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The validity of the adiabatic approach to spin-Peierls transitions is assessed. An alternative approach is
developed which maps the initial magnetoelastic problem to an effective magnetic problem only. Thus the
equivalence of magnetoelastic solitons and magnetic spinons is shown. No soft phonon is required for the
transition. Temperature-dependent couplings are predicted in accordance with the analysis of experimental
data.@S0163-1829~98!52922-0#

Around 1980 there was great interest in the phenomenon
of spin-Peierls~SP! transitions1 where the coupling of lattice
degrees of freedom to quasi-one-dimensional (d51) mag-
netic degrees of freedom leads to a phase transition into a
dimerized phase. This interest has been vividly renewed re-
cently due to the discovery of the first inorganic SP sub-
stance CuGeO3.

2,3

The instability of the coupled spin-phonon system to-
wards dimerization results from the susceptibility of the
magneticd51 subsystem towards 2kF perturbations, i.e.,
dimerization. The gain in magnetic energy due to dimeriza-
tion overcompensates for the loss in elastic energy of the
lattice distortion. The present work is motivated by the
wealth of information available for the SP transition in
CuGeO3.

The theoretical picture of SP transitions has been devel-
oped in a number of articles~e.g., Refs. 4–10!. It relies so far
mostly on anadiabatic treatment of the phonons. Cross and
Fisher discussed this point most comprehensively.6 By ran-
dom phase approximation~RPA! they investigate the stabil-
ity of the uniform phase. The RPA is the consistent extension
of the mean-field treatment on the one-particle level to the
two-particle level of susceptibilities. Cross and Fisher’s point
is the importance of a ‘‘pre-existing soft phonon.’’ This
means that the phonons responsible for the distortion have a
low energy alreadybeforethe interaction with the correlated
system is taken into account. Moreover, they require that the
phonon dispersion perpendicular to the chain direction is
very large. Thus the lattice prefers that whole planes perpen-
dicular to the correlated chains move coherently so that the
moving objects are heavy.

The reason for the above requirements is that the mean-
field approach is appropriate if the fluctuations are small
compared to the expectation value. This is the case if the
distortions are made up by a large number of phonons, which
in turn means that the phonon energies must be small. The
phonons must be slow and heavy. Then it is plausible to
consider the phonon subsystem as the slow subsystem which
is renormalized by the fast magnetic degrees of freedom. In
this picture, the SP transition is signaled by the vanishing of
a renormalized phonon frequency.6

Whereas the experimental data for organic SP substances
such as~TTF!CuS4C4~CF3!4 support the RPA approach,6 the
experimental evidence for the inorganic CuGeO3 points to
the opposite direction.11 Bradenet al. found that two out of

four optical phonons allowed by symmetry contribute appre-
ciably to the distortion in a ratio of 3:2.11 The more impor-
tant phonon is at 6.8 THz~330 K!; its dispersion at the zone
boundary is essentially flat, decreasing towards the zone cen-
ter to '3 THz. The other phonon is at 3.2 THz~150 K! and
practically dispersionsless. The magnetic exchange coupling
J lies in the range 115 to 160 K.12–16 It is evident that the
assumption of a pre-existing soft phonon is inadequate.
Things get even worse if one takes into consideration the
results for anXY chain with d51, Einstein phonons17

which show that the phonon energyv must be small com-
pared to the resulting gapD for the adiabatic approach to be
reasonable. The conditionv,D, however, is definitely not
fulfilled in CuGeO3 with D523 K.18 In view of these facts it
is not astounding that so far no phonon softening at the SP
transition was found experimentally. For comparison, we re-
call the numbers for the best-known substance
~TTF!CuS4C4~CF3!4 with soft phonon:J568 K, TSP512 K
(⇒D'1.77TSP'20 K), v'10 K wherev,D is fulfilled.1

In the present work we develop a route to Peierls transi-
tions not based on the assumption of phononic adiabaticity.
Results of previous works19–21 on nonadiabaticity will be
extended. We will view the phonon subsystem as fast and the
spin subsystem as slow. The unperturbed spin system is al-
ways gapless, i.e., the magnetic subsystem always has low-
lying excitations well below any~optical! phonon energy.
These low-lying excitations are influenced most by the inter-
action of phonons and spins. To them the phonons are fast.
So we treat the phonons as quickly adapting and derive an
effective dressed spin model. Pytte did the same for an Ising
model which allowed the rigorous elimination of phonons19

stressing already the importance of avoiding a mean-field
approximation for the displacements.

Technically we use the recently developed flow equation
approach to treat the spin-phonon system.22 The idea is to
rotate away the direct interaction with phonons similar to
what is done in Fro¨hlich’s approach.23 This approach has
been improved considerably by Lenz and Wegner for
electron-phonon interactions.24 In the improved version the
generated effective couplings are by far less singular than in
Fröhlich’s approach.

The flow equation approach ‘‘diagonalizes’’ a Hamil-
tonian in a continuous unitary transformation parametrized
by l P@0,̀ #. This meansH(0) is the bare Hamiltonian as
given andH(`) is the resulting~more! diagonal Hamil-
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tonian. The unitary transformation is defined by its anti-
Hermitian infinitesimal generatorh( l ) via

dH

dl
5@h~ l !,H~ l !#. ~1!

A good choice forh is

h5@HD~ l !,H~ l !#, ~2!

whereHD is the suitably chosen diagonal Hamiltonian.22 The
main feature ofh as defined in Eq.~2! is that it respects the
idea of renormalization in that it eliminates first matrix ele-
ments connecting very different energies.25

The SP system we consider is given by the Hamiltonian

H5HS1HB1HSB, HS5(
qW

d~qW !SW qWSW 2qW , ~3a!

HB5(
qW

v~qW !bqW
†
bqW , HSB5(

qW
AqW~bqW

†
1b2qW !, ~3b!

AqW5(
kW

g~qW ,kW !SW kWSW 2kW2qW , ~3c!

in obvious notation in momentum space. Note that according
to Ref. 22,AqW should be normal orderedAqW→AqW2^AqW&. The
particular choice@before Eq.~12! and Eq.~14!# for AqW will
circumvent this problem. We assume inversion symmetry so
that v(qW )5v(2qW ) andd(qW )5d(2qW ). Hermiticity requires
A

2qW
†

5AqW or equivalentlyg* (2qW ,2kW )5g(qW ,kW ). The linear
boson terms becomel dependent for the unitary transforma-
tion

HSB~ l !5(
qW

@TqW~ l !bqW
†
1TqW

†
~ l !bqW #, ~4!

with the starting conditionTqW(0)5AqW . The objective of the
unitary transformation is to disentangle phonons and spins.
Thus we chooseHD5HS1HB . To leading order ing we do
not need to consider a possiblel dependence ofHD since the
l -dependent terms enter only in orderg2, as we will see.
These induced terms of orderg2 and higher lead to a new
contributionDH to the Hamiltonian. Introducing the Liou-
ville operatorL for the commutation withHS: LAª@HS,A#
we choose for the generatorh

h~ l !5@HD ,HSB# ~5a!

5(
qW

$@L1v~qW !#TqW~ l !bqW
†
1@L2v~qW !#TqW

†
~ l !bqW%,

~5b!

which is motivated by Eq.~2!. The flow equation~1! leads to

dH

dl
5@h,HSB#1@h,DH#2(

qW
$@L1v~qW !#2TqW~ l !bqW

†

1@L2v~qW !#2TqW
†
~ l !bqW%. ~6!

In linear order ing we have to fulfil the flow equation

dTqW

dl
52@L1v~qW !#2TqW , ~7!

which is formally solved by

TqW~ l !5exp$2@L1v~qW !#2l %AqW . ~8!

Based on Eq.~8! the additional Hamilton partDH can be
calculated

dDH

dl
5@h,HSB#1O~g3! ~9a!

52(
qW ,kW

@TqW1bqW
†
1TqWbqW , DqWbqW

†
2DqW

†
bqW #1O~g3!

~9b!

52(
qW

~DqW
†
TqW1TqW

†
DqW ! ~9c!

1(
qW ,kW

~bqW
†
bkW

†
@DqW , TkW#1H.c.! ~9d!

1(
qW ,kW

$bqW
†
bkW~@TqW , DkW

†
#1@DqW , TkW

†
# !%1O~g3!,

~9e!

where we used the shorthandDqW5@L1v(qW )#TqW .
To obtain from Eq.~9! an effective spin Hamiltonian we

use a mean-field approach and replace the quadratic boson
terms by its expectation values. This is absolutely systematic
in the sense of an expansion ing. Taking the expectation
values neglects fluctuation effects of the orderg2 due to the
interaction. But since the two-boson terms appear only asg2

terms the total error due to the mean-field treatment is of the
orderg4. Applying the same mean-field approach to the un-
specifiedg3 terms annihilates them because they contain
necessarily an odd number of boson operators. Thus the ef-
fective spin model is exact up toO(g4).

ReplacingbqW
†
bkW by dqW ,kW$exp@v(qW)/T#21%21 and omitting

the terms in Eq.~9d! we obtain finally

dDH

dl
5(

qW
FXqW1cothS v~qW !

2T
DYqW G , ~10a!

with

XqW52
1

2
~DqWTqW

†
1DqW

†
TqW1TqWDqW

†
1TqW

†
DqW !, ~10b!

YqW5
1

2
~@TqW , DqW

†
#1@DqW , TqW

†
# !. ~10c!

From Eq.~10! the Hamiltonian correctionsDHX/Y are found
by integration over l and summation overqW : DHX

5*0
`(qWXqWdl andDHY5*0

`(qW coth@v(qW)/(2T)#YqWdl.

In order to get an impression of what Eq.~10! means we
assumeJ!v(qW ) and calculate the leading contributions inL
to XqW ~even inL! andYqW ~odd inL!. After some algebra and
integration we find
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DHX52(
qW

1

v~qW !
AqW

†
AqW5

21

v (
i

Ai
†Ai , ~11a!

DHY5
1

2 (
qW

1

v2~qW !
cothS v~qW !

2T
D @AqW

† , LAqW # ~11b!

5
1

2v2 cothS v

2TD(
i

@Ai
† , LAi #, ~11c!

where we simplified the formulas~11a! and ~11c! in real
space one step further, approximating the phonons by Ein-
stein phonons. The termDHX corresponds to the results ob-
tained previously by other methods.19–21 To the author’s
knowledge, theT-dependent termDHY has not yet been de-
scribed. The result of Pytte19 is found again by observing
that in the Ising model,LAi vanishes since all terms involv-
ing only Sz commute, i.e.,DHY becomes zero. The result in
Ref. 21 is retrieved on observing thatg2/v is proportional to
J2/(mv2) in Ref. 21 since the displacements equalui5(bi

1bi
†)/A2mv. Neglecting the phononic kinetic energy while

keeping their potential one constant corresponds to the limit
m→0 with mv2 constant, i.e.,v→`. So theg2/v term is
constant and kept while termsg2O(v22) like DHY are ne-
glected in Ref. 21. To further enhance the plausibility of the
result ~11! we note that it equals the result one gets by
Fröhlich’s method23 in the two leading ordersg2/v and
g2J/v2. The difference between the flow equation approach
and Fröhlich’s approach appears only in the 1/v3 terms com-
ing from Eq. ~10!. Fröhlich’s approach can also be used to
derive Eq.~11!. The flow equation approach, however, is a
better starting point for future higher-order calculations in
g/v andJ/v which takel -dependent couplings into account.
This is the reason why this method is chosen here.

Specifically, we consider first strictly one-dimensional
phononsAi5g(SW i•SW i 112SW i•SW i 21). This choice guarantees
^Ai&50 in the symmetry-unbroken phase so thatAi is nor-
mal ordered. With thisAi we have

DHX5
g2

v (
i

~SW i•SW i 111 1
2 SW i•SW i 122 3

8 !. ~12!

For DHY we have to knowd(qW ) in Eq. ~3a!. We assume
nearest and next-nearest neighbor interactionJ and aJ, re-
spectively:d(qW )5J@cos(q1)1a cos(2q1)#. One obtains

DHY5
J

4

g2

v2 cothS v

2TD(
i

@2~323a!SW i•SW i 11

1~325a!SW i•SW i 1212aSW i•SW i 13#, ~13!

where products with four different spins are omitted.
Even if no frustration is present in the original model

(a50) the dressing of the spins with phonons induces frus-
tration aeff.0. The couplings are temperature dependent
since they are mediated by the phonons. Using the term
‘‘spinon’’ for a purely magnetic elementaryS51/2 excita-
tion and the term ‘‘soliton’’ for the joint magnetic and elastic
S51/2 excitation, we state that the solitons of the Hamil-
tonian ~3! are unitarily equivalent to the spinons of the
Hamiltonian H5HS1HB1DHX1DHY . This shows that

solitons and spinons are in essence the same entity and puts
Affleck’s supposition in this respect26 on a quantitative basis.

The low-lying excitations of the frustrated Heisenberg
chain are spinons which are gapless foraeff,ac50.241
~Ref. 27! and gapful aboveac ,28 where the system also un-
dergoes a spontaneous symmetry breaking of the transla-
tional symmetry towards a dimerized phase. The continuum
starts right at the gap energy.29 These facts imply that a
singlechain shows a SP transition only above a certain value
of the interaction in contrast to the results of the adiabatic
treatment~see also Ref. 17!. Furthermore, no ‘‘double gap’’
feature30 occurs in asinglechain.

An elastic interchain coupling in a chain ensemble is in-
cluded if the local phonons influence also neighboring chains

Ai , j5g@SW i , j•SW i 11,j2SW i , j•SW i 21,j !

1 f (
^ j , j 8&

~SW i , j 8•SW i 11,j 82SW i , j 8•SW i 21,j 8!], ~14!

where j is the chain index andj and j 8 are adjacent chains.
The factoru f u,1 indicates the influence of a certain distor-
tion on one chain onto adjacent chains. Due to the commu-
tators in Eq.~11c! a finite f changesDHY in Eq. ~13! only by
renormalizingg2→g̃25g2(11z f2), wherez is the number
of neighboring chains each chain has. The same renormal-
ization takes place inDHX . Additionally, terms linking dif-
ferent chains occur such as2(g2f /v)(SW i , j•SW i 11,j

2SW i , j•SW i 21,j )(SW i , j 8•SW i 11,j 82SW i , j 8•SW i 21,j 8). These terms
drive really the finite temperature SP transition since they
enable at low enough temperature a coherent dimerization
throughout the whole lattice. We will call these terms coher-
ence terms. Their influence on the low-lying excitations is to
confine pairs of spinons~solitons! to triplets or to singlets.
For the realistic case of weak couplingg2f /v!J a mean-
field treatment is justified. This amounts up to the treatment
of dimerized, frustrated chains with self-consistently deter-
mined dimerization. Hence the confinement is the same as in
dimerized chains~see e.g., Refs. 26 and 31!. This explains
why the adiabatic approaches based on dimerized, frustrated
chains capture correctly the physics of the dimerized SP
phase at lowT.

The main difference between the fast-phonon scenario
and the adiabatic one is the absence of a soft phonon at the
transition. The transition is characterized by growing do-
mains of coherent dimerization the size of which diverges at
TSP. No renormalized phonon frequency needs to vanish.
Interestingly, the RPA shows similar results in the nonadia-
batic parameter regime.32

How does this fit with the approach used so far? In the
usual RPA treatment6 the phononic self-energy contributes
not only a real part but also an equally strong imaginary part
which stands for strong damping.33 Thus the real, untrans-
formed phonons are not appropriate quasiparticles. If we
transform the propagator of the real phonons in the same
unitary way as the Hamiltonian we see that viabi

†→bi
†

2 (g/v) Ai1••• not only the transformed phonons matter
but alsoS50 excitations of the effective spin model. This
means that the observation of the real phonons reveals not
only a sharp peak at the high frequencyv but also a con-
tinuum at low frequencies of the order ofJ. The low-energy
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R14 006 57GÖTZ S. UHRIG



continuum changes on passing through the spin-Peierls tran-
sition. In the vicinity ofTSP one expects some critical fluc-
tuations close to zero energy. BelowTSPa gap should appear
which equals twice the triplet gap or less if bound states are
present.31,34But the phonon peak is not lowered towards zero
energy at the transition. This is in accordance with the results
known so far for CuGeO3.

We attempt to estimate orders of magnitude for the cou-
plings in CuGeO3. Let us assume thatTSP is of the order of
g2/v; then g2/v2'TSP/v'15 K/150 K50.1 is roughly
one-tenth, which justifies the expansion ing2/v2.

The extension of Eq.~11! to several phonons is straight-
forward. Using the phonon energies and their relative distor-
tion as experimental input and the couplingg as a fit param-
eter it is possible to reproduce the experimentalx(T) data
nearly as well as in Ref. 16 from which also thex(T) data
were taken. This shows that the assumption ofT-dependent
couplings isnot ruled out by thex(T) data. With the same
parameter as for thex(T) fit we find J(50 K)5162 K and
J(300 K)5140 K, which agrees very well withJ(50 K)

5158 K andJ(300 K)5136 K deduced by Fabricius and
Löw35 from experimentalS(q,v) data. This excellent agree-
ment confirms the validity of the approach used and in par-
ticular the prediction ofT-dependent couplings.

In summary, we discussed the validity of the phonon adia-
batic approach for SP transitions and in particular CuGeO3.
The phonon adiabatic approach is inadequate for the latter
system. We developed a promising alternative approach re-
lying on the flow equation technique. Magnetoelastic soli-
tons are mapped to magnetic spinons in an effective, purely
magnetic Hamiltonian. The phonon dynamics induces a
T-dependent frustration. No soft phonon signals the SP tran-
sition which is driven by the coherence terms in an effective
magnetic model.

The author is indebted to M. Braden for making his re-
sults available to him prior to publication. He acknowledges
helpful discussions with M. Braden, W. Brenig, B. Bu¨chner,
E. Müller-Hartmann, and H. J. Schulz. This work was sup-
ported by the DFG through SFB 341.

1J. W. Bray, L. V. Interrante, I. C. Jacobs, and J. C. Bonner, in
Extended Linear Chain Compounds, edited by J. S. Miller~Ple-
num Press, New York, 1983!, Vol. 3, p. 353.

2M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett.70,
3651 ~1993!.

3J. P. Boucher and L. P. Regnault, J. Phys. I6, 1939~1996!.
4E. Pytte, Phys. Rev. B10, 4637~1974!.
5J. W. Brayet al., Phys. Rev. Lett.35, 744 ~1975!.
6M. C. Cross and D. S. Fisher, Phys. Rev. B19, 402 ~1979!.
7M. C. Cross, Phys. Rev. B20, 4606~1979!.
8T. Nakano and H. Fukuyama, J. Phys. Soc. Jpn.49, 1679~1980!;

50, 2489~1981!.
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