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Local density of states from transmission amplitudes in multichannel systems
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We consider phase-coherent electron transport in the multichannel case with time-reversal symmetry. The
two-terminal conduction, as described by the LandaudtiBar theory, can be considered to take place in
parallel in independent channels: the so-caégkenchannelsWe extend the known relationship between the
local density of stated.DOS) and phase of the transmission amplitude in one dimension to the multichannel
case, and derive a simple explicit expression for the LDOS as a sum of individual eigenchannel contributions.
A simple expression for the LDOS that can be used for numerical calculations is given. We show how this
formalism can be useful in the description of the electronic states and conductance of metallic nanocontacts.
[S0163-18298)51124-1

The density of state$DOS) that do not originate from of ac transpof”t5 or the effect of finite dc bias. Here we will
localized states can be obtained from the scattering propefecus on the total transmitted and reflected parts of LDOS
ties of a quantum systefrit has been shown by Avishai and (dN,/dE, dN, /dE).

Band that the DOS of a one-dimensional system is simply In the case of time reversal symmetry:
related to the phase of the transmission amplitude. In this
paper we show how this relationship can be extended in a tor=ti,, [17=F11, F2=Tp2, 3

simple way to the multidimensional case using the concept i _ )
of eigenchannels. so the two terms in the transmitted LDOS will be equal.

We consider a general two-terminal phase-coherent con- Eigenchapnefs are special orthogonal linear combina-
ductor in the linear-response regime with time-reversal sym{ions of the incomindoutgoing states in terminal (2) with
metry. We denote the two terminals by 1 and 2 and label th@ fixed energy and correspond to transmission eigenstates.
transmission and reflection amplitude matrices for state§&ecently t_heseghave been addressed experimenéiyvell
originating from terminal 1 byt;, andr,; and accordingly 2 theoretically® in order to elucidate the nature of conduc-

for terminal 2. The conductance is obtained from the multi-fion in atomic-scale metal point conta¢tsanocontacts
channel Landauer-Biiker formula3 Consider the incoming eigenchannels in terminal 1 deter-

mined by the columns in thenitary matrix U;:
G=Go Trt";t1,(E). 1) ,
_ U] t]st12 Uy=diagf| m|%}. 4
Only states at the Fermi energig{) are considered at zero ) ) ) ) .
temperature. Using this special basis, the Landauertier formula re-
The local density of stated DOS) can be split into two duces to a sum of contributions from each eigenchannel,
partsdN,/dE anddN, /dE, describing states that are being
transmitted between 1 and 2, and states that are reflected. G=G 2 2 5
- . L. . . 0 |Tn| . ( )
These can be classified according to the originating terminal, n

and we end up with a sum of four terrhs, . o _
We will for simplicity assume that, are all different and

dN . dN, . dN, . differ from zero. For the physical systems we have in mind
E(E,r)= E(E,r)Jr E(E,r), this is not a crucial restriction.

Now consider the outgoing eigenchannels in 2 given by
the columns inJ, (denoted byJ,,):

anv__ 1 ImTr-tT Oz | | el 1,22 2 :
dE 2@ 2 s5v(r) 2svn] ) U,=t,, U, diag{1/7,}. (6)

U, will also be unitary U t;;t], U,=diag{| |?}). An in-
dne o 1 o oryy e O 2 coming state from terminal 1 given by timth columnUy,,
dE  2m| MM SV(r) m A2 V() |/ will end up in terminal 2 in the linear combination given by

.Uy, according to Eq.(6). For simplicity we choose all
whereV is the scattering potential. The partition into the four phase information to be contained in this using|7,| in
so-calledpartial LDOS is important, e.g., in the discussion Eq. (6) (Ref. 10, i.e.,
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t1,= U, diag{| 7,|}U,". (7)  We can relate the phase pf andp, using the unitarity of

the S matrix (t;1r11+ r;2t12= 0) combined with time-reversal
symmetry €1,r 11+ r5.t1,=0). Using Eqs(7), (13), and(15)
we obtain

Inserting Eq.(7) in the expression for the transmitted LDOS
yields

dn, -

1 60
——(r)=— 2 n
GEM=72 |nl

SV(r)

Here the transmitted LDOS is split into eigenchannel contri- ﬂUsin% this W? T}"i\ll_eD"géhe following simple resuit for the
butions. We have introduced a quantity corresponding to thgeflected part of the '
derivative of the phase of each eigenchannel given by

. (8 Pn= —ph. (17)

dN, . 1 56,
— (== 1—|7|? —1, 18
56, 1( oU3, U3, ) © dE( ) 71'; (1=[7l%) (5V(r) (18

N > UonT = "Vin
ov(r)  1hev(r) sv(r) and together with Eq8) we have the total LDOS:

Now we consider the reflected part of the LDOS. Due to N N 1 s

current conservatiort)ti,+r1,r1=1, sor,ry; will be di- =S =y On | (19
agonal in the basis in 1 described by, dE dE 4w\ 8V(r)

Uirlyr U, =diag{| p, /%, (10 These simple equations for the tof&lq. (19)], transmit-

ted [Eq. (8)], and reflected LDOS$EQ. (18)], are the main
results of this paper. They generalize the single-channel re-
sult by Avishai and Barfdto the multichannel case. It shows
that we can obtain the total LDOS from the individual eigen-

. channel components of the transmitted LD{E). (8)] by
XX =XX"=diag|pr|*}. (12) dividing each eigenchannel contribution by;|2. Thus the
(11)] and normalEq. (12)]. From this and the assumption Plitude matrixt instead of the fullS matrix in the case of

where|p,|2=1—|r,|%. ConsiderX defined by

X=UJrU;=XT, (12)

that all|p,| are different it follows tha¥ is diagonal: time-reversal symmetry. . _
We end this general discussion by noting that the trans-
ry=U? diag{p,} UI- (13 mitted part of LDOS for eigenchannelalternatively can be

obtained from
Inserting this expression in the partial LDOS related {p

we obtain
|72 i) =—Im( U,fth, sz U1> . (20
1 : " ] 1 ( Spn ) 5V(I') oV(r) an
——ImTrry —=|=—5=2, Im| p; =

27 oV(r) 27 ov(r) This expression does not involg,, and is therefore more
. convenient for numerical calculations. The total LDOS can
_ iz |pnl? U U in principle be obtained by dividing the right-hand side of

i s T sy Eq. (20) by | 7,|2. However, in actual numerical calculations

only the contributions to the total LDOS from eigenchannels
149 with a certain size ofr,| are accessible in this way. But in

In the case of the reflected LDOS in terminal 2 we note™2" situa‘\ltions one 'S especially interested in the LD.OS
that due to the time-reversal symmetrtj £l + oo 5= 1), close to a “bottleneck™ in the potential where the LDOS is
U, will diaconalizer-r*. Using the same arquments as for contributed only by the few eigenchannels with the _hlghest

2 gonalizeraara; 9 9 |7,|. In such cases Eq20) can be employed to obtain the
F11, We can write total LDOS, as demonstrated below.

Now we turn to a concrete example where we can apply
the general formalism. Several papers have lately addressed
the special electronic structure of metal nhanocontacts and its
effect on their mechanical behavitf:*°In these studies the
adiabatic approximation has been appfed’ This approxi-
mation is valid in the limit of a slowly(on the scale of the

r2o=U} diag{pn} U . (15)

We have thaip,|=|p,|, however, the phase ¢f, andp,
will in general differ. Ther,, term reads

1 g O | 1 ~x OpPn Fermi wavelengthvarying confining potential. In this limit
T oM T 22 svn| 2w M P Svir the eigenchannels correspond to the local transverse ener
r) T n SV(r) g p ay

eigenstates along the nanocontact; the columngl,ofvill
oU3, simply contain these at the point where the scattering region
V) Uy is connected to terminal 1. If we denote this pointZy(the

transmission amplitudes, are defined with respect to the
(16 starting and ending pointg; andz,, see Fig. ], i.e.,

1
+ — 2
I,n_; |pn| (



RAPID COMMUNICATIONS

R15 090 MADS BRANDBYGE AND MASARU TSUKADA 57
30 60
O, (1 5 N
Z), mmmmmmmmmeeeccccecce——————————— 520+ i {40
\ /' o i
a = ;
= 10 A N\ 120
s | @ F
C 0
R; =2W 2W R, =20W 20 ‘ : —r : 40
Exact Exact
/ f=> \ 10 », 20
A 3
O L e L e L L L 80 ; : . . : 0
[92]
. . . Q WKB WKB
FIG. 1. The shapes of the two-dimensional hard-wall potentials. S0l 1L 120
I: Radius of curvature comparable to the widiyw2W. II: Radius \
of curvature at the narrowest point much larger than the with, 0 ; : ; ; e L — 0
=20W. LDOS is integrated over the gray volum#&)(centered 1.0 ¢ b 1.0
around the thinnest pointz{—z,=2W). The transmission ampli- “Fost it / los
tudes are defined with respect to the borderline between the scatter- . ‘ . . ‘ . / .
ing region and terminals 1 and 2 at andz,, respectively. 0'00.0 02 04 06 08 02 04 06 08 0.0
Energy(a.u.) Energy(a.u.)
X,Y[U1n) = b2, (X,Y), (21
< y| ) nzy XY FIG. 2. Upper: The total DOS inside the gray volumd) (in
and similarly forU, except for the phasé, containing all  Fig. 1 of potential | and Il calculated from E¢0). The thick solid
information about the propagation through the wire, and dotted lines are for 1 and 2 eigenchannels, respectively. The
. thin lines correspond to WKBEq. (24)]. Middle: Partial DOS:
(X,y|Ugy) =€'?n ¢n,22(x,y). (22 Reflected Eq. (18), thick lineg and transmittedEq. (8)] parts of

. o ) ) DOS inside) for 1 (solid) and 2(dotted eigenchannels. The exact
The adiabatic limitd,, defined in Eq(22) corresponds to the and WKB [using Eq.(23)] results are shown. These sum up to the
6, In Eq. (9). This follows from the fact that the local trans- total DOS in the upper panel. Lower: Transmission probabilities
verse wave functionsdy, . ,#n,,) do not depend on the |r,|2 for the 1 and 2 eigenchannels.
potential inside the scattering region.

Using WKB we may write the phasén a.u), pose we use free-electron electrodes and a confining poten-

tial in the hard-wall limit® The total LDOS is integrated

2, over a volume(gray in Fig. 2 around the narrowest part of

ﬁnzf dz V2[Er—en(2)], (23)  the constriction. We use E@20) to calculate the phase de-

“ rivative and we include channels with eigenchannel trans-
wheree,(2) is the quantized transverse energies along thenissions| |2 larger than 10*2. This procedure agrees with
nanocontact. In order to compute the LDOS integrated over the total DOS obtained from the fuB matrix within a few
certain volume), we simply replace the functional deriva- percent.
tive in Eq. (9) by the normal derivative with respect to a In Fig. 2 we show the results for potential | with the
constant shift of the potential insidé This procedure has smallest curvature, i.e., the least adiabatic potential. In this
recently been used in numerical calculations of D@8&f. 5 case, as expected, the difference between the WKB and the
from the full S matrix. In the WKB approximation this sim- exact result is most striking. The WKB results exhibit a loga-
ply corresponds to a shift ia,(z) by dV and we obtain from rithmic divergence at the channel opening, and converge to
Eqg. (19) (including now a factor of 2 for spin the exact result in the high-energy limit. The reflected DOS

is seen to play a large role in this case. The transmitted and
dN, _ . 1 reflected part of DOSmiddle panel are rather symmetric
fvdr g (BED= ;RGL dzm, (249 around the channel closing-(=0.5): the electron density
2 " does not decrease suddenly as the channel is closed, but is
where the volume’ extends fromz, to z, inside the nano- transferred slowly from transmitting to reflected states inside
contact. This formula, based on the adiabatic approximation. The low-energy part of the reflected DOS is controlled by
and WKB, has been employed for nanocontacts with ahe evanescent tails of the wave functions reaching to
straight boundarﬁ? 13, 15(constantsn) or including the finite  while the high energy cutoff is due to the onset of transmis-
curvature in the variation of,(z).* sion. For comparison we also show the result where we use
We will now compare the numerical result for the total the WKB phasdEq. (23)] instead of the exact.
DOS of the individual eigenchannels with the corresponding The reflected DOS becomes less significant for the more
WKB result for a simple two-dimensional example. Here weadiabatic potentialll); it does not contribute as much as the
shall especially focus on the adiabatic approximation andransmitted part around the opening of a channel and the
study the effect of a finite curvature of the contact. We con-electron density insidd’ drops steeply as the channel is
sider two types(Fig. 1): Type | with a radius of curvature closed. In this case the agreement with WKB becomes more
(R) comparable to the widthW) at the thinnest pointR  pronounced. We note that for a fixed radius of curvature the
=2W), and type Il with a radius of curvature much larger discrepancy between the WKB and the exact result will in-
than the width R=20W) corresponding to low and high crease with channel number as the width of the transition
degree of adiabaticity, respectively. For this illustrative pur-between open and closed channels incre&ses.
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Recently, there has been interest in the electronic contrisions and discussions of conductance in atomic-scale sys-
bution to the tensile forces in the metallic nanocontatts> tems in general, e.g., combined with first-principles
We can now, in general, associate a thermodynamic potentighlculations?®

(Q) with each eigenchanngin the limit of zero tempera- In conclusion we have shown how the components
ture), of LDOS can be written as a sum of contributions from
the individual eigenchannels. By defining a derivative of

%(@) de, (25) the eigenchannel phase, this result extends the one-
dE dimensional result by Avishai and Bando the multi-
channel case in a simple way. For “bottleneck” potentials
this method can be used in numerical calculations to obtain
the total DOS from the transmission matrix. As an example,
we have discussed how this formalism is relevant for metal
HRanocontacts. Especially, we have shown that (ffetial)

e[ e

and a tensile force due to each eigenchannel “borig,’

=—-60,/6L, wherelL is the elongation parameter of the
nanocontact. Within the adiabatic approximation and WKB,
the drastic change in the DOS around the channel closin

leads to fluctuations in the tensile force with a magnitudel_DOS conductance, and tensile foraectronic contribu-
close to the one found experl_mentam/lt IS, however_, clear tion only) can be written as a sum over individual eigenchan-
that the one-electron potentials of nanocontacts in gener%leI contributions

will vary on the atomic scale that is comparable to the Fermi

wavelength. Thus DOS can differ from the adiabatic WKB We acknowledge discussions with Dr. K. W. Jacobsen,
result in a significant way, as illustrated by our simple ex-Dr. N. Kobayashi, and R. Tamura. This work was supported
ample, and calculations beyond the adiabatic WKB treatmenty the Core Research for Evolutional Science and Technol-
are necessary in order to confirm the adiabatic estimates. Oogy (CREST) of the Japan Science and Technology Corpo-
formalism can provide a general framework for these discusration (JST).

IR. Dashen, S-k. Ma, and H. J. Bernstein, Phys. R&7, 345 101f we use| 7| instead ofr,,, we simply have to add the derivative

(1969. of arg(r,)) to the derivative ofg,, in all results.
2y, Avishai and Y. B. Band, Phys. Rev. 8, R2674(1985. C. A. Stafford, D. Baeriswyl, and J. Bki, Phys. Rev. Lett79,
3M. Bttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 2863(1997).
31, 6207(1985. 123. M. van Ruitenbeek, M. H. Devoret, D. Esteve, and C. Urbina,
4M. Biittiker, in Quantum Dynamics of Submicron Structures: 5 Phys. Rev. B56, 12 566(1997).
ited by H. A. Cerdeiraet al. (Kluwer, Netherlands 1995 V. C. Yannouleas and U. Landman, J. Phys. Chemil(8, 5780
Gasparian, T. Christen, and M. &iler, Phys. Rev. A4, 4022 (1997.

(1996: T. Christen and M. Biiker, Phys. Rev. Lett77, 143 14C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B
(1996 57, 4872(1998.

15
5 ) S. Blomet al, Phys. Rev. B57, 8830(1998.
Céfé;’ggr(]’légl;)'_'\gz;sﬁe‘:{ W?n%,v::d I-;nﬁus, Zhggi:eggB 18| |. Glazman, G. B. Lesovik, D. E. Khmel'nitskii, and R. I.
124620907, g, . Wang, ' » 920 Shekhter, Pisma zh. Eksp. Teor. Fi48 218 (1988 [JETP

®M. Blittiker, IBM J. Res. Dev.32, 63 (1988; M. Biittiker, i Lett. 48, 238 (1988
- Buttiker, - Res. Dev.ss, (1988; M. Buttiker, in 17, Brandbygeet al, Phys. Rev. B52, 8499(1995.
Electronic Properties of Multilayers and Low-

Dimensional 18we calculatet by the recursion transfer matrix method, see K.

Semiconductor Structuregdited by J. M. Chamberlaiet al. Hirose and M. Tsukada, Phys. Rev.58, 5278(1995. We use
, (Plenum Press, New York, 1980 _ a finite (but high barrier as confining potential and slightly shift
E. Scheer, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret, the transverse energies used for the WKB resuyl(z), to ac-
Phys. Rev. Lett78, 3535(1997). count for the small difference between the hard and finite wall
8M. Brandbyge, M. R. $@nsen, and K. W. Jacobsen, Phys. Rev.  confinement.
B 56, 14 956(1997). 19G. Rubio, N. Agra, and S. Vieira, Phys. Rev. Letf6, 2302

9J. C. Cuevas, A. Levy Yeyati, and A. MartRodero, Phys. Rev. (1996.
Lett. 80, 1066(1998. 20N, Kobayashi, M. Brandbyge, and M. Tsuka@mpublishedl



