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We report experiments on the energy structure of antidot-bound states. By measuring resonant tunneling
linewidths as a function of temperature, we determine the coupling to the remote global gate voltage and find
that the effects of interelectron interaction dominate. Within a simple model, we also determine the energy
spacing of the antidot-bound states, self-consistent edge electric field, and edge excitation drift velocity.
@S0163-1829~98!50512-7#

Quantum antidots in quantum Hall~QH! regime were suc-
cessfully used to demonstrate charge rigidity~quantization!
of a QH condensate and to measure the charge of elementary
excitations, both in the integer and fractional QH effect.1 In
these experiments the quantized states were controlled elec-
trostatically by a remote global gate, and therefore determi-
nation of the coupling parametera between the gate voltage
VG and the energyEm of the antidot-bound state at the
chemical potentialm, a5ud(Em2m)/dVGu, is necessary for
quantitative interpretation of the results in terms of energy.
In the case of quantum dots2 this coupling is usually dis-
cussed within a phenomenological noninteracting electron
model, which givesa in terms of geometrical capacitances
only. On the other hand, for quantum antidots no attempt to
measure or model the effect of a remote gate on energetics
has been reported.

In this paper we report experimental results on the energy
structure of a quantum antidot in the quantum Hall regime.
We study the energy spectrum of the antidot-bound states
using the technique of thermal excitation. By measuring
resonant tunneling~RT! linewidths as a function of tempera-
ture, we determine the coupling constanta and find
a (1)51264 meV/V at filling factor n51 and
a (1/3)53761 meV/V at n51/3. Surprisingly, these values
are equal to the value ofa05dm/dVG obtained in the model
of two-dimensional noninteracting electrons at magnetic
field B50: a (1) is equal to a0512.2 meV/V, and
a (1/3)53a0. That is,a (1/3) has the value ofa0 for chargee/3
particles with density of states equal to that of free spin-
polarized electrons in zeroB. This observation does not ap-
pear to be a numerical coincidence, but is not fully under-
stood at present. Our results suggest that self-consistent
electrostatics ofinteractingelectrons forming the edge chan-
nel should play a central role in the microscopic understand-
ing of this problem.

Samples were fabricated from very low disorder GaAs/
AlGaAs heterostructure material. The antidot-in-a-
constriction geometry@see Fig. 1~a!# was defined by standard
electron beam lithography. A global back gate is separated
from the two-dimensional electron system~2DES! by an in-
sulating GaAs of thickness'430 mm. The two front gates
were contacted independently and were used to bring the two
edges close enough to the antidot for tunneling to occur.3 We
prepared 2DES withn'131011 cm22 and a mobility of
23106 cm2/V s by exposing the sample to red light at 4.2
K. Experiments were performed in a dilution refrigerator
with sample probe wires filtered at mK temperatures so that

the total electromagnetic background at the sample’s con-
tacts is;1 mV rms. The four-terminal magnetoresistance
R4T was measured with a lock-in amplifier. Tunneling con-
ductanceGT between the two edges can then be calculated
from R4T , as discussed previously.1,4

Figure 1~b! shows schematically the self-consistent en-
ergy landscape near the antidot in the QH regime. There is an
edge channel around each of the front gates; at these edges
the energy spectrum is continuous and there is no gap for
charged excitations atm. Because of the electron Coulomb

FIG. 1. ~a! Illustration of the sample. Numbered rectangles are
Ohmic contacts, black areas are front gates, and arrowed lines show
edge channels. The back gate extends over the entire sample on the
opposite side of the insulating substrate. Dotted line represents tun-
neling path.~b! Schematic self-consistent energy landscape near the
antidot. The ladder of quantized states around the antidot has filled
(d) and empty (s) states. Tunneling from left edge at chemical
potentialmL to the right edge atmR occurs through themth single
level if mL2mR ,kBT!DE5Em212Em . The QH gap forms the
two tunneling barriers. The enlargement shows the quantized edge
channel of widtha circulating the antidot.
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interaction, the self-consistent potential is flat where these
edges crossm. The size of the antidot is small enough that
the particle states encircling the antidot are quantized. These
quantized states are the levels through which resonant tun-
neling occurs, and for small enough Hall voltagemL2mR
and low enough temperatureT, tunneling takes place
through a singlemth level at energyEm . The spectrum of
charged excitations is discrete in antidot-bound states even
for interacting electrons, thus the self-consistent potential is
not perfectly flat atm. In other words, even though the ex-
ternal~confining! potential is screened by 2DES in the com-
pressible edge channels,5 there still remains a finite slope, as
shown in Fig. 1~b!, when the screening length is comparable
to the circumference of the channel.

The resonant levelEm can be moved in energyrelative to
m by changing either the magnetic fieldB or the back gate
voltageVBG , and thus line shapes of RT peaks can be mea-
sured. Figure 2 shows representative experimental conduc-
tanceGT as a function ofVBG andB at n51/3. We clearly
observe an interval of quasiperiodic resonant tunneling peaks
on top of the QH plateau, and see the equivalence between
VBG- and B sweeps. As we showed in Ref. 4, thermally
broadened Fermi-Dirac line shape GT
}cosh22@(Em2m)/2kBT# fits all the RT peaks extremely well
at all temperatures.6 In terms ofVBG , the line shape is writ-
ten

GT}cosh22Fa~VBG
m 2VBG!

2kBT G , ~1!

wherea5ud(Em2m)/dVGu as before, andVBG
m is the posi-

tion of the mth peak. Equation~1! shows howa can be
measured in our experiment by studying theT dependence of
the line shape of the RT peak.

In Fig. 3 we plot the widthW of a RT conductance peak,
defined byGT}cosh22@(VBG

m 2VBG)/W#, as a function of elec-
tron temperatureT. Comparing with Eq.~1!, we see that
a52kBT/W. W is directly proportional toT, as expected,
and the slope gives the valuea (1/3)53761 meV/V. T was

determined from an electron Joule heating model fit to theW
vs Tbath data,4 whereTbath is the LHe bath temperature, as
shown in the inset in Fig. 3. Note that the deviation ofT
from Tbath is small and seen only at lowest temperatures.
Similarly, we determinea (1)51264 meV/V for the n51
integer QH plateau.7

Let us now consider the action of a global remote back
gate on a uniform two-dimensional electron system~2DES!.
The inverse capacitance per unit area is given by the sum of
two contributions, a large geometric part and a small term
related to finite compressibility of the 2DES: 1/C
51/Cins11/(e2DB). HereCins5ee0 /d is the capacitance per
unit area of the thicknessd insulator separating the 2DES
from the gate, andDB5dn/dm is the thermodynamic den-
sity of states~DOS! at m, in a magnetic fieldB. Then

aB5
dm

dVBG
5

dm

dn

dn

dVBG
5

CB

e

1

D0
1e

DC

C0
, ~2!

whereDC5C02CB , and subscripts 0 andB refer to zero
and finite magnetic fields, respectively.8 Let us examine this
result more carefully. First of all, atB50 we simply get
a05C0 /(eD0). Since for noninteracting spin-polarized elec-
trons, D05m* /(2p\2), we can comparee2D0 with Cins.
For our sample, since the back gate isremote,
e2D050.823105Cins. Therefore C05Cins@12O(1025)#,
and to a 1025 accuracy

a05
Cins

e

2p\2

m*
. ~3!

Similarly, at finite values ofB and for particles of chargeq,
we can write

FIG. 2. Tunneling conductance of quasielectrons vs back gate
voltage and magnetic field atn51/3.

FIG. 3. Width of a quasiparticle RT peakW as a function of
electron temperatureT at n51/3. The solid line is the one param-
eter linear fit giving the value for energy to voltage coupling pa-
rametera. The inset shows the electronT as a function of the bath
Tbath. The dashed line givesT5Tbath, the small deviation at lowest
temperatures is accounted for by electron Joule heating, as shown
by the solid line fit.
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aB5
Cins

qDB
~4!

with error of the order of 1025. Equation~4! shows thataB
of a gated 2DES sample in a large~quantizing! B is not
expected to be related to the zero field result, Eq.~3!, in any
simple manner, since DOS will develop peaks at Landau
level energies.

Comparing the experimental values ofa to Eq.~4! we can
solve forquasiparticle D(1/3) by usingq5e/3. Surprisingly,
we getD (1/3)'D0 (a0536.7 meV/V for e/3 particles!, that
is, it appears as if the DOS for quasiparticle excitations in the
QH edge equals the DOS of spin-polarized noninteracting
electrons atB50. We note that this result is distinct from the
charge quantization reported in Ref. 1: the charge quantiza-
tion is implied from the periodicity of the conductance peak
positions in VBG , while here we use oned-function-like
antidot-bound state to measure the thermal excitation spec-
trum on the edgeswithin one conductance peak.9

We have also analyzed RT conductance peaks atn51
and atn51/3 at different magnetic fields~differentbulk fill-
ing factors!.3 This data was taken at constantT, which is
justified by the fact that phenomenologically all peaks are
well described by Fermi-Dirac distribution.4 However, so de-
termineda is less accurate. In addition, the coupling param-
eter b5ud(Em2m)/dBu was determined from theB-sweep
data:GT}cosh22@b(Bm2B)2kBT#. These results are summa-
rized in Fig. 4. As can be seen in Fig. 4~a!, a (1/3) is approxi-
mately constant in the range 8,B,12 T ~within the experi-
mental uncertainty!, and agrees with the one obtained in the
more accurateT-dependent analysis, Fig. 3. We obtain the
value ofa (1) approximately three times less thana (1/3) , in-
dependent of magnetic field, while the couplingb stays ap-
proximately constant, Fig. 4~b!. In fact, the value of the ratio
a/b approximately equalsf0Cins/q, as shown in Fig. 4~c!.
Again, the values ofa and b were obtained from the line

shape data of a single RT peak, in contrast to the measure-
ment of the charge of tunneling particles, which was ob-
tained from the periodsDB andDVBG between consecutive
RT peaks.1,10

This nontrivial result, thata (1/3)'3a (1)'3a0, is not fully
understood at present. The only plausible explanation in the
absenceof electron Coulomb interactions would seem to be
loss of Landau quantization, which is ruled out by the simple
fact that we do observe QH effect. On the other hand, for
interacting electrons,DB at m depends sensitively on the
self-consistent edge electrostatics. In an edge channel~Fig.
1!, the self-consistent radial electric fieldE is small but finite.
E can change as a function ofB to produce a particular value
for DB , and therefore fora. In fact, an argument can be
made that action of aremotegate on a 2DES, wheneVBG
@m and all other relevant energies in the problem, should be
nearly independent of an applied magnetic field and presence
or absence of the QH effect.

The values ofa and b can be used to obtain several
properties of the antidot-bound states within the linearizedE
model depicted in Fig. 1~b!. The energy separation between
the two consecutive states atm, DE5Em212Em is obtained
from eitherbDB or aDVBG . Figure 5~a! shows these results
for DE at n51 and atn51/3 with different bulk filling
factors.3 DE'20 meV remains approximately constant as a
function of B, even when we go from integer to fractional
QH regime. This is different from theDE}1/B dependence
expected for an antidot with strong confinement potential,
and as was seen in other experiments.11

To calculateE from a andb, from the Aharonov-Bohm
quantization condition for a circular antidot-bound state with
radiusr m , pr m

2 B5mf0, we derive:

a5
Ef0r mCins

2B
, ~5!

b5
qEr m

2B
. ~6!

FIG. 4. ~a! The energy to back-gate-voltage couplinga, ~b!
energy to magnetic-field couplingb, and~c! their ratio as a function
of magnetic field. The horizontal lines in~a! give the values ofa0

for n51, and 3a0 for n51/3. The line in~b! gives b51/f0D0.
The horizontal lines in ~c! give the expected value of
a/b5Cinsf0 /q.

FIG. 5. ~a! The energy spacingDE5Em212Em , ~b! radius of
the antidotr m , and~c! radial electric fieldE, obtained as described
in the text, as a function of magnetic field.
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Since the values ofr m , Fig. 5~b!, can be determined inde-
pendently from the period of RT conductance peaks,1,13 both
Eqs.~5! and~6! can be used to calculateE, which is shown in
Fig. 5~c!. The value ofE;23104 V/m for n51 is consistent
with estimates for quantum dots in integer QH regimes,12

although it is an order of magnitude higher forn51/3. Ap-
parently, one factor of 3 is needed to account for chargee/3
particles, and another factor of' 3 comes from the ratio of
magnetic fields. Finally, the drift velocity of edge excita-
tions, ve5E/B in our sample can be determined; we obtain

ve513104 m/s for n51 andve533104 m/s for n51/3.
These values are somewhat lower than 13105 m/s often
used in theoretical estimates.14
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