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Antiferromagnetic metallic state in doped manganites
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Electronic and magnetic properties are systematically investigated for doped mandnii&s,MnO;
(R=La;_,Nd,) by changing the nominal hole concentratiorand the averaged ionic radius of the perovskite
A site (2), or the one-electron bandwidilV. In the heavily doped regiorx&0.50), we observed a layered-
type (A-type antiferromagnetic state with metallic conductivitp~4X10 4 Q cm at 5 K for
Lay 4651 54MN0O3). This observation suggests that the antiferromagnetic metAliit/) state is the alternative
ground state for doped manganites, besides the ferromagnetic m@EMljcstate.[S0163-182808)51610-4

The recent observation of colossal magnetoresistancend the averaged ionic radiug)( We can reduce the one-
(the CMR effect in the doped manganites has sparked eelectron bandwidthV by partially substituting the smaller
great amount of effort to understand the unusual electronitld®* ions for the larger L3 ions (increasingz; chemical
and magnetic properties of these materials. The most conpressure.® Even in the La_,Sr,MnO; system with maximal
monly studied manganitd®; _,A,MnOs;, whereR andA are W, further hole dopingX=0.54) is found to alter the ground
the trivalent rare-earth and divalent alkaline-earth ions, restate from the FM state to thie-type antiferromagnetic state.
spectively, have the distorted perovskite structure with threeSurprisingly, the compound remains metallicdp
dimensional networks of the MnQoctahedra. Its generic ~4x10 * () cm at 5 K even belowT (=200 K), indicat-
behavior of paramagnetic-to-ferromagnetic transition is uning that the ground state is amtiferromagnetic metallic
derstood within the framework of the double-exchaf&)  (AFM) state. The AFM state is found to be distributed over
theory>~* which includes only the transfer integraiof the  the widex— z region adjacent to the FM state, indicating that
gy €electrons and the on-site exchange interactidand’'s-  the state is another ground state for the doped manganites.
rule coupling;Jy) between the itinerarg, electrons and lo- We discuss the AFM state in terms of the anisotropy of the
calizedt,y spins S=3/2). To explain the colossal value of e, orbitals.
the MR for the system having smallwW, e.g., Crystals of (La_,Nd,)1-,Sr,MnO, [(x,2)

La; _,CaMnOs,® however, we need additional mechanisms=(0.40, 1.0),(0.44, 1.0, (0.46, 0.9, (0.46, 0.8, (0.48, 1.0,

for carrier localization abov8 as well as magnetic field (0.50, 0.0, (0.50, 1.0, (0.52, 1.0, (0.54, 0.0, (0.54, 0.2,
release of the localization. Perhaps the most probable mech&.54, 0.4, (0.54, 0.8, (0.54, 1.0, (0.56, 1.0, (0.57, 0.0,
nism to supplement the DE model is the polaron formation(0.60, 0.0 and(0.60, 1.0] were grown by the floating-zone
originating from the Jahn-TellddT) instability of the MNn@Q  method at a feeding speed of 7-9 mm/h. A stoichiometric
octahedra. mixture of commercial LgO;, Nd,O;, SrCQ;, and MO,

The doped manganites show much more multifariougpowder was ground and calcined two times at 1350 °C for 24
properties in the heavily doped regior=£0.5). In the case h. Then, the resulting powder was pressed into a rod with a
of La;_,CaMnO;> the ground state changes with hole size of 5 mmg$x60 mm and sintered at 1350 °C for 48 h.
doping beyondk~0.5 from the ferromagnetic metalli&M)  The ingredient could be melted congruently in a flow gf O
state to an antiferromagnetic insulati(iFl) state. Ramirez Large crystals, typically 4 mm in diameter and 20 mm in
et al. insisted that the FM state and the charge-ordered statength, were obtained. Powder x-ray-diffraction measure-
located above the AFI state are the essential cooperativdents at room temperature and Reitveld anal{sisicate
states governed by the Hund’s-rule coupling énd the JT that the crystals were almost single phase. A small amount of
energies. Recently, Kawanet al® have performed the SrMnO;impurity phase, however, is inevitably introduced to
neutron-diffraction measurements on ;BSrMnO; (x  the melt-grown crystal ingot, especially for the higher-
=0.50) and Ng_,SrMnO; (x=0.55), and found that these samples. Except for lg@aSr sMnO; (x=0.50,z=0.0),° the
compounds exhibit a layered-typ&-type) antiferromagnetic  crystal symmetry is orthorhombi®bnny Z=4).
spin-ordering, similar to the parent LaMgO We show in Fig. 1 temperature dependence of resistpvity

In this paper, we have investigated the electronic andind magnetizationM for crystals of La_,Sr,MnO; (z
magnetic properties for (La,Nd,),_,SLMnNO;, especially =0.0) atx=0.50 and 0.54. For four-probe resistivity mea-
for the heavily doped region, by changing the doping lewel surements, the crystal was cut into a rectangular shape, typi-
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@ FIG. 2. Neutron powder profiles for kagSrsMnO; (X
= =0.54) at 10 K. Shaded areas indicate magnetic superlattice reflec-
tions, which are indexed in thtbmnsetting. Inset shows tempera-
0 100 200 300 400 ture dependence of the powder neutron profiles: open and closed
Temperature (K)

circles are at 330 K¥T¢) and at 10 K €Ty). Small impurity

FIG. 1. Temperature dependence of resistivitgper pangland peaks(cros3 are originated hexagonal StMgO

magnetization(lower panel for crystals of La_,Sr,MnO;. Solid

curves are fox=0.54 and broken curves for=0.50. Arrows and
triangles represent the Curie temperaturg) (and Nel tempera-
tures (T), respectively. Inset shows magnetization curvd K for

x=0.54.

Lag 4651 5aMN0O; (x=0.54,z=0.0 in the antiferromagnetic
phase at 10 K. The observed magnetic superlattice reflections
(indicated by hatchingcan all be indexed by thé-type
antiferromagnetic structuré. A similar spin ordering has
been reported for NSt sMnO; (x=0.55,z=1.0),% sug-

cally of 3x1x0.5 mn?, and electrical contacts were made gesting that theA-type structure is one of the most stable

with a heat-treatment-type silver paiM. was measured un- magnetic structures for the doped manganites.

der a field ofuoH=0.5 T after cooling downd 5 K in zero Now, let us proceed to the lattice effect on the AFM state.
field (ZFC) using a superconducting quantum mterference,:igure 3 shows the p—T curves for

device (SQUID) magnetometer. Curie temperatufe was (La,Nd,) 04T 5MnO; (x=0.54) with variousz values.
determined from the inflection point of tid —T curve. At 114 p—T curves were obtained in the cooling run. Down-

x=0.50, the p—T curve steeply decreaisses beloWe  \yard arrows and open triangles represepndT,, respec-
(=360 K; downward arrowdown to~5x10"° Q cm at5

K. By contrast, the x=0.54 compound shows a
ferromagnetic-to-antiferromagnetic transition B{=200 K
(see the lower panel of Fig.),laccompanying a slight in-
crease of thep value. Nevertheless, the resistivity for
=0.54 remains low(~4x10"* Q cm at 5 K even in the
antiferromagnetic phase, indicating that the hole-doping pro-
cedure beyond x~0.5 alters the ground state for

(Lay_,Nd,)0.46S10.54MnO3

W H=05T (ZFC)| -

La; _,Sr,MnO; from the FM state to the AFM state. A simi- )
lar AFM state is observed also far=0.57 (not shown. For G
x=0.60, however, thep value steeply increases below E
Ty=250 K. £

To investigate the spin structure for the AFM state, % 5
[~

neutron-diffraction measurements were performed with a
high-efficiency powder diffractometer with a 150-detector
system, HERMES, installed at the JRR-3M reactor in Japan
Atomic Energy Research Institute, Tokai, Japan. Neutrons
with wavelength 1.819 A were obtained by t{881) reflec-

tion of a Ge monochromator, and a combination of
12'-Blank-Sample-18 collimator. Melt-grown crystal in-
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gots were crushed into fine powder and sealed in a vanadium 0 100 Tom efgt?“e ® 300 400
capsule with helium gas, and mounted at the cold head of the P
closed-cycle He-gas refrigerator. The nuclear Bragg reflec- fig. 3.  Resistivity curves  for  crystals  of

tions in the paramagnetic stat@30 K) are well reproduced
with the orthorhombic structuréPbnnmy Z=4) with lattice  sent the Curie temperature¥4) and Neel temperaturesTy), re-
constants of a=5.4329(7) A, b=5.4470(8) A, andc  spectively. Inset shows magnetizatidh under a field of uoH
=7.7556(9) A. Figure 2 shows the powder pattern for=0.5T after cooling downa 5 K in zero field(ZFO).

(La;—,Nd,) 046510 54MN0O5 (x=0.54). Arrows and triangles repre-
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FIG. 4. Upper panel: electronic phase diagram forcoI means charge-ordering insulating state.

(La; - ;Nd,) g 46510 54MNO3 (x=0.54). Lower panel: phase diagram

for x=0.50[ (La; — ,Nd,) ¢ 5631 5gMN0Os] cited from Ref. 9T, Ty, 9), even though the diagram is complicated partly due to the
and T¢o represent Curie, N and charge-ordering temperatures, structural transition from rhombohedréR3c; z<0.4) to
respectively. FM, AF, and COI means ferromagnetic metallic, anti'orthorhombiC(anm z=0.4) ones. With further decreasing
ferromagnetic, and charge-ordering insulating states, respectivel)w’ the AF state arounat=0.5 is replaced by the charge-
Vertical broken line in the lower panel is the structural phaseq qered insulatingCOI) state. The spin structure in the COI
boundary between the rhombohediBc; z<0.4) and orthorhom-  state is a rather complicated one, with the 41X 2 unit cell

bic (Pbmn z>0.4) ones. in the cubic perovskite settingCE type.X® In Fig. 5 thus

) _ ) o obtained ground states for the doped manganites ix the
tively (see also thé! —T curves in the insgt With increas-  gpace are summarized. The most important message of the
ing z (decreasing W), the reduced carrier itineracy phase diagram is that the ground state changes from the FM
suppresses thg DE interaction and hefige and eventually  gtate to theA-type AF state with hole doping beyond-0.5

the FM state disappears abae 0.8. Thep—T curve below nearly independent af (or W). Nearx~ 1/2 and the smalW
z=0.8 shows a metallic behavior in the antiferromagneti(:region’ however' the COIl state appears, reﬂecting the en-
phase, except for the low-temperature regist60 K) where  hanced charge-ordering instability due to commensuration of
weak localization effect is observed. In the caseZerl.0,  the nominal hole concentration with the lattice periodicity.
the curve shows a semiconducting behavior though the mag4ere we should emphasize that the ground-state spin struc-
nitude of p remains low(~10"'Q cm at 5 K.'* The less-  ture is of the layered type, and hence the state can be viewed
itinerant carriers, which cannot contribute to the macroscopigs a two-dimensional2D) FM state, while the usual FM
charge transport, can mediate the ferromagnetic DE interaGgate is viewed as a 3D FM state. With further increasing
tion in a bond-percolative mannefAn insulating but ferro-  an insulating state appears, as exemplified i 58 gMnO,
magnetic state exists near the insulator-to-metal phasg=0.6, z=0.0), which may correspond to the COI state
boundary for La_,Sr,MnOs.%) A similar antiferromagnetic  gpserved in La_,CaMnOs.%”

state is observed foiLag sNdy 5)0.551.sMNO; (x=0.5 andz The key factor that realizes the AFM state is considered to
=0.5 (Ref. 9 and for PpsSisMnO;.>'* Here we have pe the anisotropy of the twe, orbitals, i.e., the two-
found that the metallic conductivity remains down to thedimensionaldxz_yz state and the one-dimensiondy,>_,2
lowest temperature for the larg-compound ¢<0.4) even  siate. Reflecting the anisotropy of tagorbitals, the electron
with the A-type spin structure. This suggests that the layeredyansfer integral;; between the andj sites strongly de-
type spin ordering is originated in the DE mechanism medipends not only on the orbital species but also on the relative
ated by the mobile, electrons. direction Fj —r;. For examplet;; between thed,. > states

Thus obtainedT and T for x=0.54 are plotted with S oAl i
circles and triangles in the upper panel of Fig. 4 as a functioft Fi=Ti+X (¥.2) is 3/4, (3/4,,0), while t;; between the

of z (or W). The apparent suppression B with decreasing dsz2—r2 states at;=r;=x(y) is 1/4, (1/4t,), wherety is

z (or increasingW) is due to the FM phase located at the defined as the transfer integral between dg -2 states at
high-temperature side, which suppresses the competing=r;=*z. Therefore, thee;-electron system gains the maxi-
A-type AF state. In the whole region, the ground state is mum kinetic energy when thel,_,> orbitals form a

the A-type AF state. Especially, the resistivity remains me-pseudo-2D band. If such a pseudo-2D band was realized, the
tallic (dp/dT=0) down to the lowest temperature in the in-plane exchange interaction would be ferromagnetic medi-
largeW region (z=<0.4). A similar highly-conductive AF ated by the itinerand,>_,> electrons(DE interaction, while
state is observed fax=0.50 (lower panel; cited from Ref. the antiferromagnetic superexchange interaction should



RAPID COMMUNICATIONS

57 ANTIFERROMAGNETIC METALLIC STATE IN DOPBD . .. R5597

dominate along thez direction because of negligiblg; damental ground state even for the doped manganites with
value. This can explain not only the layered-type antiferro-the layered structure. Battkt all’ have reported a layered-
magnetic spin structure but also the metallic conductivity. Intype AF state for NdSMn,0; (x=0.50) and
fact, for (Lap Ny 5)o.5S1 sMNOs,® elongation of lattice con-  Nd, ,Sr, gMn,0; (x=0.45). We have measured the resistiv-
stantsa andb as well as shrinkage df is observed below ity for the melt-grown single crystals of these antiferromag-
Ty, Which is advantageous to the formation of thenetic manganites, and found that the AF state is highly con-

pseudo-2D band. With decreasing(see Fig. 5 or with  guctive. Study along this trend is now in progress and will be
increasing temperatur¢see Fig. 4, the orbital-ordered nypjlished in a separate paper.

ground state changes into the 3D FM state. The most prob- |, conclusion, we have investigated the electronic and
a_b_le origin that destroys+the 2@(2,),2 bgnd is the JT insta- magnetic properties foR;_,Sr,MnO; (R=La, ,Nd,) by
bility inherent to th? MA" (d,) lons, which lifts th? deggn— changing the nominal hole concentratianand the one-
eracy of thee, orbitals and stabilizes the one-dimensional . +ron bandwidtiw (or z). We have observed transforma-

d3,2_,2 State. : . .
. tion of the ground state from the ferromagnetic metallic
TheA-type AF state, or the AFM state, is the fundamentaI(FM) to the antiferromagnetic metallidAFM) state withx

%rsiltj: d;égﬁ&?ﬁgigﬁg%?‘% ;vg\?edggﬁ::?z;?gmarb;lgtal beyond~0.5. We. propose that the AFM state is observed
phase diagram for the DE model explicitly taking account ofdue t© the formation of a pseudo-2Q2_,. band. Our ob-
the degeneracy of the, orbital and the anisotropy of the servation |n.d|cates. that theg-orbital degree pf freedom
transfer integral in the mean-field approxmation. They obPlays a crucial r_ole in the ground state electronic structure for
served a crossover of the ground state at aroun@.3 from  doped manganites.

the ferromagnetic spin state fotype AF spin state with the )

d,2_,2 orbital structure, which shows excellent agreement The authors are grateful to Y. Endo, S. Ishihara, H. Ku-
with the experimentally derived phase diagram. The stabiliwahara, and Y. Tokura for fruitful discussion and also to T.
zation of the ferromagnetic state in the lowhas been attrib- Inami for his help in the analysis of the neutron powder
uted to the superexchange interaction between the degengrtofiles. This work was supported by a Grant-In-Aid for Sci-
atedey orbitals. In an actual system, however, there existentific Research from the Ministry of Education, Science and
the JT instability of the Mn@ octahedra, which also favors Culture, Japan and also from the Research Foundation for
the 3D FM state. The novél-type state seems to be a fun- Materials Science.
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