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We consider phase-coherent electron transport in the multichannel case with time-reversal symmetry. The
two-terminal conduction, as described by the Landauer-Bu¨ttiker theory, can be considered to take place in
parallel in independent channels: the so-calledeigenchannels. We extend the known relationship between the
local density of states~LDOS! and phase of the transmission amplitude in one dimension to the multichannel
case, and derive a simple explicit expression for the LDOS as a sum of individual eigenchannel contributions.
A simple expression for the LDOS that can be used for numerical calculations is given. We show how this
formalism can be useful in the description of the electronic states and conductance of metallic nanocontacts.
@S0163-1829~98!51124-1#

The density of states~DOS! that do not originate from
localized states can be obtained from the scattering proper-
ties of a quantum system.1 It has been shown by Avishai and
Band2 that the DOS of a one-dimensional system is simply
related to the phase of the transmission amplitude. In this
paper we show how this relationship can be extended in a
simple way to the multidimensional case using the concept
of eigenchannels.

We consider a general two-terminal phase-coherent con-
ductor in the linear-response regime with time-reversal sym-
metry. We denote the two terminals by 1 and 2 and label the
transmission and reflection amplitude matrices for states
originating from terminal 1 byt12 and r11 and accordingly
for terminal 2. The conductance is obtained from the multi-
channel Landauer-Bu¨ttiker formula,3

G5G0 Tr@ t†
12t12#~EF!. ~1!

Only states at the Fermi energy (EF) are considered at zero
temperature.

The local density of states~LDOS! can be split into two
partsdNt /dE anddNr /dE, describing states that are being
transmitted between 1 and 2, and states that are reflected.
These can be classified according to the originating terminal,
and we end up with a sum of four terms,4
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whereV is the scattering potential. The partition into the four
so-calledpartial LDOS is important, e.g., in the discussion

of ac transport4,5 or the effect of finite dc bias. Here we will
focus on the total transmitted and reflected parts of LDOS
(dNt /dE, dNr /dE).

In the case of time reversal symmetry:

t215t12
T , r11

T 5r11, r22
T 5r22, ~3!

so the two terms in the transmitted LDOS will be equal.
Eigenchannels6 are special orthogonal linear combina-

tions of the incoming~outgoing! states in terminal 1~2! with
a fixed energy and correspond to transmission eigenstates.
Recently these have been addressed experimentally7 as well
as theoretically8,9 in order to elucidate the nature of conduc-
tion in atomic-scale metal point contacts~nanocontacts!.

Consider the incoming eigenchannels in terminal 1 deter-
mined by the columns in theunitary matrix U1:

U1
† t12

† t12 U15diag$utnu2%. ~4!

Using this special basis, the Landauer-Bu¨ttiker formula re-
duces to a sum of contributions from each eigenchannel,

G5G0 (
n

utnu2. ~5!

We will for simplicity assume thattn are all different and
differ from zero. For the physical systems we have in mind
this is not a crucial restriction.

Now consider the outgoing eigenchannels in 2 given by
the columns inU2 ~denoted byU2n):

U25t12 U1 diag$1/tn%. ~6!

U2 will also be unitary (U2
† t12t12

† U25diag$utnu2%). An in-
coming state from terminal 1 given by thenth columnU1n ,
will end up in terminal 2 in the linear combination given by
tnU2n according to Eq.~6!. For simplicity we choose all
phase information to be contained in theU’s using utnu in
Eq. ~6! ~Ref. 10!, i.e.,
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t125 U2 diag$utnu%U1
†. ~7!

Inserting Eq.~7! in the expression for the transmitted LDOS
yields
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Here the transmitted LDOS is split into eigenchannel contri-
butions. We have introduced a quantity corresponding to the
derivative of the phase of each eigenchannel given by
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Now we consider the reflected part of the LDOS. Due to
current conservation,t12

† t121r11
† r115I , so r11

† r11 will be di-
agonal in the basis in 1 described byU1,

U1
†r11

† r11U15diag$urnu2%, ~10!

whereurnu2512utnu2. ConsiderX defined by

X5U1
Tr11U15XT, ~11!

X†X5XX†5diag$urnu2%. ~12!

Due to the time-reversal symmetry,X is symmetric @Eq.
~11!# and normal@Eq. ~12!#. From this and the assumption
that all urnu are different it follows thatX is diagonal:

r115U1* diag$rn% U1
† . ~13!

Inserting this expression in the partial LDOS related tor11
we obtain
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In the case of the reflected LDOS in terminal 2 we note
that due to the time-reversal symmetry (t12t12

† 1r22r22* 5I ),
U2 will diagonalizer22r22* . Using the same arguments as for
r11, we can write

r225U2
† diag$r̃n% U2* . ~15!

We have thaturnu5ur̃nu, however, the phase ofrn and r̃n
will in general differ. Ther22 term reads
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We can relate the phase ofrn and r̃n using the unitarity of
theS matrix (t21

† r111r22
† t1250) combined with time-reversal

symmetry (t12* r111r22* t1250). Using Eqs.~7!, ~13!, and~15!
we obtain

rn 5 2 r̃n* . ~17!

Using this we arrive at the following simple result for the
reflected part of the LDOS,
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and together with Eq.~8! we have the total LDOS:
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These simple equations for the total@Eq. ~19!#, transmit-
ted @Eq. ~8!#, and reflected LDOS@Eq. ~18!#, are the main
results of this paper. They generalize the single-channel re-
sult by Avishai and Band2 to the multichannel case. It shows
that we can obtain the total LDOS from the individual eigen-
channel components of the transmitted LDOS@Eq. ~8!# by
dividing each eigenchannel contribution byutnu2. Thus the
total LDOS is simply expressed using the transmission am-
plitude matrix t instead of the fullS matrix in the case of
time-reversal symmetry.

We end this general discussion by noting that the trans-
mitted part of LDOS for eigenchanneln alternatively can be
obtained from

utnu2S dun

dV~rW !
D 52ImS U1

†t12
† dt12
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nn

. ~20!

This expression does not involveU2, and is therefore more
convenient for numerical calculations. The total LDOS can
in principle be obtained by dividing the right-hand side of
Eq. ~20! by utnu2. However, in actual numerical calculations
only the contributions to the total LDOS from eigenchannels
with a certain size ofutnu are accessible in this way. But in
many situations one is especially interested in the LDOS
close to a ‘‘bottleneck’’ in the potential where the LDOS is
contributed only by the few eigenchannels with the highest
utnu. In such cases Eq.~20! can be employed to obtain the
total LDOS, as demonstrated below.

Now we turn to a concrete example where we can apply
the general formalism. Several papers have lately addressed
the special electronic structure of metal nanocontacts and its
effect on their mechanical behavior.11–15 In these studies the
adiabatic approximation has been applied.16,17 This approxi-
mation is valid in the limit of a slowly~on the scale of the
Fermi wavelength! varying confining potential. In this limit
the eigenchannels correspond to the local transverse energy
eigenstates along the nanocontact; the columns ofU1 will
simply contain these at the point where the scattering region
is connected to terminal 1. If we denote this point byz1 ~the
transmission amplitudest12 are defined with respect to the
starting and ending points:z1 andz2 , see Fig. 1!, i.e.,
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^x,yuU1n&5fn,z1
~x,y!, ~21!

and similarly forU2 except for the phaseun containing all
information about the propagation through the wire,

^x,yuU2n&5eiun fn,z2
~x,y!. ~22!

The adiabatic limitun defined in Eq.~22! corresponds to the
un in Eq. ~9!. This follows from the fact that the local trans-
verse wave functions (fn,z1

,fn,z2
) do not depend on the

potential inside the scattering region.
Using WKB we may write the phase~in a.u.!,

un5E
z1

z2
dz A2@EF2«n~z!#, ~23!

where«n(z) is the quantized transverse energies along the
nanocontact. In order to compute the LDOS integrated over a
certain volumeV, we simply replace the functional deriva-
tive in Eq. ~9! by the normal derivative with respect to a
constant shift of the potential insideV. This procedure has
recently been used in numerical calculations of DOS~Ref. 5!
from the full S matrix. In the WKB approximation this sim-
ply corresponds to a shift in«n(z) by dV and we obtain from
Eq. ~19! ~including now a factor of 2 for spin!,
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1

A2@E2«n~z!#
, ~24!

where the volumeV extends fromza to zb inside the nano-
contact. This formula, based on the adiabatic approximation
and WKB, has been employed for nanocontacts with a
straight boundary12,13,15~constant«n) or including the finite
curvature in the variation of«n(z).11,14

We will now compare the numerical result for the total
DOS of the individual eigenchannels with the corresponding
WKB result for a simple two-dimensional example. Here we
shall especially focus on the adiabatic approximation and
study the effect of a finite curvature of the contact. We con-
sider two types~Fig. 1!: Type I with a radius of curvature
(R) comparable to the width (W) at the thinnest point (R
52W), and type II with a radius of curvature much larger
than the width (R520W) corresponding to low and high
degree of adiabaticity, respectively. For this illustrative pur-

pose we use free-electron electrodes and a confining poten-
tial in the hard-wall limit.18 The total LDOS is integrated
over a volume~gray in Fig. 1! around the narrowest part of
the constriction. We use Eq.~20! to calculate the phase de-
rivative and we include channels with eigenchannel trans-
missionsutnu2 larger than 10212. This procedure agrees with
the total DOS obtained from the fullS matrix within a few
percent.

In Fig. 2 we show the results for potential I with the
smallest curvature, i.e., the least adiabatic potential. In this
case, as expected, the difference between the WKB and the
exact result is most striking. The WKB results exhibit a loga-
rithmic divergence at the channel opening, and converge to
the exact result in the high-energy limit. The reflected DOS
is seen to play a large role in this case. The transmitted and
reflected part of DOS~middle panel! are rather symmetric
around the channel closing (tn50.5); the electron density
does not decrease suddenly as the channel is closed, but is
transferred slowly from transmitting to reflected states inside
V. The low-energy part of the reflected DOS is controlled by
the evanescent tails of the wave functions reaching intoV
while the high energy cutoff is due to the onset of transmis-
sion. For comparison we also show the result where we use
the WKB phase@Eq. ~23!# instead of the exact.

The reflected DOS becomes less significant for the more
adiabatic potential~II !; it does not contribute as much as the
transmitted part around the opening of a channel and the
electron density insideV drops steeply as the channel is
closed. In this case the agreement with WKB becomes more
pronounced. We note that for a fixed radius of curvature the
discrepancy between the WKB and the exact result will in-
crease with channel number as the width of the transition
between open and closed channels increases.17

FIG. 1. The shapes of the two-dimensional hard-wall potentials.
I: Radius of curvature comparable to the width,R52W. II: Radius
of curvature at the narrowest point much larger than the width,R
520W. LDOS is integrated over the gray volume (V) centered
around the thinnest point (zb2za52W). The transmission ampli-
tudes are defined with respect to the borderline between the scatter-
ing region and terminals 1 and 2 atz1 andz2 , respectively.

FIG. 2. Upper: The total DOS inside the gray volume (V) in
Fig. 1 of potential I and II calculated from Eq.~20!. The thick solid
and dotted lines are for 1 and 2 eigenchannels, respectively. The
thin lines correspond to WKB@Eq. ~24!#. Middle: Partial DOS:
Reflected@Eq. ~18!, thick lines# and transmitted@Eq. ~8!# parts of
DOS insideV for 1 ~solid! and 2~dotted! eigenchannels. The exact
and WKB @using Eq.~23!# results are shown. These sum up to the
total DOS in the upper panel. Lower: Transmission probabilities
utnu2 for the 1 and 2 eigenchannels.
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Recently, there has been interest in the electronic contri-
bution to the tensile forces in the metallic nanocontacts.11–15

We can now, in general, associate a thermodynamic potential
(V) with each eigenchannel~in the limit of zero tempera-
ture!,

Vn5E
2`

EF
~«2EF!S dNn

dE
~«! D d«, ~25!

and a tensile force due to each eigenchannel ‘‘bond’’Fn
52dVn /dL, where L is the elongation parameter of the
nanocontact. Within the adiabatic approximation and WKB
the drastic change in the DOS around the channel closings
leads to fluctuations in the tensile force with a magnitude
close to the one found experimentally.19 It is, however, clear
that the one-electron potentials of nanocontacts in general
will vary on the atomic scale that is comparable to the Fermi
wavelength. Thus DOS can differ from the adiabatic WKB
result in a significant way, as illustrated by our simple ex-
ample, and calculations beyond the adiabatic WKB treatment
are necessary in order to confirm the adiabatic estimates. Our
formalism can provide a general framework for these discus-

sions and discussions of conductance in atomic-scale sys-
tems in general, e.g., combined with first-principles
calculations.20

In conclusion we have shown how the components
of LDOS can be written as a sum of contributions from
the individual eigenchannels. By defining a derivative of
the eigenchannel phase, this result extends the one-
dimensional result by Avishai and Band2 to the multi-
channel case in a simple way. For ‘‘bottleneck’’ potentials
this method can be used in numerical calculations to obtain
the total DOS from the transmission matrix. As an example,
we have discussed how this formalism is relevant for metal
nanocontacts. Especially, we have shown that the~partial!
LDOS, conductance, and tensile force~electronic contribu-
tion only! can be written as a sum over individual eigenchan-
nel contributions.
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