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We demonstrate that gapless plasmons lead to a universal„dn(e)/n}ueu/EF… correction to the tunneling
density of states of a clean two-dimensional Coulomb interacting electron gas. We also show how this cor-
rection affects the conductance of a tunnel bridge in a double-layer system.@S0163-1829~98!50408-0#

The phenomenon of suppression of electron tunneling
into interacting conductors, known as ‘‘zero-bias anomaly,’’
still remains in the center of current theoretical studies.

This experimentally well-documented phenomenon re-
ceived its first explanation in the theory of the electron den-
sity of states ~DOS! in Coulomb interacting disordered
metals.1 This theory, however, was formulated in the diffu-
sive regime and therefore limited to the range of energiese
or, correspondingly, bias voltagesV small compared to the
impurity scattering rate:e,V,1/t.

Recently, an attempt was made to extend the theory of
Ref. 1 beyond the diffusive regime.2 The authors of Ref. 2
found a universal~independent of the strength of Coulomb
coupling! correction to the two-dimensional~2D! DOS:
dn(e)/n}2(EFt)21@ ln(e/D)#2 in the regime 1/t!e!D,
where the characteristic energy scaleD5vFk is determined
by the Debye screening wave vectork52pe2n proportional
to the bare two-spin DOSn5m/p. Also, on the basis of the
calculations performed in Ref. 2, a modification of the diffu-
sive correction obtained in Ref. 1 was proposed. Later, the
same authors generalized the theory of Refs. 1 and 2 onto the
case of nonquantizing magnetic fields.3

In this communication we show that the tunneling DOS of
a clean 2D Coulomb conductor also contains another univer-
sal termdn(e)/n}ueu/EF , which is completely independent
of impurity scattering and may well become dominant in the
ballistic regime. With this new term included, the tunneling
conductanceG(V) acquires a linear cusplike universal con-
tribution dG(V)/G0}uVu/EF .

Unlike Ref. 2 where Matsubara technique was used, we
employ the real-time formalism in order to avoid problems
with a somewhat intricate procedure of analytical continua-
tion from discrete imaginary frequencies. The two-spin tun-
neling DOS is defined as

n~e,T!52
2

p E d2p

~2p!2 Im@GR~e,p!#. ~1!

In the presence of impurities the noninteracting electron
Green function has the standard form

G0
R~e,p!5@G0

A~e,p!#* 5
1

e2jp1 i /2t
, jp5

p22pF
2

2m
.

~2!

The interaction correction to DOS is simply related to the
electron self-energy

dn~e,T!52
2

p
Im E d2p

~2p!2 @G0
R~e,p!#2SR~e,p!. ~3!

In the quasiballistic regime of large momentum and energy
transfers (1/t,vFq,v) the important for the correction to
the density-of-states part of the self-energySR(e,p) is given
by the expression

SR~e,p!5E dvd2q

~2p!3 „112GA~v,q!…

3Im G0
A~e1v,p1q!VA~v,q!tanhS e1v

2T D ,

~4!

whereGA(v,q) is the impurity vertex correction

GA~v,q!5
1

pnt E d2p

~2p!2 GR~e,p!GA~e1v,p1q!

52
i /t

A~v2q2/2m2 i /t!22vF
2q2

. ~5!

The dynamically screened 2D Coulomb potentialVA(v,q) is

VA~v,q!5
V0~q!

12V0~q!PA~v,q!
, V0~q!52pe2/q, ~6!

wherePA(v,q) is the polarization operator,

PA~v,q!52nS 12
~v2q2/2m!

A~v2q2/2m2 i /t!22vF
2q2D . ~7!

After the integration in Eq.~3! over the electronic momen-
tum one arrives at the expression

dn~e,T!

n
5E dv

~2p!2 tanhS e1v

2T D Im E
0

`

dqqVA~v,q!

3
„112GA~v,q!…~v2q2/2m2 i /t!

@~v2q2/2m2 i /t!22vF
2q2#3/2 . ~8!
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A straightforward analysis of Eq.~8! shows that the range of
transferred energies and momenta 1/t,v,vFq, where
the Coulomb potential is statically screened„V(q)
5 (1/n)(k/q1k)…, yields only a small contribution to DOS.
Theq dependence ofV(q)'1/n is weak, and, with logarith-
mic accuracy, this contribution coincides with that of a short-
ranged potentialV(q)5V0 :

dn~e,T!

n
52

V0n

4peFt
ln

D

max$ueu,T%
. ~9!

The authors of Ref. 2 used the coordinate space representa-
tion to demonstrate that this term occurs due to the interfer-
ence between scattering off a single impurity and off Friedel
oscillations of the electronic density caused by the same im-
purity.

However, the overallq integral in Eq.~8! is dominated by
the interval of momentav2/D,vFq,v where the ‘‘anti-
screened’’ potentialV(v,q) develops a plasmon pole at
v5vF(kq/2)1/2. As we show below, this gapless collective
mode plays a role which is somewhat similar to that of a
diffusion polev5 iDq2 appearing in the disordered regime
v,vFq,1/t.

The contribution resulting from the above range of mo-
menta can be readily found:

dn~e,T!

n
5

1

~2p!2

k

n E dv tanhS e1v

2T D
3ImS v2 i /t

v E
0

;v/vF dq

~v2 i /t!v2qkvF
2/2D

52
2

~2p!2nvF
2 E dv tanhS e1v

2T D
3ImFv2 i /t

v S ln
D

uvu
1 ip

v

uvu D G . ~10!

The first term in Eq.~10! which stems from the real part of
the q integral reproduces the correction obtained in Ref. 2:

d1n~e,T!

n
52

2

~2p!2

1

vF
2nt

E dv

v
tanhS e1v

2T D ln
D

uvu

52
1

4pEFt S ln
D

max$ueu,T% D
2

, ~11!

which appears to be greater than Eq.~9! by an extra loga-
rithmic factor.

The second term originating from the imaginary part of
the integral overq constitutes our new result:

d2n~e,T!

n
52

1

~2p!vF
2n

E dv
v

uvu
tanhS e1v

2T D
52

1

2pvF
2n

E
0

;D

dvF tanhS e1v

2T D
1tanhS v2e

2T D22G
5

max$ueu,2T ln 2%

2EF
, ~12!

where we subtracted a constant termdn(0,0) to avoid a di-
vergence at the upper limit. The new term~12! exceeds Eq.
~11! in the whole range of energiest21(ln Dt)2,e,EF .

The inequalityv.qvF must be satisfied for characteristic
momentaq;v2/DvF , which means that Eq.~12! is valid
under conditionueu!min(D,EF).

It is worth mentioning that a universal correction to the
tunneling conductance similar to Eq.~12! was obtained in
the case of tunneling through a uniform barrier which im-
poses an additional condition of partial momentum
conservation.4 The physical origin of this effect is, however,
completely different from ours: the correctionG(V)/G0
}uVu/EF was obtained in Ref. 4 for the case of a short-range
potential and was shown to be due to Friedel oscillations of
the electronic density induced by the barrier.

In a double-layer system the above DOS correction gives
rise to an applied voltage bias and/or temperature-dependent
correction to the differential tunneling conductance.

Below we consider a case of tunneling with no lateral
momentum conservation which corresponds to a tunnel
bridge between two identical layers.

In the linear-response method the tunneling current

I ~V!5e Im PR~eV! ~13!

is simply related to the retarded polarization operatorPR(v)
with an energy-independent tunneling amplitudet12 standing
in each of the two momentum-nonconserving vertices, which
has to be taken at the external frequency determined by the
applied voltage biasV.

For noninteracting electrons the tunneling conductance is
given by the expression

G05
dI

dV
5

1

2
e2put12u2n0

2 . ~14!

Corrections to Eq.~14! stem from both intralayer and inter-
layer Coulomb interactions where the latter is given by the
expression

U0~q!5
2pe2

eq
exp~2qd!. ~15!

In Eq. ~15!, d is the interlayer distance, and, for the sake of
simplicity, we put the dielectric constants of the electronic
layer and the interlayer media equal to each other.

The screened intralayer and interlayer potentials are de-
scribed by the equations

V~q,v!5V0~q!1V0~q!P~q,v!V~q,v!

1U0~q!P~q,v!U~q,v!,

U~q,v!5U0~q!1V0~q!P~q,v!U~q,v!

1U0~q!P~q,v!V~q,v!, ~16!

which yield the solution

V,U5
1

2

V01U0

12P~V01U0!
6

1

2

V02U0

12P~V02U0!
. ~17!
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The poles of the two terms in Eq.~17! determine the spectra
of the in- (v1) and out-of-phase (v2) plasmons5 which at
small momentaq,d21 acquire the form

v15vF~kq!1/2, v25qvF

11kd

~112kd!1/2. ~18!

The corrections to the tunneling conductance resulting, re-
spectively, from the intralayerV and the interlayerU poten-
tials are given by the expressions

d11G~V,T!5e2put12u2 Im E de

2p E dv

2p

]S~e1eV!

]e

3S~e1v!E d2q

~2p!2 VR~q,v!E d2p8

~2p!2 2i

3Im GA~p8,e!E d2p

~2p!2 „GA~p,e!…2

3GR~p1q,e1v!, ~19!

d12G~V,T!5
1

2
e2put12u2 Im E de

2p E dv

2p

]S~e1eV!

]e

3@S~e1v!2S~e2v!#E d2q

~2p!2 UR~q,v!

3E d2p8

~2p!2 GA~p8,e!GR~p81q,e1v!

3E d2p

~2p!2 GA~p,e!GR~p1q,e1v!. ~20!

It is convenient to divide Eqs.~19! and~20! into two contri-
butionsd11G5d11

1 G1d11
2 G and d12G5d12

1 G2d12
2 G corre-

sponding to the two terms in the right-hand side of Eq.~17!.
In both Eqs.~19! and~20! the typical values of the trans-

ferred frequencyv are determined by the largest betweeneV
andT, and in what follows we will concentrate on deviations
of the tunnelingI -V characteristic from the linear~ohmic!
dependence at small temperatures (T!eV). The correspond-
ing values of the transferred momentumq can be found from
the relationsv6(q);eV. For the conditionq,d21 to be
satisfied the applied voltage has to be smaller than
V15(vF /e) (k/d)1/2.

For large voltages,V1,V,D/e, the effects of the inter-
layer couplingU are small, and therefore the following rela-
tions hold:

d11
1 G'd11

2 G, d12
1 G'd12

2 G. ~21!

Hence the result fordG(V) amounts to the above DOS cor-
rection:

dG~V!

G
5E de

]S~e1eV!

]e

dn~e!

n
5

uVu
EF

, ~22!

where the zero-bias value of the renormalized conductivity
G5G(0) includes the~negative! V-independent term which
had been subtracted in Eq.~12!.

At biases smaller thanV1 the interlayer coupling becomes
important, and the correction to the tunneling conductance

can no longer be expressed solely in terms of DOS. We
separate the frequency and the momentum integrations in
d11,12

6 G as follows:

d11,12
6 G/G5E dv

4p
f ~v/T!I 11,12

6 ~v!, ~23!

where

f ~v/T!5E de

2p

]S~e1eV!

]e
S~e1v!,

and the momentum integrals read as

I 11
1 5Im E

0

;1/d

qdq
v

V2

1

~11q/2k!V2v
,

I 12
1 52Im E

0

;1/d

qdq
1

V

1

~11q/2k!V2v
,

I 11
2 5Im E

0

;1/d

qdq
v

V2

1

„11~kd!21
…V2v

,

I 12
2 52Im E

0

;1/d

qdq
1

V

1

„11~kd!21
…V2v

, ~24!

whereV5A(v1 i /t)22vF
2q2.

To compute these integrals, we first change from real to
the imaginary values ofv, do the momentum integrations,
and then perform analytic continuation back to the real fre-
quencies:v→2 iv10.

A straightforward analysis shows that at all frequencies in
the range 1/t,v,eV1 the integralsI 11,12

1 (v) are governed
by the momentavFq;v2/D!v corresponding to the in-
phase plasmon modev1(q). Therefore, when calculating
these integrals, one can putV'v and obtain

I 11
1 '2I 12

1 '
2p

n0vF
2

v

uvu
. ~25!

Hence the in-phase termsd11
1 G andd12

1 G nearly cancel out in
the whole interval of biases 1/et,V,V1 .

In the case of the integralsI 11,12
2 (v), they are both domi-

nated by the momentaq;v/(11kd)1/2,v corresponding
to the out-of-phase plasmon modev2(q) only if the fre-
quency is large enough:v.eV25eV1(11kd)21/2 ~obvi-
ously, the new scaleV2 different from V1 can only appear
for kd@1). If this is the case, the two integrals appear to be
simply related:

I 11
2 '2I 12

2
11kd

kd
'

p

n0vF
2

v

uvu
, ~26!

and, consequently, in the range of biasesV2,V,V1 the
conductance correction gets reduced by a factor of 2 com-
pared to Eq.~22!:

dG/G5
uVu
4EF

112kd

11kd
'

uVu
2EF

. ~27!

On the other hand, at smaller frequencies 1/t,v,eV2 the
integralsI 11,12

2 (v) receive equally important contributions of
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opposite signs from both the momenta
vFq;v/(11kd)1/2,v andvFq;v, since the latter region
of momenta now lies under the upper bound;1/d. The
competition between these terms further reduces the imagi-
nary part of I 12

2 while in the case ofI 11
2 a nearly perfect

compensation occurs:

I 12
2 '2

kd

11k

p

2n0vF
2

v

uvu
, I 11

2 '0 ~28!

Thus at low biases 1/et,V,V2 , the correction to the con-
ductance becomes

dG/G5
uVu
8EF

kd

11kd
. ~29!

A systematic estimate of higher-order Coulomb correc-
tions to G(V) can be made by means of the method of the
tunneling action developed in Ref. 6. Employing this formal-
ism, we obtain the tunneling conductivity

dG~V!}Im E
0

` dt

t
exp„iS~ t !2 iVt…, ~30!

in terms of the time-dependent action of the electrostatic po-
tential excited in the process of tunneling:
S(t)5*dvuJ(v,t)u2S(v). Here, J(v,t)5(12eivt)/v is a
spectral function of the tunneling electron’s density, and the
kernel

S~v!5E d2q

~2p!2

V0
A~q!2UA~q!

12PA~v,q!„V0
A~q!2U0

A~q!…
~31!

is given solely in terms of the out-of-phase combination
VA2UA.

Equation~31! can be readily interpreted as a sum of the
partial actions associated with the Coulomb energies due to
the ~repulsive! self-interaction of the excessive electronic
density and that of the hole left behind immediately after the
tunneling event, which is reduced by the amount of energy of
their mutual attraction.

At weak coupling the exponent in Eq.~31! can be ex-
panded in powers of the actionS(t) which approaches a
constant value as the charge-spreading timet;V21 tends to
infinity at vanishingly small biases„S(t)5const1O(1/t)….
Then the first-order correction to the conductivity can be cast
in the form

dG~V!

G
5Im E

0

V dv

v2 S~v!. ~32!

By using Eq.~32! one can reproduce the above results~22!
and ~27!.

As derived, Eq.~32! neglects the tunneling electron’s re-
coil, which is only permissible as long as the relation
v@vFq holds for all relevant transferred momenta and fre-
quencies. Therefore, at biases smaller thanV2 the tunneling
action has to be modified in order to include the recoil and to
recover the low-bias asymptotic of Eq.~29!.

To conclude, in the present paper we demonstrated that
gapless 2D plasmons affect the tunneling DOS even in the
ballistic regime. We found a new, impurity-independent,
nonanalytic correction which also leads to a linear cusplike
contribution to the conductance of a tunnel bridge in a
double-layer system.
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