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Nonlocal investigations are presented for the exciton-photon coupling in one-dimensional periodic alternat-
ing layered structures consisting of two kinds of slabs~photonic crystals!, in which excitons are present only
in one of the two slabs. The lower branch of the excitonic polariton for this system is found to split into many
small bands separated by small band gaps. This phenomenon is explained as the band splitting caused by the
coherent interference of polaritonic waves in the periodic systems. The present nonlocal study also demon-
strates a double exciton-photon coupling, in which the upper branch of the polariton couples again with the
size-quantized exciton states.@S0163-1829~98!50904-6#

Currently, there is a strong interest in the optical proper-
ties of semiconductor nanostructures.1 Most of the optical
processes in these structures have so far been treated as a
process that could occur in an isolated quantum structure
~e.g., a single quantum well!. The optical response of the
whole system is therefore obtained by simply summing up
the responses of the individual structures. In contrast to this,
some new aspects may be anticipated for the optical re-
sponses of quantum structures when these structures are not
isolated anymore and therefore some couplings are presumed
between them. Several features arising from this cooperativ-
ity have been reported elsewhere: superradiant emission2 and
optical linear and nonlinear responses.3 In this context, it
possibly brings a departure in optical materials science and
optical devices to answer the question as to what could be
the optical processes in periodically arranged quantum struc-
tures. The coherent interference of the photon in ordered4

~photonic crystals! and disordered5 systems appears to give
an impetus to the above study from a slightly different point
of view. In this paper, we investigate using the nonlocal
exciton theory the exciton-photon coupling~polariton ef-
fects! in one-dimensional photonic crystals. The intention of
this investigation is to isolate the kinetics of excitonic polari-
tons that may be exhibited in the whole system of regularly
arranged quantum structures.

The model of the periodic system we employ here is an
alternating layered structure that consists of CuCl and NaCl
slabs. Let the number of the layers be infinite, its periodl ,
and let the CuCl slab thickness bed. We focus on the photon
energy near the exciton resonance of CuCl. The excitons that
might be created in NaCl slabs can therefore be neglected
because of the pronounced energy separation. Namely, it is
sufficient to consider that excitons are present only in CuCl
slabs. Here, we consider CuCl slabs so thick that the scheme
of the exciton center-of-mass quantization holds. Unneces-
sarily thick slabs, however, make the exciton levels unsepa-
rable. Hence, in this study, we employ the slabs with an
appropriate thickness~see the next paragraph!. This structure
requires us to treat the exciton in it with the nonlocal theory
because of the spatial dispersion of the exciton. When elec-
tromagnetic waves propagate in the direction~z axis! perpen-
dicular to the layers, the electric fieldEx(z) has to satisfy the
following Maxwell equation with the exciton polarization:
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where the integral in this equation is the nonlocal exciton
polarization@denoted byPx(z)#. Here,x(z,z8) is the nonlo-
cal polarizability of the exciton,S is the area of the region
we are considering, and«(z) is the dielectric constant that is
a periodic function ofz with the same period as that of the
structure. Ordinary notations are used for other parameters.
Here, we assume for simplicity that no direct interactions are
present between excitons in different slabs. This implies that
the nonlocality of the exciton works within each slab but it
does not extend to other slabs. In the light of this assumption,
we require the nonlocal polarizabilityx(z,z8) to have the
periodicity as follows. First,x(z,z8) must have a finite value
when bothz and z8 are in the identical CuCl slab, while it
must vanish for any other combinations ofz andz8 positions.
Second, oncex(z,z8) is defined in a slab, thenx(z,z8) in
other slabs must have the same form as previously defined.
The nonlocal polarizability thus defined in a slab has the
form
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where only the resonant term is taken.6 Here,f1s(0) is the
1s exciton wave-function value of the relative motion at the
origin, pvc is the momentum matrix element of the optical
transition between the conduction and the valence bands, and
g is the damping factor. For a hard wall, the wave function
of the exciton center-of-mass motionwn(z) must be a sinu-
soidal function and therefore thenth exciton energy level is
given by \vn5\v1s1(\2/2m)@p(n11)/d#2 for n
50,1,2, . . . , wherev1s is the exciton resonance andm is
the exciton mass. Equation~1! is an integrodifferential equa-
tion with periodically varying coefficients. The ordinary pro-
cedure for an equation like this is to solve it using the Bloch
theorem. To the author’s knowledge, however, it does not
always seem general that the integrodifferential equation has
a solution of the Bloch type. The group-theoretic approach to
the integrodifferential operator can verify it to be true indeed
provided that the kernel~with two variables! possesses some
kind of periodicity. Then, to confirm it in a practical prob-
lem, let us tentatively assume a solution of the Bloch type,
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whereFx(z) is a periodic function with the period ofl and it
is expanded into a Fourier series~G is the reciprocal lattice!.
The wave numberK thus introduced describes the motion
throughout the whole periodic structure but it is not implied
for that in one slab. Substituting Eq.~3! into Px(z) and using
the periodicity of x(z,z8) defined before, we find after a
careful check that the exciton polarizationPx(z) also has the
form of the Bloch function. This result appears to be physi-
cally correct and reassures the existence of the Bloch-type
solution for the kernel having the periodicity we imposed on
the system. The next step of calculation is the same as that
for the photonic crystals,4 although it is more complicated in
the present case because of the exciton term. Substituting Eq.
~3! into Eq. ~1!, we obtain a matrix for determining the ei-
genvaluev for an arbitrary wave numberK. This matrix is a
function of v andK and hence the eigenvalue problem can-
not be solved using the standard method we find in a com-
puter library, except for a simple case.7 Since the point is to
get nontrivial solutions, then we determined the eigenvalues
by searching the zeros of the determinant for the relevant
matrix.

In the numerical calculation, we employed the periodic
structure in whichl 5813 andd5731 Å. These lengths were
chosen for the following reasons. First, we required the ex-
citon resonance to be located in the lowest photonic band,
i.e., the lowest band obtained by neglecting the exciton term
in Eq. ~1!. Second, in order to manifest the nonlocal effects
of the exciton in the slab, the slab thicknessd must be of the
same order as or larger than the wavelengthl; namely,l/d
should be small. The structural parameters satisfying the two
above requirements simultaneously are restricted within
some combinations ofl andd. For thel andd values thus
chosen, thel/d value is estimated at 2.42. Other parameters
used are as follows:8 the mass and the resonance of a CuCl
exciton arem52.5m0 and \v1s53.2025 eV, respectively,
the dielectric constants are 5.00 for CuCl and 2.46 for NaCl,
and the exciton-photon coupling constant isDLT55.5 meV.
We set the damping factorg as 0 in the practical calcula-
tions.

Prior to showing the results of the exciton-photon cou-
pling, let us ascertain where the exciton resonance is located
in the photonic band for the structure mentioned in the pre-
ceding paragraph. The inset of Fig. 1 shows the photonic
bands~solid lines! in the first Brillouin zone~BZ! obtained
by neglecting the exciton effects, together with the exciton
resonance location~dotted line!. In all figures of this paper,
the v andK values are normalized in the unit of 2pc/ l and
2p/ l , respectively. The bulk exciton resonancev1s for CuCl
is located near the top of the first band. The wavelength at
the point at which the resonance crosses the photonic band is
estimated atl;1770 Å.

The energy dispersion of the polariton in the above peri-
odic structure is shown in Fig. 1 for the first BZ. Since we
are interested in the energy region near the exciton reso-
nance, the ordinate of the upper figure of Fig. 1 is magnified
in the vicinity of the resonance. The lower figure is, on the
contrary, scaled down to cover a wider energy range than in
the upper one and the two are joined together continuously.

The steep broken line is the photonic band neglecting exciton
effects, which is identical to the first band in the inset. In the
presence of exciton-photon coupling, the energy dispersion
is found to consist of many small bands that are separated by
small band gaps. Note that these bands are dispersive~i.e.,
having finite group velocities!. In the higher-energy region,
we observe the phenomena of the dispersion curves anti-
crossing, i.e., the two curves approaching and then moving
apart due to the repulsion between them. The band energy
values in the higher-energy region coincide well with the
size-quantized exciton levels, the positions of which are in-
dicated by bars in Fig. 1 together with their indexn. This
coincidence, however, is gradually declining with the de-
crease in the energy. In the lower-energy region, there is
evidently no correspondence between them.

In order to make clear what has happened to excitonic
polaritons in periodic structures, we expanded the polariton
dispersion near the resonance into the extendedK zone up to
the eighth BZ@see Fig. 2~a!#. The upper figure of Fig. 2~a! is
again more magnified than the lower one. The mutual ar-
rangement of the small bands described by solid lines in this

FIG. 1. Polariton dispersion of the periodic structure. Locations
of size-quantized exciton levels are indicated by bars together with
their indexn. The inset shows the dispersion of the photonic crystal
~i.e., neglecting the exciton effects! and the location of the exciton
resonancev1s . In all figures of this paper,v andK are normalized
by 2pc/ l and 2p/ l , respectively.
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figure reminds us of the splitting of the electronic bands in
what we call semiconductor superlattices.9 In light of the
above, an attempt was carried out as what follows in order to
account for the phenomenon of small bands formation in Fig.
2~a!. The polariton dispersion in the bulk material is ordi-
narily obtained by using the photonic and the excitonic dis-
persions. While it is natural to use the photonic band~dashed
line! neglecting exciton effects as the photonic dispersion,
the excitonic band in the bulk material does not seem to be
suited for our purpose: this curve shows a too-small spatial
dispersion. Accordingly, in order to take the lifting of exci-
ton levels by the size quantization in the slab into account,
we employed the excitonic dispersion~dash-dotted line! us-
ing the exciton mass renormalized by a factor of (d/ l )2. The
lower branch of the polariton dispersion thus obtained is
drawn by a broken line in Fig. 2~a!. We find that this curve
exactly reproduces the energy values of polariton bands at
the edge of every BZ. This result is similar to what occurs in
the electronic bands of semiconductor superlattices. These
small bands are thus found to be interpreted as the bands
which the lower branch of bulk polariton dispersion has split
into by the coherent interference of the polaritonic waves in
the periodic systems.

Now that the lower branch of the polariton is obtained in
the form mentioned above, its counterpart, i.e., the upper
branch, must also show up in the energy dispersion. This can
be discovered in the higher-energy region in Fig. 1, which is
replotted as Fig. 2~b!. The broken line in Fig. 2~b! represents
the upper polariton branch calculated by the same procedure
as that for the lower branch. This line is shown to exactly
reproduce the line for the anticrossing phenomena. This im-
plies that the anticrossing phenomena are caused by the cou-
pling of the size-quantized exciton states with the upper
branch of the bulk polariton. Since the upper branch is al-
ready a result of the exciton-photon coupling, the phenomena

can be regarded as the product of the sequentially occurring
double exciton-photon coupling. The behavior of the polar-
iton dispersion shown in Fig. 2 entirely results from the ex-
citonic nonlocality as well as the structural periodicity. If the
exciton in the slab were treated as an assembly of local os-
cillators with the resonance energies of size-quantized states,
the photon would couple with each oscillator separately; the
resulting polariton dispersion would be merely the sum of
the independent polariton dispersions for every oscillator.

Possible coupling schemes in the present system may be
grouped into the following three classes:~i!
~photon1exciton!1periodicity, ~ii ! ~exciton1periodicity!
1photon, and ~iii ! ~periodicity1photon!1exciton, where
(a1b)1c implies thata andb couple first followed by the
coupling with c. This classification is valid when the cou-
pling of one pair (a-b) is much stronger than the other two
~b-c andc-a!. Among these coupling schemes,~iii ! may be
ruled out for the following reason. Scheme~iii ! requires us to
first build the photonic band and next couple it with an ex-
citon. We studied the polariton dispersion in the periodic
structure for which the exciton resonance was located in the
middle of the photonic band gap. Despite the fact that there
was not a photon~i.e., the counterpart in the coupling! near
the exciton resonance, we obtained a polariton dispersion
similar to that in Fig. 1 in this energy region. The coupling
scheme must hence be different from~iii !. The interpreta-
tions for Figs. 1 and 2 already mentioned in the preceding
paragraphs are entirely based on scheme~i! and seem to have
been successful. As mentioned, the bulk polariton is first
created as a result of a strong coupling between a photon and
an exciton and next its dispersion splits into bands by the
subsequent coupling with the periodicity. This is exactly an
analogue of the miniband formation in semiconductor
superlattices.9 What differs between the two? Needless to
say, one treats electrons while another treats excitons. In su-
perlattices, the phenomenon is caused by the electronic tun-
neling that occurs through thin barriers with finite potential
heights. This tunneling could be regarded asglue that con-
nects electronic states in different sites. Since we consider a
hard wall, the tunneling of excitons never occurs. Theglue in
our case is undoubtedly the photon. The phenomenon may
be intuitively explained as proceeding as follows: the photon,
which when coupled with an exciton in a slab, modifies its
field by this coupling; it propagates to the neighboring slab;
it couples again with an exciton in this slab, and the process
repeats itself. The exciton in a slab thus couples with the
exciton in a different slab via the photon. The situation may
be made clearer if we begin with darkness~very low optical
density!. In darkness, coupling scheme~ii ! holds. The exci-
ton shows constant discrete energy levels~instead of bands!
at anyK value. Therefore, the group velocity is zero and the
exciton is localized in each slab. When the light is switched
on and gradually increases its strength, scheme~ii ! does not
hold anymore and scheme~i! takes over control of the cou-
pling instead and finally produces the energy dispersions
shown before. The final states thus attained indicate that the
exciton component localized in each slab in darkness could
be construed as being delocalized with the assistance of the
photon.

In conclusion, we have investigated, using the nonlocal

FIG. 2. Polariton dispersion replotted from Fig. 1 and magnified
in the vicinity of the exciton resonance.~a! Dispersion expanded
into the extendedK zone at lower energies and~b! dispersion re-
drawn in the first Brillouin zone at higher energies. Bulk polariton
dispersions using the renormalized exciton mass are drawn by bro-
ken lines in both~a! and ~b!.
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exciton theory, the kinetics of excitonic polaritons, which is
exhibited in the whole system of regularly arranged quantum
slabs. The energy dispersion of polaritons in this structure
displays many small bands produced by the coherent inter-

ference of the polaritonic waves in the periodic systems. The
upper branch of the polariton couples with the size-quantized
exciton states, which can be regarded as a double exciton-
photon coupling.
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