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We have solved the negative-sign problem in a general frustrated double-spin-chain system, namely theJ0-
J1-J2-J3 model. This is made possible by changing the representation basis from the conventionalsz basis to
a dimer basis that has the spin-reversal symmetry. The necessary condition for the problem to disappear in this
new basis isJ01J1<J3. Frustration is the origin only in the conventionalsz basis. We demonstrate the
efficiency of this new basis at the transition point between the gapless spin-fluid phase and the gapped dimer
phase.@S0163-1829~98!51506-8#

The class of low-dimensional quantum spin systems is
now attracting interest both theoretically and experimentally.
This interest originates in the possibility of the superconduc-
tivity upon doping carriers to an insulator that has a spin gap
above the ground state.1,2 Spin-ladder models, or more gen-
erally double-spin-chain models, are known as such candi-
dates. Progress of this field is stimulated by syntheses of
various corresponding materials.3–7 For example, the mag-
netic susceptibility of KCuCl3 ~Ref. 5! shows a spin-gap
behavior, which can be explained by a frustrated double-
spin-chain model. In the analysis of such an experiment, it is
necessary to estimate the strength of interaction bonds of the
model Hamiltonian.8–11 This inverse problem is generally
difficult both analytically and numerically.

Numerical methods may serve as a powerful tool of cal-
culating the thermodynamic quantities. All the eigenvalues
of a finite system can be obtained by the numerical diago-
nalization technique. Then, any quantity at any temperature
is calculated, however, the size of the system is seriously
restricted, e.g., up to sixteenS51/2 spins. One is sometimes
misled to the wrong conclusion by the spurious finite-size
effect or by an improper choice of the numerical method.12 It
is desired to develop a reliable method that is free from the
finite-size effect. The quantum Monte Carlo~QMC! method
can handle much larger systems, if there does not exist the
negative-sign problem.1,10 Because of this difficulty, the ap-
plication of the QMC method is also restricted. This problem
appears in the frustrated spin systems and in the electron
systems. Here, we only deal with the spin case.

The local Boltzmann weight may take a negative value in
the simulations with the negative-sign problem. Thus, one
uses its absolute value for the spin update. The problem oc-
curs when the original system is not equivalent to the system
defined by taking the absolute value of the local weights. In
such a case, we must reweight both the number of steps and
the sum of the physical quantity to obtain the correct expec-
tation value. The reweighting becomes difficult at low tem-
peratures or for large system sizes, and then the QMC mea-
surements break down. Though several techniques have
already been proposed to relax the negative-sign
problem,13–15 the problem still remains. The negative-sign
problem should be overcome completely to get meaningful
numerical data that can be compared directly with the experi-
ment.

In this paper, we demonstrate that the negative-sign prob-
lem is completelyremoved for the first time in a nontrivial
frustrated spin system. The key idea is the use of the spin-
reversal symmetry applied to the restructuring method.15 The
representation basis is changed from the conventionalsz ba-
sis to the dimer basis as will be explained below. The change
of the basis has been rather ignored until quite recently, since
the basis is sufficient if it is normal, orthogonal, and com-
plete in principle. We focus on this degree of freedom.
There, a guide to a proper choice is the symmetry of the
system.

We consider the generalized double-spin-chain system de-
fined by its next-nearest-neighbor interactions,J0 and J1,
and by the alternating nearest-neighbor interactions,J2 and
J3, as depicted in Fig. 1. This model can describe various
systems. For example, the dimer-fluid transition point, where
the spin-Peierls material CuGeO3 ~Ref. 3! is suggested to
realize,8,9 is (J0 ,J1 ,J2 ,J3)5(0.2411,0.2411,1,1).16 We di-
vide this Hamiltonian into two parts for the Suzuki-Trotter
decomposition.
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Then, the total Boltzmann weight,^cuexp@2bH#uc&, is de-
composed into the product of the local weights as
exp@2bH#.(exp@2bH1 /m#exp@2bH2 /m#)m.

FIG. 1. Shape of the general double-spin-chain model we treat
in this paper.
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We propose the representation basisuc& in the following
manner. Two spins ofsn andtn are coupled and considered
as a unit. This dimer unit takes four states associated with the
sz eigenvalues of each spin,usz,tz&. Then, these four states
are restructured so as to become eigenstates of the spin-
reversal operatorR:

v15~ u↑,↑&1u↓,↓&)/A2, ~3!

v25~ u↑,↑&2u↓,↓&)/A2, ~4!

v35~ u↑,↓&1u↓,↑&)/A2, ~5!

v45~ u↑,↓&2u↓,↑&)/A2. ~6!

Here, ↑ and ↓ denote thesz eigenstates. Direct product of
these four states spans the whole phase space. In this new
basis, three interaction bonds,J0 , J1, and J3, become a
single effective bond connecting the neighboring dimer
units, and theJ2 bonds only contribute to the inner energy of
the dimer units. It is quite striking that this basis transforma-
tion alone removes the negative-sign problem. Let us call
this basis a ‘‘dimer-R’’ basis hereafter.

We first write down the matrix element ofhn . The
16316 square matrix is block-diagonalized by the spin-
reversal symmetry into four 434 sub-blocks:
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where a5J01J11J3, b52J01J11J3, c5J02J11J3,
andd52J02J11J3.

These matrix elements include negative signs and the
negative-sign problem still seems to exist. However, we can
prove by the following nonlocal unitary transformation17–19

that these negative signs do not cause the problem. This
transformation is an adaptation of the Kennedy-Tasaki
transformation17 of theS51 antiferromagnetic~AF! Heisen-
berg chain to theS51/2 double-spin-chain systems. It trans-
forms the hidden-AF order into the ferromagnetic order by
the spin-reversal operation, and is defined byU:
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whereSn5sn1tn . Then, the local Hamiltonianhn is trans-
formed as,
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Each matrix element of this transformed Hamiltonian be-
comes the one whose negative sign is taken away from the
original one. Note that the signs of the interactions,J0 , J1,
and J3, are changed. All the matrix elements become posi-
tive if all the a, b, c, andd are positive. This is when

d52J02J11J3>0 ~10!

for the AF positive values ofJ0, J1, and J3. The above
condition does not restrict the value ofJ2, since it only con-
tributes to the diagonal matrix elements.

Why does the negative-sign problem vanish by this basis
change? The answer may be found by considering why it
vanishes in the nonfrustrated systems in thesz basis. This is
because we can remove negative signs of the local Boltz-
mann weights by the following transformation. First, we de-
compose the system into bipartite sublattices, so that a spin
on one sublattice only interacts antiferromagnetically with
spins on the other sublattice. This decomposition is only pos-
sible in nonfrustrated systems. Then, we apply the 180° ro-
tation of the spin space along thesz axis, si

x→2si
x and

si
y→2si

y , for i belonging to one sublattice. This transforma-
tion does not influence the physics, but changes the negative
off-diagonal matrix elements to the positive values. There-
fore, the negative-sign problem does not appear, since the
original system is equivalent to the system defined by the
absolute values of the local weights. Here, it should be no-
ticed that this transformation preserves the symmetry of the
basis. In the present dimer-R basis, the nonlocal unitary
transformation defined by Eq.~7! works the same as the
rotational transformation stated above. This transformation
alternatively reverses the spin state depending on the
hidden-AF order, and also preserves the symmetry of the
basis. The unitarity guarantees the equivalence of the origi-
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nal system to the system actually simulated. It can be said
that the necessary condition for the negative-sign problem to
disappear is dependent on the symmetry of the basis and its
preserving transformation. The statement, ‘‘the negative-sign
problem occurs in the frustrated spin systems,’’ is only valid
in the conventionalsz basis. General proof of this idea is left
for the future.

Before the demonstration of the advantage of the present
method, we point out several important notices briefly. De-
tails will be reported elsewhere. Since the negative-sign
problem has been removed by using the spin-reversal sym-
metry, we have to be careful about the operation that breaks
this symmetry; the negative-sign problem appears again, if
we apply the uniform magnetic field. In our new representa-
tion, the matrix element for the fieldH only takes the non-
vanishing value between v1 and v2, i.e.,
^v1u2H(s i

z1t i
z)uv2&52H. Another point is that we cannot

observe the uniform magnetic susceptibility from the fluctua-
tion of the magnetization, since it does not fluctuate but al-
ways remains zero. In other words, a local expectation value
of the magnetization vanishes for a nonvanishing Boltzmann

weight, and vice versa. Therefore, we have considered the
following two different methods of calculating the suscepti-
bility. The first one is that we take all the configurational
summation over a single Trotter layer to deduce the expec-
tation value of (( iSi

z)2 in the measurement stage in each
Monte Carlo step. This partial trace-out can be done by mul-
tiplying the 434 transfer matrix along the real space direc-
tion. The second one is the numerical differentiation of the
magnetization when we apply the sufficiently small magnetic
field. Of course, the negative-sign problem appears in this
case, but the problem is not so serious if the field is small
enough. For example, the typical negative-sign ratio at the
temperatureT/J250.04 is only 0.5 whenH/J250.02 in the
system with 34 spins. Thus, we can calculate the susceptibil-
ity without any difficulty.

We can now perform the QMC simulation without the
negative-sign problem if the condition~10! is satisfied. The
numerical results are presented for the system at the dimer-
fluid transition point, where J05J1, J25J3, and
J1 /J250.2411. The boundary conditions are set open. The
temperatures where we actually perform simulations are
pointed out by arrows within figures. The other data are ob-
tained by the reweighting method.13 We have done the Trot-
ter extrapolations by using five or six different Trotter num-
bers ranging fromb/m50.5 to 0.2. The number of the
Monte Carlo steps is five millions divided into ten parts to
estimate the deviations. The typical correlation time for the
energy is about five steps forT/J250.2 andm524 and that
for the susceptibility is less than 1 step.

We first check our QMC simulation in the system with ten
spins. The uniform susceptibility and the specific heat are
calculated. The susceptibility data are taken by using the first
method. Figure 2~a! shows the data by using the dimer-R
basis, and Fig. 2~b! shows those by thesz basis. The exact
results obtained by the numerical diagonalization are also
plotted by lines. Agreements of the data in our method are
excellent down to the temperatureT/J250.02 for both quan-
tities. Error bars are mostly smaller than symbols On the
other hand, the QMC measurement in thesz basis begins to
crash already atT/J250.1. This reveals that the conven-

FIG. 2. ~a! The susceptibility~circles! and the specific heat~tri-
angles! for the system with ten spins calculated by using the present
dimer-R basis. The exact results obtained by the numerical diago-
nalization are denoted by lines.~b! Those of the same system cal-
culated by using the conventionalsz basis. Arrows indicate the
temperatures at which the simulations are actually performed. The
others are estimated by the reweighting method.

FIG. 3. The susceptibility~circles! and the specific heat~tri-
angles! for the system with 34 spins calculated by using the dimer-
R basis. Arrows indicate the temperatures at which the simulations
are actually performed.
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tional QMC method cannot be applied even to a small sys-
tem that can be numerically diagonalized.

Figure 3 shows the results of the system with 34 spins for
T/J2.0.04, which cannot be obtained by any other method.
The susceptibility was calculated both by the transfer matrix
and by the numerical differentiation of the magnetization.
The magnitude of the uniform magnetic field for the latter
case isH/J250.02. Both methods give consistent results
within the error bars, and we have adopted the one whose
error bar is smaller than the other one. The data ofT/J2>0.2
are obtained by the transfer matrix, and the others are by the
differentiation. The susceptibility grows as the temperature
decreases, i.e., the pseudogap caused by the finite size of the
system seems to be smaller than the temperatures we have
simulated. The specific heat was obtained in the simulation
at zero field. The error bars for this value are also negligible.
Rather large ones, though they are within the symbols, are
solely from the reweighting error. We believe that the tem-
perature can be still lowered belowT/J250.04, if one can
have enough CPU time to handle the simulations of large
Trotter numbers.

We have presented a new possibility of the quantum
Monte Carlo simulation in the one-dimensional frustrated
spin systems. The negative-sign problem is completely re-
moved in a wide range of the parameter space by using the

representation basis that has the spin-reversal symmetry.
This basis change alone is responsible for solving the sign
problem. The nonlocal unitary transformation of Eq.~7! is
only used to prove that the negative signs disappear. The
present method makes it possible to perform large-scale
simulations within the restricted computational facilities. All
the numerical results presented in this paper were obtained
by a DEC Alpha-433 personal computer in two weeks. These
data will not be obtained even by any supercomputer, if one
uses the conventionalsz basis. As for the negative-sign prob-
lem in two dimensions, the necessary condition for the prob-
lem to disappear should take a different form independent
from frustration, if one uses the basis with a different sym-
metry. In such a situation, one should take into account the
relevant symmetry of the system as was successful in the
present case.
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