 Here we use the perturbation
approach which, according to the results of Ref. 4, allows
describing the influence of the magnetic field on the dielec-
tric function of Q1D electron systems for intermediateB
satisfying the conditionvc,v0 .

The wave-function expansion is valid ifuY(kx)u,yB , and
one considers Q1D degenerate electrons with the Fermi mo-
mentum playing the role of the effectivekx . For nondegen-
erate electrons, the thermal wave numberkT , which de-
pends, in the presence of a magnetic field, on the effective
electron massm* , is the characteristic value ofkx . So we
obtain, from the conditionuY(kT)u,yB , that the inequality

T,\Vv0
2/2vc

2 ~15!

must hold in order that the expansion method be valid in the
nondegenerate regime. As was shown by Sokolov, Hai, and
Studart,21 this criterion arises from the use of standard nor-
malization of both the electron wave function and the Bolt-
zmann distribution function in the presence ofB. Observe
that for vc,v0 , the inequality provides a lower bound for
the temperature instead,T!\V, which gives the limit of full
occupation of the lowest subband. Assuming that the latter
condition is fulfilled, we conclude that the intrasubband plas-
mons, in the lowest-order approximation and in the limit of
small qx , are described by the relation

v5 v lv0/V , ~16!

wherev l is given by Eq.~12! with the localization lengthyB
instead ofy0 . As can be seen from Eq.~16!, the increase of
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the magnetic field leads to a decrease of the plasma fre-
quency in comparison with the case ofB50. This behavior
of the frequency is qualitatively similar to the magnetic field
dependence of the mode observed in the edge-
magnetoplasmon spectrum of 2D systems. This result is also
in agreement with a recent experiment of Valkering and van
der Heijden,16 who observed that the resonance frequency
has a linear dependence on 1/B. However, the dependence of
the resonance frequency on the holding electric field~de-
creasing of the resonance magnetic field for an increasing
electric field! is different from our result, since increasing the
holding field could reduce the effective localization length
and hence, as shown in Eq.~16!, the resonance will be
shifted to higher magnetic fields, contrary to what was ob-
served. This unexpected result was attributed to profile ef-
fects which obviously depend on the holding field. We must
emphasize that the electron profile in the experiment is much
more complicated than the one considered here and the
population of higher subbands must be taken into account for
reliable comparisons since the experiments were performed
at 0.6 K.22

The intersubband mode, when the same condition is sat-
isfied, is described by an expression similar to Eq.~14! but
with V replacingv0 . It is also interesting to observe that the
dispersion law in the presence of magnetic field resembles
that one in the quasicrystalline chain. In this
approximation,20 one of the branches of the plasma spectrum

starts from the hybrid frequencyV in the limit of qx→0 and
the other one is described by Eq.~16! but with v l given by
Eq. ~13!.

In conclusion, we have used the dielectric formalism for
describing many-body properties of the multisubband Q1D
classical electron system localized in a single parabolic chan-
nel on the liquid-helium surface. A general expression was
obtained for the density-density response function in the
RPA for arbitrary wave numbers. The dispersion law for the
nondegenerate Q1D electron system was derived, when the
lowest subband is occupied by the electrons, from the deter-
minantal equation given by the zeroes of the dielectric func-
tion at low temperatures. The intrasubband~longitudinal!
plasmon has a soundlike dispersion apart from a logarithmic
factor and is similar for both intrasubband plasmons in de-
generate Q1D systems and in the quasicrystalline phase. By
contrast, the intersubband~transverse! plasmon has an opti-
cal branch and starts from a threshold frequency which is
slightly shifted from the confinement frequency. The influ-
ence of magnetic field on the dispersion law was analyzed
for both intra- and intersubband plasmons.
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