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Absence of two energy scales in the two-impurity Kondo model
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It is believed that the successive antiferromagnetic scattering of the conduction electrons on two magnetic
impurities in a metal, induces a magnetic interaction between the impurities which sets an energy scale for the
system, in addition to the Kondo temperature. However, it is shown here that this contradicts a scaling law for
the two-impurity Anderson model in the magnetic limit which becomes exact for a large bandwidth.
[S0163-182608)50212-3

In heavy fermion materials localized, strongly correlatedof view. In fact, standard reviews quote the Doniach picture
f electrons interact with delocalized, weakly correlated conto explain, at least qualitatively, the respective experimental
duction electrons. Experiments show that above a temperabservations:®
ture T* the magnetic moments of the electrons behave In this article it will be shown that this simple picture
asymptotically as free. Well beloW* they can either be cannot be valid. To this end let us discuss firstly the various
phenomenologically described as a Fermi liquid, or magnetiapproaches to the two-impurity problem.
correlations between the lociimoments become dominaht. For the two-impurity Kondo model, summing of leading-
When searching for a microscopic mechanism, one irder divergent diagramin the spirit of Abrikoso¥ showed
guided by the behavior of dilute magnetic alloys which arethat at decreasing temperature, the RKKY interaction as well
well described by the single-impurity Anderson as the Kondo interaction are renormalized, and eventually
Hamiltonian? At low temperatures the magnetic moment of diverge at low temperatures. Hence the picture drawn by
the impurity is screened by particle-hole excitations of theDoniach would be invalid.
conduction band. The system behaves universally, that is, all This can be contrasted with results from poor man’s
observables scale with one enedgyTy whereTy is called scaling®® Depending on the distance between the impurities,
the Kondo temperature. On the other hand, the heavy fethe RKKY interactionl may either be ferro- or antiferromag-
mion materials have, in orders of magnitude, one magnetiaetic. If | is ferromagnetic and larger thdg Ty, it is pre-
“impurity” atom per unit cell. The hypothesis for such sys- dicted that the magnetic moments of the two impurities first
tems is that it can be described by the Anderson-latticdorm an effective spin one and are then quenched in a two-
Hamiltonian. stage process, as temperature decreases. On the other hand, a
It is far from obvious why the single-impurity Kondo ef- large antiferromagnetic RKKY interaction suppresses the
fect should survive in the lattice model. It is believed thatKondo effect and the two-impurity spins form a singlet for
magnetic interactions between the lo€ahoments compete kgT<I. It is then argued thdt sets an energy scale for the
with the Kondo effect. This magnetic interaction between thesystem at which the RKKY interaction could be observed.
local f moments is supposed to be induced by successive This analysis was supported by a more recent calculation
scattering of the conduction electrons on the two impuritieswith the help of a variant of the numerical renormalization
and called Ruderman-Kittel or RKKY interactidn® group by Silvaet al®!! (in which theNth hopping matrix
DoniacH estimated how much energy the system gains if itelement of the half-infinite chain to which the two impurities
orders antiferromagnetically. By second-order perturbatiorcouple is vanishing ad ~N with A=10, and subsequently
theory in the exchange couplin between the conduction the results of different bandwidti3/A€, e=0...1 are av-
and thef electrons this RKKY energy was found to be of the eraged over In fact, those results imply that the Doniach
order picture isvalid.
However, those results contradict otHémssing the con-
l<p2J2D, ventional renormalization group schem&= 3) where only
one low-energy scale was seen. What is more, the ap-
wherep is the density of states at the Fermi energy of theproaches of Refs. 5, 9, and 10 are inconsistent. To clarify the
conduction band of widtld. Doniach compared it with the point, only the case of an antiferromagnetic RKKY interac-

exponentially small energy gain tion is discussed. Silvat al. interpreted their data with the
help of poor man'’s scaling. They saw that the magnetic mo-
kgTxD exgd —1/(pd)], ment of the impurities is quenched as temperature decreases

belowl/kg, at which temperatureandJ themselves are not
if the magnetic atoms are considered to be independent magiuch renormalized. They claimed that therefore the two im-
netic impurities. Depending on the sizeXfit could then be  purities would form a singlet fokgT<<I, consequently the
estimated whether the material is in a magnetic or nonmagenormalization ofJ would stop, and the low-temperature
netic phase, at low temperatures. This simple picture dealgehavior could be determined from perturbation theory, the
essentially with a two-impurity Hamiltonian, the standardlowest nonvanishing order of which isJ%/1. A simple es-
version of which is the two-impurity Anderson or Kondo timation shows however that this perturbative expansion is
model. It has had great impact on the experimentalist’s poinnot allowed: Becaus@>=1/D, the RKKY interactionl is
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always a factord/D smallerthan the Kondo interactiod. Here cgm creates a conduction electron with internal quan-

This can be read off their numerical results as Well. tum numbem=1...N, momenturmp, and energy(p). If
Incidentally, if the arguments given by Sihet al. were  |yag is the vacuum, thew*|vad, ;" |vad), andd, |vac
correct they could be repeated for the antiferromagneti¢ianote the unoccupied, singly occupied, and doubly occu-
single-impurity Kondo model: At a temperature of the orderpied impurity configurations, with=1,2 labeling the impu-
of the coupling constani the impurity spin and an electron yities The energy difference between the singly occupied
of the conduction band would form a singlet, the renormal-g unoccupied as well as between the doubly and singly
ization would stop, and one would be left with a "Kondo ccypied impurity configuration ig;. fif, is a fermionic
effect” at an energy scale of the order &f which is cer- o a0r and* andd;;, are bosonic. Double occupancy at

tainly not true. . . . . 7.
. . . . ach impurity site is suppressed by requiring
To summarize, the Doniach picture and its subseque ?+b+zamf;mf0m+2¢r,m>nd+ d. =1. The unoccupied

refinements as described above imply that the renormaliza- " \om’ g omn=om . .
tion of J stops as temperature becomes lower than th on_f|gurat|onb |\J;§C> has even parity. The effective Hamil-
RKKY coupling. This RKKY interaction then sets an energy onian then reads,
scale for the system’s response, at least for small coupling H=H.+H+H,,
J<D. Therefore it would be helpful if the exact energy
scales of a metal with two magnetic impurities could be cal-
culated in the universal limit of largp. The method which chz eczm,,cfm(,,
is usually employed for that purpose is the diagrammatic €7
renormalization group. The major obstacle is the solution of
the_ Dyson equation connecting the dressed propagators and Hfzefz frfomT 26 2 dlnomns
their self-energies which can be done only perturbatively. mo m=n,o
However, the low-energy behavior is beyond perturbation
theory. An explicit solution of the Dyson equation can be
avoided® by means of the variational principle of Luttinger H,=
and Ward*~'®with the help of which the energy scales will
follow. 1
The two-impurity Anderson model serves here as the e > ™VA(€) (A, mnf onCrem+ H.C)
standard model for two magnetic impurities in a metal. \/mevm*”varf '
Mean-field approaches for this model have the drawback that
the RKKY interaction appears only as a higher-order el +
correction’” and therefore a magnetic interaction between i IN 6%0’ VoA (A=t - oot H.C). (2)

the impurities had to be added by hand, giving a model with

an adjustable strength of the magnetic exchange between tH&'€ impurity hybridization with the conduction band is pro-
impurities. portional toV. The Boltzmann constant is set to unity so that

Here, however, a direct exchange interaction between thi€mperature is measured in units of energy. The dispersion
impurities will not be taken into account, because the twoCan beé assumed as isotropic. The density of statissas-
impurities model two localized orbitals on different lattice SUMed to be constant, and the such linearized dispersion is
sites, with virtually no overlap, and it is the purpose of thisCUt Off at £D. The effective hybridization matrix element
article to investigate the role of théirducedmagnetic inter- €@ then be expressed in terms of the conduction band den-
action, that is, the RKKY interaction. sity of states &S

The two impurities are assumed to sit at (&;&®/2) sym- 2 -
metrically to the origin of the coordinate system, alongzhe (e)=V\/E< 1- iz) \/1+03|r[kFR(1+ e/2D)]’
axis. The HamiltoniarH is then invariant under the parity 7 D keR(1+ €/2D)
transformation. Hence the creation operator for a conduction ©)

electron of momentunp and spinm and for an impurity  with k. the Fermi wave number an@ the step function.
electron can be expressed in terms of their everr 1) and  Thus the system has been reduced to an effective one-
odd (¢=—1) combinations?*° impurity Hamiltonian, the additional parity quantum number
keeping track of the original two impurities.
. . The one-particle impurity propagatoRs for the unoccu-
+oC_- ), pied (f=0), singly occupied f{=om), and doubly occupied
(f=0omn) impurity configurations, determine the impurity
partZ; of the partition function via a line integral, the path of
integration encircling all poles of the integrand,

1 +
T 2 Vel onbCyamt Hee)

€,m

1
filvag= E(ffva af,m|vao,

T Tree L fﬁ 2 bRz, @
=g —=1r —€ z),
+ + (O'ffmf;n_ffnf;m) ' Tree Pe f 27 f
d.mlvag=—od; Jvac = |vac. _ _ _ _
V2(1+ 8mp) where T denotes the trace over the impurity configurations.

(1) The propagator®k; can be calculated by the standard dia-
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FIG. 1. Vertices for the two-impurity Anderson model. A
dashed, singly or doubly arrowed line represents the naked propa- FIG. 2. Skeleton diagrams of second order for the two-impurity
gator of the singly or doubly occupied impurity configuration. A Anderson model
single o or 7 labels the parity+1, ando 7 their product.m or n
labels the magnetic quantum number, and a pair of magnetic
quantum numbers for the double occupied configuration. A wavy E,,m f def(e) Z Vz(e) Ryrmn(Z+€)
respective solid line represents the naked propagator of the unoccu-
pied impurity configuration or the conduction electron. The product

of parities of incoming particles equals that of the outgoing ones. +V(2;(_ €)Ro(z+€) +V2 AR mm(Zzt€) |,

grammatic techniqu® which is reviewed in Ref. 20. The 1
vertices and naked propagators are shown in Fig. 1. S@ (7)== def(e)V2(e)R . (z+ 7

Within the variational principlé? a functional Y of the 0 (2) UE el(eVo(Rm(zte).  (7)
propagatorsz; is defined in terms of skeleton diagrams. For

the impurity part of the partition functior, is given by Universal behavior of the system manifests itself wtizn

becomes larger than all other energy scales of the sysfem.
depends explicitly oD only via V2, as in Eq.(3),

o

d 1
Y=38Tr f}; Z—;e—ﬁZ{; (1—ﬁ)z§“>(Rf(z))Rf(z)

DdpY=—Tr 43 —e BZDaDE 2< (2)R¢(2).
]. (5) (8

The skeleton diagrams fa&{»R; are shown in Fig. 2.

HereX{" denotes theth order self-energy dR;, expressed The effective density of states of E@) scales withD as

in terms of skeleton diagrams. At the saddle point with re-2 funct|on of € and is finite at the Fermi energy=0.
spect to variations oR; , the functionalY’ equalsZ; and the ~Hencel® as in the case for a density of states with a sharp
Dyson equation holds as a self-consistency equafi@aY  cutoff at =D, differentiating a skeleton diagram far"R;
depends on parameters sucheasxplicitly only viaH;, and  with respect tdD amounts to removing one curved conduc-
not implicitly via the propagator® In addition,Y depends tion electron line and replacing the internal propagator by its
explicitly on V only via the prefactol/?" of the 2nth order ~ value at the cutoff<1/D. Therefore a skeleton diagram of
Se|f_energﬁ§2n)_ To determine thd@ dependence, the inter- ;econd order contributesD/D to the logarithmic deriva-
nal integration variableg and ¢, as in Eqs(5) and(7) are ~ lIVe. _ . .
replaced byTz, Te, andD/T, respectively. The variational A skeleton diagram of higher than second order contains
principle remains unaffected. depends now explicitly o~ Vertex corrections; hencg ther_e lie under each conduction
via the prefacto” of a skeleton diagram ofrth order, the ~ €lectron line at least two impurity propagators, because oth-

+In| z—H¢— >, 3M(R(2))

term Tz in the logarithm, and/T because of Eq3). Simi-  €rwise this diagram would have a self-energy insertion and
lar to Ref. 13, it follows for the impurity paf; of the free not be a skeleton. Its contribution to the logarithmic deriva-
energy tive is thereforexD/D? and can be neglected for large*®

Therefore, in Eq.(8) only the skeleton diagrams for
9 E?z)Rf are necessary to obtain the exact energy scales of the
+D—|F;. (6) system in the universal limit of larg@. A spectral decom-

Ff—- T ———7'+Ef———
IpV J€f D position of the impurity propagators yields,

2
aT+pV

Approximations fulfilling the variational principle can be 9 e Bode
generated by using a subclass, the so-called families of skel-D — D Fi= f T[
f

> V2(0)[pom( @)+ po(@)]
eton diagram$! If, for instance, only the family of second-

o,m

order skeleton diagrams is keptY the self-energies aré 1
denotes the Fermi function t3 > VAO)pyrmn( @)+ pon(@)]
oT,m#n
1
32 D= >, def (e)VA(— €)[Ryn(z+€) + 2 [V2(0)p—1mm( @)+ V2 (0)p (@)1}
2N oT=const o.m ’

+ R m(z+€)], Together with the identities
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- If the RKKY interaction would set additional energy
ZFJ e P2dw| po(@)+ X pom(@)+ X pome(®)|, scales as discussed in the introduction, then the scaling law
om om=n would have the form,
d T T T T
Zi—F¢= | e Ped +2 , CE=Tol — — —
f¢96f f f w (;n p(rm(w) mmE}ﬂ pumn(w) Fi—Ep Tg( TK, | ,TKA,T+), (12)
the following scaling equation is obtained: where Tys and T, are the temperatures of the two-stage

Kondo effect for the ferromagnetic RKKY interaction.
This, however, contradicts the scaling 1ak0) above.

To conclude, if the high-energy cutoff of the metal is so
large that terms of the ord@i/D or J/D can be neglected,
Equations(6) and (9) imply the scaling law there is for two magnetic impurities in a metal only one

low-energy scale. The induced indirect exchange interaction
(10) between the local moments which is mediated by succes-

sive scattering of conduction electrons, will be strongly
renormalized at low temperatures. However, the scaling
equations alone do not predict the nature of the ground state
for two magnetic impurities in a metal. In view of EG.0) it
TN > ey seems doubtful whether a competition between the formation
Tk=DVpV?/D exrel/pV°]. By the same mearssit can be ot magnetic order and a Fermi liquid of heavy quasiparticles
shown that in this limit all observables scale as in Bd). .4 pe understood without adding explicitly a magnetic in-

Hence the two-impurity Kondo model has in the limit of (o 4ction between the magneficnoments.
large D only onelow-energy scale, which is proportional to
the single-impurity Kondo temperature. Observe, however, While preparing this work the author has benefited from
that the proportionality factor cannot be fixed within this numerous discussions with Tom Schork, Karen Hallberg,
approach and will of course depend kfR. Karlo Penc, and Professor Peter Fulde.

D&F—VzlllN aF 2pV? 9
an—p( )asff pV~. 9

T T
Ff_ EO:Tg(T!VIGf !D!p):Tg F! T_K
in the magnetic limit— ;> pV2, with I'=mpV?/N. In this
limit, the Anderson model is equivalent to the two-impurity
Kondo model’> at low temperaturesT<pV?, with
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