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The self-energy of an electron in a quantum dot with two electronic energy levels is calculated in the
self-consistent Tamm-Dancoff approximation. The electron is coupled to dispersionless bulk modes of optical
phonons of GaAs. The joint spectral density, characterizing the relaxation rate of the electron between the
excited and the ground state, is presented. The relation of the results to the issue of the so-called phonon
bottleneck, to the width of the spectral lines of the optical transitions, and to the hot-electron relaxation in small
quantum dots, is discussed.@S0163-1829~98!51404-X#

Semiconductor quantum dots are significant solid-state
objects due to their discrete structure of the electronic den-
sity of states. This property makes them attractive for appli-
cations in semiconductor optoelectronics. Recent observa-
tions of the hot-electron relaxation in quantum dots lead to a
discussion of a phonon bottleneck effect,1–7 due to which the
carriers are expected to stay a longer time at the excited
states after being excited by a light pulse, than is usual in
structures having higher dimensionality. From the simple
perturbation calculation point of view, the existence of the
phonon bottleneck is regarded as closely connected with the
law of energy conservation in the process of the electron-
phonon scattering from an excited state to a lower-energy
state. In an aggregate of quantum dots with a spread of dot
sizes the electronic energy-level separations are expected to
only rarely match the phonon energy, especially in cases
when the electrons interact primarily with the practically dis-
persionless longitudinal-optical~LO! phonons.

In quantum dots the electron-LO-phonon relaxation chan-
nel is very intensive7 in a narrow interval of the electronic
energy given by the energy conservation law. The hot-
electron relaxation rate may then be as high as 1015 s21.7

One can thus expect a significant role to be played by the
electron-energy collision broadening due to the electron-LO-
phonon coupling.8,9

Recently, Inoshita and Sakaki10 calculated the energy de-
pendence of the electronic spectral density in the ‘‘ladder’’
approximation and reported a negligible collisional broaden-
ing of the electronic energy levels. In their work10 the Dyson
equation for the electronic self-energy was solved numeri-
cally in a model of the parabolic quantum dot, considering
the four lowest electronic energy levels. It is the aim of the
present paper to calculate the electronic self-energy in the
self-consistent Tamm-Dancoff11 approximation, confining
the electron coupling to the interaction with the dispersion-
less longitudinal-optical phonons of a bulk GaAs crystal, and
to find an approximation under which an analytical solution
of the Dyson equation can be obtained. Also, it is the aim of
this work to point out some important details of the elec-
tronic self-energy and to discuss the relation of the charac-
teristic features of the self-energy to the optical properties of
quantum dots and, in comparison with the work in Ref. 10,
to pay more attention to the hot-electron relaxation in small
quantum dots.

In the model of the quantum dot only the electrons will be
considered, neglecting the dynamics of the holes in the

valence-band states. The electrons are assumed to be coupled
to dispersionless longitudinal-optical phonons of the GaAs
bulk crystal, neglecting other electronic couplings like the
electron-electron interaction and electron-acoustic-phonon
coupling. For simplicity, a quantum dot of cubic shape is
considered, with GaAs inside the dot and with infinite elec-
tronic potential outside the dot. The Hamiltonian of the sys-
tem then reads
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whereF is the form factor
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in which the integration spreads over the volume of the dot.
cn(r ), with r5(r 1 ,r 2 ,r 3), are unperturbed electronic eigen-
functions of the spatial motion in the quantum dot. The op-
eratorcn,s annihilates an electron in the state with the spatial
motion indexn, spin s, and energyEn . bq is the annihila-
tion operator of bulk LO phonon with energyELO5\vLO .

The electron-phonon coupling constant is12
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whereq5uqu is the magnitude of the phonon wave vector,
and V is the volume of the sample.2e is the electronic
charge,«0 is permittivity of free space, andk` and k0 are
high-frequency and static dielectric constants. It should be
emphasized that in the heterostructures of the type of
GaAs/AlxGa12xAs the approximation of the optical lattice
vibrations of the structure by the bulk modes of GaAs crystal
may be very appropriate.13 In other cases, especially those of
nanocrystals dispersed in a glass matrix, or in a liquid or gas,
the effects brought about by the presence of the interfaces,
into the coupling of electrons with the lattice vibrations, have
to be given more detailed attention.

The first term on the right-hand side of Eq.~1! gives the
Hamiltonian of unperturbed electrons, with the unperturbed
electronic energiesEn . In the basis of the electronic eigen-
states in the quantum dot the electronic Green’s function can
generally be considered as a matrix. Neglecting in this work
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some higher-order effects that the electron-phonon coupling
may have on the electronic energies in the interacting sys-
tem, we shall confine ourselves to considering only diagonal
terms corresponding to the spatial quantum numbern. Using
then Matsubara’s Green’s functions, as they are defined in
Ref. 14, the self-energy correctionMn,s to the unperturbed
energy En , in the self-consistent Tamm-Dancoff approx-
imation,11 is at the temperatureT of the lattice

Mn,s~ i\vp!5kBT(
m,q

uAqu2uF~m,n,q!u2(
r
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m being the chemical potential. Here\vp5(2p11)pkBT,
while the summations are performed over the frequencies
\vt52rpkBT. p andr are integers. The self-energy is then
continued analytically to the real axis of the electronic en-
ergy and the sum overr is performed.15

The expression under the sum overr in Eq. ~4! can be
regarded as a functionf(\v r). The corresponding function
f(z) of the complex variablez has obviously three poles at
z15 i\vLO , z252 i\vLO , and

z35\vp1 i $Em2m1Mm,s@ i ~\vp2z3!#%. ~5!

Performing the sum overr , the self-energyMn,s appears to
consist of several terms, two of which depend onz3 . The
z3-dependent terms are simplified, namely,z3 is substituted
by such a value, at which the two terms in question give their
maximum contribution to the self-energy expressionMn,s .
This approximation has a character of making a single-pole
approximation. The implications of such a simplification of
the self-consistent equation for the self-energy are not stud-
ied in this paper. The electronic distribution function is ap-
proximated by Fermi-Dirac distribution with unperturbed
electronic energies. Thus, in the following,nm,s is the num-
ber of electrons at the energy levelEm , with spin s, while
nLO is the Bose-Einstein distribution function of unperturbed
phonons at the temperatureT of the lattice.

After continuing the result analytically to the upper half
plane of energyE the equation forMn,s(E) is obtained.
Eliminating the chemical potential by a simple transforma-
tion of the real energy variableE, it is obtained that
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Let us note that this resulting formula can be compared to the
expression for self-energy studied extensively earlier in a
different context of molecular excitons interacting with crys-
tal phonons.16 Equation~6! is also similar to the Dyson equa-
tion considered in Ref. 10.

In the present calculation the real part of the self-energy,
ReMn,s(E) will be neglected in the expressionMn,s(E)
5ReMn,s(E)2i Im Mn,s(E), Im Mn,s(E)>0. Only the
imaginary part

Gn,s~E!52Im Mn,s~E! ~7!

will be kept. Neglecting the real part of the electronic self-
energy is done on the grounds of the intuitive expectation
based on the knowledge of the rather small magnitude of the
polaron constant in bulk GaAs,13 due to which the influence
of the Fröhlich coupling on the electron energies in the in-
teracting system of the quantum dot is expected to not be
significant. The validity of this approximation is not tested
here.

The two lowest lying~nondegenerate! energy levels of
electrons in the quantum dot will be taken into consideration.
The existence of other nonperturbed electronic states will be
ignored. We shall denote the electronic ground state asn
50 and the excited state asn51. We take into consideration
only one state corresponding to the triply degenerate lowest
excited energy level in the cubic quantum dot. Considering
only one electron in the dot, the spin index in the quantity
Gn,s will be dropped. In Eq.~6! only those terms will be
included that give the most significant contribution in cases
close to the resonance between the electronic energy level
separations and the optical-phonon energy. This simplifica-
tion allows one to obtain an explicit solution of the equations
for the self-energy. One arrives then at the formulas

G1~E!52a01~12h0,s1nLO!

3ImH 1

E2E02ELO1 iG0~E2ELO!1 idJ ~8!

and

G0~E!52a01~n1,s1nLO!

3ImH 1

E2E11ELO1 iG1~E1ELO!1 idJ , ~9!

with a015(quAqu2uF(0,1,q)u2. The spin index is kept in
nm,s in order to keep record of the fact that this quantity is
not larger than 1.

Equations~7! and~8! for G1(E) andG0(E) can be solved
analytically providinga01, nLO , andnm,s are given. In the
case of a single electron in the dotn0,s1n1,s51. Taking the
zero of energy atE0 and denotinga5a01(12n0,s1nLO),
Eqs.~8! and ~9! read

G1~E11DE!5a
G0~DE2x!

~DE2x!21G0
2~DE2x!

, ~10!

G0~DE2x!5a
G1~E11DE!

~DE!21G1
2~E11DE!

, ~11!

where x5ELO2E1 and DE5E2E1 . Equations~10! and
~11! have the solution

G1~E!5ReHAa
uE2E1u
uE2ELOu

2~E2E1!2J ~12!

and

G0~E!5ReHAa
uEu

uE2~E12ELO!u
2E2J . ~13!
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Formulas~12! and~13! give theE dependence of the imagi-
nary part of the electronic self-energy for the case of the two
electronic levels.

The numerical evaluations will be made for the above-
specified simple model of the quantum dot. The electron
state withn50 will be c0(r 1)c0(r 2)c0(r 3), while the state
with n51 will be c1(r 1)c0(r 2)c0(r 3), with cn being the
electron wave function in a one-dimensional quantum well
with infinite walls. The energy of the excited state will play
the role of an independent parameter of the dot, measuring in
this way the size of the dot. Besides the imaginary part of the
self-energy of the statesn50,1 the corresponding spectral
densitiesDm(E) of these two states will be plotted also. We
define here

Dm~E!5
Gm~E!

~E2Em!21Gm
2 ~E!

, ~14!

m50,1.
An important quantity characterizing the electronic tran-

sitions between the excited- and the ground-state levels, with
emission or absorption of the LO phonon, is the convolution
of the spectral densities of the two electronic states~joint
spectral density!:

C~x!5E
2`

`

dE D1~E!D0~E2\vLO!. ~15!

The transition rate of electron from the excited state to the
ground state would be given by a similar integral containing
a statistical factor.17 We believe that for the purpose of this
work this statistical factor can be ignored. We shall regard
the above formula as a characterization of the dependence of
the transition rate of the electron in the excited state, due to
the electron-LO-phonon coupling, on the detuningx5ELO
2E1 , in other words, on the difference between the optical-
phonon energy and the energy of the first electronic excited
state.

In the numerical calculations, the electronic effective
mass of the conduction-bandG minimum, the values of the
dielectric constants, and the energy of the optical phonon
(ELO536.2 meV) of bulk GaAs are used.18 The temperature
of the lattice is 77 K. The energy dependence of the imagi-
nary part of the self-energy,G0(E) and G1(E), for x522
meV is displayed in Fig. 1. The curve ofG0(E) goes to zero
at the energyE5E050 of the unperturbed electron ground
state. G0(E) diverges at energyE12ELO . This behavior
shows singular properties of the electronic self-energy in a

quantum dot. In particular, a pole approximation to the self-
energy cannot be introduced in a straightforward way. The
curve givingG1(E) goes to zero at the energy of the unper-
turbed excited stateE5E1 and diverges atE5E01ELO .
The features atE5E01ELO and E5E12ELO are single-
phonon satellites, which emerge due to the coupling of a
given electron state to states with a different number of
phonons. Such effects have recently been discussed in quan-
tum dots in a similar context.19 Let us remark that the pres-
ence of these satellites in the self-energies has in fact an
implication, which is the absence of the LO-phonon bottle-
neck effect, as it is discussed below in connection with the
joint spectral density. The effect of Rabi splitting, observed
in the results of Ref. 10, is not obtained here. This effect is
probably lost in the course of making the approximations
leading to Eqs.~8! and ~9!.

The spectral densitiesD0(E) and D1(E), displayed in
Fig. 2 for the special case of the detuningx526 meV, show
graphically the general overall property of the spectral den-
sity, namely, that the spectral density of the state 1~or 0!
always contains a feature, which is placed byELO apart from
the energyE0 ~or E1!.

In Fig. 3 the spectral densityD1(E) of the excited state
n51 is demonstrated in dependence on the detuningx
5ELO2E1 . The spectral density of the ground state (n
50) and the spectral densities taken at negative values ofx
behave in an analogical manner and are not displayed in
detail here. In all sections of Fig. 3~and in Fig. 2! the maxi-
mum ~a divergence! of D1(E) is found atE5E1 , while at
E01ELO a satellite feature of the spectral density is present,
having the property of going to zero at this energy. At large
x a separate satellite feature develops atE01ELO as shown
in Figs. 3~e! and 3~f!. The divergencies in all the figures
behave asuEu21/2 and they are therefore integrable.

The shape of the spectral density near the unperturbed
electron energy has the form of a quite narrow peak, the
overall spread of which is not larger than several meV. Such
narrow peaks of the spectral density appear to be in rather
good agreement with measurements of optical transitions be-
tween the conduction- and valence-band states in the quan-
tum dots.20

The hot-electron relaxation rate, represented here approxi-
mately by the joint spectral densityC(x), does not display
any abrupt behavior as a function of the detuningx. This is
given in Fig. 4. Let us realize that in Born approximation the
curveC(x) would reduce to the functiond(x), being zero at
xÞ0. In the present case, the relaxation of the electron from

FIG. 2. Spectral density of electron interacting with LO phonons
in a quantum dot. Dashed line isD0(E), full line is D1(E).

FIG. 1. Imaginary part of electronic self-energyG0(E) ~dashed
line! andG1(E) ~full line! in a quantum dot at 77 K.
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the excited state to the ground state, with emission of a pho-
non, has a form of a double maximum near the resonance
case ofE15ELO and decays slowly with increasinguxu. The
nonzero values ofC(x) at xÞ0 mean that even in quantum
dots, in which the electron energy-level separations are dif-
ferent from ELO , there may be a rapid hot-electron relax-
ation and the LO-phonon bottleneck may not be observed.
Such a property of the hot-electron relaxation rate can be
interpreted as an absence of the optical-phonon bottleneck.
This finding, speaking in favor of the nonexistence of the
phonon bottleneck effect, is closely connected to the pres-
ence of the satellite features in the self-energy, or spectral
density, and thus to a multiphonon character of the electron
states.

The approximation leading to Eqs.~8! and ~9! suppress
some multiphonon21 features in the self-energy, which would
correspond to satellites shifted by a multiple of the phonon
energy from the principal features. These details of the self-
energy deserve additional attention.

Besides the question of the dependence of the above re-
sults on the shape of the quantum dot, being not treated here,
there is also an important problem of the dependence of the
hot-electron relaxation rate, represented here by the function
C(x), on the choice of the material inside the quantum dot.
The nonzero values ofC(x) at nonzerox are obviously due
to the existence of the phonon satellites in the electronic
spectral densities. These satellites are due to the electron-
phonon coupling. The effect of the hot-electron relaxation at
nonzero detuning should thus be expected to strengthen with
the increase of the polaron constant of the material.

Summing up, the electronic self-energy was studied nu-
merically in quantum dots, together with electronic spectral
density and the joint spectral density. In agreement with
some optical experiments, the spectral density consists of
narrow peaks. On the other hand, the hot-electron relaxation
rate, due to the emission of the LO phonon, appears to dis-
play a rather broad dependence on the detuning between the
electron-energy-level separations and the energy of the opti-
cal phonon.
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FIG. 3. Dependence of the spectral densityD1(E) on the detun-
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FIG. 4. Joint spectral densityC(E) as a function of the detuning
x.
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