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Classification of the Van Hove scenario as an S@B) spectrum-generating algebra
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The various nesting and pairing instabilities of the generalized Van Hove scenario can be classified via an
SQO(8) spectrum-generating algebra. An &Dsubgroup is an approximate symmetry group of the model,
having two six-dimensional representatigfisuperspins”). This group contains as subgroups both th¢50
and S@4) groups found by Zhang, while one superspin is a combination of Zhang's five-component superspin
with a flux phase instability; the other includes a charge-density-wave instabilitysplasre superconductiv-
ity. This is the smallest group that can describe both striped phases and superconductivity.
[S0163-182698)52322-3

Two groups play important roles in understanding aoperators can be written &, , C},, C1,, andC}, . Includ-
Hamiltonian: thesymmetry grougllows a classification of ing both particle-hole €'C) and particle-particle¢'C" or
its degenerate eigenstates, while the Lie group of theCC) operators, there are 28 pair operators, whose compo-
spectrum-generating algebrdSGA) can be used to analyze nents define the Lie algebra of 8 [recall that for SOK),
the complete spectrum. SGA'’s have proven to be useful inhe Lie algebra containdl(N—1)/2 elements Particular
the study of collective modes in nuclear and high-energyinear combinations of these elements are listed in Table I.
physics, while in condensed-matter physics they have beenigure 1 rewrites these elements as an explicit representation
used to study phase transitions in liquid He and in oneof the Lie algebra of S@). The 28 generators are the anti-
dimensional(1D) metals? In the 1D metals, the SGA is Symmetric matricesL', with matrix elementsL},= 64|
SU(8), with 63 elements and 56 possible order parameters
including superconductivity and charge or spin-density
(CDW/SDW) waves. This algebra has also been applied ta
the two-dimensional2D) Hubbard modef. However, we  Operator
show that even for the generalized Hubbard model appropriz

TABLE |. Generators of S(®) Lie algebra.

Representation

ate to the generalized Van Hove scenario, the appropriatg
SGA is S8), a considerably smaller algebra. This algebraT
has a natural subalgebra, 80 which acts as an approxi- Se
mate symmetry group generalizing Zhghgnd including z
both his S@5) and S@4) as subgroups. We identify $6)
as the smallest group which is capable of describing stripe_@X
phases as well as superconductivity. !Sy
For a one-dimensiondlLD) metal? nesting involves the 1Ay
two points of the Fermi surface, atkg, with kg the Fermi  Ocow
momentum. Since this breaks momentum conservatiom  Osow:
states+ kg and —kr become inequivalent the full group  Ouc
SU(8) must be taken as the SGOn the other hand, in two Oys;
dimensions, the dominant nesting arise®at (, ), con-  Ospbwx
necting the two Van Hove singularitié¥HS’s) (Ref. 6 at  iOspwy
(7,0) and (07). Since the points+(7,0) are equivalent Oisx
points of the reciprocal space lattice, nesting singularitiesO,sy
involve only order parameters evenknHence the SGA is a Op.

(C];Cq;+C},Cy+Cl Cy +C] Cy ) I2-1

(C};Cy;—CJ,Cy+C] Cy —Ch Cy))I2
(Cl,Cy;+CJ,Cyy—Cl Cy —C Cy)) /2
(C};Cy;—CJ,Cy—Cl,Cy +Ch Cy )2
(C},Cy,+ClCy +Cl Cyy+CI Cyy) 12
(Cl;Cy,—CJ,Cy+C] Cyy—Ch Cyp)/2
(C},Cy +ClCy —Cl Cy—Cl Cyy) 12
(C};Cy,—C},C,y —C],Cy;+CL Cyp)/2
(C};Cy+CJ,C1y+C] Cy +C] Cy )2
(Cl,Cy+CJ,Cyy—Cl,Cy —Ch Cy )12
(C};Cy—CJ,C1y+C] C,y —Ch Cy )2
(Cl;Cy—CJ,Cyy—C],Cy +Ch Cy )2
(C};Cy,+CJ,Cy1 +C] Cyy+C} Cyp)/2
(C},Cy,+CJ,Cy—C],Cyy—C Cy )2
(Cl;C;,—CJ,Cy +C] Cyy—Ch Cyp)/2
(Cl,Cy,—C},Cy —C] Cyy+Ch Cyp)I2

proper subgroup of S@8)—the Sd8) algebra of Table I.

(Note that there is some ambiguity in defining a SGA: hereds

we define it as the algebra which contains the mean-field\q

Hamiltonian) —ill,
There is a combinatoric interpretation of this @Dwhich 17,

is independent of any particular Hamiltonian. Consider a

electronic system with a twofold orbital degeneratapeled 10,

Representation Op. Representation
(CyiCy +CpCp)2 AL (c,cl,+C] cl)2
(C1iCy=CyCo2  A] (C},C},—C},Cl)I2
(C2iCy+CpCy)2 My (cl,cl +cl ch))r2
(C2C1y—CyCy )2 1} (cl,cl,—clcl)r
(C1iCy +CyiCy )2 5" (Chcl +c] cl2
(C1;Cy—CyCy )2 1} (clcl,—clclyre

1, 2) in addition to the spin degeneracy. The four creation
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FIG. 1. Matrix representation of §8), using the shorthand
0.=0x0" FIG. 2. SG4) weight diagram ofV', where S, (J,) is thez
component of spirjpseudospin

— 88l Figure 1 illustrates the equivalences as the lower

half of an antisymmetrit. matrix. The operators satisfy the hOPPing parameter. The form of the interaction term is not
Lie algebra, with standard S68) commutation rules: unique, since a number of alternative terms can arise by an-
ticommuting the operators.

While SQ8) is the SGA of the generalized Hubbard
model, Zhang's S(®) is an(approximate symmetry algebra
o of the same model—in particular, the collective modes
SO(8-M) subalgebras can be formed by eliminatiMy  [spw andd-wave superconductivity for S®)] areelements
rows of theL matrices, along with their corresponding col- ¢ the SGA, but areomponentsf a superspin, which trans-

[LY LK™ =i( 81l + il ™= SimL K= 33 L'™). (1)

umns. These will be designated 46, ....Iu}, Where  forms under the symmetry group. For the generalized Hub-
l1,... Iy are the rows(and columns which have been pard model, the naturalapproximatg symmetry group is
ellmlnate(z. For instancg 234} is the S@5) algebra studied  50(6), defined as follows. S@) contains an S@) algebra,
by Zhang' which we call isospin generated byTo=7, T.=Ocpw

In a generalized Hubbard modethe creation operators +0,¢. This algebra is the algebra of the VHS's: theom-
can be expanded |,n.terms of operators localized near thﬁonent of the isospirl,, measures the excess population of
corresponding VHS's: the 1 VHS over the 2 VHS. Those operators which do not

commute withT can lead to a nesting or pairing instability.

s 1 « ot > T Hence, the important transformation group of the VHS's is
aip=5 (= 1)N1o(1)+ (= 1)1, (r)], (2 the S@6) subgroup{23} which commutes withT,, leading
to the decomposition scheme:
wherey; . and ¢, are slowly varying functions of position SO(8)—SO(6) 230V, BV _& 7, 3)

r= a(x;,yi). A more precise definition is given in Refs. 8 )
and 9. The Lie algebra of Table | corresponds @ under which 28— (150)+(6,1)+(6,—1)+(1,0), where

—>2;O(F), with ¢ _)l//ir(r(;)’ etc. With this definition, the (m,n) denotes representation of SO6) and eigenvalue

lo — ! H
operators become equivalent to those introduced by Sthul?f To- The 6-vectors can be denoted =V=V" with
V={La1,La2,Ls2,L62,L72,Lga}

and Zhand. The SGAG is defined in Fourier space &
= @0k, Whereg is the algebra of a particuldfrcomponent
of the Fourier transformed operators of Table 1. r=

The interaction terms ?n the generalized Hubbard Vi=ilabasbsales brabsd, @
Hamiltoniarl can be written in terms of pairs of these opera-shown boxed in Fig. 1. The group structure\dfis shown in
tors; see Table Il. Here th&;’s are coupling constants, Fig. 2, wherel, is thez component of the pseudospin opera-
which can be related to the Hubbatdand to various near- tor introduced by Yang and Zhaty and Ogpw.
neighbor interaction termsFor the pure Hubbard model, =I(OSDWXiiOSDWQ/J§. An analogous diagram can be

G;=G,=G3=G,=U/4nt and t is the nearest-neighbor drawn forV. The group SO(6}3 transforms the compo-
nents of each of these 6-vectors among themselves, without

TABLE Il. Interaction terms. mixing the two vectors, whiler transforms the vectors into
each other.
(Go—G3) S AN Ag(F) A number of points should be noted) The SQ6) group

{23} contains Zhang's S@G) group as a subgroup, as well as
the S@4) group introduced by Yang and ZhaffjMoreover,
V', Fig. 2, combines Zhang's §6) superspin withO;¢,

(Go+Ga)3rAL(N AT
(2G;+G3—Gy) 3 Ocpu(r)]?

(Gs+ G4—2G3)Ei[01c(F1]2 which is essentially equivalent to the flux phade.
(G4—G3)2;0;4r) - Oy4(r) (2) The 12 components of superspin are precisely the col-
—(G3+G,)3Ospw(r) - Ospnlr) lective modes identified earlier by Schiland most of them

have been found to play an important role in the cuprates:
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s-wave superconductivity in electron-doped afpbssibly S S e e LA B e e
overdoped cuprates, CDW’s near optimal dopifif the n , 1
flux phase near half filling**3 4 —
(3) For a bare band dispersigneglecting interactionsof . ]
the form —~ 3 —
= C ]
ex= —2t(cosk,a+cosk,a) + 4t'cosk,a cosk,a, (5) X 2 -
two parameters control the symmetry of the quadratic part of « C I ]
the generalized Hubbard Hamiltoniari, and u=Eg—Ey, ! P . ]
the shift of the Fermi levelEg from the VHSE,,. When both ok TS LT BN T
parameters are zelalf filling with square Fermi surfage 0.0 0.5 1.0 1.5 2.0
the Hamiltonian has an extra pseudospin symmétty.this 14+x

case, the nature of the ground-state instability is controlled
solely by the interaction termg&he G’s). A pure Hubbard
interaction (U) breaks the S®) symmetry(Table II):

FIG. 3. Susceptibilitieg o, (dot-dashed lineand x, (solid line)
vs band filling 1+ x for Eq. (5) with t’=0.

SO(6)— SO(3)® SO(3) (6) and the corresponding susceptibility is
with one S@3) ordinary spin, and the other the _ i O 11
pseudospirt? Both 6-vectors are broken down to pairs of Xoi= M | p = (1D
3-vectors ho—0

; Including the interaction terms, the Hartree-Fock free energy
V—{O0;s} ®{Al,As,Ocon} becomes
V' —{Ospwit ®{Ad,Ag,O5c}; (7)

{Ospwi} ®{A¢,Aq,O5c} 0?7, (12

N 1
_ _ FHF(O):Ei(2_+Gi
however, there remains an accidental degeneracy of one vec- Xoi
tor (O;9) with the op_posite pseu_dovector. At half fiI_Iing the leading to an instability of théth mode when
lowest energy state ®gpw. As discussed below, this weak
coupling result must be corrected for strong correlation ef- 1+2x0iG;=0. (13
fects. . e .

When the Fermi surface is distorted from square, either b)V;]the quadratic Harr:nlthoman IS symmetric “':]de]f,@thi'f‘
doping away from half filling fz) or by introducing second- the component wit t, e most nfaga'c_lee IS the first to di-
neighbor hopping terms’, the pseudospin degeneracy is Verge. For finitex ort’, the Ham|lton_|an still preserves par-
broken, in such a way as favor pairing over nesting insta- t!cle number, SO there are only two |_ndependent suscep_t|b|I|-
bilities. This can be seen by Hartree-F&tkr renormaliza-  tieS, the particle-hole susceptibilityoo and the pair

tion groug®'’12analyses or by a linear response analysisSusceptibilityxop, with
(following Ref. 18.
_ If the s_uperspin is written aé (a lZ-pomponent vector XYoo= _22%&'
incorporating both representationshen in linear-response €ko— €K+0,0
theory it is assumed that there is an applied ﬂ&w(also a
12-vectoy which couples t®. The Hamiltonian in the pres- __s. f(€ks) (14
ence ofhg is Xo2 “ i€
H =E;zge|za;£(,a;zg+ﬁo-(3 ®) Note that in nearest-neighbor hopping models =0)

€k+0,0= — €ko» and the two expressions become equivalent
(here the terms iG have been neglectgdvith resulting free  wheneg=0, i.e., at half filling.

energy Figure 3 illustrates the doping dependence of these sus-
ceptibilities for a Hubbard band with nearest-neighbor hop-
Fo(O)=Qg(u,0,T)+ N, ping only (' =0). The point of maximum instabilitflargest
x) coincides with the point at which the VHS crosses the
Qo(1,0,T)=—2kg TS, In(1+ e Eio—w/keTy 4 R .G Fermi level—half filling whent’=0. Whenx=t'=0, the

&g) susceptibilities are degeneraey= xo2, as expected from
. o ) the pseudospin symmett) However, as soon as the system
with Ei, the quasiparticle energy found by applying aijs goped away from half fillingX 0) the electron-hole sus-
Bogoliuboy-Valentin transformation to E¢8) or via SGA  cepibility drops precipitously, whereas the pair susceptibil-
technlque_éz The expectation value of each superspin comsty fajis off much more gradually. A similar effect arises if
ponentO; is found from the system is maintained at optimal dopittge VHS, but
20 the parametet’ is varied—indeedyq, actually increases
2770 =0, (100  Wwith increasing’ (Fig. 4). This striking difference is readily
dho; understood: the electron-hole susceptibility involves inter-
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0 L L LN L LR I Despite the simplicity of this picture, a purely £)
model cannot explain the full physics of the cuprates. First,
the above analysis is in the weak-coupling limit, and a
strong-coupling reanalysis of Table IJ{erm dominant
shows that the flux phase—not included in (S2-is the
lowest energy state. A second problem is i, Lé8Ba,CuQ,
and Lg_, yNd,Sr,CuQ,, nearx=1/8, where the striped
phase is commensurately pinned, leading to long-ranged
N magnetic and charge ordEYAt the same time, superconduc-
o T B e It tivity is strongly suppressed, demonstrating that whatever the
0.0 05 1.0 1.5 2.0 driving force for charge order may be, it is not superconduc-
1+x tivity, but is in competition with superconductivity. Since
SQ(5) only allows for antiferromagnetism and superconduc-
tivity, it does not have sufficient flexibility to properly de-
scribe this situation. There are strong hints that the charged
VHS nesting, which gets progressively worse as the Fermétripes are associated with a CDW: the low-temperature te-
surface gets more curved, whereas the electron-electron sugagonal phase is nearly coterminus with the long-range
Ceptlblllty involves intra-VHS Scattering, and increases WithSDW-Ordered phase, and the fact that the Charged Stripes are
t’ as the Fermi surfaces become nearly 1D near the VHS'yest seen by neutron diffraction suggests a strong associated
(In Figs. 3 and 4, the logarithmic divergence at the VHS wagattice distortion. There is considerable additional evidence
cut off by adding a small imaginary term to the denominatory a1 phonons and structural instabilities play an important
of X:) _ ) ) role in the doped materiaf. Hence, for a detailed description
Figure 3 is conS|stent, with the RG results of Schiulz. of the doping dependence of the pseudogap, striped phases,
From Eq.(13), when ally’s are equal the order parameter and extended VHS's, it may be necessary to recognize that

associated with the most negat|(2e|s_ the first o go singu- ._strong electron-phonon coupling can lead to a crossover to a
lar. For the pure Hubbard model, this means that the Ieadmaround state involving thy/ 6-vector3

instability at half filling is the SDW. When the material is
doped, the SDW susceptibility plummets, and at some point

d-wave superconductivity becomes favorable. In agreement M.T.V.'s research is supported by the Dept. of Energy
with Zhang? the shift of the Fermi energy from the VHS is a under Grant No. DE-FG02-85ER4028Bublication 722 of
relevant parameter in driving this SDWd-wave supercon- the Barnett Institute

ducting transition.
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FIG. 4. As in Fig. 3, but with 4 =E.
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