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Thermal evolution of step stiffness on the D01 surface: Temperature-rescaled
Ising-model approach
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We study the equilibrium fluctuation properties of a step on tRel Zreconstructed 8)01) surface, by using
the two-dimensional restricted solid-on-solid model. We propose a new approach to calculate the angle-
dependent step tensiof(6) (6: mean running direction of the step, relative to the crystal)awisere the
numerical renormalization-group technigue and the temperature-rescaled Ising-model-interface ansatz for step
fluctuations are combined. From the calculaséé) we obtain the step stiffnesg 6) + 3% y(6)/96, which is
in good agreement with experimental observation.
[S0163-182608)51708-0

Recent developments in atomic-scale observations afimensional(square-lattice SOS model, with both nearest-
crystal surfaces have allowed us to determine various micraaeighbor(nn) and next-nearest-neighbénnn) interactions.
scopic quantities of the surface, for example, the kink-Due to the 21 reconstruction, the lattice constant of the
formation energy €™, As for the 2x1-reconstructed model corresponds to the two-atom unit of the actued@i)
Si(001) surface, Swartzentruber and co-workRérmeasured surface. The reconstructed structure also allows us to neglect
the interkink distance distribution of a step on the surfaceconfigurations with large nn height differences, because such
from which they determinede“™ . Bartelt, Tromp, and configurations are energetically rather unstable. Hence, we
Williams® observed step fluctuation width and equilibrium restrict each nn height differenceh to take only 0+ 1. The
“crystal shape” (island shape, to be precjsen the S{001) SOS models of this type are often called restricted SOS

surface, to obtain step tensiop and step stiffnessy (RSO3 models. , _

[<1/(squared scaled fluctuation widtkiRef. 4]; from the Note that the long-range step-step interactions that are

obtainedy and'fx they also estimateek™, which is roughly relev_ar_1t for a surface with flnlte step density, modifying the

equal to but is slightly different from thé one in Refs. 1 andcoefﬂment of thefstep density’ term in the surface free en-

5 ' ergy, do not affect the single-step fluctuation properties.
ink ;

We should remark here that™ is not a directly measur- Hence, for our purpose, we can adopt a RSOS model with

able quantity, and for its determination, we need a theoretica?nlé Sﬂértifggf iniezract;o\?vsé denote the height variable of
formula for an observable quantity as a function €™ Y i ) O g .
(=fitting parameter to perform “best fitting” of the ob- the RSOS model at the lattice pointj). The RSOS Hamil-
served data. Hence, reliability of the formula used is cruciafoi\r/"eing' under the restriction on nn height differences, is
for that of the determined value a#". Use of the one- ° y

dimensional1D) solid-on-solid(SOS model, which strictly

forbids the(in-plane overhang configurations, may, there- _ B _

fore, be inadequate; for correct orientation-angle dependence H= GXiEJ (Mg =i+ Eyiz’j [y a=higl

of vy, which is essential in determining the island shape and

step stiffnessy=y+y” (' denotes the angle derivativeve + Rovroi—h 10 aa—h 1
should properly take account of the non-SOS EziE,j (s ajea=higl+R-gjea=hisD, @
configurations:®

Considering that the non-SOS configurations becomeyheree, (respectively.e,) is the nn broken-bond energy of
dominant on raising the temperature and that the experimenthe x direction (respectively, they direction), and e, ac-
is made at relatively high temperaturéss compared with  counts for the corner energy of the step.
Refs. 1 and 2 we may attribute the non-negligible discrep-  To obtainy(6) of the RSOS model, we take the following
ancy in the value o&“"™ between Refs. 1 and 2 and Ref. 310 steps: (1) For special directions corresponding to the crys-
the inaccuracy of the 1D-SOS-model formulapf(Ref. 7  tal axes ¢=0,7/2), we obtainy by analyzing the vicinal
used for data analyses. surface using the numerical renormalization-group
In this paper we present a method to calculate thenethod®'° (2) For generall, we make the “temperature-
orientation-dependen(6) (#: mean running direction of a rescaled Ising-model ansatz” for anisotropic step tenston.
step, relative to the crystal axisVe then apply the method The RSOS calculation made in step 1 is used to determine
to a “faithful” model of the Si{001) surface: Thetwo- the rescaled temperature.
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In the first step, we apply a “field"n=(7y,7,) conju-  of this. Further, for a generavell-behaved surface model,

gate to the surface gradient, by adding the terms relation (4) actually holds at two different limitsT—0

where non-Ising excitations in the surface model are ener-

_ hois—h )— h - —h 2 getlcal!y su_pprese.d, anb— Tg— 0 where bothy, andyare_ _

nXiE,j (Niva;=hiy) 77yiz (ijra=hiy) @ essentially isotropic. These facts strongly support the validity

I 12 of relation(4), as a good approximation at least. In the actual
to 1heh RSO_Sh Ham"‘f”ﬁ“f'l)- _;]I'hen_tr:je the:jmalt a}’_erages calculation, we use Eq4) at a particular value ob= 6,
Px=(Ni+1;=hi ), Py=(hij+1—h; ) [independent ofi(j), (e.g.,0,=0 or 7/2) for which the right-hand side of Eg4)

assuming uniformity give the surface gradient vectqr . . ~
= (px.Py). Below Ty (roughening temperaturave expect has been obtame_d in the step 1, to deternpeWe should_
the square-root “critical behavior®® in the p- curve. For note that the validity of Eq(4) can also be tested at this

instance, along the direction[i.e., 5= (7,,0)], stage, by checking thé, independence of3, thus deter-
mined. Full # dependence of/(6#) can then be derived by
=0 sy using the Ising-model result.
Px= 3) Since the 2D nnn Ising model is not exactly solvable,

~ — C C ~ nC
coNSK V77— 77, 11x> 71x and 77~ 7 calculation ofy,(6,) itself is nontrivial. For this purpose,

This square-root behavior is characteristic of the Gruberjust as we have done in our recent paPevhere the Ising-
Mullins-Pokrovsky-Talapov universality cldégo which the ~ model treatment of $001) is made, we adopt the “imagi-
vicinal surface belongs. This behavior occurs along a generalary path weight” (IPW) random-walk method, which is
direction of » near the corresponding critical fiel® based on the well-known Feynman-Vdovichenko random-
:(ni,ng)_ An important point is that, fory’ para||e| to the walk solutiqn of the t\No-('jimensiopa.I Ising modéfs
crystal axis, the amplitudey®| itself is the step tensios for Let us give here a brief description of the IPW method
the step running perpendicular to that direction. To obtain arfor details, see Refs. 5, 11, 20, and)2®/e consider the
accurate p-y curve, we employ the numerical low-temperature phase of an Ising modeither solvable or
renormalization-group meth&d®° for the transfer-matrix nonsolvablewith an interface, and regard each microscopic
diagonalization. In the actual calculation we ffaihe RSOS ~ configuration of the interface as a path of a random walker.
model to a three-state vertex model and applied the produck/e then specify the connectivity matri=[A(r,u[r’,v)]
wave-function renormalization-grolWFRG method%*® characterizing the random-walk problem, whose nonzero el-
which is a variant of White’s density-matrix renormalization €ments are given in terms of the elementary path-weights
group(DMRG).2 The PWFRG method is suited for our prob- {€xp(~BAE)} (AE: bond-breaking energyIn the multiple
lem where the vicinal surface—a massless system—i#dex (r,u), r represents the lattice pointsr, the unit-cell
considered® Although the method is originally developed Position, in genera) andu the “inner degrees of freedom”
for Ising-type model® we can easily generalize the method (intra-unit-cell position, direction of the elementary walk,
to handle the vertex modefthe actual implementation par- €tc). The essential point in the IPW method is to assign the
allels the quantum-version of the PWFRG Ref$5 and imaginary “corner weight” expi@/2) to each turn of the
17)]. To test the accuracy of the method we have applied it tavalk with angle ¢; with this simple recipe, contributions
the body-centered cubic SOS modBICSOS modsel (Ref. ~ from unwanted path configurations are completédy solv-
18) which is exactly solvable; we have found that the PW-able casesor nearly completelyfor nonsolvable casgse-
FRG gives a close-to-exagt# curve, even with a small moved. The interface partition function is then given by the
number (-12) of “retained bases'(in the DMRG/PWFRG lattice Green's functionG=(I—A)~*. For systems with
terminology. translational invariance whe#(r, u|r,” ») can be written as

In the second step, we make an ansatz that the anisotrogy(r—r').,,» we can introduce the spatially Fourier-
of the step tension is the same as that of the interface tensiaransformed connectivity matri&(k) :[A(k)#y]. The long-
of an Ising model with suitable temperature rescaling. In thalistance limit of G determiningy, is essentially given by
present case, we consider the interface of the nnn Isinghe integral fd’k exp(kr)/D(k) where D (k) =D (ky,ky)
model (two-level approximation of the RSOS mogleo ob-  _gefj—A(k)]. We can easily evaluate the integral at the
tain an analytic expression of the Ising-model interface te”'pure-imaginary saddle poirk* =iw= (i wy,iw,).

siony,(6,8). We then assume that, with suitable “rescaled  The above-described IPW method leads to the following

inverse temperaturelB, , the relation set of “constitutive equations” to determing 6):>*!
Bivi(6,8)=By(6,B). (4) D(iw)=0, (5)

holds. The remarkable fact is that, in the case of the BCSOS ) ]

model, this relation holdexactly with y,(68,5,) being the dD(iw) / dD(iw) —tan 8 ®

interface tension of the square-lattice nn Ising mddélot- dwy dwy :

ing that the BCSOS model and the Ising model belong to

totally different universality classes as for the critical behav- Bi(6,8)=w, COS O+ w, Sin 6. (7)

ior (i.e., anomalous temperature dependence of physical

guantitieg, we can expect the “universality of angle depen- The equilibrium crystal shape drawn in they plane is just
dence” of ¥(6,8), which lies behind Eq(4) among a large theimaginary zeroof D:**122

class of models belonging to different universality classes.

Some other exactly calculated exampieare also in support D(iB\Y,iBAX)=0, ©)]
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FIG. 1. Surface gradienp vs external fieldn (X 8) of the
RSOS model calculated by PWFRG, along thelirection (open
circles and they direction (open squargsat kgT/€,=0.5. The
number of retained bases in the PWFRG is 12.
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where \ is the Lagrange multiplier associated with the
volume-fixing constraint in the Wulff construction. It should  F|G. 3. Temperature dependence of the step stiffnesalcu-
be noted that the IPW method not only gives us exactated by the present approach. Open squares and open circles are the
v(6,B) for solvable casegany planar lattice without bond step stiffness 08, step andSg step, respectively. The filled squares
crossing$'?3 but also serves as a fairly accurate approxima-and the filled circles are the experimental data taken from Bartelt,
tion schemé. Tromp, and Williams(Ref. 3. The bold and thin solid curves are

The Ising-model approximant of the present RSOS modethe ones calculated by the Ising model without the temperature
has the coupling constandg,J, (nn coupling$ andJ, (nnn rescaling(Ref. 20. The dot dashed curve is the 1D SOS approxi-

coupling which are related to the RSOS broken-bond enermation(Ref. 7) for Sy step. 1D SOS curve fd; step is omitted for
convenience.

[meV/A] gies ase,=2J,, €,=2Jy, and e,=2J,. All the relevant
sk y ' (E;)- Ising-model gxpressions can be found in Ref. 20. In particu-
lar, the functionD (k) has the form
Y10f ] D(ky,ky)=M—a cosk,—b cosk,—c; cogk,+ky)
5t b —C2 COS(kX—ky), 9
whereM, a, b, c;, andc, are temperature-dependent quan-
00 5(')0 10'00 1500 tities that are explicitly given in Ref. 20. The ansédz leads
T (K] to renormalization of these quantities.
S e r 5| Due to the X1 reponstruction, thgre are two types of
sBI4 b / steps, thes, step(running along the direction and theSg
a4l 2 ] step (running along they direction, whose behaviors are
B " rather different from each other. In fact, there is a large dif-
. 13 I ef 0 ] ference in the kink formation energie§™ and 5", with
the ratio beingek™/ 5"“=90/28* We adopt this ratio, and
2 MA (b). use the refined estimatesf €K™ and the kink-corner cre-
s > . s ation energyc, deduced from the data at 350 °GE™
e B =40 meV(two atom$ andc=60 meV. These values deter-
mine the RSOS parameters to be ¢,
FIG. 2. (@) Temperature dependence g) (6=0,m/2) of the ~ =188 meV(two atomg, e,=100 meV(two atoms and

RSOS model calculated by the PWFRG: Open circles correspond t62= — 30 meVi{two atomg [note that the two-atom length
¥(0)=yg [Ss step of S{001)], and open squares tp(w/2)=y,  corresponds to 7.68 ARef. 1)].

[Sa step of S{001)]. Solid lines are the Ising-model results without ~ In Fig. 1, we show thep-B8#% curves calculated by the
the temperature rescalir@ef. 20. The ratioy,/yg calculated at PWFRG along the direction and the direction at tempera-
676 K (kgT/e,=0.310) is 0.364, and the one at 873 Kzl/e,  ture kgT/e,=0.5. The square-root behavi@B) is clearly
=0.400) is 0.398, which agrees with the observed ratios of step fregeen. Reading off the values of the critical fiehq&and 77§
energieiRefs. 23 and 2)4 for instance, in the recent observation of from these curves drawn at each temperamr@ve 0bta|n
the equilibrium island shape by Ichimiya, Tanaka, and Hayashl,y(o) (Sg step and y(m/2) (S, step as a function ofT,

(Ref. 29, the ratiq is reported to beS/13=0.38_ at 400-600 °C. _which is shown in Fig. @). Then, using Eq(4) we obtain
(b) The rescaled inverse temperature of the Ising model vs the in;

verse temperature of the RSOS model. Open circles correspond {Qe rescaled inverse tem&eratlﬂﬁas shown in Fig. ). At

Sg step (9=0), and open triangles 16, step (= /2). The inset  first sight, in using Eq(4), 8, depends orf. Hence, to verify
shows the rescaling curve for BCSOS modRef. 11) with thee  the validity of “temperature-rescaled Ising-model ansatz,”
being the basic excitation energy of the model. we should checld independence of the rescaled temperature.
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We see in Fig. @) that the two rescaling curves, one fér and co-workers;? the calculated step stiffness is in good
=0 and the other fod= /2, are almost the same, which agreement with the data of Bartelt, Tromp, and Williahns,
supports the validity of the ansatz. dissolving the existing discrepancy. Since the present ap-

The step stiffnesg/(6) of the RSOS model calculated as proach based on the temperature-rescaled Ising-model ansatz

the Ising-model stiffness at the rescaled temperature igave. a wide range of appllicability, it will be helpful in dis-
shown in Fig. 3, where comparison with experineistalso ' ‘cussing fluctuation properties of steps on various crystal sur-

made. One can see a satisfactory agreement between the Cf&(_:es.
culated curve and the experimental one. The authors thank Professor A. Ichimiya and Professor T.
To summarize, in this paper we have proposed an efficientYamamoto for helpful discussions. The authors also thank
method to calculate orientation-dependent step free energyrofessor H. Nakayama and Professor T. Nishinaga for their
on a surface. In the method, we combine the analytical calencouragement. This work was partially supported by the
culation for the Ising-model interface and the numerical-“Research for the Future” program of The Japan Society for
renormalization-group calculations made for the 2D SOShe Promotion of Scienc€ISPS-RFTF97P002D&nd by a
model, where the latter are utilized to determine the temperasrant-in-Aid for Scientific Research from the Ministry of
ture rescaling of the Ising-model approximant of the SOSEducation, Science, Sports and CultiMo. 09640462 A
model. The method is applied to the(@1) surface, which part of the numerical computation was made on the VPP500
gives a consistent explanation for experiments; by the use afystem of the Supercomputer Center, Institute for Solid State
the kink formation energies determined by SwartzentrubePhysics, the University of Tokyo.
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