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The magnetization process of theS5
3
2 antiferromagnetic Heisenberg chain with single-ion anisotropyD at

T50 is investigated by the exact diagonalization of finite clusters and finite-size scaling analyses. It is found
that a magnetization plateau appears atm5

1
2 for D.Dc50.9360.01. The phase transition with respect toD

at Dc is revealed to be of the Kosterlitz-Thouless type. The magnetization curve of the infinite system is also
presented for some values ofD. @S0163-1829~98!51206-4#

One-dimensional~1D! antiferromagnets have various
quantum effects observed even in macroscopic measure-
ments. The Haldane gap,1 which is the lowest excitation gap
of the 1D Heisenberg antiferromagnets with integerS, was
also detected as a transition from a nonmagnetic state to a
magnetic one in high-field magnetization measurements of
Ni~C2H 8N 2) 2NO2~ClO4), abbreviated NENP, which is an
S51 quasi-1D antiferromagnet.2,3 Recently Oshikawa,Ya-
manaka, and Affleck4 suggested that even for the 1DS5 3

2

~half-odd integer! antiferromagnet an energy gap is possibly
induced by a magnetic field and a magnetization plateau ap-
pears atm5 1

2, which corresponds to13 of the saturation mo-
ment. Their argument is based on the analogy to the quantum
Hall effect and the valence bond solid picture forS51.5 The
magnetization plateau is also predicted in some alternating
spin chains6,7, but the mechanism depends on the structure of
the unit cell and the argument for them is not necessarily
valid for uniform chains.

For the anisotropicS5 3
2 antiferromagnetic chain, a varia-

tional approach8 gave the phase diagram of the nonmagnetic
ground state, while few works were done on the magnetic
state. However, it is easy to understand that it should have a
magnetization plateau at least when the system has the posi-
tive and infinitely large single-ion anisotropyD( j (Sj

z)2. Be-

cause in the limit (D→`) every site hasSj
z5 1

2 for the
ground state atm5 1

2 and any magnetic excitations changing
it into Sj

z5 3
2 at a site have a gap proportional toD. For finite

D, however, there is no rigorous proof on the existence of

the gap atm5 1
2, in contrast to the case ofmÞ 1

2, in which the
system is proved to be gapless by the Lieb-Schultz-Mattis
theorem.4,9 Thus some numerical tests are important to check

the existence of the gap and magnetization plateau atm5 1
2 .

The density matrix renormalization group approach4 re-

vealed that the isotropicS5 3
2 antiferromagnetic chain is gap-

less even atm5 1
2 and a critical valueDc should exist as a

boundary between the gapless and massive phases.
In this paper, using the exact diagonalization of finite

clusters up to the system sizeL514 and finite-size scaling
analyses, we investigate theS53/2 antiferromagnetic
Heisenberg chain with the single-ion anisotropy and estimate

the critical valueDc at m5 1
2 and determine the universality

class of the phase transition with respect toD. In addition we
present the ground-state magnetization curve extrapolated to
the thermodynamic limit for some typical values ofD.

Consider the 1DS5 3
2 antiferromagnetic Heisenberg

Hamiltonian with the single-ion anisotropy in a magnetic
field

H5H01HZ ,

H05(
j

Sj•Sj 111D(
j

~Sj
z!2, ~1!

HZ52H(
j

Sj
z ,

under the periodic boundary condition. ForL-site systems,
the lowest energy ofH0 in the subspace where( jSj

z5M ~the
macroscopic magnetization ism5M /L) is denoted as
E(L,M ). Using Lanczos’ algorithm, we calculatedE(L,M )
(M50,1,2, . . . ,3L/2) for even-site systems up toL514. For
finite systems described by the total HamiltonianH, the en-
ergy gap of the magnetic excitation changing the value ofM
by 61 is given by

D6[E~L,M61!2E~L,M !7H. ~2!

If the system is gapless in the thermodynamic limit, the con-
formal field theory~CFT! gives the asymptotic form of the
size dependence of the gap asD6;O(1/L) with fixed
m5M /L. If we defineH1 andH2 as

E~L,M11!2E~L,M !→H1 ~L→`!,

E~L,M !2E~L,M21!→H2 ~L→`!, ~3!

H1 andH2 have the same value and it gives the magnetic
field H for the magnetizationm in the thermodynamic limit.
On the other hand, if the system has a finite gap even in the
limit, neitherD1 nor D2 vanishes forL→`. It implies that
H1 andH2 are different. As a result, a plateau appears for
H2,H,H1 at m5M /L in the ground-state magnetization
curve.
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SinceD6 includes an undecided parameterH in the form
~2!, we take the sumD[D11D2 for the order parameter of
the finite-size scaling, to test the existence of the plateau at

m5 1
2. ~In the massive case, the gapD leads to the length of

the plateau in the magnetization curve in the thermodynamic
limit.! The scaled gapLD of finite systems (L56;14) at

m5 1
2 is plotted versusD in Fig. 1. ForD.2 the scaled gap

obviously increases with increasingL, which means that a
finite gap exists in the thermodynamic limit. For smallD
around the region 0,D,1, the scaled gap looks almost in-
dependent ofL. It implies that the system is gapless at a
finite region. At least the formD;1/L is valid for
0<D<0.8 with the relative error less than 0.3% for each
point. Our precise analysis, however, indicates that theLD
curves for L and L12 have only one intersection in the
region 0,D,2 for eachL. Thus the critical pointDc can be
estimated by the phenomenological renormalization group
equation10

~L12!DL12~D8!5LDL~D !. ~4!

We defineDcL,L12 as theL-dependent fixed point of Eq.~4!
and it is extrapolated to the thermodynamic limit. Fitting the
form DcL,L12;1/(L11) to the data, the extrapolated value
is determined asDc50.9360.01, based on the standard
least-square method. Thus for 0<D,0.93 the system is gap-
less in all the region of 0<m, 3

2, while for D.0.93 the

energy gap is induced just atm5 1
2 and the magnetization

curve has a plateau.
The phenomenological renormalization group can also es-

timate the exponentn defined asD;(D2Dc)
n, using the

L-dependent form

nL,L125 lnFL12

L G Y lnF ~L12!DL128 ~DcL,L12!

LDL8~DcL,L12! G , ~5!

whereDL8(D) is the derivative ofDL(D) with respect toD.
The result showed a diverging behavior ofnL,L12 with in-
creasingL. It implies that D does not have any algebraic
form nearDc . Thus the phase transition is expected to be the
Kosterlitz-Thouless~KT! type,11 which is also consistent
with the existence of a finite gapless region underDc . In
addition a naive argument restricting us to three states

Sz5 3
2,

1
2, and2 1

2 ~neglecting the stateSz52 3
2 because of a

large magnetic field! at each site leads to a mapping of the
Hamiltonian ~1! to a generalized anisotropicS51 model
without magnetic field, which has the KT phase boundary
between the large-D ~singlet! andXY ~planar! phases.8,12

To determine the universality of the phase boundaryDc at

m5 1
2, we estimate the central chargec in the CFT and the

critical exponent h defined as ^S0
1Sr

2&;(21)r r 2h for
D<Dc . The CFT13 predicts the asymptotic form of the
ground state energy per site as

1

L
E~L,M !;e~m!2

p

6
cvs

1

L2 ~L→`!, ~6!

wherevs is the sound velocity which is the gradient of the
dispersion curve at the origin. Thus the central chargec can
be numerically determined by estimating the gradient of the
plots of E(L,M )/L versus 1/L2 and vs . vs is estimated by
the form14

vs5
L

2p
@Ek1

~L,M !2E~L,M !#1OS 1

L2D , ~7!

wherek152p/L is the smallest nonzero wave vector forL
and Ek1

(L,M ) is the lowest level in the subspace specified

by M andk1. The calculatedc for D<Dc at m5 1
2 is shown

in Fig. 3. At the boundaryDc(50.93) our estimation gives
c51.0360.06 and other points also have comparable errors.
Thus we reasonably concludec51 for D<Dc .

Using another prediction of the CFTD6;pvsh/L (L
→`), the exponenth can be estimated by the form14

h5
E~L,M11!1E~L,M21!22E~L,M !

Ek1
~L,M !2E~L,M !

1OS 1

L2D .

~8!

The calculatedh is shown in Fig. 3. Our estimation
h50.2660.01 atD50.93 suggestsh5 1

4 just at the phase
boundary. In addition the estimatedh gradually decreases
with decreasingD. Thus the analysis onh also supports the
KT transition.

FIG. 1. Scaled gapLD versus the single-ion anisotropyD. FIG. 2. L-dependent fixed pointDcL,L12 is plotted versus 1/L to
determineDc in the thermodynamic limit. The estimated value is
Dc50.9360.01.
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The critical behavior forD.Dc can be tested by the
Roomany-Wyld approximation for the Callen-Symanzikb
function15

bL,L12~D !5

11 lnS DL12~D !

DL~D !
D YlnS L12

L
D

FDL8~D !DL128 ~D !

DL~D !DL12~D !
G 1/2 . ~9!

When the gap behaves likeD;exp(2a/(D2Dc)
s), the func-

tion ~9! has the form

bL,L12~D !;~D2DcL,L12!11s ~L→`!, ~10!

in the thermodynamic limit. Fitting the form~10! to the cal-
culated function~9! for eachL, s is estimated as follows:
s8,1050.4660.06, s10,1250.5260.05, and s12,1450.56
60.06. The results are also consistent with the standard KT

transition (s5 1
2). Therefore we conclude the critical behav-

ior near Dc for m5 1
2 is characterized by the universality

class of the KT transition.
Finally, using the method in Refs. 7 and 16, we present

the ground-state magnetization curve in the thermodynamic
limit for several values ofD; D50, 1, 2, and 3. ForD50

the system is isotropic and gapless for 0>m, 3
2. For other

cases, it has the gap atm5 1
2 and the magnetization plateau

appears.

Since the system is gapless except form5 1
2 , H1 andH2

of ~3! correspond to each other and the common value gives
the magnetic fieldH for givenm in the thermodynamic limit.
The size correction of~3! is predicted to decay as;O(1/L),
by the CFT. Thus we can estimateH for given m, using the
extrapolation form

E~L,M11!2E~L,M !;H1O~1/L !

E~L,M !2E~L,M21!;H1O~1/L ! ~11!

with fixed m. ForD53.0 the left hand sides of the form~11!

calculated form50, 1
4 , 1

2 , 3
4 , 1

2 and 5
4 are plotted versus

1/L in Fig. 4. It shows that the form~11! is valid except for

m5 1
2 and the two extrapolated values ofH @the one is ex-

trapolated fromE(L,M11)2E(L,M ) and the other is from
E(L,M )2E(L,M21)] correspond to each other well. Thus
we take the mean value of the two for the magnetic field for

eachm. Only for m5 1
2 areH1 andH2 obviously different

and the size correction decays faster than 1/L, as shown in
Fig. 4, because the system has a gap. Then we estimate
H1 and H2 by the Shanks transformation17

Pn85(Pn21Pn112Pn
2)/(Pn211Pn1122Pn) for a sequence

$Pn%. Applying it twice to E(L,M11)2E(L,M ) and

FIG. 3. Estimated central chargec and exponenth for D<Dc .
At D5Dc ~50.93! our estimation givesc51.0360.06 and
h50.2660.01. We concludec51 for D<Dc and h51/4 at
D5Dc . FIG. 4. E(L,M11)2E(L,M ) andE(L,M )2E(L,M21) plot-

ted versus 1/L with fixed m for D53. The dashed curves are guides
to the eye. The extrapolated points form51/22 and m51/21
corresponds to the results of the Shanks transformationH254.17
andH155.19, respectively.

FIG. 5. Ground-state magnetization curves in the thermody-
namic limit for D50, 1, 2, and 3.
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E(L,M )2E(L,M21), respectively, forL56, 8, 10, 12,
and 14, results inH155.1960.07 andH254.1760.07,
which are indicated as the extrapolated points in Fig. 4. The
extrapolated valueH for other values ofD can be estimated
in the same way. Only forD50d0, H1 andH2 correspond

even atm5 1
2 . The ground-state magnetization curve in the

thermodynamic limit is given by all the extrapolated values
of H for eachm. We present the results forD50, 1, 2, and
3 in Fig. 5, where we also used the values ofH for
m5 1

3,
2
3,

5
6,

7
6, and 4

3 which are estimated by the same
method as mentioned above. The curve has a plateau at
m5 1

2 (H2,H,H1) for D51, 2, and 3, in contrast to the
case ofD50 which does not have any nontrivial behaviors.

Among those curves in Fig. 5,D51 is the most important
in terms of experiments to detect the plateau, becauseD;J
might be realized in some real materials. The candidates of

the quasi-1DS5 3
2 antiferromagnet are CsVCl3 ~Ref. 18! and

AgCrP2S6.19 In particular for AgCrP2S6 a large anisotropic
effect was observed in the magnetization measurement in
low fields. Higher-field measurements of those materials
would be interesting. Note that forD.Dc the ground state is

gapless for H<H2 and H>H1 , while massive for
H2,H,1 . In the quasi-1D systems, some canted Ne´el or-
ders occur in the 1D gapless phase, due to interchain inter-
actions. Thus a reentrant transition might be observed in the
magnetization measurement; with increasingH the Néel or-
der disappears atH2 and appears again atH1 at sufficiently
low temperatures.

In summary the finite cluster calculation and size scaling

study showed that the anisotropicS5 3
2 has the magnetiza-

tion plateau atm5 1
2 for D.Dc50.93 and the phase transi-

tion with respect toD belongs to the same universality class
as the Kosterlitz-Thouless transition.

We wish to thank Professor K. Nomura for fruitful dis-
cussions. We also thank the Supercomputer Center, Institute
for Solid State Physics, University of Tokyo for the facilities
and the use of the Fujitsu VPP500. This research was sup-
ported in part by Grant-in-Aid for the Scientific Research
Fund from the Ministry of Education, Science, Sports and
Culture ~08640445!.

1F. D. M. Haldane, Phys. Lett. A93, 464 ~1993!; Phys. Rev. Lett.
50, 1153~1983!.

2K. Katsumataet al., Phys. Rev. Lett.63, 86 ~1989!.
3Y. Ajiro et al., Phys. Rev. Lett.63, 1424~1989!.
4M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett.78,

1984 ~1997!.
5I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Commun.

Math. Phys.115, 477 ~1988!.
6K. Hida, J. Phys. Soc. Jpn.63, 2359~1994!; K. Okamoto, Solid

State Commun.98, 245 ~1995!; K. Totsuka, Phys. Lett. A228,
103 ~1997!.

7T. Tonegawa, T. Nakao, and M. Kaburagi, J. Phys. Soc. Jpn.65,
3317 ~1996!.
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