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We study the equilibrium fluctuation properties of a step on the 231-reconstructed Si~001! surface, by using
the two-dimensional restricted solid-on-solid model. We propose a new approach to calculate the angle-
dependent step tensiong~u! ~u : mean running direction of the step, relative to the crystal axis! where the
numerical renormalization-group technique and the temperature-rescaled Ising-model-interface ansatz for step
fluctuations are combined. From the calculatedg~u! we obtain the step stiffnessg(u)1]2g(u)/]u2, which is
in good agreement with experimental observation.
@S0163-1829~98!51708-0#

Recent developments in atomic-scale observations of
crystal surfaces have allowed us to determine various micro-
scopic quantities of the surface, for example, the kink-
formation energy ekink. As for the 231-reconstructed
Si~001! surface, Swartzentruber and co-workers1,2 measured
the interkink distance distribution of a step on the surface,
from which they determinedekink. Bartelt, Tromp, and
Williams3 observed step fluctuation width and equilibrium
‘‘crystal shape’’ ~island shape, to be precise! on the Si~001!
surface, to obtain step tensiong and step stiffnessg̃
@}1/(squared scaled fluctuation width)~Ref. 4!#; from the
obtainedg and g̃ they also estimatedekink, which is roughly
equal to but is slightly different from the one in Refs. 1 and
2.

We should remark here thatekink is not a directly measur-
able quantity, and for its determination, we need a theoretical
formula for an observable quantity as a function ofekink

~5fitting parameter! to perform ‘‘best fitting’’ of the ob-
served data. Hence, reliability of the formula used is crucial
for that of the determined value ofekink. Use of the one-
dimensional~1D! solid-on-solid~SOS! model, which strictly
forbids the~in-plane! overhang configurations, may, there-
fore, be inadequate; for correct orientation-angle dependence
of g, which is essential in determining the island shape and
step stiffnessg̃5g1g9 ~8 denotes the angle derivative!, we
should properly take account of the non-SOS
configurations.5,6

Considering that the non-SOS configurations become
dominant on raising the temperature and that the experiment3

is made at relatively high temperatures~as compared with
Refs. 1 and 2!, we may attribute the non-negligible discrep-
ancy in the value ofekink between Refs. 1 and 2 and Ref. 3 to
the inaccuracy of the 1D-SOS-model formula ofg̃ ~Ref. 7!
used for data analyses.

In this paper we present a method to calculate the
orientation-dependentg~u! ~u: mean running direction of a
step, relative to the crystal axis!. We then apply the method
to a ‘‘faithful’’ model of the Si~001! surface: Thetwo-

dimensional~square-lattice! SOS model, with both nearest-
neighbor~nn! and next-nearest-neighbor~nnn! interactions.
Due to the 231 reconstruction, the lattice constant of the
model corresponds to the two-atom unit of the actual Si~001!
surface. The reconstructed structure also allows us to neglect
configurations with large nn height differences, because such
configurations are energetically rather unstable. Hence, we
restrict each nn height differenceDh to take only 0,61. The
SOS models of this type are often called restricted SOS
~RSOS! models.

Note that the long-range step-step interactions that are
relevant for a surface with finite step density, modifying the
coefficient of the~step density!3 term in the surface free en-
ergy, do not affect the single-step fluctuation properties.
Hence, for our purpose, we can adopt a RSOS model with
only short-range interactions.

By hi , j (50,61,62,...) wedenote the height variable of
the RSOS model at the lattice point (i , j ). The RSOS Hamil-
tonian H, under the restriction on nn height differences, is
given by

H5ex(
i , j

uhi 11,j2hi , j u1ey(
i , j

uhi , j 112hi , j u

1e2(
i , j

~ uhi 11,j 112hi , j u1uhi 21,j 112hi , j u!, ~1!

whereex ~respectively,ey! is the nn broken-bond energy of
the x direction ~respectively, they direction!, and e2 ac-
counts for the corner energy of the step.1,2

To obtaing~u! of the RSOS model, we take the following
steps: ~1! For special directions corresponding to the crys-
tal axes (u50,p/2), we obtaing by analyzing the vicinal
surface using the numerical renormalization-group
method.8–10 ~2! For generalu, we make the ‘‘temperature-
rescaled Ising-model ansatz’’ for anisotropic step tension.11

The RSOS calculation made in step 1 is used to determine
the rescaled temperature.
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In the first step, we apply a ‘‘field’’h5(hx ,hy) conju-
gate to the surface gradient, by adding the terms

2hx(
i , j

~hi 11,j2hi , j !2hy(
i , j

~hi , j 112hi , j ! ~2!

to the RSOS Hamiltonian~1!.12 Then the thermal averages
px5^hi 11,j2hi , j&, py5^hi , j 112hi , j& @independent of (i , j ),
assuming uniformity# give the surface gradient vectorp
5(px ,py). Below TR ~roughening temperature! we expect
the square-root ‘‘critical behavior’’13 in the p-h curve. For
instance, along thex direction @i.e., h5(hx,0)],

px5H 50 hx<hx
c

;const3Ahx2hx
c hx.hx

c and hx'hx
c ~3!

This square-root behavior is characteristic of the Gruber-
Mullins-Pokrovsky-Talapov universality class14 to which the
vicinal surface belongs. This behavior occurs along a general
direction of h near the corresponding critical fieldhc

5(hx
c ,hy

c). An important point is that, forh parallel to the
crystal axis, the amplitudeuhcu itself is the step tensiong for
the step running perpendicular to that direction. To obtain an
accurate p-h curve, we employ the numerical
renormalization-group method8–10,15 for the transfer-matrix
diagonalization. In the actual calculation we map16 the RSOS
model to a three-state vertex model and applied the product-
wave-function renormalization-group~PWFRG! method,10,15

which is a variant of White’s density-matrix renormalization
group~DMRG!.8 The PWFRG method is suited for our prob-
lem where the vicinal surface—a massless system—is
considered.15 Although the method is originally developed
for Ising-type models,10 we can easily generalize the method
to handle the vertex models@the actual implementation par-
allels the quantum-version of the PWFRG Refs.~15 and
17!#. To test the accuracy of the method we have applied it to
the body-centered cubic SOS model~BCSOS model! ~Ref.
18! which is exactly solvable; we have found that the PW-
FRG gives a close-to-exactp-h curve, even with a small
number (;12) of ‘‘retained bases’’~in the DMRG/PWFRG
terminology!.

In the second step, we make an ansatz that the anisotropy
of the step tension is the same as that of the interface tension
of an Ising model with suitable temperature rescaling. In the
present case, we consider the interface of the nnn Ising
model~two-level approximation of the RSOS model!, to ob-
tain an analytic expression of the Ising-model interface ten-
sion g I(u,b). We then assume that, with suitable ‘‘rescaled
inverse temperature’’b̃ I , the relation

b̃ Ig I~u,b̃ I !5bg~u,b!. ~4!

holds. The remarkable fact is that, in the case of the BCSOS
model, this relation holdsexactly with g I(u,b I) being the
interface tension of the square-lattice nn Ising model.11 Not-
ing that the BCSOS model and the Ising model belong to
totally different universality classes as for the critical behav-
ior ~i.e., anomalous temperature dependence of physical
quantities!, we can expect the ‘‘universality of angle depen-
dence’’ of g~u,b!, which lies behind Eq.~4! among a large
class of models belonging to different universality classes.
Some other exactly calculated examples19 are also in support

of this. Further, for a general~well-behaved! surface model,
relation ~4! actually holds at two different limits:T→0
where non-Ising excitations in the surface model are ener-
getically suppresed, andT→TR20 where bothg I andg are
essentially isotropic. These facts strongly support the validity
of relation~4!, as a good approximation at least. In the actual
calculation, we use Eq.~4! at a particular value ofu5u0
~e.g.,u050 or p/2! for which the right-hand side of Eq.~4!

has been obtained in the step 1, to determineb̃ I . We should
note that the validity of Eq.~4! can also be tested at this
stage, by checking theu0 independence ofb̃ I thus deter-
mined. Full u dependence ofg~u! can then be derived by
using the Ising-model result.

Since the 2D nnn Ising model is not exactly solvable,
calculation ofg I(u,b) itself is nontrivial. For this purpose,
just as we have done in our recent paper20 where the Ising-
model treatment of Si~001! is made, we adopt the ‘‘imagi-
nary path weight’’ ~IPW! random-walk method, which is
based on the well-known Feynman-Vdovichenko random-
walk solution of the two-dimensional Ising models.21

Let us give here a brief description of the IPW method
~for details, see Refs. 5, 11, 20, and 22!. We consider the
low-temperature phase of an Ising model~either solvable or
nonsolvable! with an interface, and regard each microscopic
configuration of the interface as a path of a random walker.
We then specify the connectivity matrixA5@A(r,mur8,n)#
characterizing the random-walk problem, whose nonzero el-
ements are given in terms of the elementary path-weights
$exp(2bDE)% ~DE: bond-breaking energy!. In the multiple
index ~r,m!, r represents the lattice points~or, the unit-cell
position, in general!, andm the ‘‘inner degrees of freedom’’
~intra-unit-cell position, direction of the elementary walk,
etc.!. The essential point in the IPW method is to assign the
imaginary ‘‘corner weight’’ exp(if/2) to each turn of the
walk with angle f; with this simple recipe, contributions
from unwanted path configurations are completely~for solv-
able cases! or nearly completely~for nonsolvable cases! re-
moved. The interface partition function is then given by the
lattice Green’s functionG5(I 2A)21. For systems with
translational invariance whereA(r,mur,8n) can be written as
A(r2r8)mn , we can introduce the spatially Fourier-
transformed connectivity matrixÂ(k)5@Â(k)mn#. The long-
distance limit ofG determiningg, is essentially given by
the integral *d2k exp(ikr)/D(k) where D(k)5D(kx ,ky)
5det@I2Â(k)]. We can easily evaluate the integral at the
pure-imaginary saddle pointk* 5 i v5( ivx ,ivy).

The above-described IPW method leads to the following
set of ‘‘constitutive equations’’ to determineg~u!:5,11

D~ iv!50, ~5!

]D~ iv!

]vy
Y ]D~ iv!

]vx
5tan u, ~6!

bg I~u,b!5vx cosu1vy sin u. ~7!

The equilibrium crystal shape drawn in thex-y plane is just
the imaginary zerosof D:5,11,22

D~ ibly,iblx!50, ~8!
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where l is the Lagrange multiplier associated with the
volume-fixing constraint in the Wulff construction. It should
be noted that the IPW method not only gives us exact
g I(u,b) for solvable cases~any planar lattice without bond
crossings11,22! but also serves as a fairly accurate approxima-
tion scheme.5

The Ising-model approximant of the present RSOS model
has the coupling constantsJx ,Jy ~nn couplings! andJ2 ~nnn
coupling! which are related to the RSOS broken-bond ener-

gies asex52Jx , ey52Jy , and e252J2 . All the relevant
Ising-model expressions can be found in Ref. 20. In particu-
lar, the functionD(k) has the form

D~kx ,ky!5M2a coskx2b cosky2c1 cos~kx1ky!

2c2 cos~kx2ky!, ~9!

whereM , a, b, c1 , andc2 are temperature-dependent quan-
tities that are explicitly given in Ref. 20. The ansatz~4! leads
to renormalization of these quantities.

Due to the 231 reconstruction, there are two types of
steps, theSA step~running along thex direction! and theSB
step ~running along they direction!, whose behaviors are
rather different from each other. In fact, there is a large dif-
ference in the kink formation energieseA

kink and eB
kink , with

the ratio beingeA
kink/eB

kink590/28.1 We adopt this ratio, and
use the refined estimates2 of eB

kink and the kink-corner cre-
ation energyc, deduced from the data at 350 °C:eB

kink

540 meV/~two atoms! andc560 meV. These values deter-
mine the RSOS parameters to be ex
5188 meV/~two atoms!, ey5100 meV/~two atoms! and
e25230 meV/~two atoms! @note that the two-atom length
corresponds to 7.68 Å~Ref. 1!#.

In Fig. 1, we show thep-bh curves calculated by the
PWFRG along thex direction and they direction at tempera-
ture kBT/ex50.5. The square-root behavior~3! is clearly
seen. Reading off the values of the critical fieldshx

c andhy
c

from these curves drawn at each temperatureT, we obtain
g~0! ~SB step! and g(p/2) ~SA step! as a function ofT,
which is shown in Fig. 2~a!. Then, using Eq.~4! we obtain
the rescaled inverse temperatureb̃ I as shown in Fig. 2~b!. At
first sight, in using Eq.~4!, b̃ I depends onu. Hence, to verify
the validity of ‘‘temperature-rescaled Ising-model ansatz,’’
we should checku independence of the rescaled temperature.

FIG. 1. Surface gradientp vs external fieldh (3b) of the
RSOS model calculated by PWFRG, along thex direction ~open
circles! and they direction ~open squares! at kBT/ex50.5. The
number of retained bases in the PWFRG is 12.

FIG. 2. ~a! Temperature dependence ofg~u! (u50,p/2) of the
RSOS model calculated by the PWFRG: Open circles correspond to
g(0)5gB @SB step of Si~001!#, and open squares tog(p/2)5gA

@SA step of Si~001!#. Solid lines are the Ising-model results without
the temperature rescaling~Ref. 20!. The ratiogA /gB calculated at
676 K (kBT/ex50.310) is 0.364, and the one at 873 K (kBT/ex

50.400) is 0.398, which agrees with the observed ratios of step free
energies~Refs. 23 and 24!; for instance, in the recent observation of
the equilibrium island shape by Ichimiya, Tanaka, and Hayashi
~Ref. 24!, the ratio is reported to be.5/1350.38 at 400–600 °C.
~b! The rescaled inverse temperature of the Ising model vs the in-
verse temperature of the RSOS model. Open circles correspond to
SB step (u50), and open triangles toSA step (u5p/2). The inset
shows the rescaling curve for BCSOS model~Ref. 11! with the e
being the basic excitation energy of the model.

FIG. 3. Temperature dependence of the step stiffnessg̃ calcu-
lated by the present approach. Open squares and open circles are the
step stiffness ofSA step andSB step, respectively. The filled squares
and the filled circles are the experimental data taken from Bartelt,
Tromp, and Williams~Ref. 3!. The bold and thin solid curves are
the ones calculated by the Ising model without the temperature
rescaling~Ref. 20!. The dot dashed curve is the 1D SOS approxi-
mation~Ref. 7! for SA step. 1D SOS curve forSB step is omitted for
convenience.
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We see in Fig. 2~b! that the two rescaling curves, one foru
50 and the other foru5p/2, are almost the same, which
supports the validity of the ansatz.

The step stiffnessg̃ (u) of the RSOS model calculated as
the Ising-model stiffness at the rescaled temperature, is
shown in Fig. 3, where comparison with experiment3 is also
made. One can see a satisfactory agreement between the cal-
culated curve and the experimental one.

To summarize, in this paper we have proposed an efficient
method to calculate orientation-dependent step free energy
on a surface. In the method, we combine the analytical cal-
culation for the Ising-model interface and the numerical-
renormalization-group calculations made for the 2D SOS
model, where the latter are utilized to determine the tempera-
ture rescaling of the Ising-model approximant of the SOS
model. The method is applied to the Si~001! surface, which
gives a consistent explanation for experiments; by the use of
the kink formation energies determined by Swartzentruber

and co-workers,1,2 the calculated step stiffness is in good
agreement with the data of Bartelt, Tromp, and Williams,3

dissolving the existing discrepancy. Since the present ap-
proach based on the temperature-rescaled Ising-model ansatz
have a wide range of applicability, it will be helpful in dis-
cussing fluctuation properties of steps on various crystal sur-
faces.
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