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The transverse response function for a quantum dot in a uniform magnetic fieldB is calculated using
current-density-functional theory. The poles corresponding to theDLz561 andDSz561 spin waves are
investigated as a function ofB. @S0163-1829~98!52812-3#

Transverse spin excitations in Fermi liquids have been
extensively studied in the last few years in liquid3He ~Refs.
1 and 2!, 3He-4He solutions,3,4 paramagnetic metals,5,6 and
finely layered heterostructures7,8 both theoretically and ex-
perimentally. The same excitations in finite Fermi systems
have been, however, much less studied. In particular, the
transverse spin dipole modes excited by the operatorD6

5xs6 , wherex is the Cartesian component of the position
vector ands6 the spherical components of the vector of
Pauli matrices, giving rise to spin-flip transitions, are practi-
cally unexplored. The reason for that is twofold: to study
these modes one needs a spin polarized ground state and a
complicated experiment to detect the excited states as, e.g.,
inelastic scattering of polarized light. In atomic nuclei, for
example, these measurements have become accessible only
in recent years in small systems as polarized deuteron and
3He.9

A much easier detection of spin modes in finite Fermi
systems should be possible in quantum dot structures that
have been successfully built in the last few years using ad-
vanced technologies.10–13 In fact, these structures are easily
spin polarized with a perpendicular magnetic fieldB and the
transverse response can be detected via inelastic scattering of
polarized light, which is commonly used in condensed matter
physics.7

The purpose of this paper is to provide a theoretical study
of the propagation of spin waves in quantum dots as a func-
tion of the applied static magnetic field. Our investigation is
based on the study of the transverse spin response function,
or dynamical polarizabilitya~v!. This quantity is defined in
terms of the polarization

^D1&5 1
2 g* mBha2~v!e2 ivt, ~1!

induced by a transverse oscillating magnetic fieldh interact-
ing with the system through the HamiltonianH int
5 1

2 g* mBhD2e2 ivt, whereg* is the effective gyromagnetic
factor and mB the Bohr magneton. Standard perturbation
theory yields the following expression for the transverse po-
larizability:

a2~v!5(
n

z^nuD2u0& z2

v2vn01 ih
2

z^nuD1u0& z2

v1vn01 ih
, ~2!

where un& and vn0 are eigenstates and eigenvalues of the
Hamiltonian of the system. The positive and negative poles
of a2 correspond to elementary excitations induced by
the operatorsD2 and D1 , respectively. Starting from an
external fieldD1 and in a completely analogous way we
definea1(v), the poles of which are placed symmetrically
from the v50 axis with respect to those ofa2 . In the
following we provide an explicit evaluation ofa in the
framework of the time-dependent current-density-functional
theory ~TDCDFT!, which includes the effect of correlations
through a self-consistent treatment of the mean field and has
already been used in Ref. 14 to study far-infrared absorption
of light in quantum dots.

In CDFT,15 the single-particle wave functionsw is corre-
sponding to the two-dimensional motion@rW5(r ,u), r
5Ax21y2# of the electrons in thez50 plane in the presence
of a constant magnetic fieldB in thez direction are given by
the solutions of the Kohn-Sham equations
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2 g* mBBW #•sW J w is

5« isw is , ~3!

where V1 is the dot confining potential,VH5*@r(r 8)/
urW2rW8u]drW8 is the Hartree potential, whileVxc5]Exc /]r
2(e/c)Axcj p /r and f xcmW 5]Exc /]mW are the exchange-
correlation potentials in the local approximation appropriate
for a two-dimensional system in a magnetic field.16 Axc is the
exchange-correlation vector potential of CDFT,15 and j p(r )
521/r (nl sl unl s

2 is the orbital paramagnetic current den-
sity. As shown in Ref. 15, CDFT has proved to be very
accurate, even for such few-electron systems as two- and
three-electron quantum dots.

In Eq. ~3!, vc5eB/mc is the cyclotron frequency and
sW the vector of Pauli matrices. As a consequence of circular
symmetry, thew is are eigenstates of thez component of
orbital angular momentuml z , i.e., w is(r ,u)5uis(r )e2 il u,
i[(nl ), with possible valuesl 50,61,62, . . . . The
ground-state density is given byr5(nl suunl su2 and the
ground-state magnetization, defined
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as mW 5(nl s(wnl s* sW wnl s), has mx5my50 and mz[m0

5r↑2r↓ . We have used effective atomic units defined by
\5e2/e5m51, wheree is the dielectric constant of the
semiconductor andm is the electron effective mass. In units
of the bare massme it is m5m* me . In this unit system the
length unit is the effective Bohr radiusa0* 5a0e/m* and the
energy unit is the effective Hartree energyH* 5Hm* /e2.
For GaAs one hase512.4, m* 50.067, andg* 520.44,
which imply a0* 597.9 Å andH* 511.9 meV.

The CDFT ground state is an eigenstate ofLz5( i l z,i and
Sz5( isz,i /2, which eigenvalues are predicted by the calcu-
lation at each value ofB. Besides spin, the dipole transverse
operator can be further separated in its orbital parts, i.e., in
its Lz561 andSz561 parts as

DLz561,Sz5615(
i 51

N

r ie
6 iu is6,i . ~4!

Acting on the ground state with angular momentaL0 andS0
for orbital and spin components, respectively,D6,6 excites
states withLz5L061 andSz5S061.

In TDCDFT when the system interacts with the oscillat-
ing external field D6,6e2 ivt the potential 2f xc(m1s2

1m2s1), entering the scalar productf xcmW •sW of Eq. ~3! and
statically equal to zero, changes due to the variations
dm6(rW,v) dynamically induced in the magnetization. The
transverse linear-response function associated, for instance,
to the particular case ofD1,2 is defined by

a1,2~v!5^D1,2
† &5E drWre2 iudm1~rW,v!, ~5!

with

dm1~rW,v!5E drW8x~rW,rW8,v!r 8e1 iu8. ~6!

The correlation functionx is the solution of the Dyson-type
integral equation

x~rW,rW8,v!5x0~rW,rW8,v!1E drW1drW2x0~rW,rW1 ,v!

32 f xc~g.s.!d~rW12rW2!x~rW2 ,rW8,v!, ~7!

where

x0~rW,rW8,v!5(
hp

F ~hus1up!rW~pus2uh!rW8
v1 ih2«p1«h

2
~pus1uh!rW~hus2up!rW8

v1 ih1«p2«h
G ~8!

is the free transverse correlation function built with the so-
lutions of Eq. ~3! and in Eq.~8! the label p(h) refers to
unoccupied~occupied! single-particle states. Only spin vari-
ables are summed in the single-particle matrix elements of
Eq. ~8!, while space variables are indicated as a subindex.
The kernel 2f xc(g.s.)d(rW12rW2) can be interpreted as the re-
sidual two-body interaction in the spin transverse channel.
The study of the response@Eqs.~5!–~8!# allows us to inves-
tigate the excitations induced by the operatorsD1,2 and
D2,1 with excited states of angular momentum~L011, S0

21! and~L021, S011!, respectively. In an analogous way,
starting from the operatorD1,1 , instead ofD1,2 , one can
study the excitation modes with~L011, S011! and ~L0
21, S021!.

It is also interesting to investigate the properties of the
response function in terms of sum rules. For this it is useful
to consider thev→` expansion ofa. From Eq. ~2! one
finds17

lim
v→`

a1,2~v!5
1

v
S01

1

v2 S11¯ , ~9!

with

S0[S0
1,22S0

2,15(
n

~ z^nuD1,2u0& z22 z^nuD2,1u0& z2!

5^0u@D2,1 ,D1,2#u0&,

S1[S1
1,21S1

2,15(
n

vn0~ z^nuD1,2u0& z21 z^nuD2,1u0& z2!

5^0u†D2,1 ,@H,D1,2#‡u0&, ~10!

where we have used the completeness relation. Analogous
expressions for the sum rules corresponding to theD1,1 and
D2,2 operators are obtained. The occurrence of the term in
1/v in Eq. ~9! is peculiar to polarized systems and is associ-
ated with the fact that for such systems the transverse re-
sponse is not an even function ofv.

The sum rules in Eq.~10! can be evaluated in the frame-
work of CDFT and one can demonstrate rigorously that the
expectation value of the commutators in Eq.~10! on the
CDFT ground state is equivalent to the sum on the left-hand
side evaluated with TDCDFT excitation energies and matrix
elements. We find the following results:

S0
1,22S0

2,15S0
2,22S0

1,15E drWr 2m0~r !,

S1
1,21S1

2,15N2g* mBBE drWr 2m0~r !

1E drWr @ j ↑~r !2 j ↓~r !#1
vc

2 E drWr 2m0~r !,

S1
2,21S1

1,15N2g* mBBE drWr 2m0~r !

2E drWr @ j ↑~r !2 j ↓~r !#2
vc

2 E drWr 2m0~r !,

~11!

where j s(r )521/r (nl l unl s
2 .

In the following numerical application we consider a dot
of N511 electrons confined in a parabolic potential given by
V15 1

2 v0
2r 2 with v053.51 meV. This potential reproduces

near the origin a jellium disk with radiusR5r sAN'500 Å,
with r s51.51a0* . We have solved self-consistently the
ground state and then the transverse response equations~5!–
~8! for this dot in an external magnetic field of magnitudes
B50, 1.5, 3, and 5.4 T. Figure 1 displays the strength func-
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tion, related to the polarizability asS(v)[21/p Im@a#
5(nz^nuDu0& z2d(v2vn0). In the actual calculation we have
added a small imaginary part~h50.01 a.u.! to the energyv
that transforms theD peaks in Lorentzians. We have checked
that the sum rules in Eq.~11! are satisfied by our calculated
S(v).

From the figure one observes the following behaviors. In
all the channels the response is dominated by a single peak at
low energy and, in some cases, fragmented high-energy
states are also present. AtB50 the energy of the peak is the
same for both~2,2!, i.e., DL521 and DS521, and
~1,2! channels, as well as for~2,1! and~1,1! ones. There
is, however, a small energy difference between theDS5
61 cases. IncreasingB the peak energies disperse positively
for DL511 transitions and negatively forDL521, up to
B'3 T. Then, there is a change of tendency for theDS5
21 channel, where atB'3 T it appears as a very strong
peak at low energy for bothDL561. Furthermore, one
notes a vanishing of the strength for theDS511 channel
for both DL561, but it is faster in theDL521 case, with
a transfer of the strength to theDS521 channel.

To understand these behaviors we first notice that the
terms in the CDFT single-particle Hamiltonian~3! respon-
sible for the difference between spin-up and -down single-
particle wave functions and energies are the Zeeman term
1
2 g* mBBsz and the exchange-correlation potentialWxcsz

[ f xcm0sz . This last term is also responsible for the residual
interaction in the Dyson-type equation~7!. Second, the sum
rules of Eq.~11!, which are moments of the strength reported
in the figure, must be satisfied at each value ofB. At B50
the Zeeman term vanishes, but not the exchange-correlation
one since in the ground stateS51/2 and hencem0Þ0. This
gives rise to a small energy splitting between spin-up and
-down single-particle~sp! levels, which is the origin of the
small differences of peak energies atB50 between the
DS561 channels. Up toB>1.5 T the spin of the ground
state does not change and the behavior withB can be ex-
plained by the splitting between the6l sp levels originating
by theB dependent orbital momentum term in Eq.~3!. The
situation is similar to the one occurring in the density chan-
nel when one studies far-infrared dipole modes excited by a
spin independentdipole operatorDr5( ixi , with the differ-
ence that now there are four channels instead of two. AtB
'3 T the situation changes, since the spin of the ground state
gets larger than 1/2. AtB55.4 T the system is completely
polarized in spin and angular momentum. The ground state is
the maximum density droplet~MDD! with filling factor n
51, carrying spin S511/2 and angular momentumL
5N(N21)/2555. TheDS511 channels, due to the Pauli
blocking of electronic spins, decrease their strength for in-
creasing spin polarization and atB55.4 T, when all the
spins are up, no strength is left in these channels. Due to the
fact that the sum rules must be fulfilled the strength passes to
the DS521 channels. The~2,1! channel disappears more
rapidly than the~1,1! because of the polarization in angular
momentum.

The spectacular inversion of tendency of the dispersion
with B of the peak energies of~1,2! and ~2,2! channels
and the simultaneous growth of the strength up to reach at
B'3 T a very collective state at low energy can be under-
stood as follows. WhenB.1.5 T the spin of the ground state
increases and the exchange-correlation potentialWxcsz be-
comes more and more important and splits the spin-up and
-down levels more and more. At a certain point, some of the
spin-down levels, previously degenerate with the spin-up
ones and below the Fermi level, become unoccupied making
possible new low-energy single-particle transitions. These
transitions take a lot of strength, also because at the same
time in theDS511 channels the Pauli blocking becomes
more and more active. The Zeeman term plays a minor role
in determining the single-particle spectrum, since it is much
lower than the exchange-correlation one, but it eventually
determines the energy of the TDCDFT peak due to the effect
of the residual interaction which changes considerably the
average energy of the spectrum with respect to that of the
free response. This is demonstrated with the sum rules of Eq.
~11!. In fact, when the system is fully polarized in spin and
angular momentum one can estimate the energy of the col-
lective state through the ratiov̄5S1 /S0 , since then theDS
511 channels are Pauli blocked. One gets for the TDCDFT
energies

FIG. 1. Strength functionS(v) for the ~2,1! and~1,2! chan-
nels~lower! and for the~1,1! and~2,2! ones~upper! for different
static magnetic fields and theN511 electron dot discussed in the
text. In each case, for the channel on the left part, which is the
Hermitian conjugate of the one on the right, the figure shows the
negative of the strength as a function of the negative of the energy,
i.e., 2S(2v). With the Lorentzian averaging, in this representa-
tion each channel and its Hermitian conjugate are given by a single
continuous curve@see Eq.~2!#.
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v̄1,252g* mBB1
vc

2
2

1

2

N21

^r 2&
1

1

^r 2&
,

v̄2,252g* mBB2
vc

2
1

1

2

N21

^r 2&
1

1

^r 2&
, ~12!

where we have used the definitions^r 2&51/N*drW r 2r,
*drW r j 52L0 , and the fact that in the polarized systemL0
5N(N21)/2. Equations~12! should be contrasted with
those corresponding to the free response, from which they
differ for the absence of the termWxcsz , which in TDCDFT
is exactly cancelled by the residual interaction. A further
simplification of Eq.~12! can be done using for the polarized
system the estimatêr 2&5(N11)/vc , which is exact for the
MDD ground state. One then gets

v̄1,252g* mBB1
2vc

N11
,

v̄2,252g* mBB, ~13!

from which one can understand the result of our calculation

at B55.4 T displayed in Fig. 1. There the peak energy in the
~2,2! channel is at the energy predicted by the sum-rule
approach~13!, since in the spectrum there are no high-energy
states. Conversely,v̄1,2 takes care, through the presence of
the term 2vc /(N11), of the fact that in the~1,2! channel
the peak is at higher energy and that there are also other
small peaks beyond 0.8 a.u. not seen in the plot.

To summarize, the transverse spin-wave excitations in a
quantum dot have been analyzed as a function of the static
magnetic field B within the current-density-functional
theory. We have shown that at lowB there are four dipole
channels, two with positive and two with negative dispersion
of the energy. At higherB’s two of the channels are strongly
depressed because of the Pauli blocking and they eventually
disappear. This is linked to a dramatic change in the disper-
sion of the other two channels because of the associated
transfer of oscillator strength and of the appearance of low-
energy states.
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