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Effects of two-dimensional plasmons on the tunneling density of states
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We demonstrate that gapless plasmons lead to a unive¥séé)/ve|e|/Eg) correction to the tunneling
density of states of a clean two-dimensional Coulomb interacting electron gas. We also show how this cor-
rection affects the conductance of a tunnel bridge in a double-layer sy|s$€&163-18208)50408-0

The phenomenon of suppression of electron tunnelinghe interaction correction to DOS is simply related to the
into interacting conductors, known as “zero-bias anomaly,” electron self-energy
still remains in the center of current theoretical studies. ) &

This experimentally well-documented phenomenon re- P r
ceived its first explanation in the theory of the electron den- ~ 9¥(&T) == 1M J’ (277)2[g0(6’p)]22R(6’p)' 3)
sity of states(DOS) in Coulomb interacting disordered o )
metals! This theory, however, was formulated in the diffu- In the quasiballistic regime of large momentum and energy
sive regime and therefore limited to the range of energies transfers (1#<wveq, ) the important for the correction to
or, correspondingly, bias voltagas small compared to the the density-of-states part of the self-eneBfi(e,p) is given
impurity scattering ratee,V<1/7. by the expression

Recently, an attempt was made to extend the theory of dod?
Ref. 1 beyond the diffusive reginfeThe authors of Ref. 2 R :J dwd™q A

ond the 3R(ep) 7 (1+2I"(0,0))

found a universalindependent of the strength of Coulomb (27)
coupling correction to the two-dimensional2D) DOS:

Sv(e)lvx—(Egr) " HIn(e/A)T in the regime lF<e<A, X 1m g§(€+w,p+ q)VA(w,q)tanr( E+w),
where the characteristic energy scalevgx is determined 2T
by the Debye screening wave vector 2e?v proportional (4)

to the bare two-spin DO$=m/ 7. Also, on the basis of the
calculations performed in Ref. 2, a modification of the diffu- W
sive correction obtained in Ref. 1 was proposed. Later, the 1 d2p
same authors generalized the theory of Refs. 1 and 2 onto the 1Ay q)= — J —— GR(€,p) G e+ w,p+0Q)
case of nonquantizing magnetic fieftls. wvr ) (2m)

In this communication we show that the tunneling DOS of .
a clean 2D Coulomb conductor also contains another univer- __ i/7 (5)
sal termdv(e)/ v|e|/Eg, which is completely independent V(w—0?2m—i/7)2—v2q?
of impurity scattering and may well become dominant in the _ )
ballistic regime. With this new term included, the tunneling The dynamically screened 2D Coulomb potenva(w,q) is
conductancés(V) acquires a linear cusplike universal con- V()
tribution G (V)/Ggx|V|/Eg. A — 0 — 2

Unlike Ref. 2 wh<|are| Matsubara technique was used, we Vie.a) 1-Vo(q)PX(w,q)’ Vo(a)=2mefa, (6
employ the real-time formalism in order to avoid prOblemSwherePA(w q) is the polarization operator
with a somewhat intricate procedure of analytical continua- ' '

hereI'A(w,q) is the impurity vertex correction

tion from discrete imaginary frequencies. The two-spin tun- (w—g2/2m)

neling DOS is defined as PAw,q)=—| 1— ©—d . (D
, d2 V(w—g?2m—i/7)>—v2q?

v(e,T)=—— f z—pz Im[GR(e,p)]. 1 After the integration in Eq(3) over the electronic momen-

m ) (2m) tum one arrives at the expression

In the presence of impurities the noninteracting electron Sv(eT) q N

: v(€, w et w ©
Green function has the standard form = POk tanr‘( o7 )Im jo dqq\VA(w,q)
p’—Pf
Golem=Lo6(eP)]" = =g i &= om A+2riw@)o-g2m-iln o
%) [(0—q%2m—i/7)?—vEq?]¥?
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A straightforward analysis of E¢8) shows that the range of where we subtracted a constant tef#(0,0) to avoid a di-
transferred energies and momentar<lbv<<vgq, where vergence at the upper limit. The new teff®) exceeds Eq.
the Coulomb potential is statically screenef/(q) (11) in the whole range of energies 1(In A7)?<e<Eg.
= (1/v)(k/q+ «)), yields only a small contribution to DOS. The inequalityw> qu must be satisfied for characteristic
Theq dependence 0f(q)~1/v is weak, and, with logarith- momentagq~ w?/ Avg, which means that E¢12) is valid
mic accuracy, this contribution coincides with that of a short-under conditior| €| <min(A,Eg).
ranged potential/(q) =V,: It is worth mentioning that a universal correction to the
tunneling conductance similar to E¢L2) was obtained in
ov(eT) —_ Vor In A 9) the case of tunneling through a uniform barrier which im-
v 4merr maX|e|, T} poses an additional condition of partial momentum

The authors of Ref. 2 used the coordinate space represeng@nservatiorf. The physical origin of this effect is, however,
tion to demonstrate that this term occurs due to the interferSOMPpletely different from ours: the correctioB(V)/Go
ence between scattering off a single impurity and off Friedef*| V|/Er was obtained in Ref. 4 for the case of a short-range
oscillations of the electronic density caused by the same imPotential and was shown to be due to Friedel oscillations of
purity. the electronic density induced by the barrier.

However, the overal integral in Eq.(8) is dominated by In a double-layer system the above DOS correction gives
the interval of momentas?/A<vrq<w where the “anti- 1€ to an applied voltage bias and/or temperature-dependent
screened” potentialV(w,q) deveFIops a plasmon pole at correction to the differential tunneling conductance.
w=vp(kql2)Y2 As we show below. this gapless collective Below we consider a case of tunneling with no lateral
mode plays a role which is somewhat similar to that of aOMentum conservation which corresponds to a tunnel

diffusion pole w=iDq? appearing in the disordered regime ridge bet_ween two identical layers. .
In the linear-response method the tunneling current

w,veq<l/7.
The contribution resulting from the above range of mo- R
menta can be readily found: I(V)=e Im II"(eV) (13
Sv(e,T) 1 « e+tw is simply related to the retarded polarization oper&i&f w)
v 2m)2 v f do tan T with an energy-independent tunneling amplitugestanding
in each of the two momentum-nonconserving vertices, which
w—ilT [~olv dq has to be taken at the external frequency determined by the
XIm| —= fo (0—iImo—qroll2 applied voltage bia¥/. . '
For noninteracting electrons the tunneling conductance is
2 f q I_(e+w given by the expression
B (277)211112,: @ tan 2T a1
w—ilt A GOZW: 56277|t12|27’(%- (14)
XIm——|In—~+imT—]||. (10
lo| " o

Corrections to Eq(14) stem from both intralayer and inter-

The first term in Eq(10) which stems from the real part of layer Coulomb interactions where the latter is given by the

the g integral reproduces the correction obtained in Ref. 2:

expression
o1v(€e,T) 2 1 do et w A
=— > — f —tan ——|In — 2me?
v (2m)° vEvT w 2T || Uo(q)= 3 exp(—qd). (15)
€
1 A 2
= 4nEr In max |77 (1) In Eq.(15), d is the interlayer distance, and, for the sake of

. simplicity, we put the dielectric constants of the electronic
which appears to be greater than E@). by an extra loga- |ayer and the interlayer media equal to each other.

rithmic factor. o o The screened intralayer and interlayer potentials are de-
The second term originating from the imaginary part ofscriped by the equations

the integral ovelg constitutes our new result:
V(0, @) =Vo(q) +Vo(q)P(q,w)V(q,w)

52v(e,T)_ 1 fd 1) €t w
v emody | YTel B T +Uo(q)P(q.0)U(q,0),
St f”Adw tanr(”‘*’ U(4,0)=Uo(a) +Vo(a)P(,0)U(q,»)
2mavev Jo 2T
+Uo(a)P(q,)V(q,w), (16)
w— €

+tanl‘( >T )—2} which yield the solution

Vo+Uq 1 Vo—Ug

max|e|,2T In 2}

5E. (12) V,U=

1
— “+ —
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The poles of the two terms in E¢L7) determine the spectra can no longer be expressed solely in terms of DOS. We
of the in- (w.) and out-of-phased_) plasmon3 which at  separate the frequency and the momentum integrations in

small momentay<d~! acquire the form 81116 as follows:
o 1+«d N do .
w+:UF(KQ) s w,=qvpm§. (18) 51_1]12(3/(3: Ef(w/T)ll_l,n(w)l (23)

The corrections to the tunneling conductance resulting, rewhere
spectively, from the intralayev and the interlayel poten-

i i i de 9S(et+e
tials are given by the expressions f(wlT)= ( V) Sletw),
2 de
de dw dS(e+eV) .
— a2 2 _ R D
811GV, T)=e“m|t15]* Im J’ 5 | 2 e and the momentum integrals read as

~1/d ® 1
+ _
[7;=Im J

0

d2 d2 ! _—
><S(e+a))f ﬁVR(q,w)J %z 495z Trgzo0—o’

A ! d2p A 2 It =—Im fwl/d d i;
xIm GA(p .e)J PEALD) 12 o 3990 Trgzo0-w
XGR(p+a,etw), (19 ~1/d o 1
lp=Im f qdaqsz o NN
P S f de [ do dS(e+eV) €7 1+ (kd) HQA -0
12G(V.T)=3e m[t15 " Im 5r | 22 ae _ w1 L
X[S(e+w)— S| >1f 9 g A L ST
etw)—S(e—w - , @
(2) whereQ=(w+i/7)2—v2q2
d2p’ To compute these integrals, we first change from real to
f (2m)? GA(p',e)GR(p' +0, e+ w) the imaginary values ofy, do the momentum integrations,
and then perform analytic continuation back to the real fre-
d’p guenciesw— —iw+0.
J 22 GAp,e)GR(p+a,et+w). (20 A straightforward analysis shows that at all frequencies in

the range W<w<eV; the integrald 1+1,12(w) are governed
It is convenient to divide Eqg19) and(20) into two contri- by the momentav g~ w?/A<w corresponding to the in-
butions 8,,G= 8;,G+ ;G and §,,G=3,,G— 8;,G corre-  phase plasmon mode_ (q). Therefore, when calculating
sponding to the two terms in the right-hand side of By).  these integrals, one can pllt~w and obtain

In both Eqgs.(19) and(20) the typical values of the trans-

ferred frequencyo are determined by the largest betweah | F e | Fm 2_77 @
andT, and in what follows we will concentrate on deviations e 2y el
of the tunnelingl-V characteristic from the lineaiohmic ) . ]
dependence at small temperaturs<eV). The correspond- Hence the in-phase ter'nz?glG and4,G nearly cancel outin
ing values of the transferred momentapean be found from  the whole interval of biases €/<V<V,.

(25

the relationsw..(q)~eV. For the conditiong<d~* to be In the case of the integrals, ;{»), they are both domi-
satisfied the applied voltage has to be smaller tharmated by the momentg~ w/(1+ «d)““<w corresponding
V= (ve/le) (k/d)Y2 to the out-of-phase plasmon mode (q) only if the fre-

For large voltagesy;<V<Ale, the effects of the inter- quency is large enoughv>eV,=eV,(1+ «d)~"* (obvi-

layer couplingU are small, and therefore the following rela- ously, the new scal®/, different fromV, can only appear
tions hold: for kd>1). If this is the case, the two integrals appear to be

simply related:

81,.G~8,G, 61,G~5.G. (21

3 1+ kd T W
Hence the result fo6G(V) amounts to the above DOS cor- o~ —lo—g =~ To|’ (26)

. i VOUF w

rection:
and, consequently, in the range of biadés<V<V; the
oG(V) :f d6073(6+ eV) dv(e) _ VI 22 conductance correction gets reduced by a factor of 2 com-
G Jde v Er’ pared to Eq(22):

where the zero-bias value of the renormalized conductivity V| 1+2kd |V

G=G(0) includes thgnegative V-independent term which 0GIG= 4E; 1t xd 2B, (27)

had been subtracted in E{.2).
At biases smaller thaw; the interlayer coupling becomes On the other hand, at smaller frequencies<lb<eV, the
important, and the correction to the tunneling conductancéntegralsl;; ;{») receive equally important contributions of
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opposite signs from both the momenta  Equation(31) can be readily interpreted as a sum of the
veq~ w/(1+ kd) < w andveq~ w, since the latter region partial actions associated with the Coulomb energies due to
of momenta now lies under the upper boundl/d. The the (repulsive self-interaction of the excessive electronic
competition between these terms further reduces the imagdensity and that of the hole left behind immediately after the
nary part ofl;, while in the case ofl;; a nearly perfect tunneling event, which is reduced by the amount of energy of

compensation occurs: their mutual attraction.
At weak coupling the exponent in E§31) can be ex-
- xd N - panded in powers of the actio®(t) which approaches a
o~ 1% 2vpv2 ol l11~0 @8 constant value as the charge-spreading tim® ! tends to

) ) infinity at vanishingly small biase$S(t) =const-O(1/)).
Thus at low biases &r<V<V;, the correction to the con- Then the first-order correction to the conductivity can be cast
ductance becomes in the form

5GIG V| _«d (29
=— ) SG(V vd
8Er 1+ «d C(E ) =Im J’ w—az) S(w). (32)

. . . 0
A systematic estimate of higher-order Coulomb correc-

tions to G(V) can be made by means of the method of the )
tunneling action developed in Ref. 6. Employing this formal-gy using Eq.(32) one can reproduce the above res(#®)

ism, we obtain the tunneling conductivity (27).

As derived, Eq(32) neglects the tunneling electron’s re-
o dt _ _ coil, which is only permissible as long as the relation
oG(V)=Im fo T expiS(t) —iVt), (30 w>veq holds for all relevant transferred momenta and fre-

quencies. Therefore, at biases smaller tiarthe tunneling
in terms of the time-dependent action of the electrostatic poaction has to be modified in order to include the recoil and to
tential excited in the process of tunneling: recover the low-bias asymptotic of E9).

S(t)=fdw|I(w,t)|?S(w). Here,J(w,t)=(1—€"“Y o is a To conclude, in the present paper we demonstrated that
spectral function of the tunneling electron’s density, and thegapless 2D plasmons affect the tunneling DOS even in the
kernel ballistic regime. We found a new, impurity-independent,
nonanalytic correction which also leads to a linear cusplike
_f d*q Vo(a) —UA(g) 31 contribution to the conductance of a tunnel bridge in a
Ste)= (2m)% 1-PA(,9)(V5(a)—~ Ug(a)) BD  gouble-layer system.
is given solely in terms of the out-of-phase combination One of the authorgM.R.) acknowledges support from
VA—UA, DOE-Basic Sciences, Division of Material Research.
1B. L. Altshuler and A. G. Aronov, Solid State Commus0, 115 78, 709(1997).
(1979; B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. 4L. Shekhtman and L. I. Glazman, Phys. Re\6B R2297(1995.
Lett. 44, 1288(1980. 5Y. Takada, J. Phys. Soc. Jpi8, 1627(1977; S. Das Sarma and
2A. M. Rudin, I. L. Aleiner, and L. I. Glazman, Phys. Rev.55, A. Madhukar, Phys. Rev. B3, 805(1981).
9322(1997). 8Y. Nazarov, Sov. Phys. JETE8, 561 (1989; Sov. Phys. Solid

SA. M. Rudin, I. L. Aleiner, and L. |. Glazman, Phys. Rev. Lett. State31, 1581(1990.



