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The total spin of correlated electrons in a quantum dot changes with magnetic field and this effect is
generally linked to the change in the total angular momentum from one magic number to another, which can
be understood in terms of an ‘‘electron molecule’’ picture for strong fields. Here we propose to exploit this fact
to realize a spin blockade, i.e., electrons are prohibited to tunnel at specific values of the magnetic field. The
spin-blockade regions have been obtained by calculating both the ground and excited states. In double dots the
spin-blockade condition is found to be less stringent than in single dots.@S0163-1829~98!51208-8#

The Coulomb blockade is one of the highlights in the
transport properties of mesoscopic systems such as quantum
dots. This is a combined effect of the discreteness of energy
levels and the electron-electron interaction~charging en-
ergy!. Now, it has recently been suggested that, if the total
spins of the ground state ofN and (N21) electrons differ by
more than 1/2, the dot is blocked with the corresponding
peak in the conductance missing at zero temperature. This is
called the spin blockade1,2 and has been studied theoretically
for weak electron interaction regimes. There the Hund’s cou-
pling picture, in which electrons are accommodated in one-
electron states with high spins for degenerate states, tends
not to realize the spin-blockade condition, so that some
modifications such as an anharmonicity in the confinement
potential3 have to be introduced.

When quantum dots are placed in strong magnetic fields,
the ground states are known to change dramatically into the
magic-number states.4,5 This comes from the electron-
correlation effect, since the magic numbers for the total an-
gular momentum arise from a combined effect of the elec-
tron correlation and Pauli’s principle, persisting even when
the Zeeman energy is completely ignored. The total angular
momentum of the ground state jumps from one magic num-
ber to another as the magnetic fieldB is varied.

An important hint that electron correlation is really at
work is the fact that the total spin (S), where S25S(S
11), of the ground state, which dominates how the electrons
correlate, changes wildly, as shown in Fig. 1. This happens
when the typical Coulomb energy is much greater than the
single-electron level spacing, where electron molecules are
formed. In this sense, this is genuinely an electron-
correlation effect—electron correlation has been known to
dominate the spin states in ordinary correlated electron sys-
tems such as the Hubbard model, but the present case is a
peculiar manifestation in strong magnetic fields.

In the present paper we propose to utilize this electron-
correlation effect to realize a spin blockade. We have nu-
merically studied the ground and excited states of single dots
that contain three or four electrons with a parabolic confine-
ment potential and find that the spin blockade should indeed
be observed. Physically, a key observation starts from the

fact that the correlated electron states in the dot may be
thought of as ‘‘electron molecules,’’6 which in turn enables
us to interpret7 the spin wave functions taking part in the spin
blockade as spin configurations in molecules, which include
the resonating valence-bond~RVB! states, that are usually
invoked for lattice fermions. We further show that the spin-
blockade condition is easier to satisfy in double dots which
can be tuned by controlling the layer separation and the
strength of the interlayer tunneling.

So let us start with looking at the total angular momentum
(L) of two-dimensional~2D! electrons confined in a quan-
tum dot in a magnetic field, which has a one-to-one corre-
spondence with the spatial extent (}AL) of the wave func-
tion. Thus the presence of magicL values signifies that the
total Coulombic energy of the interacting electrons, although
roughly a decreasing function ofL as the electrons move
further apart for largerL, is not a smooth function of the size
of the wave function, so that jumps inL are accompanied by
jumps in the size of the wave function.8,9 For example, the
total angular momentumL of three spin-polarized electrons
changes 3→6→9→ . . . with increasing magnetic field.

FIG. 1. The total angular momentum and total spin of the
ground state for a single quantum dot withN53 ~left! or N54
electrons~right!. The confinement potential is assumed to be para-
bolic with \v056.0 meV.
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Recently, one of the authors explained this as an effect of
correlation in the electron configuration, where Pauli’s ex-
clusion principle dictates group-theoretically the manner in
which the quantum numbers should appear.6 There, the pic-
ture of the ‘‘electron molecule,’’ in which the electrons with
a specific configuration~triangle for three electrons, square
for four, etc.! rotating as a whole has turned out to be sur-
prisingly accurate. This continues to be the case for larger
numbers of electrons.10

When one considers the spin degrees of freedom, the
magicL values are linked with the total spin. This is already
apparent in the first numerical study of spin-dependent cor-
relation in quantum dots.11 These molecules are character-
ized by a quantum number,ks , where the spin wave function
Cspin is transformed to exp(22pksi/m)Cspin under the rota-
tion of 2p/m for an m-fold symmetric molecule. Then the
criterion for the magic number, modulom, readsL1ks
[0(m/2) for m odd ~even!.

To actually obtain the spin states numerically for different
numbers of electrons, let us consider single GaAs quantum
dots with three or four electrons in a parabolic potential. The
electron motion is assumed to be completely two dimen-
sional. The Hamiltonian for a single dot isH5Hs1HC,
where
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represents the Coulomb interaction. Here the Hamiltonian is
written in second quantized form in a Fock-Darwin12

basis, and «nl s5(2n111ul u)\(vc
2/41v0

2)1/22l \vc/2
2g* mBBsz . The dielectric constant ise, \v0 represents the
strength of the parabolic confinement potential,vc
5eB/m* c is the cyclotron frequency,m* is the effective
mass,m

B
is the Bohr magneton,g* is the effectiveg factor

andsz is thez component of the spin of a single electron.
We use the confinement potential\v056.0 meV. This is

a little larger than usually estimated values (2 – 4 meV) and
is deliberately chosen to reproduce the addition energy
spectrum.13 The fact that calculations with a 1/r interaction
require a larger confinement energy to reproduce experimen-
tal results is considered to be a consequence of the modifi-
cation of the interaction potential in real dots.14

In our numerical calculations we have used enough states
~including higher Landau levels! in the basis to ensure con-
vergence of the ground-state energy within 0.1%. Three low-
est excited states are also calculated for each value ofB,
which turn out to be the lowest-energy states having different
angular momenta in the present case. Excited states are also
obtained with a typical accuracy of,0.1% for anN53
single dot atB55 T.

From the total angular momentum, and the total spin of
the ground state for three- and four-electron systems plotted
in Fig. 1, we can see how the magicL values go hand in
hand withS(N) for N electrons, whereS25S(S11) while
the z component ofS is aligned toB: As the magnetic field
increases, the ground state changes as (L,S)5(1,1/2)
→(2,1/2)→(3,3/2) for N53, (L,S)5(0,1)
→(2,0)→(3,1)→(4,0)→(5,1)→(6,2) for N54.

If we then plot the difference in the total spin,S(4)
2S(3), against the magnetic field in the bottom panel of
Fig. 2, the spin-blockade condition,

uS~N!2S~N21!u.
1

2
, ~3!

is indeed fulfilled: S jumps from 3/2 to 0 in the region
4.96,B,5.18 T.

From the magic-number criterion the state with (L52
143 integer) has to have the quantum numberks50, while
the (L543 integer) state hasks52 for N54. We can make
an intriguing identification, by looking at the spin-density
correlation function, that (L,S)5(2,0) is an RVB2 state
while ~4,0! is an RVB1, where the RVB’s are defined, for a
four-site cluster, as

~4!

~5!

FIG. 2. Top: the excitation energies forN54 single dot.
Middle: the same forN53. Bottom: the difference in the total spin,
S(4)2S(3), between the ground state forN5(3,4).
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with [1/&(u↑↓&2u↓↑&) being the spin-singlet
pair in the electron molecule. The difference of RVB1 from
RVB2 is that the former lacks the Ne´el components~the last
two terms in RVB2! and has the extra phase factor21 for
p/2 rotation. Although what we have here is totally different
from lattice fermion systems such as the Hubbard model for
which RVB is usually conceived, the electron-molecule for-
mation has brought about such spin configurations.

In this region, the conduction, blocked at zero tempera-
ture, has to occur through anS51 excited state forN54 at
finite temperatures. If the excited states are well separated in
energy~>0.1 meV, typical experimental resolution for Cou-
lomb diamonds! from the ground state for both of the (N
21)2electron andN2electron states, the spin blockade
should be observed in the Coulomb diamond, which is the
differential conductance plotted in the plane of source-drain
voltage and gate voltage. We have calculated the three low-
est excitation energies and their total spins for theN54
quantum dot in Fig. 2. The lowest excited states forN53
and forN54 both lie about 0.06 meV above the ground state
aroundB55.1 T in the spin-blockade region. We can make
this separation larger (;0.1 meV) for stronger confinement
potentials ~e.g., 0.09 meV aroundB57.4 T for \v0
58.0 meV!. Such confinement potentials may be realized in
a gated vertical quantum dot.13

The link between the magicL and totalS and subsequent
spin blockade appears for other numbers of electrons as well,
e.g., between the (L,S)5(2,0) state for N52 and the
(6,3/2) state forN53 for 14.1,B,14.8 T.

Now we move on to the double dots, where dots are sepa-
rated in the vertical direction with their centers aligned on a
common axis. We assume the same confinement potential for
the two dots for simplicity. Here electrons are Coulomb cor-
related both within each layer and across the two layers, in
the presence of the interlayer tunneling. Recent advances in
semiconductor fabrication techniques have enabled fabrica-
tion of double dots in vertical, triple-barrier structures on
submicron scales.15 A theory for the double quantum dots
has been developed,16–21 where intriguing features such as
magic-number states intrinsic to double dots, or a singlet-to-
triplet spin transition for a two-electron system have been
found.16–18

The Hamiltonian now contains the tunneling term,

Ht52
DSAS

2 (
n

(
l

~cnl 1
† cnl 21cnl 2

† cnl 1!, ~6!

while the Coulomb part is now the matrix element of
e2/eur12r2u for intralayer interaction, ande2/e(ur12r2u2

1d2)1/2 for interlayer interaction. The basis isuni l is ia i&,
wherea56 is an index specifying the two dots.

Thus a double dot is characterized by the parabolic con-
finement potential layer\v0 , the layer separationd, and the
strength of the interlayer tunneling~measured byDSAS, the
energy gap between the symmetric and antisymmetric one-
electron states!. Here we have adopted realistic values of
\v056.0 meV, 10<d<50 nm, 0.2<DSAS<2.0 meV. We
can now plot in Fig. 3 how high-spin states appear on the
DSAS2d plane. A high-spin state is indeed seen to appear in
the upper left region of each panel forB55.0 T. In the

FIG. 3. The ground-state spin of the double dot forN52 ~left!,
or N53 ~right!, for B55 T for a parabolic confinement potential
\v056.0 meV. The shaded region corresponds to a transition from
S50→3/2

FIG. 4. The total angular momentum and total spin of the
ground state for double dots withN52 ~left!, N53 ~right!, elec-
trons.\v056.0 meV,d516.0 nm, andDSAS51.2 meV.

FIG. 5. Top ~middle!: the excitation energies forN53 (N
52) double dots. Bottom: the difference,S(3)2S(2), in thetotal
spin for N52 andN53 double dots.
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shaded region of the right panel, the difference between the
total spins isS(3)2S(2)53/2, fulfilling the spin-blockade
condition.

We now focus on a typical point in the shaded region,d
516.0 nm andDSAS51.2 meV. In Fig. 4 the total energy,
total angular momentum, and total spin of the ground state
for N52,3 are plotted.

The difference between the total spin of two- and three-
electron systems is shown in the bottom panel of Fig. 5. The
spin-blockade condition is satisfied for 4.0<B<9.3 T,
which is wider than for the single dot. In the bulk bilayer
fractional quantum Hall~QH! systems, a phase diagram on
the DSAS2d plane has been considered. If we translate7 the
quantities for the dots, we are working in the ‘‘two-
component’’~correlation-dominated! region around the QH-
nonQH boundary in the language for the bilayer QH system.

This might have some relevance to the behavior of the
double dots. In Fig. 5, the excitation energies for theS
51/2,3/2 states are also plotted. The excitation energies for
both N52 andN53 systems are about 0.12 meV~exceed-
ing 0.1 meV! at B56.4 T, which is large enough for the spin
blockade to be observed. We also notice a level crossing
between the second and the third excited states aroundB
56.9 T for N53, which should appear in the Coulomb dia-
mond.

In summary, we have shown that in both single and
double dots, a spin blockade should occur in some magnetic
field region, as an effect of the total spin dominated by the
magic angular momenta.

We would like to thank Seigo Tarucha and Guy Austing
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