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Electron self-energy in quantum dots
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The self-energy of an electron in a quantum dot with two electronic energy levels is calculated in the
self-consistent Tamm-Dancoff approximation. The electron is coupled to dispersionless bulk modes of optical
phonons of GaAs. The joint spectral density, characterizing the relaxation rate of the electron between the
excited and the ground state, is presented. The relation of the results to the issue of the so-called phonon
bottleneck, to the width of the spectral lines of the optical transitions, and to the hot-electron relaxation in small
qguantum dots, is discussd60163-18208)51404-X

Semiconductor quantum dots are significant solid-statealence-band states. The electrons are assumed to be coupled
objects due to their discrete structure of the electronic dento dispersionless longitudinal-optical phonons of the GaAs
sity of states. This property makes them attractive for applibulk crystal, neglecting other electronic couplings like the
cations in semiconductor optoelectronics. Recent observalectron-electron interaction and electron-acoustic-phonon
tions of the hot-electron relaxation in quantum dots lead to &oupling. For simplicity, a quantum dot of cubic shape is
discussion of a phonon bottleneck effétldue to which the Considered, with GaAs inside the dot and with infinite elec-
carriers are expected to Stay a |0nger time at the exciteaonic potential outside the dot. The Hamiltonian of the Sys-
states after being excited by a light pulse, than is usual ifem then reads
structures having higher dimensionality. From the simple
perturbation calculation point of view, the existence of the p_» EnCl,aCn,(ﬁE ELObébq"_ > Aq®(n,m,q)
phonon bottleneck is regarded as closely connected with the no q mno.q
law of energy conservation in the process of the electron- bt
phonon scattering from an excited state to a lower-energy X(bg=b=¢)Ch,oCm.o @
state. In an aggregate of quantum dots \_/vith a spread of d@thered is the form factor
sizes the electronic energy-level separations are expected to
only rarely match the phonon energy, especially in cases A
when the electrons interact primarily with the practically dis- ®(n,m,q)= f d3r iy (Ne'd y(r), v
persionless longitudinal-opticdlLO) phonons.

In quantum dots the electron-LO-phonon relaxation chanin which the integration spreads over the volume of the dot.
nel is very intensivein a narrow interval of the electronic ,(r), withr=(ry,r,,rs), are unperturbed electronic eigen-
energy given by the energy conservation law. The hotfunctions of the spatial motion in the quantum dot. The op-
electron relaxation rate may then be as high a¥ $0%.’ eratorc,, , annihilates an electron in the state with the spatial
One can thus expect a significant role to be played by thenotion indexn, spino, and energye,. by is the annihila-
electron-energy collision broadening due to the electron-LOtion operator of bulk LO phonon with enerdyi =% .

phonon coupling:® The electron-phonon coupling constarfis

Recently, Inoshita and Sakakicalculated the energy de-
pendence of the electronic spectral density in the “ladder” ie Elo ———
approximation and reported a negligible collisional broaden- Aq=— E 2eoV VKo T Ko ()

ing of the electronic energy levels. In their wotihe Dyson
equation for the electronic self-energy was solved numeriwhereq=|q| is the magnitude of the phonon wave vector,
cally in a model of the parabolic quantum dot, consideringand V is the volume of the sample-e is the electronic
the four lowest electronic energy levels. It is the aim of thecharge,eq is permittivity of free space, and., and x, are
present paper to calculate the electronic self-energy in thbigh-frequency and static dielectric constants. It should be
self-consistent Tamm-Dancdtf approximation, confining emphasized that in the heterostructures of the type of
the electron coupling to the interaction with the dispersion-GaAs/AlLGa _,As the approximation of the optical lattice
less longitudinal-optical phonons of a bulk GaAs crystal, andvibrations of the structure by the bulk modes of GaAs crystal
to find an approximation under which an analytical solutionmay be very appropriat€.In other cases, especially those of
of the Dyson equation can be obtained. Also, it is the aim ofhanocrystals dispersed in a glass matrix, or in a liquid or gas,
this work to point out some important details of the elec-the effects brought about by the presence of the interfaces,
tronic self-energy and to discuss the relation of the characinto the coupling of electrons with the lattice vibrations, have
teristic features of the self-energy to the optical properties ofo be given more detailed attention.
quantum dots and, in comparison with the work in Ref. 10, The first term on the right-hand side of Ed) gives the
to pay more attention to the hot-electron relaxation in smalHamiltonian of unperturbed electrons, with the unperturbed
guantum dots. electronic energiek,,. In the basis of the electronic eigen-
In the model of the quantum dot only the electrons will bestates in the quantum dot the electronic Green’s function can
considered, neglecting the dynamics of the holes in thegenerally be considered as a matrix. Neglecting in this work
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some higher-order effects that the electron-phonon coupling In the present calculation the real part of the self-energy,
may have on the electronic energies in the interacting sysReM, ,(E) will be neglected in the expressioM, ,(E)

tem, we shall confine ourselves to considering only diagonak ReM,, ,(E)—i Im M, ,(E), Im M, ,(E)=0. Only the
terms corresponding to the spatial quantum nunmbédsing  imaginary part

then Matsubara’s Green'’s functions, as they are defined in

Ref. 14, the self-energy correctiv, , to the unperturbed L o(E)=—Im My .(E) 0
energy E,, in the self-consistent Tamm-Dancoff approx- will be kept. Neglecting the real part of the electronic self-
imation!® is at the temperatur& of the lattice energy is done on the grounds of the intuitive expectation
based on the knowledge of the rather small magnitude of the
polaron constant in bulk GaAs,due to which the influence

of the Frdnlich coupling on the electron energies in the in-
teracting system of the quantum dot is expected to not be

Mao(iwp)=keT 2, [Aq*®(mna)*2 {if(wp—wr)

—Em+,u—an[if’z(wp—wr)]}‘l significant. The validity of this approximation is not tested
here.
2010 4) The two lowest lying(nondegenerajeenergy levels of

h(wiot w?)’ electrons in the quantum dot will be taken into consideration.

. . . The existence of other nonperturbed electronic states will be
M pemg the chem|.cal potential. Hefaw,=(2p+1)7kgT, ._ignored. We shall denote the electronic ground state as
while the summations are performed over the frequenme_o and the excited state as=1. We take into consideration
hw,=2rmkgT. p andr are integers. The self-energy is then o1y one state corresponding to the triply degenerate lowest
continued analytically tp the real axis of the electronic en-gycited energy level in the cubic quantum dot. Considering
ergy and the sum over is performed- only one electron in the dot, the spin index in the quantity
The expression under the sum ovein Eq. (4) can be T will be dropped. In Eq.(6) only those terms will be

regarded as a functio#(% ;). The corresponding function included that give the most significant contribution in cases
¢(z) of the complex variable has obviously three poles at close to the resonance between the electronic energy level

2,=1hw g, Z,=—ihw g, and separations and the optical-phonon energy. This simplifica-
_ _ tion allows one to obtain an explicit solution of the equations
Zz=fiop+H{En—pu+Mp[i(hop,—23)]} (5)  for the self-energy. One arrives then at the formulas
Performing the sum ovar, the self-energM, , appears to I'(E)=—ag(1- 70,+ rL0)

consist of several terms, two of which depend n The

z3-dependent terms are simplified, namely,is substituted % Im{ 1 ®)
by such a value, at which the two terms in question give their E—Eq—E o+tilo(E-Eo)+id
maximum contribution to the self-energy expressinp .

. oo . i and
This approximation has a character of making a single-pole
approximation. The implications of such a simplification of Fo(E)=—agi(ny o+ v10)
the self-consistent equation for the self-energy are not stud-
ied in this paper. The electronic distribution function is ap- < 1m 1 9)
proximated by Fermi-Dirac distribution with unperturbed E-E,+E ot+il'{(E+E o) +id)’

electronic energies. Thus, in the following,, , is the num- iy =5 |A/2|®(0,10)|2. The spin index is kept in
ber of electrons at the energy lev&},, with spin o, while 0L ' ' i ity i
¢ (L he energy levey,, with spin o, Nm.» iN order to keep record of the fact that this quantity is

v o is the Bose-Einstein distribution function of unperturbednot larger than 1.

phonons at the temperatufeof the lattice. Equationg(7) and(8) for I';(E) andT'o(E) can be solved
After continuing the resul'g analytically to Fhe upper half analytically providingey,, v o, andn, , are given. In the

plane of energyE the equation forM, ,(E) is obtained. case of a single electron in the duj,+n, ,= 1. Taking the

Eliminating the chemical potential by a simple transforma-zero of energy aE, and denotinge= ag(1—ng,+ v10),

tion of the real energy variablg, it is obtained that Egs.(8) and(9) read
I'o(AE—X)
Mn.o(E)=2, |Agl2|®(m,n,q)|? I'(E,+AE)= , 1
nolE)=2, [A(*|(mn.g)| (Bt AB)=a e e,y (10
1_nm0.+1/|_0 Fl(E1+AE)
X : : —X)=
E En froro Mmo(E o) 710 LB 0= e T2, o) P
Nm.o+ VLo where x=E, o—E; and AE=E—E;. Equations(10) and
+ E—Ep+fioro—Mmg(E+hwo) +10)’ (12) have the solution
E-E
s=0". (6) Fl(E)zRe{ \/a %—(E—Em] (12)
Let us note that this resulting formula can be compared to the Lo
expression for self-energy studied extensively earlier in &"
different context of molecular excitons interacting with crys- E|
tal phonons® Equation(6) is also similar to the Dyson equa- [o(E)= Re{ \/a _— EZ} . (13
tion considered in Ref. 10. [E-(E1—Eo0)|
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FIG. 2. Spectral density of electron interacting with LO phonons
in a quantum dot. Dashed line By(E), full line is D,(E).
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FIG. 1. Imaginary part of electronic self-enerfy(E) (dashed
line) andI',(E) (full line) in a quantum dot at 77 K.

Formulas(12) and(13) give theE dependence of the imagi- ) o
nary part of the electronic self-energy for the case of the twgiuantum dot. In particular, a pole approximation to the self-
electronic levels. energy cannot be introduced in a straightforward way. The
The numerical evaluations will be made for the above-Curve givingl's(E) goes to zero at the energy of the unper-
specified simple model of the quantum dot. The electrofurbed excited stat&=E, and diverges aE=Eq+E,o.
state withn=0 will be o(r 1) o(r ) tho(r's), while the state  The features aE=E,+E, o and E=E,—E,, are single-
with n=1 will be ¢,(ry) ¥o(r,) o(rs), with ¢, being the Phonon satellites, which emerge due to the coupling of a
electron wave function in a one-dimensional quantum weldiven electron state to states with a different number of
with infinite walls. The energy of the excited state will play Phonons. Such effects have recently been discussed in quan-
the role of an independent parameter of the dot, measuring M dots in a similar context. Let us remark that the pres-
this way the size of the dot. Besides the imaginary part of th&nce of these satellites in the self-energies has in fact an
self-energy of the states=0,1 the corresponding spectral implication, which is the absence of the LO-phonon bottle-
densitiesD ,(E) of these two states will be plotted also. We N€ck effect, as it is discussed below in connection with the
define here joint spectral density. The effect of Rabi splitting, observed
in the results of Ref. 10, is not obtained here. This effect is
' w(E) probably lost in the course of making the approximations
Dm(E)= (E—E)2+T2(E)’ (14)  leading to Eqs(8) and(9).
m m The spectral densitieBy(E) and D4(E), displayed in
m=0,1. Fig. 2 for the special case of the detuniwg — 6 meV, show
An important quantity characterizing the electronic tran-graphically the general overall property of the spectral den-
sitions between the excited- and the ground-state levels, witfity, namely, that the spectral density of the statén 0)
emission or absorption of the LO phonon, is the convolutionalways contains a feature, which is placedey, apart from
of the spectral densities of the two electronic stajest  the energyE, (or E,).
spectral density In Fig. 3 the spectral densit,(E) of the excited state
n=1 is demonstrated in dependence on the detuning
=E, o—E;. The spectral density of the ground state (
=0) and the spectral densities taken at negative values of
behave in an analogical manner and are not displayed in
The transition rate of electron from the excited state to thedetail here. In all sections of Fig.(@nd in Fig. 2 the maxi-
ground state would be given by a similar integral containingmum (a divergenceof D,(E) is found atE=E,, while at
a statistical factot’ We believe that for the purpose of this Ey+E, ¢ a satellite feature of the spectral density is present,
work this statistical factor can be ignored. We shall regarchaving the property of going to zero at this energy. At large
the above formula as a characterization of the dependence gfa separate satellite feature developgEgt E, o as shown
the transition rate of the electron in the excited state, due tin Figs. 3e) and 3f). The divergencies in all the figures
the electron-LO-phonon coupling, on the detuniigE,,  behave as$E| Y2 and they are therefore integrable.
—E,, in other words, on the difference between the optical- The shape of the spectral density near the unperturbed
phonon energy and the energy of the first electronic excite@électron energy has the form of a quite narrow peak, the
state. overall spread of which is not larger than several meV. Such
In the numerical calculations, the electronic effectivenarrow peaks of the spectral density appear to be in rather
mass of the conduction-bardd minimum, the values of the good agreement with measurements of optical transitions be-
dielectric constants, and the energy of the optical phonotween the conduction- and valence-band states in the quan-
(ELo=36.2 meV) of bulk GaAs are uséflThe temperature tum dots?°
of the lattice is 77 K. The energy dependence of the imagi- The hot-electron relaxation rate, represented here approxi-
nary part of the self-energyl;o(E) andI'4(E), for x=—2  mately by the joint spectral densitg(x), does not display
meV is displayed in Fig. 1. The curve b§(E) goes to zero any abrupt behavior as a function of the deturingrhis is
at the energ\E=E,=0 of the unperturbed electron ground given in Fig. 4. Let us realize that in Born approximation the
state.I'y(E) diverges at energy;—E,o. This behavior curveC(x) would reduce to the functiof(x), being zero at
shows singular properties of the electronic self-energy in +#0. In the present case, the relaxation of the electron from
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FIG. 4. Joint spectral densit§(E) as a function of the detuning
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some multiphonoft features in the self-energy, which would
04828 MV o4 x=12.5 meV correspond to satellites shifted by a multiple of the phonon
' ' energy from the principal features. These details of the self-
energy deserve additional attention.

Besides the question of the dependence of the above re-
sults on the shape of the quantum dot, being not treated here,

g
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E (meV) E (meV) there is also an important problem of the dependence of the
FIG. 3. Dependence of the spectral dengit(E) on the detun- hot-electron relaxation rate, represented here by the function
ing x. C(x), on the choice of the material inside the quantum dot.

The nonzero values dE(x) at nonzerax are obviously due

the excited state to the ground state, with emission of a phao the existence of the phonon satellites in the electronic
non, has a form of a double maximum near the resonancspectral densities. These satellites are due to the electron-
case ofE;=E o and decays slowly with increasing|. The  phonon coupling. The effect of the hot-electron relaxation at
nonzero values o€(x) atx#0 mean that even in quantum nonzero detuning should thus be expected to strengthen with
dots, in which the electron energy-level separations are difthe increase of the polaron constant of the material.

ferent fromE, o, there may be a rapid hot-electron relax- Summing up, the electronic self-energy was studied nu-
ation and the LO-phonon bottleneck may not be observednerically in quantum dots, together with electronic spectral
Such a property of the hot-electron relaxation rate can beensity and the joint spectral density. In agreement with
interpreted as an absence of the optical-phonon bottleneckome optical experiments, the spectral density consists of
This finding, speaking in favor of the nonexistence of thenarrow peaks. On the other hand, the hot-electron relaxation
phonon bottleneck effect, is closely connected to the presrate, due to the emission of the LO phonon, appears to dis-
ence of the satellite features in the self-energy, or spectragllay a rather broad dependence on the detuning between the
density, and thus to a multiphonon character of the electroelectron-energy-level separations and the energy of the opti-

states. cal phonon.
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