
Absence of two energy scales in the two-impurity Kondo model

Kurt Fischer*
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany

~Received 15 April 1997; revised manuscript received 24 December 1997!

It is believed that the successive antiferromagnetic scattering of the conduction electrons on two magnetic
impurities in a metal, induces a magnetic interaction between the impurities which sets an energy scale for the
system, in addition to the Kondo temperature. However, it is shown here that this contradicts a scaling law for
the two-impurity Anderson model in the magnetic limit which becomes exact for a large bandwidth.
@S0163-1829~98!50212-3#

In heavy fermion materials localized, strongly correlated
f electrons interact with delocalized, weakly correlated con-
duction electrons. Experiments show that above a tempera-
ture T* the magnetic moments of thef electrons behave
asymptotically as free. Well belowT* they can either be
phenomenologically described as a Fermi liquid, or magnetic
correlations between the localf moments become dominant.1

When searching for a microscopic mechanism, one is
guided by the behavior of dilute magnetic alloys which are
well described by the single-impurity Anderson
Hamiltonian.2 At low temperatures the magnetic moment of
the impurity is screened by particle-hole excitations of the
conduction band. The system behaves universally, that is, all
observables scale with one energykBTK whereTK is called
the Kondo temperature. On the other hand, the heavy fer-
mion materials have, in orders of magnitude, one magnetic
‘‘impurity’’ atom per unit cell. The hypothesis for such sys-
tems is that it can be described by the Anderson-lattice
Hamiltonian.

It is far from obvious why the single-impurity Kondo ef-
fect should survive in the lattice model. It is believed that
magnetic interactions between the localf moments compete
with the Kondo effect. This magnetic interaction between the
local f moments is supposed to be induced by successive
scattering of the conduction electrons on the two impurities,
and called Ruderman-Kittel or RKKY interaction.3–5

Doniach4 estimated how much energy the system gains if it
orders antiferromagnetically. By second-order perturbation
theory in the exchange couplingJ between the conduction
and thef electrons this RKKY energy was found to be of the
order

I}r2J2D,

wherer is the density of states at the Fermi energy of the
conduction band of widthD. Doniach compared it with the
exponentially small energy gain

kBTK}D exp@21/~rJ!#,

if the magnetic atoms are considered to be independent mag-
netic impurities. Depending on the size ofJ, it could then be
estimated whether the material is in a magnetic or nonmag-
netic phase, at low temperatures. This simple picture deals
essentially with a two-impurity Hamiltonian, the standard
version of which is the two-impurity Anderson or Kondo
model. It has had great impact on the experimentalist’s point

of view. In fact, standard reviews quote the Doniach picture
to explain, at least qualitatively, the respective experimental
observations.1,6

In this article it will be shown that this simple picture
cannot be valid. To this end let us discuss firstly the various
approaches to the two-impurity problem.

For the two-impurity Kondo model, summing of leading-
order divergent diagrams7 in the spirit of Abrikosov8 showed
that at decreasing temperature, the RKKY interaction as well
as the Kondo interaction are renormalized, and eventually
diverge at low temperatures. Hence the picture drawn by
Doniach would be invalid.

This can be contrasted with results from poor man’s
scaling:5,9 Depending on the distance between the impurities,
the RKKY interactionI may either be ferro- or antiferromag-
netic. If I is ferromagnetic and larger thankBTK , it is pre-
dicted that the magnetic moments of the two impurities first
form an effective spin one and are then quenched in a two-
stage process, as temperature decreases. On the other hand, a
large antiferromagnetic RKKY interaction suppresses the
Kondo effect and the two-impurity spins form a singlet for
kBT,I . It is then argued thatI sets an energy scale for the
system at which the RKKY interaction could be observed.

This analysis was supported by a more recent calculation
with the help of a variant of the numerical renormalization
group by Silvaet al.10,11 ~in which theNth hopping matrix
element of the half-infinite chain to which the two impurities
couple is vanishing asL2N with L510, and subsequently
the results of different bandwidthsD/Le, e50 . . . 1 are av-
eraged over!. In fact, those results imply that the Doniach
picture isvalid.

However, those results contradict others12 using the con-
ventional renormalization group scheme (L53) where only
one low-energy scale was seen. What is more, the ap-
proaches of Refs. 5, 9, and 10 are inconsistent. To clarify the
point, only the case of an antiferromagnetic RKKY interac-
tion is discussed. Silvaet al. interpreted their data with the
help of poor man’s scaling. They saw that the magnetic mo-
ment of the impurities is quenched as temperature decreases
below I /kB , at which temperatureI andJ themselves are not
much renormalized. They claimed that therefore the two im-
purities would form a singlet forkBT,I , consequently the
renormalization ofJ would stop, and the low-temperature
behavior could be determined from perturbation theory, the
lowest nonvanishing order of which is}J2/I . A simple es-
timation shows however that this perturbative expansion is
not allowed: Becauser}1/D, the RKKY interactionI is
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always a factorJ/D smaller than the Kondo interactionJ.
This can be read off their numerical results as well.10

Incidentally, if the arguments given by Silvaet al. were
correct they could be repeated for the antiferromagnetic
single-impurity Kondo model: At a temperature of the order
of the coupling constantJ the impurity spin and an electron
of the conduction band would form a singlet, the renormal-
ization would stop, and one would be left with a ‘‘Kondo
effect’’ at an energy scale of the order ofJ, which is cer-
tainly not true.

To summarize, the Doniach picture and its subsequent
refinements as described above imply that the renormaliza-
tion of J stops as temperature becomes lower than the
RKKY coupling. This RKKY interaction then sets an energy
scale for the system’s response, at least for small coupling
J!D. Therefore it would be helpful if the exact energy
scales of a metal with two magnetic impurities could be cal-
culated in the universal limit of largeD. The method which
is usually employed for that purpose is the diagrammatic
renormalization group. The major obstacle is the solution of
the Dyson equation connecting the dressed propagators and
their self-energies which can be done only perturbatively.
However, the low-energy behavior is beyond perturbation
theory. An explicit solution of the Dyson equation can be
avoided13 by means of the variational principle of Luttinger
and Ward14–16 with the help of which the energy scales will
follow.

The two-impurity Anderson model serves here as the
standard model for two magnetic impurities in a metal.
Mean-field approaches for this model have the drawback that
the RKKY interaction appears only as a higher-order
correction,17 and therefore a magnetic interaction between
the impurities had to be added by hand, giving a model with
an adjustable strength of the magnetic exchange between the
impurities.

Here, however, a direct exchange interaction between the
impurities will not be taken into account, because the two
impurities model two localizedf orbitals on different lattice
sites, with virtually no overlap, and it is the purpose of this
article to investigate the role of theirinducedmagnetic inter-
action, that is, the RKKY interaction.

The two impurities are assumed to sit at (0,0,6R/2) sym-
metrically to the origin of the coordinate system, along thez
axis. The HamiltonianH is then invariant under the parity
transformation. Hence the creation operator for a conduction
electron of momentump and spinm and for an impurity
electron can be expressed in terms of their even (s51) and
odd (s521) combinations,18,19
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Here cpW m
1 creates a conduction electron with internal quan-

tum numberm51 . . .N, momentumpW , and energye(pW ). If
uvac& is the vacuum, thenb1uvac&, f im

1 uvac&, and dmn
1 uvac&

denote the unoccupied, singly occupied, and doubly occu-
pied impurity configurations, withi 51,2 labeling the impu-
rities. The energy difference between the singly occupied
and unoccupied as well as between the doubly and singly
occupied impurity configuration ise f . f im

1 is a fermionic
operator, andb1 anddmn

1 are bosonic. Double occupancy at
each impurity site is suppressed by requiring
b1b1(smf sm
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configurationb1uvac& has even parity. The effective Hamil-
tonian then reads,19
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The impurity hybridization with the conduction band is pro-
portional toV. The Boltzmann constant is set to unity so that
temperature is measured in units of energy. The dispersion
can be assumed as isotropic. The density of statesr is as-
sumed to be constant, and the such linearized dispersion is
cut off at 6D. The effective hybridization matrix element
can then be expressed in terms of the conduction band den-
sity of states as19

Vs~e!5VArQS 12
e2

D2DA11s
sin@kFR~11e/2D !#

kFR~11e/2D !
,

~3!

with kF the Fermi wave number andQ the step function.
Thus the system has been reduced to an effective one-
impurity Hamiltonian, the additional parity quantum number
keeping track of the original two impurities.

The one-particle impurity propagatorsRf for the unoccu-
pied (f 50), singly occupied (f 5sm), and doubly occupied
( f 5smn) impurity configurations, determine the impurity
partZf of the partition function via a line integral, the path of
integration encircling all poles of the integrand,

Zf : 5
Trf Trce

2bH

Trce
2bHc

5Trf R dz

2p i
e2bzRf~z!, ~4!

where Trf denotes the trace over the impurity configurations.
The propagatorsRf can be calculated by the standard dia-
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grammatic technique19 which is reviewed in Ref. 20. The
vertices and naked propagators are shown in Fig. 1.

Within the variational principle,15 a functionalY of the
propagatorsRf is defined in terms of skeleton diagrams. For
the impurity part of the partition function,Y is given by

Y5b Trf R dz

2p i
e2bzH(

n
S 12

1

nDS f
~n!

„Rf~z!…Rf~z!

1 lnFz2H f2(
n

S f
~n!

„Rf~z!…G J . ~5!

HereS f
(n) denotes thenth order self-energy ofRf , expressed

in terms of skeleton diagrams. At the saddle point with re-
spect to variations ofRf , the functionalY equalsZf and the
Dyson equation holds as a self-consistency equation.15 So Y
depends on parameters such ase f explicitly only via H f , and
not implicitly via the propagators.15 In addition,Y depends
explicitly on V only via the prefactorV2n of the 2nth order
self-energyS f

(2n) . To determine theT dependence, the inter-
nal integration variablesz and e, as in Eqs.~5! and ~7! are
replaced byTz, Te, andD/T, respectively. The variational
principle remains unaffected.Y depends now explicitly onT
via the prefactorTn of a skeleton diagram of 2nth order, the
termTz in the logarithm, andD/T because of Eq.~3!. Simi-
lar to Ref. 13, it follows for the impurity partF f of the free
energy

F f5S T
]
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]

]rV2 1e f

]

]e f
1D

]

]D DF f . ~6!

Approximations fulfilling the variational principle can be
generated by using a subclass, the so-called families of skel-
eton diagrams.21 If, for instance, only the family of second-
order skeleton diagrams is kept inY, the self-energies are~f
denotes the Fermi function!,
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Universal behavior of the system manifests itself whenD
becomes larger than all other energy scales of the system.Y
depends explicitly onD only via Vs

2, as in Eq.~3!,

D]DY52Trf R bdz

2p i
e2bzD]D(

n

1

n
S f

~n!~z!Rf~z!.

~8!

The skeleton diagrams forS f
(2)Rf are shown in Fig. 2.

The effective density of states of Eq.~3! scales withD as
a function of e and is finite at the Fermi energye50.
Hence,13 as in the case for a density of states with a sharp
cutoff at 6D, differentiating a skeleton diagram forS f

(n)Rf

with respect toD amounts to removing one curved conduc-
tion electron line and replacing the internal propagator by its
value at the cutoff}1/D. Therefore a skeleton diagram of
second order contributes}D/D to the logarithmic deriva-
tive.

A skeleton diagram of higher than second order contains
vertex corrections; hence there lie under each conduction
electron line at least two impurity propagators, because oth-
erwise this diagram would have a self-energy insertion and
not be a skeleton. Its contribution to the logarithmic deriva-
tive is therefore}D/D2 and can be neglected for largeD.13

Therefore, in Eq.~8! only the skeleton diagrams for
S f

(2)Rf are necessary to obtain the exact energy scales of the
system in the universal limit of largeD. A spectral decom-
position of the impurity propagators yields,
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Together with the identities

FIG. 1. Vertices for the two-impurity Anderson model. A
dashed, singly or doubly arrowed line represents the naked propa-
gator of the singly or doubly occupied impurity configuration. A
single s or t labels the parity61, andst their product.m or n
labels the magnetic quantum number, andmn a pair of magnetic
quantum numbers for the double occupied configuration. A wavy
respective solid line represents the naked propagator of the unoccu-
pied impurity configuration or the conduction electron. The product
of parities of incoming particles equals that of the outgoing ones.

FIG. 2. Skeleton diagrams of second order for the two-impurity
Anderson model
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the following scaling equation is obtained:

D
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]D
F f5rV2~121/N!

]

]e f
F f22rV2. ~9!

Equations~6! and ~9! imply the scaling law

F f2E05Tg~T,V,e f ,D,r!5TgS T

G
,

T

TK
D ~10!

in the magnetic limit2e f@rV2, with G5prV2/N. In this
limit, the Anderson model is equivalent to the two-impurity
Kondo model22 at low temperatures T!rV2, with
TK5DAN rV2/D exp@ef /rV2#. By the same means13 it can be
shown that in this limit all observables scale as in Eq.~10!.

Hence the two-impurity Kondo model has in the limit of
largeD only one low-energy scale, which is proportional to
the single-impurity Kondo temperature. Observe, however,
that the proportionality factor cannot be fixed within this
approach and will of course depend onkFR.

If the RKKY interaction would set additional energy
scales as discussed in the introduction, then the scaling law
would have the form,

F f2E05TgS T

TK
,
T

I
,

T

TKA
,

T

T1
D , ~11!

where TKA and T1 are the temperatures of the two-stage
Kondo effect for the ferromagnetic RKKY interaction.5,9

This, however, contradicts the scaling law~10! above.
To conclude, if the high-energy cutoff of the metal is so

large that terms of the orderT/D or J/D can be neglected,
there is for two magnetic impurities in a metal only one
low-energy scale. The induced indirect exchange interaction
between the localf moments which is mediated by succes-
sive scattering of conduction electrons, will be strongly
renormalized at low temperatures. However, the scaling
equations alone do not predict the nature of the ground state
for two magnetic impurities in a metal. In view of Eq.~10! it
seems doubtful whether a competition between the formation
of magnetic order and a Fermi liquid of heavy quasiparticles
can be understood without adding explicitly a magnetic in-
teraction between the magneticf moments.
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