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The various nesting and pairing instabilities of the generalized Van Hove scenario can be classified via an
SO~8! spectrum-generating algebra. An SO~6! subgroup is an approximate symmetry group of the model,
having two six-dimensional representations~‘‘superspins’’!. This group contains as subgroups both the SO~5!
and SO~4! groups found by Zhang, while one superspin is a combination of Zhang’s five-component superspin
with a flux phase instability; the other includes a charge-density-wave instability pluss-wave superconductiv-
ity. This is the smallest group that can describe both striped phases and superconductivity.
@S0163-1829~98!52322-3#

Two groups play important roles in understanding a
Hamiltonian: thesymmetry groupallows a classification of
its degenerate eigenstates, while the Lie group of the
spectrum-generating algebra1 ~SGA! can be used to analyze
the complete spectrum. SGA’s have proven to be useful in
the study of collective modes in nuclear and high-energy
physics, while in condensed-matter physics they have been
used to study phase transitions in liquid He and in one-
dimensional~1D! metals.2 In the 1D metals, the SGA is
SU~8!, with 63 elements and 56 possible order parameters
including superconductivity and charge or spin-density
~CDW/SDW! waves. This algebra has also been applied to
the two-dimensional~2D! Hubbard model.3 However, we
show that even for the generalized Hubbard model appropri-
ate to the generalized Van Hove scenario, the appropriate
SGA is SO~8!, a considerably smaller algebra. This algebra
has a natural subalgebra, SO~6!, which acts as an approxi-
mate symmetry group generalizing Zhang,4 and including
both his SO~5! and SO~4! as subgroups. We identify SO~6!
as the smallest group which is capable of describing striped
phases as well as superconductivity.

For a one-dimensional~1D! metal,5 nesting involves the
two points of the Fermi surface, at6kF , with kF the Fermi
momentum. Since this breaks momentum conservation~the
states1kF and 2kF become inequivalent!, the full group
SU~8! must be taken as the SGA.2 On the other hand, in two
dimensions, the dominant nesting arises atQW 5(p,p), con-
necting the two Van Hove singularities~VHS’s! ~Ref. 6! at
(p,0) and (0,p). Since the points6(p,0) are equivalent
points of the reciprocal space lattice, nesting singularities
involve only order parameters even inkW . Hence the SGA is a
proper subgroup of SU~8!—the SO~8! algebra of Table I.
~Note that there is some ambiguity in defining a SGA: here
we define it as the algebra which contains the mean-field
Hamiltonian.!

There is a combinatoric interpretation of this SO~8! which
is independent of any particular Hamiltonian. Consider an
electronic system with a twofold orbital degeneracy~labeled
1, 2! in addition to the spin degeneracy. The four creation

operators can be written asC1↑
† , C2↑

† , C1↓
† , andC2↓

† . Includ-
ing both particle-hole (C†C) and particle-particle (C†C† or
CC) operators, there are 28 pair operators, whose compo-
nents define the Lie algebra of SO~8! @recall that for SO(N),
the Lie algebra containsN(N21)/2 elements#. Particular
linear combinations of these elements are listed in Table I.
Figure 1 rewrites these elements as an explicit representation
of the Lie algebra of SO~8!. The 28 generators are the anti-
symmetric matricesLi j , with matrix elementsLkl

i j 5dk
i d l

j

TABLE I. Generators of SO~8! Lie algebra.

Operator Representation

Q (C1↑
† C1↑1C2↑

† C2↑1C1↓
† C1↓1C2↓

† C2↓)/221
t (C1↑

† C1↑2C2↑
† C2↑1C1↓

† C1↓2C2↓
† C2↓)/2

Sz (C1↑
† C1↑1C2↑

† C2↑2C1↓
† C1↓2C2↓

† C2↓)/2
Az (C1↑

† C1↑2C2↑
† C2↑2C1↓

† C1↓1C2↓
† C2↓)/2

Sx (C1↑
† C1↓1C2↑

† C2↓1C1↓
† C1↑1C2↓

† C2↑)/2
Ax (C1↑

† C1↓2C2↑
† C2↓1C1↓

† C1↑2C2↓
† C2↑)/2

iSy (C1↑
† C1↓1C2↑

† C2↓2C1↓
† C1↑2C2↓

† C2↑)/2
iAy (C1↑

† C1↓2C2↑
† C2↓2C1↓

† C1↑1C2↓
† C2↑)/2

OCDW (C1↑
† C2↑1C2↑

† C1↑1C1↓
† C2↓1C2↓

† C1↓)/2
OSDWz (C1↑

† C2↑1C2↑
† C1↑2C1↓

† C2↓2C2↓
† C1↓)/2

OJC (C1↑
† C2↑2C2↑

† C1↑1C1↓
† C2↓2C2↓

† C1↓)/2
OJSz (C1↑

† C2↑2C2↑
† C1↑2C1↓

† C2↓1C2↓
† C1↓)/2

OSDWx (C1↑
† C2↓1C2↑

† C1↓1C1↓
† C2↑1C2↓

† C1↑)/2
iOSDWy (C1↑

† C2↓1C2↑
† C1↓2C1↓

† C2↑2C2↓
† C1↑)/2

OJSx (C1↑
† C2↓2C2↑

† C1↓1C1↓
† C2↑2C2↓

† C1↑)/2
iOJSy (C1↑

† C2↓2C2↑
† C1↓2C1↓

† C2↑1C2↓
† C1↑)/2

Op. Representation Op. Representation

Ds (C1↑C1↓1C2↑C2↓)/2 Ds
† (C1↓

† C1↑
† 1C2↓

† C2↑
† )/2

Dd (C1↑C1↓2C2↑C2↓)/2 Dd
† (C1↓

† C1↑
† 2C2↓

† C2↑
† )/2

2 iPy (C2↑C1↑1C2↓C1↓)/2 iPy
† (C1↑

† C2↑
† 1C1↓

† C2↓
† )/2

Px (C2↑C1↑2C2↓C1↓)/2 Px
† (C1↑

† C2↑
† 2C1↓

† C2↓
† )/2

h (C1↑C2↓1C2↑C1↓)/2 h† (C2↓
† C1↑

† 1C1↓
† C2↑

† )/2
Pz (C1↑C2↓2C2↑C1↓)/2 Pz

† (C2↓
† C1↑

† 2C1↓
† C2↑

† )/2
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idk

j . Figure 1 illustrates the equivalences as the lower
half of an antisymmetricL matrix. The operators satisfy the
Lie algebra, with standard SO~8! commutation rules:

@Li j ,Lkm#5 i ~d ikL jm1d jmLik2d imL jk2d jkLim!. ~1!

SO(82M ) subalgebras can be formed by eliminatingM
rows of theL matrices, along with their corresponding col-
umns. These will be designated as$I 1 , . . . ,I M%, where
I 1 , . . . ,I M are the rows~and columns! which have been
eliminated. For instance,$234% is the SO~5! algebra studied
by Zhang.4

In a generalized Hubbard model,7 the creation operators
can be expanded in terms of operators localized near the
corresponding VHS’s:

ais
† .

1

2
@~21!xic1s

† ~rW !1~21!yic2s
† ~rW !#, ~2!

wherec1s
† andc2s

† are slowly varying functions of position

rW5a(xi ,yi). A more precise definition is given in Refs. 8
and 9. The Lie algebra of Table I corresponds toO

→S rWO(rW), with Cis
† →c is

† (rW), etc. With this definition, the
operators become equivalent to those introduced by Schulz7

and Zhang.4 The SGAG is defined in Fourier space asG
5 % kWgkW , wheregkW is the algebra of a particularkW component
of the Fourier transformed operators of Table I.

The interaction terms in the generalized Hubbard
Hamiltonian7 can be written in terms of pairs of these opera-
tors; see Table II. Here theGi ’s are coupling constants,
which can be related to the HubbardU and to various near-
neighbor interaction terms.7 For the pure Hubbard model,
G15G25G35G45U/4pt and t is the nearest-neighbor

hopping parameter. The form of the interaction term is not
unique, since a number of alternative terms can arise by an-
ticommuting the operators.

While SO~8! is the SGA of the generalized Hubbard
model, Zhang’s SO~5! is an~approximate! symmetry algebra
of the same model—in particular, the collective modes
@SDW andd-wave superconductivity for SO~5!# areelements
of the SGA, but arecomponentsof a superspin, which trans-
forms under the symmetry group. For the generalized Hub-
bard model, the natural~approximate! symmetry group is
SO~6!, defined as follows. SO~8! contains an SO~3! algebra,
which we call isospin, generated byT05t, T65OCDW
6OJC . This algebra is the algebra of the VHS’s: thez com-
ponent of the isospin,T0, measures the excess population of
the 1 VHS over the 2 VHS. Those operators which do not
commute withT0 can lead to a nesting or pairing instability.
Hence, the important transformation group of the VHS’s is
the SO~6! subgroup$23% which commutes withT0, leading
to the decomposition scheme:

SO~8!→SO~6!$23% % V1 % V2 % t, ~3!

under which 28→(15,0)1(6,1)1(6,21)1(1,0), where
(m,n) denotes representationm of SO~6! and eigenvaluen
of T0. The 6-vectors can be denotedV65V6V8 with

V5$L21,L42,L52,L62,L72,L82%

V85$L31,L43,L53,L63,L73,L83%, ~4!

shown boxed in Fig. 1. The group structure ofV8 is shown in
Fig. 2, whereJz is thez component of the pseudospin opera-
tor introduced by Yang and Zhang10 and OSDW6

57(OSDWx6 iOSDWy)/A2. An analogous diagram can be
drawn for V. The group SO(6)$23% transforms the compo-
nents of each of these 6-vectors among themselves, without
mixing the two vectors, whilet transforms the vectors into
each other.

A number of points should be noted.~1! The SO~6! group
$23% contains Zhang’s SO~5! group as a subgroup, as well as
the SO~4! group introduced by Yang and Zhang.10 Moreover,
V8, Fig. 2, combines Zhang’s SO~5! superspin withOJC ,
which is essentially equivalent to the flux phase.11

~2! The 12 components of superspin are precisely the col-
lective modes identified earlier by Schulz,7 and most of them
have been found to play an important role in the cuprates:

FIG. 1. Matrix representation of SO~8!, using the shorthand
O65O6O†.

TABLE II. Interaction terms.

(G22G3)S rWDd
†(rW)Dd(rW)

(G21G3)S rWDs
†(rW)Ds(rW)

(2G11G32G4)S rW@OCDW(rW)#2

(G31G422G1)S rW@OJC(rW)#2

(G42G3)S rWOW JS(rW)•OW JS(rW)

2(G31G4)S rWOW SDW(rW)•OW SDW(rW)

FIG. 2. SO~4! weight diagram ofV8, whereSz (Jz) is the z
component of spin~pseudospin!.
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s-wave superconductivity in electron-doped and~possibly!
overdoped cuprates, CDW’s near optimal doping,12,13 the
flux phase near half filling.14,13

~3! For a bare band dispersion~neglecting interactions! of
the form

ekW522t~coskxa1coskya!14t8coskxa coskya, ~5!

two parameters control the symmetry of the quadratic part of
the generalized Hubbard Hamiltonian,t8 and m̃5EF2EV ,
the shift of the Fermi levelEF from the VHSEV . When both
parameters are zero~half filling with square Fermi surface!
the Hamiltonian has an extra pseudospin symmetry.10 In this
case, the nature of the ground-state instability is controlled
solely by the interaction terms~the G’s!. A pure Hubbard
interaction (U) breaks the SO~6! symmetry~Table II!:

SO~6!→SO~3! % SO~3!, ~6!

with one SO~3! ordinary spin, and the other the
pseudospin.10 Both 6-vectors are broken down to pairs of
3-vectors

V→$OJSi% % $Ds
† ,Ds,OCDW%

V8→$OSDWi% % $Dd
† ,Dd ,OJC%; ~7!

however, there remains an accidental degeneracy of one vec-
tor (OJS) with the opposite pseudovector. At half filling the
lowest energy state isOSDW. As discussed below, this weak
coupling result must be corrected for strong correlation ef-
fects.

When the Fermi surface is distorted from square, either by
doping away from half filling (m̃) or by introducing second-
neighbor hopping termst8, the pseudospin degeneracy is
broken, in such a way as tofavor pairing over nesting insta-
bilities. This can be seen by Hartree-Fock15 or renormaliza-
tion group16,17,12 analyses or by a linear response analysis
~following Ref. 18!.

If the superspin is written asOW ~a 12-component vector
incorporating both representations!, then in linear-response
theory it is assumed that there is an applied fieldhW O ~also a
12-vector! which couples toOW . The Hamiltonian in the pres-
ence ofhW O is

H5SkWsekWakWs
†

akWs1hW O•OW ~8!

~here the terms inG have been neglected!, with resulting free
energy

F0~OW !5V0~m,OW ,T!1mN,

V0~m,OW ,T!522kBTSkWsln~11e2~EkWs2m!/kBT!1hW O•OW ,
~9!

with EkWs the quasiparticle energy found by applying a
Bogoliubov-Valentin transformation to Eq.~8! or via SGA
techniques.1,2 The expectation value of each superspin com-
ponentOi is found from

]V0

]hOi
50, ~10!

and the corresponding susceptibility is

x0i5 lim
hW O→0

S Oi

hOi
D . ~11!

Including the interaction terms, the Hartree-Fock free energy
becomes

FHF~OW !5S i S 1

2x0i
1Gi DOi

2 , ~12!

leading to an instability of thei th mode when

112x0iGi50. ~13!

If the quadratic Hamiltonian is symmetric under SO~6!, then
the component with the most negativeGi is the first to di-
verge. For finitem̃ or t8, the Hamiltonian still preserves par-
ticle number, so there are only two independent susceptibili-
ties, the particle-hole susceptibilityx00 and the pair
susceptibilityx02, with

x00522SkWs

f ~ekWs!

ekWs2ekW1QW ,s

,

x0252SkWs

f ~ekWs!

ekWs2eF

. ~14!

Note that in nearest-neighbor hopping models (t850)
ekW1QW ,s52ekWs , and the two expressions become equivalent
wheneF50, i.e., at half filling.

Figure 3 illustrates the doping dependence of these sus-
ceptibilities for a Hubbard band with nearest-neighbor hop-
ping only (t850). The point of maximum instability~largest
x) coincides with the point at which the VHS crosses the
Fermi level—half filling whent850. Whenx5t850, the
susceptibilities are degenerate,x005x02, as expected from
the pseudospin symmetry.10 However, as soon as the system
is doped away from half filling (xÞ0) the electron-hole sus-
ceptibility drops precipitously, whereas the pair susceptibil-
ity falls off much more gradually. A similar effect arises if
the system is maintained at optimal doping~the VHS!, but
the parametert8 is varied—indeedx02 actually increases
with increasingt8 ~Fig. 4!. This striking difference is readily
understood: the electron-hole susceptibility involves inter-

FIG. 3. Susceptibilitiesx00 ~dot-dashed line! andx02 ~solid line!
vs band filling 11x for Eq. ~5! with t850.
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VHS nesting, which gets progressively worse as the Fermi
surface gets more curved, whereas the electron-electron sus-
ceptibility involves intra-VHS scattering, and increases with
t8 as the Fermi surfaces become nearly 1D near the VHS’s.
~In Figs. 3 and 4, the logarithmic divergence at the VHS was
cut off by adding a small imaginary term to the denominator
of x.!

Figure 3 is consistent with the RG results of Schulz.7

From Eq.~13!, when allx ’s are equal the order parameter
associated with the most negativeG is the first to go singu-
lar. For the pure Hubbard model, this means that the leading
instability at half filling is the SDW. When the material is
doped, the SDW susceptibility plummets, and at some point
d-wave superconductivity becomes favorable. In agreement
with Zhang,4 the shift of the Fermi energy from the VHS is a
relevant parameter in driving this SDW→d-wave supercon-
ducting transition.

Despite the simplicity of this picture, a purely SO~5!
model cannot explain the full physics of the cuprates. First,
the above analysis is in the weak-coupling limit, and a
strong-coupling reanalysis of Table II (J-term dominant!
shows that the flux phase—not included in SO~5!—is the
lowest energy state. A second problem is in La22xBaxCuO4

and La22x2yNdySrxCuO4, near x51/8, where the striped
phase is commensurately pinned, leading to long-ranged
magnetic and charge order.19 At the same time, superconduc-
tivity is strongly suppressed, demonstrating that whatever the
driving force for charge order may be, it is not superconduc-
tivity, but is in competition with superconductivity. Since
SO~5! only allows for antiferromagnetism and superconduc-
tivity, it does not have sufficient flexibility to properly de-
scribe this situation. There are strong hints that the charged
stripes are associated with a CDW: the low-temperature te-
tragonal phase is nearly coterminus with the long-range
SDW-ordered phase, and the fact that the charged stripes are
best seen by neutron diffraction suggests a strong associated
lattice distortion. There is considerable additional evidence
that phonons and structural instabilities play an important
role in the doped material.12 Hence, for a detailed description
of the doping dependence of the pseudogap, striped phases,
and extended VHS’s, it may be necessary to recognize that
strong electron-phonon coupling can lead to a crossover to a
ground state involving theV 6-vector.13
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FIG. 4. As in Fig. 3, but with 4t85EF .
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