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The single-ion 4f contributions to the componentsl2
a,2, lg,2, andl1

a,2 of the giant magnetostriction tensor
of Tb and Er are calculatedab initio by a constrained density-functional theory in the local spin-density
approximation and the full-potential linear-muffin-tin-orbital method. The data exhibit the expected change in
sign when going from Tb with an oblate 4f charge density to Er with a prolate 4f charge density. The
satisfactory agreement with experimental results shows that the giant magnetostriction in Tb and Er is domi-
nated by the single-ion 4f contribution.@S0163-1829~98!50722-9#

The anisotropic magnetostriction, i.e., the change of the
shape of a magnet caused by the modification of the size
and/or direction of the magnetic moment, plays an important
role for technological applications. For electric transformers
or motors or magnetic shielding, etc., soft magnetic materials
with extremely small magnetostrictive strains~typically sev-
eral 1026! are required.1 In contrast, materials with large
magnetostrictive strains are used in many electromagnetic
micro devices,1 such as actuators and sensors. The largest
magnetostrictive strains~up to about 1022! were found in
elementary rare-earth metals,2 albeit only at low tempera-
tures~because of the low Curie temperaturesTC! and in high
magnetic fields~because of the large magnetocrystalline an-
isotropy!. The anisotropy may be reduced by combining sev-
eral rare-earth atoms, andTC may be increased by the addi-
tion of transition-metal atoms, arriving at alloys of rare-earth
atoms and transition-metal atoms which exhibit magneto-
strictive strains of about 1023 at room temperature and mod-
erate magnetic fields.1,3

Among the various possible sources1 for magnetocrystal-
line anisotropy and magnetostriction the spin-orbit coupling
is the most important one. In transition metals the electrons
which are responsible for magnetism are itinerant and the
spin-orbit coupling is very weak and can be treated using a
perturbative framework. Most recently, the magnetostriction
in bulk fcc Co and in thin Co films has been calculatedab
initio by such a perturbative approach.4 In contrast, in most
rare-earth metals the 4f electrons dominate the magnetic be-
havior, and these are well localized and exhibit very large
intra-atomic couplings, with a 4f spin-orbit coupling which
is often considerably larger than the anisotropic part of the
couplings between the 4f electrons and all the other charges
in the system.5 As a consequence, the 4f system is often
treated as a system with infinite spin-orbit coupling: When
the orientation of the magnetic moment of the 4f shell is
rotated against the crystallographic axes by the application of
a very strong external magnetic field, it is assumed that the
anisotropic 4f charge density is rigidly corotated. Thereby
the interaction energy of the 4f electrons with the surround-
ing charges increases, and this is the physical origin of the
large magnetocrystalline anisotropy energy~see Ref. 5 and
references therein!. Furthermore, the atoms surrounding the
4 f shell will attain new equilibrium positions when changing
the orientation of the anisotropic 4f charge density in order

to minimize the total energy, and this will result in magne-
tostrictive strains. The present paper represents anab initio
calculation of this single-ion 4f -induced magnetostriction.
We thereby consider the elementary hexagonal close-packed
rare-earth metals Tb and Er because of the following reasons.
First, the magnetostrictive strains are very large in both ma-
terials. Second, the 4f charge density of Tb is oblate,
whereas the one of Er is prolate. When going from Tb to Er
we therefore expect a change in the sign of magnetostrictive
strains. Third, in Tb and Er the 4f states are well localized,
and most features may be described by treating them as true
core states. Finally, in all heavy rare earths but Gd the two-
ion contributions to anisotropy and saturation magneto-
striction are much smaller than the single-ion spin-orbit
contribution which—in turn—is dominated by the 4f
contribution.6

In hexagonal materials there are six independent compo-
nents of the magnetostriction tensor,7 which describe the
changeD l in the linear extension of a crystal relative to the
length l of a nonmagnetic reference state in the direction
given by the direction cosinesb when the magnetization is
switched on in a direction described by the direction cosines
a:
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In the present paper we determine the lengths of the axes
a, b, andc ~Fig. 1! for an orientation of the magnetostriction
along thec axis and along theb axis, respectively. From
these data we can calculate the componentsl2

a,2, lg,2, and
l1

a,2 , for which Eq.~1! yields in a linear approximation
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Herecc(cb) denotes the length of the crystallographicc axis
when the 4f magnetic moments are aligned to thec axis ~b
axis! ande5b/a is the ratio of the lengths of theb axis and
the a axis when the 4f moments are aligned to theb axis.
~For the definitions of the axes see Fig. 1!. For this latter
orientation, the symmetry of the crystal is orthorhombic due
to the distortion of the basal plane. In addition, it has to be
taken into account that for this orthorhombic unit cell there is
an internal degree of freedom, namely, the second layer B of
the stacking sequence. . . ABAB . . . , which is located at a
distance ofc/2 above the basal plane A~Fig. 1!, may rigidly
move into the direction of the 4f moments by a distanced.
Hence, there are two structural parameters (a,c/a) or four
structural parameters~a, c/a, e, andd! which must be de-
termined by minimizing the total energy for the orientation
of the 4f moments along thec axis or along theb axis,
respectively. The minimization was performed in an iterative
way: First, the parametersac and cc /ac are determined for
an orientation of the 4f moments along thec axis~hexagonal
unit cell!. Then the 4f moments are aligned along theb axis,
and cb is determined while fixing the hexagonal crystal
structure~e5)/2, d50!. In the next step we allow for an
orthorhombic distortion of the unit cell and determineab , e,
andd for fixed cb . At the end, the final values ofab andcb
are obtained while fixinge andd. It should be noted thatd is
very small ~some 1022 a.u.! and that the influence of the
magnetostriction in the basal plane oncb is also very small

~i.e., cb attains nearly the same values for hexagonal (e
5)/2) or orthorhombic (eÞ)/2) structure of the basal
plane!.

For the structural optimization the total energy is deter-
mined ab initio within the framework of the spin-density
functional theory in local-spin-density approximation
~LSDA!, with the exchange-correlation functional of
Moruzzi et al.8 Because the change of the energy resulting
from the magnetostrictive deformation is very small, all elec-
tronic states~i.e., 4f states, non-4f core states, and valence
states! must be treated with very high accuracy.

4 f states:For a description of the 4f states we adopt the
extreme version of the standard model of rare-earth magne-
tism ~see, e.g., Ref. 5! which assumes that the intra-atomic
Hund’s rule couplings in the 4f shell of the trivalent rare-
earth atoms in the metal are so strong that the 4f charge and
spin density is not affected by the interaction with all the
other charges in the system. Indeed, the neutron magnetic
form factors of the 4f spin density in metallic Gd9 and Er10

agree very well with those calculated for the free Gd31 and
Er31 ions by a fully relativistic Dirac-Fock study,11 indicat-
ing that in these cases the metallic environment does not
matter. The 4f states themselves cannot be described cor-
rectly by the LSDA, but we assume that the interaction be-
tween the 4f states and the other states which induces the
magnetostriction is well represented by this approximation.
Because in spin-density functional theory the electronic
ground-state energy is totally determined by the spin and
charge densities, we could in principle straightforwardly in-
sert the 4f spin and charge densities obtained by the Dirac-
Fock calculations for the free rare-earth ions. As we do not
have the Dirac-Fock program at hand, we model the 4f
charge and spin density according to Eqs.~16!–~19! from
Ref. 5. In this prescription the correct angular dependences
are reproduced, and realistic radial dependences are obtained
by a constrained LSDA: The 4f single-particle eigenfunc-
tions are obtained by solving the Kohn-Sham equations for
the spherically averaged effective potential of the crystal,
thereby applying the boundary condition that the wave func-
tion is zero at the surface of a localization sphere. The radius
of this sphere is chosen in such a way that the moments
^r n&4f for n52,4,6 match the corresponding moments of the
Dirac-Fock calculation11 for the free trivalent rare-earth ion
as closely as possible. To stay within the framework of the
standard model this localization sphere is kept constant dur-
ing the structural optimization. It should be noted that—
alternatively—realistic 4f radial dependences can be ob-
tained by applying the self-interaction correction.12

Non-4 f core states:The non-4f core states feel the as-
phericity of the surrounding charge densities and of the 4f
core and therefore experience an aspherical distortion which
may contribute to the magnetostriction. This was taken into
account by applying a scalar-relativistic version13 of the
effective-potential method for the calculation of the elec-
tronic core polarization,14 in which the Kohn-Sham equation
for the core states in the aspherical effective potential is
solved with a basis set which is composed of the respective
solutions in the spherical part of the effective potential and
of Gaussians with different widths. Test calculations have
shown that for Tb and Er this effect of the core polarization

FIG. 1. Projection of the atoms in the basal planeA(x-y) of the
hexagonal system. The black atoms are the atoms of theB layer
located at a distance ofc/2 above the basal plane.
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on the magnetostriction is small~about 10%! so that the core
polarization effect was neglected in the final calculations.

Valence states:The valence states are nonspherical, be-
cause they feel the crystal symmetry as well as the aspheric-
ity of the 4f core. It has been shown15 that the 4f -induced
asphericity of the valence states is of the same order of mag-
nitude as the one due to the aspherical crystal potential. For
an accurate description of the valence states the full-potential
linear-muffin-tin-orbital method developed in Ref. 5 and
based on an original code of Savrasov and Savrasov16 was
applied. A set of basis functions according to three different
kinetic energy parametersk2 was used, whereby onek2 is
required to include the high-lying 5p states of the rare-earth
atom into the band calculation. The 5s states are treated as
semicore states. For details, see Ref. 5. Test calculations
have shown that the results forl2

a,2 change by only 10%
when using only twok2 values, but the absolute values ofcb
andcc change rather drastically. It turned out that the choice
of various muffin-tin radii~fixed radii vs variable and always
touching radii! modifies the magnetostriction results by only
~5–10!%, and fixed muffin-tin radii were used for the final
calculations.

Table I shows the numerical results forl2
a,2 andlg,2, and

a comparison with experimental data. The error limits of our
data include only the contributions arising from the finite
number of total energy calculations for the structural optimi-

zation. The experimental determination of the zero-
temperature components of the magnetostriction tensor is
hampered by the large magnetic anisotropy which does not
allow to rotate the magnetization completely in any required
crystallographic direction by application of the available
magnetic fields. Therefore, for Tb and Er the only
component which has been obtained by a direct
measurement2 at T50 K is lg,2 of Tb, because in this mate-
rial the b axis is the easy axis and rotation to thea axis
requires only moderate fields. The other components have to
be determined by extrapolating the magnetostriction data in
the paramagnetic regime2,17,18to zero temperature by means
of the single-ion theory of Callen and Callen,19 or they are
estimated by extrapolating the low-temperature results
for the magnetoelastic coefficients in dilutedYI Tb andGdTb
alloys to a concentration of 100% rare earth.20,21 For Er a
further complication arises, because it exhibits22 a conical
ferromagnetic structure around thec axis at low tempera-
tures which is modified by the application of a strong field.
Here the zero temperature components of the saturation mag-
netostriction tensor~i.e., the components which would arise
for perfect ferromagnetic alignment! have been obtained by
extrapolating the magnetostriction data in the paramagnetic
regime to zero temperature,22 or by extrapolating the low
temperature results for dilutedYI Er alloys to a concentration
of 100% rare earth.20 It becomes obvious from Table I that in
view of the large experimental uncertainties the agreement
between theory and experiment is satisfactory. This confirms
from a theoretical point of view that the single-ion 4f con-
tribution is indeed the dominant contribution to the satura-
tion magnetostriction in Tb and Er.

The calculation ofl1
a,2 is numerically very delicate, be-

cause according to Eq.~4! l1
a,2 is given by the sum of two

small terms~bc /bb21 and 1
2 lg,2! with opposite sign. We

obtained l1
a,25(20.7560.24)31022 for Tb and (0.23

60.20)31022 for Er, where the error limits again include
only the contributions arising from the finite number of total
energy calculations for the structural optimization. The ex-
perimental results exhibit a large scatter. DeSavage and
Clark17 obtainedl1

a,2520.2631022 for the Tb metal by
extrapolating from the paramagnetic regime to zero tempera-
ture, whereas the data of Chaudhriet al.21 for diluted
GdTb systems extrapolated to pure Tb would yieldl1

a,2

520.4831022. Curiously enough, Pureuret al.20 extrapo-
lated their data for extremely dilutedYI Tb andYI Er systems
to a positive value ofl1

a,2(0.8820.88
10.3831022) for pure Tb and

a negative value (20.2920.09
10.2931022) for pure Er.

Part of the calculations were performed at the Ho¨chstleis-
tungsrechenzentrum in Ju¨lich.
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