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Magnetization plateau in an S=3 antiferromagnetic Heisenberg chain with anisotropy
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The magnetization process of tSec% antiferromagnetic Heisenberg chain with single-ion anisotriopst
T=0 is investigated by the exact diagonalization of finite clusters and finite-size scaling analyses. It is found
that a magnetization plateau appearsnat 3 for D>D.=0.93+0.01. The phase transition with respectto
atD. is revealed to be of the Kosterlitz-Thouless type. The magnetization curve of the infinite system is also
presented for some values Df [S0163-182¢98)51206-4

One-dimensional (1D) antiferromagnets have various the critical valueD, at m= % and determine the universality
quantum effects observed even in macroscopic measurgiass of the phase transition with respecbtoin addition we
ments. The Haldane gapyhich is the lowest excitation gap present the ground-state magnetization curve extrapolated to

of the 1D Heisenberg antiferromagnets with inte§emwas  the thermodynamic limit for some typical values Df

also detected as a transition from a nonmagnetic state to a Consider the 1DS=2 antiferromagnetic Heisenberg

magnetic one in high-field magnetization measurements 0I‘ilamiltonian with the single-ion anisotropy in a magnetic
Ni(C;HgN 2) 2NO,(CIO,), abbreviated NENP, which is an q|q

S=1 quasi-1D antiferromagnét Recently Oshikawa,Ya-

manaka, and Afflecksuggested that even for the 15-3 H=Ho+Hz,

(half-odd integer antiferromagnet an energy gap is possibly

induced by a magnetic field and a magnetization plateau ap-

pears aim= 3, which corresponds té of the saturation mo- HO:EJ-: S St DE}_: (SJ'Z)Z' (1)

ment. Their argument is based on the analogy to the quantum

Hall effect and the valence bond solid picture &+ 1.° The

magnetization plateau is also predicted in some alternating Hz= —HE sz,

spin chain&’, but the mechanism depends on the structure of

the unit cell and the argument for them is not necessarilyunder the periodic boundary condition. Horsite systems,

valid for uniform chains. the lowest energy of{, in the subspace wheig, sz= M (the
For the anisotropiS= 2 antiferromagnetic chain, a varia- macroscopic magnetization isn=M/L) is denoted as

tional approachgave the phase diagram of the nonmagneticE(L,M). Using Lanczos’ algorithm, we calculat&(L,M)

ground state, while few works were done on the magneti¢M =0,1,2 . .. ,3./2) for even-site systems up ko= 14. For

state. However, it is easy to understand that it should have finite systems described by the total Hamiltonidnthe en-

magnetization plateau at least when the system has the posirgy gap of the magnetic excitation changing the valuslof

tive and infinitely large single-ion anisotro@Ej(SjZ)z. Be- by *+1 is given by

cause in the limit D—x) every site hasS/=3 for the - _

ground state am= 2 and any magnetic excitajltions changing A-=E(LM=1)~E(L,M)FH. @

it into szzg at a site have a gap proportionallo For finite  If the system is gapless in the thermodynamic limit, the con-

D, however, there is no rigorous proof on the existence oformal field theory(CFT) gives the asymptotic form of the

the gap am=1, in contrast to the case af# , in which the ~ SiZé dependence of the gap as.~O(1lL) with fixed

system is proved to be gapless by the Lieb-Schultz-Matti€n=M/L. If we defineH . andH_ as

theorent:® Thus some numerical tests are important to check E(LLM+1)—E(L,M)—H, (L—o),
the existence of the gap and magnetization platean=at.
The density matrix renormalization group apprdhak- E(L,M)-E(LLM—1)—H_ (L—x), 3

vealed that the isotropi8= 2 antiferromagnetic chain is gap- H, andH_ have the same value and it gives the magnetic
less even am=3 and a critical valueD . should exist as a field H for the magnetizatiom in the thermodynamic limit.
boundary between the gapless and massive phases. On the other hand, if the system has a finite gap even in the

In this paper, using the exact diagonalization of finitelimit, neither A . nor A _ vanishes folL — . It implies that
clusters up to the system site=14 and finite-size scaling H, andH_ are different. As a result, a plateau appears for
analyses, we investigate th&=3/2 antiferromagnetic H_<H<H, atm=M/L in the ground-state magnetization
Heisenberg chain with the single-ion anisotropy and estimateurve.
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FIG. 1. Scaled gapA versus the single-ion anisotrofy. FIG. 2. L-dependent fixed poid., | ., is plotted versus 1/to

determineD. in the thermodynamic limit. The estimated value is
SinceA .. includes an undecided paramekeiin the form  D.=0.93+0.01.
(2), we take the sumd=A, + A _ for the order parameter of
the finite-size scaling, to test the existence of the plateau az—3 1 and—1 (neglecting the stat&?= — 2 because of a

m= 3. (In the massive case, the gapleads to the length of large magnetic fieldat each site leads to a mapping of the
the plateau in the magnetization curve in the thermodynamiéiamiltonian (1) to a generalized anisotropi=1 model
limit.) The scaled gajp A of finite systems I(=6~14) at  without magnetic field, which has the KT phase boundary

m=1 is plotted versu® in Fig. 1. ForD>2 the scaled gap between the larg® (singley andXY (planaj phases:'?
obviously increases with increasig which means that a 10 determine the universality of the phase boundagyat
finite gap exists in the thermodynamic limit. For smBIl m=3, we estimate the central chargen the CFT and the
around the region €D <1, the scaled gap looks almost in- critical exponent» defined as(S;S; )~(—1)r~7 for
dependent oL. It implies that the system is gapless at aD<D,. The CFT® predicts the asymptotic form of the
finite region. At least the formA~1/L is valid for  ground state energy per site as

0=<D=0.8 with the relative error less than 0.3% for each

point. Our precise analysis, however, indicates thatlihe 1 T 1

curves forL and L+2 have only one intersection in the [ELM)~e(m—zcCosiz (L—==), ©®)
region 0<D <2 for eachL. Thus the critical poinD. can be

estimated by the phenomenological renormalization groupgvherevs is the sound velocity which is the gradient of the
equatiort® dispersion curve at the origin. Thus the central chargan

be numerically determined by estimating the gradient of the
(L+2)A ;2(D")=LA (D). (4)  plots of E(L,M)/L versus 1.2 andvs. v is estimated by

the formt*
We defineD,, | ., as thelL-dependent fixed point of E¢4)

and it is extrapolated to the thermodynamic limit. Fitting the L 1
form D¢ | +,~1/(L+1) to the data, the extrapolated value vs=ﬂ[Ek1(L,M)—E(L,M)]+O F)’ (7)

is determined adD.=0.93+0.01, based on the standard

least-square method. Thus fo@® < 0.93 the system is gap- wherek,=2#/L is the smallest nonzero wave vector for
less in all the region of &m<3, while for D>0.93 the and Ey,(L,M) is the lowest level in the subspace specified

energy gap is induced just at=3 and the magnetization by M andk;. The calculatea for D<D, at m=3 is shown
curve has a plateau. in Fig. 3. At the boundanD .(=0.93) our estimation gives
The phenomenological renormalization group can also ese=1.03+0.06 and other points also have comparable errors.
timate the exponent defined asA~(D—D.)", using the  Thus we reasonably concluge=1 for D<D,.
L-dependent form Using another prediction of the CFA.~mvgn/L (L
— ), the exponenty can be estimated by the fotfh

n L+2 n (L+2)A[5(Dey 1 +2) 5
v =In|—— 7 ) —1)—
LL+2 LA{(Dercs2) o= E(L,M+1)+E(L,M—-1)-2E(L,M) i
. o . Ex,(L.M)—E(L,M) L?)"
whereA| (D) is the derivative ofA| (D) with respect taD. ! ®)

The result showed a diverging behavior mf, ,, with in-

creasingL. It implies thatA does not have any algebraic The calculateds is shown in Fig. 3. Our estimation
form nearD. . Thus the phase transition is expected to be thep=0.26+0.01 atD=0.93 suggests;= 3 just at the phase
Kosterlitz-Thouless(KT) typel! which is also consistent boundary. In addition the estimategl gradually decreases
with the existence of a finite gapless region un@gr. In  with decreasind. Thus the analysis ow also supports the
addition a naive argument restricting us to three state&T transition.
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FIG. 3. Estimated central chargeand exponent; for D<D.. m=0 0.0 ""’e'e—e—_e_—__o
At D=D. (=0.93 our estimation givesc=1.03+0.06 and 000  0.05 %)E 015 020

7=0.26£0.01. We concludec=1 for D<D. and »=1/4 at
D=D..

The critical behavior forD>D, can be tested by the
Roomany-Wyld approximation for the Callen-Symangk
function®®

(AL+2(D) / L+2
1+ In
A (D) L
ﬁL,L-FZ(D): , , 1/2 (9)
A[(D)A[,,(D)
A (D)A;2(D)

When the gap behaves like~exp(—a/(D—D.)”), the func-
tion (9) has the form

BLi+2(D)~(D=D¢p 427 (L—w), (10

in the thermodynamic limit. Fitting the forr(l0) to the cal-
culated function(9) for eachlL, o is estimated as follows:
0-8,10:0'4&0'06! 0'10‘12:0.5210.05, and 0'12'1420.56

*+0.06. The results are also consistent with the standard KT

FIG. 4.E(L,M+1)—E(L,M) andE(L,M)—E(L,M —1) plot-
ted versus 1/ with fixed m for D= 3. The dashed curves are guides
to the eye. The extrapolated points for=1/2— and m=1/2+
corresponds to the results of the Shanks transformadior 4.17
andH, =5.19, respectively.

E(L,M+1)—E(L,M)~H+O(1L)

E(L,M)—E(L,M—1)~H+O(1L) (12)

with fixed m. For D = 3.0 the left hand sides of the for(h1)

calculated form=0, %, 3, 2, 1 and 2 are plotted versus

1/L in Fig. 4. It shows that the forrfil1) is valid except for
m=3 and the two extrapolated values idf [the one is ex-
trapolated fronE(L,M +1)—E(L,M) and the other is from
E(L,M)—E(L,M—1)] correspond to each other well. Thus
we take the mean value of the two for the magnetic field for

eachm. Only for m=3 areH, andH_ obviously different

and the size correction decays faster than, Bs shown in

Fig. 4, because the system has a gap. Then we estimate
H, and H_ by the Shanks transformatibn
P/=(Pn_1Pns1— P2)/(P,_1+P,.1—2P,) for a sequence
{P,}. Applying it twice to E(L,M+1)—E(L,M) and

transition (= 1). Therefore we conclude the critical behav- 157 |
ior near D, for m=3 is characterized by the universality ; /‘ v
class of the KT transition. s X
Finally, using the method in Refs. 7 and 16, we present 10 ’.’ N
the ground-state magnetization curve in the thermodynamic J X/ v
limit for several values 0oD; D=0, 1, 2, and 3. Fob=0 s D=0
- *-—-—- L ] =
the system is isotropic and gapless for th<3. For other ArA e Dt
cases, it has the gap at= 3 and the magnetization plateau 051 /://,x et D:2
ars % =
appe . . . "{d-' ~—e D=3
Since the system is gapless exceptrfor 5, H, andH _
of (3) correspond to each other and the common value gives o.o0 A 5-0 10' 5

the magnetic fieldH for givenm in the thermodynamic limit.
The size correction of3) is predicted to decay as O(1/L),
by the CFT. Thus we can estimdtefor givenm, using the
extrapolation form

FIG. 5. Ground-state magnetization curves in the thermody-
namic limit forD=0, 1, 2, and 3.
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gapless forH<sH_ and H=H,, while massive for
H_<H<, . In the quasi-1D systems, some cantecN=-

which are indicated as the extrapolated points in Fig. 4. Thelers occur in the 1D gapless phase, due to interchain inter-

extrapolated valuél for other values oD can be estimated
in the same way. Only fob =0dg, H, andH _ correspond

actions. Thus a reentrant transition might be observed in the
magnetization measurement; with increasihdghe Neel or-

even atm=3. The ground-state magnetization curve in theder disappears &1 _ and appears again B, at sufficiently
thermodynamic limit is given by all the extrapolated valueslow temperatures.

of H for eachm. We present the results f@=0, 1, 2, and
3 in Fig. 5, where we also used the values Hdf for

_1 2 5 7
m= 3 3 B 67
method as mentioned above. The curve has a plateau
m=3 (H_<H<H,) for D=1, 2, and 3, in contrast to the

case ofD =0 which does not have any nontrivial behaviors.

Among those curves in Fig. B =1 is the most important
in terms of experiments to detect the plateau, bec@usd

In summary the finite cluster calculation and size scaling
study showed that the anisotropie=3 has the magnetiza-

4 . .
and 5 which are estimated by the same 4, plateau am= 3 for D>D,=0.93 and the phase transi-

ﬁ%n with respect td belongs to the same universality class
as the Kosterlitz-Thouless transition.
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