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We derive a continuum equation for the magnetization of a conducting ferromagnet in the presence of a
spin-polarized current. Current effects enter in the form of a topological term in the Landau-Lifshitz equation.
In the stationary situation the problem maps onto the motion of a classical charged particle in the field of a
magnetic monopole. The spatial dependence of the magnetization is calculated for a one-dimensional geometry
and suggestions for experimental observation are made. We also consider time-dependent solutions and predict
a spin-wave instability for large currents.@S0163-1829~98!50406-7#

Phenomena associated with spin-polarized currents in lay-
ered materials and in Mn oxides have attracted much interest
recently. Efforts are strongly concentrated on theoretical and
experimental investigation of large magnetoresistance, which
is of great value for future applications. Examples of the
effect are giant magnetoresistance~GMR! in layered materi-
als ~see Ref. 1!, spin valve effect for a particular case of a
three-layer sandwich, and colossal magnetoresistance~CMR!
in the manganese oxides~see Ref. 2!.

The dependence of resistivity on magnetic field is ex-
plained conceptually in two steps: first the magnetic field
changes the magnetic configuration of the material and that
in turn influences the current. Of course, as for any interac-
tion there must be a back action of the current on the mag-
netic structure. The existence of such back action was ex-
plored in Refs. 3 and 4. Several current-controlled
microdevices utilizing this principle were proposed.3 In both
papers layered structures with constant magnetization
throughout the magnetic layers were considered. In the
present paper we derive the equations for a continuously
changing magnetization in the presence of a spin-polarized
current. This equation takes the form of a Landau-Lifshitz
equation with an additional topological term, and admits a
useful analogy with a mechanical system. We discuss several
solutions in one-dimensional geometries. Our equations also
can be viewed as a continuum generalization of Refs. 3, 4,
and 6 for layer thickness going to zero.

Consider a current propagating through a conducting fer-
romagnet. Assume that conducting electrons are free and in-
teract only with local magnetizationM . The motion of each
individual electron is governed by the Schro¨dinger equation
with a termJHs•M , whereJH is the value of the Hund’s
rule coupling or in general of the local exchange. Since
spin-up electrons have lower energy a nonzero average spin
of conducting electrons (1/2)^s& develops. An angular mo-
mentum density (\/2)^s& is then carried with the electron
current so we have a flux of angular momentum. This leads
to a nonzero average torque acting on the magnetization
which can deflect it from the original direction~see Fig. 1!.

Propagation of a current in a ferromagnet should be de-
scribed by a system of two equations: one for the motion of
conducting electrons and another for the magnetization. We

derive here the second equation in the limit of small space-
time gradients and present several solutions. The case of very
largeJH→` is considered, meaning a complete polarization
of electron spins in the ferromagnet. This case can be often
realized in experiment. In the layered structures magnetic
layers can be made of a material with large band splitting,
such as Heusler alloys, in which the spin opposite to the
magnetization direction cannot propagate. In the CMR ma-
terials large Hund’s rule coupling is well known2 and consti-
tutes the basis for a double-exchange mechanism governing
their magnetic ordering.

Schrödinger equation:the conducting electrons are con-
sidered noninteracting with an«5p2/2m energy spectrum:
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By writing Eq. ~1! we made an assumption of the ballistic
electron transport which will be discussed at the end of the
paper. We diagonalize the matrixM (r ,t)•sab with a local
spin rotationfa5Uab(r ,t)cb . The spinorf describes the
electron in the coordinate system with thez axis parallel to
the local magnetization. Retaining only the first order terms

FIG. 1. Experimental setting: spin-polarized current enters a
half-infinite magnet from the left. Originally the magnetization is
aligned along the easy-axisniz. However if the incoming electrons
are spin-polarized in a different direction, their interaction with the
magnetization leads to a deflection of the magnetization.
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in gradients and usingf2→0 for JH→` we reduce Eq.~1!
from a system of two equations to one equation forf1[f
spin amplitude:
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The last term in Eq.~2! can be transformed (M5Mn):
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whereAmon(n) is a function satisfying the following equa-
tions:
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If we view n2(r ,t)51 as a sphere,Amon has the simple in-
terpretation of the vector potential due to a magnetic mono-
pole located at the center of the sphere. The monopole term
is known to appear fromU1b¹ iUb1 in the theory of the
Berry phase and is used by other CMR theories in different
forms ~see Ref. 5!. Equation~3! has a form of a Schro¨dinger
equation in a magnetic field expanded up to the linear term in
Aeff, with vector potentialAi

eff5(i\2/4m)Amon
k ¹ in

k. It de-
scribes the motion of the conducting electrons in the given
field n(r ,t). Conversely it gives the interaction between the
current and the magnetization. The form of the equation is
the same as for an electromagnetic interaction, and hence we
can write by analogy
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wherej is an electric current.
Magnetization motionis described by Landau-Lifshitz

equations which are obtained from the energy functional.
After adding Eq.~4! to the usual energy density of a ferro-
magnet with uniaxial anisotropy along the axisn, we obtain

E5E S J~¹M !22K~n•n!21
1

c
j iAi

effDdV, ~5!

with K.0 corresponding to the easy axis andK,0 to the
easy-plane magnets. The equations of motion then take the
form
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where the last term inf is new and describes the effect of the
current. The system of Eq.~3! and Eqs.~6!, ~7! constitutes a
complete set of equations for a magnet with current. Equa-
tions ~6!, ~7!, generalizing the Landau-Lifshitz equation in
the presence of a current, are the central result of this work.

Since magnetization corresponds to angular momentum
L5\/gmBM , an equation of the angular momentum flux
continuity follows from Eq.~7!:
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The flux Lki consists of two parts: one due to the spatial
derivatives of magnetization and another due to the motion
of conducting electrons. In our situation the spins of moving
electrons are parallel ton. That is why their contribution is
factorized in the form (\/2)( j i /e)nk .

Consider the stationary casein an experimental setting
shown on Fig. 1. For the stationary process the rhs of Eq.~6!

vanishes. The current propagates along theŷ direction. All
spatial derivatives reduce to“→¹y . For the reasons imme-
diately following we will denote differentiation with a prime
to get a resemblance to a time derivative in notation¹yn
[n8. From Eq.~7! we get an equation onn(r ,t):

J̃ @n93n#5F X2K̃~n•n!n2QS j

eD @n83n#C3nG , ~10!

with new parameters
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Since n in the stationary case depends ony only, we can
interprety as a fictitious time; together withn251, Eq.~10!
can then be interpreted as the equation of motion for a par-
ticle of a massJ̃ confined to the surface of a unit sphere
and experiencing two forces:~a! a force of magnitude
2K̃(n•n)n parallel to the anisotropy axis, and~b! a Lorentz
force, due to a fieldHmon52Q( j /e)n of a magnetic mono-
pole positioned in the center of the sphere.

The vector product ensures that only tangential compo-
nents of the total force act on the particle. The normal com-
ponent is compensated by the reaction forces. Such an anal-
ogy enables one to visualize the solutions of the original
equation ~10! as trajectories of a massive particle on the
sphere.

The equation of particle motion in the field of a magnetic
monopole~10! has two first integrals.7

W5
J̃n82

2
1

K̃~n•n!2

2
5const. ~11!

Dn5 J̃ ~@n3n8#n!1QS j

eD ~n•n!5const. ~12!

Together they provide a way to solve Eq.~10! for arbitrary
initial conditions. Expressing everything through the Euler
angles$f(y),u(y)% ~defined in Fig. 1! of the vectorn, we
obtain
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The problem foru is solved by the implicit function

y5y~0!1E
u~0!

u du

F~u!
; ~14!

afterwardsf can be found from the first equation in Eqs.
~13!.

Assume that deep inside the magnet (y→`) the magne-
tization resumes its original direction along the anisotropy
axis n→n, n8→0. From this the values of the first integrals
can be found and substituted into Eq.~13!. Natural length
and current scales appear in the calculation:

Lm5AJM2

8K
, j 05

e

\
AKJM2, ~15!

through which the material parametersJ,K,M enter the
problem. Their values for different materials are given in
Table I.
The integral~14! can be then expressed in elementary func-
tions but the formula is long and will be detailed in a later
paper. Instead, the results are presented in Fig. 2. It is seen
that magnetization relaxes in a distance'10Lm , which is
about the width of the domain wall in the material.

In the ‘‘particle picture’’ the motion starts at some point
A on the trajectory, yet to be determined from the boundary
condition on the normal metal-magnet interface, and ends on
the north pole. The particle has just enough energy to climb
the potential hill and come to rest on the top. The particle
trajectory is bent by the monopole field. In the absence of the
monopole the particle would go along the meridian.

The boundary condition on the metal-magnet interface,
y50 is derived from the continuity of the angular momen-
tum flux. Such a condition ensures that there is no torque
concentrated on the boundary consistent with the assumption
of slow spatial changes of the magnetization.

The reflection of the down-spin electron component oc-
curs on the length scale of the electron wavelength. On this
distance magnetization is almost constant and solving the
one-particle reflection problem we find the jump of the elec-
tron flux component in theŷ directionS i[S iy to be

Smetal
electron2Smagnet

electron5S2n~S•n!, ~16!

whereS is the average injected flux. From Eq.~9! the flux
inside the magnet is

L iy5Smagnet
electron1M2J@n03n08# i . ~17!

In the metal, only the electron part of the flux is present.
Then continuity gives the boundary condition

S2~S•n0!n05M2J@n03n08#. ~18!

Note that it involves both the vectorn and its derivative on
the boundary.

Condition ~18! can be transformed into a system of two
algebraic equations and an inequality:

1

2 S p j

j 0
D 2

~12y2!512x2,

p~cosu02xy!512x,

y21x222yx cosu0<sin2 u0 , ~19!

whereS5Se, cosu05e•n, x5n•n0, andy5e–n0. The pa-
rameterp5eS/\ j , pP@0,1/2#, describes the ‘‘degree of po-
larization’’ of the incident electrons. The inequality in Eq.
~19! is a geometrical constraint onx andy arising from their
definition.

The trajectory is determined by three parameters:
( j / j 0 ,p,u0). We can plot a domain of existence of a solution
to ~19! in the 3D space of these parameters. A typical 2D
section of this diagram for constantu0 is shown in Fig. 3. A
solution is absent in regions B and C which means that for
larger currents and spin polarizations no smooth stationary
solution approaching the easy-axis direction at infinity is
available. Either a nonstationary solution or a solution which
never approachesn will be realized in that region.

Time-dependent solutionsof Eq. ~7! can be found in some
cases. We again assume the currentj to be uniform. We
rewrite Eq.~7! throughn(r ,t):

]n

]t
5@g3n#2QS j i

eD¹ in,

TABLE I. Characteristic lengths and currents for magnetic ma-
terials.

Material Lm @Å# j 0 @A/cm2# Ref.

CMR: La0.66Ca0.33MnO3 .130 ,43107 8
Fe 40 1.13108 9
Heusler Alloy: PtMnSb 50–100 ;53107 10

FIG. 2. Magnetization deflection angleu(y). Curves correspond
to different values of current,u05p/2, p50.5. Inset: trajectory of
particle on the sphere forj 5 j 0 . Starting point A corresponds to the
conditions of the main graph.
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g5 J̃Dn1K̃~n•n!n, ~20!

and supposen0(r ) solves@g3n0#50, i.e., represents a static
solution in the absence of the current. Then

n~r ,t !5n0F r1QS j

eD t G5n0S r1
v0Lm

&

j

j 0
t D , ~21!

wherev05K̃ is a solution of Eq.~20! for a nonzero current.
For instance, a moving Bloch wall will be a solution when
current is flowing perpendicular to it~provided pinning is
absent!.

Another particular solution is a spin wave in the presence
of a current. We search for a solution~7! in the form of a
spin wave:$u5const,f5kr 2vt%. This gives the spectrum

v5 J̃ k22Q
j–k

e
1K̃. ~22!

As we see, the current changes the energy gap of spin waves
and shifts the position of the minimum:

vmin5K̃2S Q
j

e
D 2

cos2 a

4 J̃
5v0S 12

j 2

32j 0
2

cos2 a D ,

wherea is the angle betweenj andk andv05K̃ is the gap
of spin wave in an anisotropic ferromagnet. For large enough

current j .4& j 0 an instability occurs. That is also the con-
dition which leads in region C in Fig. 3 to the loss of any
trajectory approachingn at infinity as the integral~14! be-
comes undetermined. A spin-wave instability is also pre-
dicted in other models of spin-polarized transport.6

Impurity scatteringis not taken into account in our deri-
vation of Eqs.~6! and~18!, but we argue that those equations
will not be changed. Collisions without spin flip do not trans-
fer angular momentum and cannot enter in Eq.~6!. Also if
the boundary roughness is smaller than elastic mean free
path l t the change of Eq.~18! must be negligible. Spin-flip
collisions in the ferromagnet do contribute to random angu-
lar momentum exchange with a rate measured by the spin-
diffusion length l s

FM . They can be neglected if the rate of
ordered transfer of angular momentum is much greater, i.e.,
if Lm! l s

FM . Note that forJH→` spin flip cannot happen
because there is no phase space for outgoing electrons with
the wrong spin direction; for finite spin polarization spin
flipping is partially suppressed andl s

FM. l s
NM , wherel s

NM is
the normal metal value. Experiments11 show l t;Lm! l s

NM ,
l s
NM;0.3 mm in Al, which validates our approach.

Discussing possible experimentswe note that the charac-
teristic current is large, but such densities are in fact common
for layered metallic structures andj ; j 0 is experimentally
possible. Then the calculated magnetization deviates by
;20° on the boundary~Fig. 2!. Spin polarized current can
be created by another magnetic electrode which should be
placed within a distanced, l s

NM from the first one, and by
changingd the degree of polarization of injected current can
be controlled. Detection of the effect is difficult, but element-
specific x-ray magnetic circular dichroism12 ~MXCD! could
be used for a quantitative measurement of the deviation on
the boundary. A single layer of a different magnetic element
grown on the boundary will give a separate MXCD signal
from whichu~0! can be extracted. Optical detection methods
could also be possible.
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FIG. 3. A typical 2-D section of the phase diagram plotted for
u05p/3. A: domain of existence of a solution to~19!; B: no solu-
tion, b.c. aty50 can not be satisfied; C: no solution, b.c. aty
→` can not be satisfied and spin wave instability occurs.
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