
Confinement of interchain hopping by umklapp scattering in two coupled chains

Y. Suzumura and M. Tsuchiizu
Department of Physics, Nagoya University, Nagoya 464-8602, Japan

G. Grüner
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The effect of umklapp scattering on interchain hopping has been investigated for two coupled chains of
interacting electrons with a half-filled band. By analyzing in terms of the renormalization-group method, we
have found that interchain hopping is renormalized to zero and is confined when a gap induced by umklapp
scattering becomes larger than a critical value. From a phase diagram calculated on a plane of the interchain
hopping and the gap, we discuss a role of the correlation gap that has been studied in the metallic state at
temperatures above the spin-density-wave state in organic conductors.@S0163-1829~98!52324-7#

The linear-chain conductors, called Bechgaard salts and
described by the formula (TMTTF)2X and (TMTSF)2X—
where TMTTF and TMTSF stand for tetramethyltetrathio-
fulvalene and tetramethyltetraselenofulvalene, respectively,
and X refers to various counterions—have been, over the
years, the subject of intensive studies. Early attention has
focused on the various broken-symmetry~magnetic and su-
perconducting! states but recently the state above the phase
transition became the subject of intensive studies. In these
salts the transfer integrals are different in different directions
and they span a wide range of dimensionality.1 While the
bandwidth along the chain direction is comparable in the
various salts, and the bandwidth in the least conduction di-
rection is rather small, the transfer integral in the second best
conducting (b) direction increases going from the TMTTF to
the TMTSF salts.2,3 One central feature of these salts is a
transfer of one electron from the TMTTF or TMTSF chain to
the X counterions, as well as a dimerization along the
TMTTF and TMTSF chains. Thus these materials can be
regarded as having a half-filled electron band, and therefore
umklapp scattering is important.

Various experiments give evidence for a charge gap for
the TMTTF salts and a metallic behavior for the TMTSF
salts. Recent optical, transport, and dielectric experiments,4

taken together with photoemission measurement5 lead to a
picture where, with increasing transfer integraltb , a transi-
tion occurs from an insulating state where electrons are con-
fined to the individual chains, to a metallic state where the
electrons are deconfined. This transition occurs wheretb be-
comes comparable to the charge gap.6

These conductors have been studied theoretically by using
a model of quasi-one-dimensional electron systems having
repulsive intrachain interaction without umklapp scattering.
The hopping perpendicular to the chain becomes relevant
even for a small transfer energy,7 although the hopping is
suppressed by one-dimensional fluctuation.8 Two coupled
chains have been studied as a basic model that includes in-
trachain interaction and transverse hopping. For the
Tomonaga-Luttinger model with forward scattering, it has
been shown that a gap appears in the transverse density fluc-
tuations and that degeneracy of in-phase and out-of-phase

pairings of density waves is removed.9–12 The model with
backward scattering exhibits a phase diagram that is different
from that of a single chain. In the case of the Hubbard model
with a repulsive interaction and an incommensurate band, the
ground state of two chains is given by the superconducting
~SC! state with interchain and in-phase pairing, i.e.,
d-wave-like pairing.10,13,14The transverse hopping becomes
relevant even for a small transfer energy unless the intrac-
hain interaction is extremely large.10 On the other hand, it
has been maintained that confinement with no coherent
single-particle hopping occurs in coupled chains of Luttinger
liquids for the interchain hopping smaller than a critical
value.15–17

In this paper, two coupled chains with intrachain interac-
tion and a half-filled band are considered. The model applies
to the normal state of organic conductors, TMTSF and
TMTTF salts, for which the importance of umklapp scatter-
ing has been pointed out earlier.18,19We demonstrate that the
interchain hopping becomes irrelevant and confined with in-
creasing the magnitude of umklapp scattering. The relevance
of our result to experiments is also discussed.

We consider two coupled chains with the intrachain
interaction and interchain electron hopping. The kinetic
energy parallel to the chain is linearized with the Fermi
velocity vF (2vF) and Fermi momentumkF for the
right-moving ~left-moving! electron, respectively. The
intrachain interactions consist of forward scattering, back-
ward scattering, and umklapp scattering, whose coupling
constants are defined asg2 , g1 , and g3 , respectively.
After diagonalization of the term for interchain hopping,
the kinetic energy is expressed in terms of the bonding state
and antibonding state with new Fermi momentum,kF6[kF
1(7t/vF), wheret denotes a hopping energy. Applying the
bosonization method to electrons around the new Fermi
points, we introduce Bose fields of phase variables,ur1

andus1 (uC1 anduS1), which express fluctuations for the
total ~transverse! charge density and spin density,
respectively.12 The commutation relation with conjugate
phase is given by@ur1(x),ur2(x8)#5@us1(x),us2(x8)#
5@uC1(x),uC2(x8)#5@uS1(x),uS2(x8)#5 ip sgn(x2x8).
In terms of these phase variables and the bosonization for the
field operator,20 our Hamiltonian is given by
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2, Kr

5@$12(2g̃22g̃1)%/$11(2g̃22g̃1)%#1/2, Ks5@(11g̃1)/(1
2g̃1)#1/2, andKC5KS51. The quantitya(;1/kF) is of the
order of the lattice constant andg̃j5gj /(2pvF) with j 51,
2, and 3. In deriving Eq.~1!, a phase factor of the bosonized
field operator, which is added to retain the anticommutation
relation, is taken in order to conserve the sign of
interaction.21

We reexpress the nonlinear term in Eq.~1! as
(vF /pa2)Gnp,n8p8 cos&ūnp cos&ūn8p8 where & ūnp

5&unp24tx/vF for n5C and p51, and& ūnp5&unp
otherwise. In the present case, there are 12 coupling con-
stants, which are given byGC1,S15g̃22g̃1 , GC1,S2

52g̃2 , GC2,S15g̃2 , GC2,S252g̃21g̃1 , Gs1,C1

52Gs1,C252Gs1,S152Gs1,S25g̃1 , and Gr1,C1

5Gr1,C252Gr1,S15Gr1,S25g̃3 . The renormalization
group method is applied to response functions for spin-
density-wave~SDW!, 4kF charge-density-wave~CDW!, and
SC states, which are calculated with the assumption that re-
sponse functions are scaled to the same form fora→a8
5aedl.22,23 Thus, renormalization group equations within
the second order are obtained as~n5r, s, andp,p856!
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where Kn
p5Kn

61 for p56, ṽn5vn /vF , t̃( l )
5t( l )/(vFa21), y54t̃( l ), and Jn(y), (n50,1), is the
Bessel function. The variablel is written explicitly only for
t̃( l ) where t̃(0)5t/eF[ t̃ with eF5vF /a and the corre-
sponding energy is given byeF exp@2l#. Note that these
equations in the zero limit oft become equal to those of the
one-dimensional case.24

We examine both cases ofg̃15g̃2Þ0 and g̃150, g̃2Þ0
by calculating renormalization group equations forKr( l ),
Ks( l ), KC( l ), KS( l ), and Gnp,n8p8( l ) with several choices
of g̃2 , g̃1 , g̃3 , and t̃. For the relevant interchain hopping,
t̃( l ) increases rapidly with increasingl while t̃( l ) decreases
to zero for the irrelevant hopping. The relevantt̃( l ) corre-
sponds toKC( l )→`, which comes from the rapid oscillation
of J0(y) in Eq. ~3!. The quantityKC( l ) represents the degree
of transverse charge fluctuation. Thus deconfinement~con-
finement! is obtained when the limiting value ofKC( l ) be-
comes infinite~finite!.

In Fig. 1, t̃( l ) and 1/KC( l ) are shown as a function ofl by
solid curves and dotted curves, respectively, with the fixed
g̃350.1, g̃3c (50.189) and 0.3, wheret̃50.1 and g̃15g̃2
50.3. The case forg̃350.1 @curves~1! and ~4!# shows the
result leading to deconfinement. With increasingl , t̃( l ) in-
creases rapidly and 1/KC( l ) decreases monotonically to zero.
Our solution stops at a value ofl corresponding toKr( l )
.0 due to the divergence of some ofGnp,n8p8( l ) since the
present treatment is of the second order for the renormaliza-
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tion group equations. The case forg̃350.3 @curves~3! and
~6!# shows a typical behavior for confinement. With increas-
ing l , t̃( l ) reduces to zero after taking a maximum and
1/KC( l ) remains finite even at the limiting value ofl . There
is a crossover from deconfinement to confinement around the
location of l corresponding to the maximum oft̃( l ) where
Gr1,np( l ) becomes of the order of unity. We also obtained
Gr1,C1( l )/Gr1,C2( l ).1/KC( l ) for the limiting value, indi-
cating the irrelevance of the misfit parameter and then the
interchain hopping. For a critical value given byg̃35g̃3c
@curves ~2! and ~5!#, one finds a marginal behavior where
both t̃( l ) and 1/KC( l ) reduce to zero at the limiting value of
l . The l dependence ofKC( l ) indicates that there is a tran-
sition from deconfinement to confinement as a function ofg̃3
in the limit of low energy. In the inset, theg̃3 dependence of
1/KC

asymis shown whereKC
asymis the limiting value ofKC( l ).

The location ofg̃3c is shown by the arrow. For most param-
eters leading tog̃35g̃3c , the present calculation shows a
common feature in that a peak height oft̃( l ) is about 0.82
andvm /t.0.94, wherevm is the energy at the peak oft̃( l ).
We note that the Bessel functionJ1(y) in the right-hand side
of Eq. ~8! plays a crucial role in obtaining such a transition
where the effect of the second term of Eq.~8! is negligible
for the relevantt̃( l ) and becomes large for the irrelevant
t̃( l ). With increasingl , Kr( l ) decreases to zero where a
charge gap is formed forKr( l ).Kr(0)/2, e.g., at l
.3.25(1.50) for g̃350.1(0.3). The quantityKS( l ) corre-
sponding to transverse spin fluctuation is also suppressed by
umklapp scattering. The behavior of total spin fluctuation
indicates the absence of the spin gap even at low energies
sinceKs( l ) is almost the same as the one-dimensional one.
Thus one finds that there is a separation of freedoms of
charge and spin at energy corresponding to a correlation gap.
Note that the decreases ofKs( l ) andKS( l ) are attributable to
the backward scattering. In fact,Ks( l )5KS( l )51 for both
regions of confinement and deconfinement wheng̃150.

In Fig. 2, the t̃ dependence ofg̃3c is shown forg̃25g̃1
50.3 ~solid curve!, g̃25g̃150.4 ~dashed curve!, and g̃2

50.3, g̃150 ~dash-dotted curve! where the region for con-
finement ~deconfinement! is given by g̃3.g̃3c (g̃3,g̃3c).
The boundary is determined mainly by the competition be-
tween umklapp scattering and interchain hopping. In addi-
tion to g̃3 , both g̃2 and g̃1 enhance the region for confine-
ment where the effect of the forward scattering is larger than
the backward scattering. Ast̃ goes to zero,g̃3c reduces to
zero and then the confinement does not exist in the absence
of umklapp scattering.

Now we examine the correlation gapD defined byD
[eF exp@2lg#, where l g is evaluated fromKr( l g)5Kr(0)/
2. We note that such a definition of gap reproduces well a
magnitude of gap for the one-dimensional Hubbard model
with weak coupling.25 It is found thatD is slightly larger than
the energyvm corresponding to a peak oft̃( l ) in Fig. 1. In
the inset of Fig. 3,D is shown as a function ofg̃3 for g̃2
5g̃150.3 ~1!, g̃25g̃150.4 ~2!, and g̃250.3, g̃150 ~3! with

FIG. 1. Thel dependences oft̃( l ) and 1/KC( l ) are shown by
solid curves and dotted curves, respectively, forg̃350.1 @~1! and
~4!#, g̃35g̃3c(50.189) @~2! and ~5!#, and g̃350.3 @~3! and ~6!#,
respectively, wherel̃ 50.1 andg̃15g̃250.3. The inset shows theg̃3

dependence of 1/KC
asym, which corresponds to the limiting value of

1/KC( l ).

FIG. 2. Thet̃ dependence ofg̃3c for g̃15g̃250.3 ~solid curve!,
g̃15g̃250.4 ~dashed curve!, and g̃150, g̃250.3 ~dash-dotted
curve!. The case ofg̃3.g̃3c(g̃3,g̃3c) corresponds to confinement
~deconfinement!.

FIG. 3. The phase diagram of confinement@region ~I!# and de-
confinement@region ~II !# on the plane of the interchain transfer
energytb(5 t̃/2) and the correlation gapD. The solid, dashed, and
dash-dotted curves denote boundaries that are obtained from respec-
tive curves in Fig. 2. In the inset, the correlation gapD is shown as
a function of g̃3 for g̃25g̃150.3, t̃50.1 ~1!, g̃25g̃150.4, t̃50.1
~2!, g̃250.3, g̃150, t̃50.1 ~3!, and g̃25g̃150.3, t̃50.01 ~4!, re-
spectively.
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the fixedt̃50.1. The quantityD, which is determined mainly
by g̃3 , is enhanced also byg̃2 and g̃1 . The t̃ dependence of
D is small as seen from curve~4! which is calculated for
g̃25g̃150.3 and t̃50.01. Here we introducetb defined as
the transfer energy perpendicular to the chain for a quasi-
one-dimensional system wheretb5t/2 from the definition of
our Hamiltonian. In terms ofD andtb(5t/2), the phase dia-
gram is shown in Fig. 3 where regions~I! and~II ! correspond
to confinement and deconfinement, respectively. Three
boundaries given by the solid curve, the dashed curve, and
the dash-dotted curve are evaluated from the corresponding
curves in Fig. 2. The result is that the ratio of the correlation
gap to the perpendicular transfer energy isD/tb51.8;2.3
for the interval range of 0.01,tb /eF,0.1. This value is in
excellent agreement with experiments5 that indicate a transi-
tion from a confined insulator to a deconfined metal between
1.5 and 2. The critical value ofD for the confinement de-
creases for the largeg̃2 and g̃1 .

The dominant state, which is found with decreasingv
(5eF exp@2l#) and for the fixedg̃3 andg̃25g̃1.0, is exam-
ined by calculating response functions for SDW with the
intrachain and out-of-phase pairing, for 4kF CDW with the
intrachain and in-phase pairing, and for SC state with the
interchain and in-phase pairing. WhenD*t ~i.e., g̃3.g̃3c),
there is a crossover from deconfinement to confinement in
the SDW state at energy given byv.vm(,D). Further, the
SDW state moves into the confined 4kF CDW state at lower
energies. WhenD&t, all the states are deconfined and the

SDW state is replaced by the 4kF CDW state at energy much
lower than D. The SC state is possible for the region of
deconfinement withg̃3! t̃ and finite energy. We note that the
SC state is also found in the other region of 2g̃22g̃1
,2ug̃3u, where the umklapp scattering becomes irrelevant.18

In conclusion, we have found by examining the effect of
umklapp scattering on the interchain hopping in two coupled
chains, that the interchain hopping becomes irrelevant result-
ing in the transition from deconfinement to confinement
when the correlation gap induced by umklapp scattering be-
comes larger than the interchain hopping. This result sup-
ports Giamarchi’s assertion19 of irrelevant hopping by um-
klapp scattering but differs slightly from that by Kishine and
Yonemitsu26 who have obtained the state with reduced but
finite interchain hopping.

Finally, we comment on the metallic state above the de-
confinement transition, which is highly unusual: there is a
small Drude weight and a charge gap remaining, while the
spin excitations are gapless. The state is similar to that of a
doped Hubbard chain.27 In a simple picture, single-electron
transitions between the chains lead to deviations to 1
electron/unit cell for both chains—and thus to a situation
also encountered by doping—but whether interchain electron
transfer leads to the features viewed by experiments remains
to be seen.
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1039 ~1982!.
19T. Giamarchi, Physica B230-232, 975 ~1997! and references

therein.
20A. Luther and I. Peschel, Phys. Rev. B9, 2911~1974!.
21M. Tsuchiizu and Y. Suzumura~unpublished!.
22T. Giamarchi and H. J. Schulz, J. Phys.~France! 49, 819 ~1988!.
23T. Giamarchi and H. J. Schulz, Phys. Rev. B39, 4620~1989!.
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