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Ru NMR and NQR probes of the metamagnetic transition in CeRySi,
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We report®®*Ru NMR and NQR studies on CeRSi, in a magnetic field ) range of 0-15.5 T across the
metamagnetic transition ai,,=7.8 T. From measurements of the hyperfine fiedH,; at the Ru sites
induced by the 4-spin polarization and the nuclear-spin lattice relaxation rafe,, three heavy-fermiofHF)
regimes have been clarifiefl) For 0O<H<3 T, the HF state is formed below 8 K2) At H,=7.8 T, 1T, T
continues to increase upon cooling to 1.4 K, suggesting a very low characteristic e@rgythe polarized
state abovéH,, , the 1T, T probing the quasiparticle excitation is dramatically suppressed aflloaccom-
panying a peak at high. The crossover in the HF state takes place not only irthariation but also in the
T variation across the metamagnetic transition in G&Ru [S0163-18208)51518-4

The intermetallic compound CeRi, crystallizes in the T. From the T;T=constant law and theT-independent
tetragonal ThGiSi,-type structure. Th&-linear coefficient  Knight shift, it was claimed that the HF state was realized
in the specific heaty) amounts to 350 mJ/mol¥ pointing  below 8 K and that the Kondo temperature was around 20 K
to the formation for the heavy fermiofHF) state at low in good agreement with the estimation from the quasielastic
temperature$.Although the ground state in CeRi, does  of neutron scattering linewidthA systematic NMR investi-
not show any long-range order, various types of substitutiofyation is, however, not yet performed either abbig nor in
experiments revealed that the antiferromagn@di€) order-  zero magnetic field. In this paper, we report the first Ru NQR
ing takes place, which suggests that CgBylis close to the  ang NMR studies in CeR@i,. A successful observation of
AF instability? Among a rich variety of ground states real- Ru NQR signal has allowed us to obtain the magnetic prop-
izing in heavy fermion compounds, the polarized magnetic‘erty in zero magnetic field.
phas_e of C.eRiSiZ is particularly iqteresting since a Ia3rge A polycrystalline sample of CeR&i, was prepared from
continuous jump of the magnetization occur$igi=7.8 T o o rity ‘starting materials. The sample was crushed into

From systematic measurements such as susceptibili%owder with diameter less than 3am. Powder sample is
thermal expansiofi,and specific hedtunder the magnetic ) . . . '
field, it was shown that the effective mass is enhanced referentially ahg_ned W'th the axis parallel to the external
ield as reported in the Si NMR measuremént.

Hy , whereas it is reduced fét >H,, . From these results, it . .
was suggested that an application of magnetic field higher F19ure 1 shows a field-swept Ru NMR spectrum for the

thanH,, disturbed the HF state appreciably. Remarkably, arprlente_d powder at 21.1 MHz anq.4.2 K. The Well—art|§:ulated
inelastic neutron-scattering experiment provided valuable inShape is composed ofgfour transitions from the electric quad-
formations about a possible evolution in the spin-fluctuatiorfUPole interaction for**Ru (1 =5/2) and of a central transi-
spectrum around,, , pointing to the presence of two com- tion for **Ru. The *Ru NQR originating from=3/2
peting magnetic correlatiofsA guasielastic magnetic re- +5/2 transition was observed at 3.61 MHz with a full width
sponse(q independentis nearly independent of the field, at half maximum of 0.1 MHz. From both spectra, the quad-
whereas an inelastic response with incommensugatector ~ rupole frequency and the asymmetry parametet’®l were
Q=(0.7,0.7,0 strongly depends on the field arourti, . obtained to bevg~1.75 MHz and»~0 with the principal
This result suggests that the metamagnetic transition is assaxis along thec axis, respectively.
ciated with a drastic change of the magnetic correlations cor- The magnetizationNl) along thec axis in CeRySi, is
responding to the depression of AF intersite spin fluctuationgot linear forH>H),, due to the polarized state through the
and the emergence of ferromagnetic correlations abhye  metamagnetic transition. A detailddvariation of M for H
A high value reached by the magnetic polarization leads to & Hy was obtained from th& dependence of the hyperfine
situation similar to ferromagnetism in this regular array offield AH,;=Hy—H,¢s at the Ru sites wherd,=21.1 MHz/
Ce ions. 9,y is the field which corresponds =0, andH, . is the

In order to investigate the low-lying excitation in the HF resonance field. Figure 2 indicates the respeciivéepen-
state, the Si-NMR studies in CeR8i, was reported foH dence ofAHyy parallel to thec axis for various fields from
<Hpy ."® The nuclear-spin lattice relaxation tim&,) and 2.93 to 15.5 T together withH,;, perpendicular to the
the Knight shift K) were measured down to 0.5 K under 1.2 axis at 10.7 T. Thé\H,q at 2.93 T was obtained only inR
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) ) ) FIG. 3. AHpq/Hes VS M/H g plot. The magnetization data
FIG. 1. Field-swept Ru NMR spectrum in the oriented powder, s referred from Ref. 3. Open circles and other marks correspond

of CeRySi,. Well-articulated spectrum originates from the electric ; o data obtained in tHE variation under the constakt of 10.3

quadrupole interaction fdr=>5/2 for two Ru isotopes. Upper down 1 44 in theH variation at the constari of 4.2 K, respectively.

arrows denote each peak corresponding to the quadruple split tran-

sition of ®*Ru for H||c axis. The central transition d”'Ru forH||c  and Antar) are the corresponding hyperfine coupling con-

axis is only observable due to its larger nuclear quadrupole mostants, respectively. Sind€o b= Anf(orb)Xorb/ 5, We Ob-

ment. taln

range of 1.4—-4.2 K due to the weakness of NMR intensity. AHpi=Korp HiesT Antary M
As seen in Fig. 2, theAHpq's at 9.0 and 10.3 T in the

high-field spin-polarized state continue to increase upon AHnt/Hres=Korn T Antiary M/Hies.

cooling down to 1.4 K, whereas theH,qat 2.93 T, where  AH,(/H,,. is plotted againsM/H,. in Fig. 3 where the
the magnetization is proportional to the field, stays constaninagnetization data reported by Haetral. were used.From
The latter result is consistent with the previous Si Knighty |inear variation OB\ Hp,f /H s VS M/H ¢ @s shown in Fig.
shift datak=AHpg/Hres at ~1.1T. . 3, Korp| @and Ay are extracted to be 0.76% and 3.67 kOe/
The AHyq) at the Ru sites induced Hy, involves the 4, “respectively. The estimatdtl, y is almost the same as
electron contribution through conduction-electron spin polarihe Ry Knight shift in LaRySi,, 0.72%, indicating that
izations and the orbital contribution at the Ru sites and isKorb” originates only from the Ru di contribution, but not
hence expressed by from the Ce contribution. SincAH ¢, /H,.s is comparable
_ to Kopj, AHps is not affected by the spin contribution
AHpi(H,T)=Ho=Hres from the 4f electrons. The positive and small value of
= Ant(orb)XorbHresT AntianM(Ho, T), Ahf(4f_)=3.67(k0_e/,u3) i§ considered to orig_inate fr_om_the
Fermi contact interaction by selectron spin polarization
where xor, and M(Hg,T) are the 41 orbital susceptibility induced through the hybridization with thef 4&lectrons. It
and the magnetization per atom in unitsgaf, andAy¢(orp) should be noted thadHy/H s VS M/H ¢ plots for the
constantH of 10.3 T at various temperatures and for the

TroTTTTTTTTTTTE T constantT of 4.2 K under various magnetic fields is on a
N CeRu,Si; | single line across the metamagnetic transition. Pagar
8 ] does not change at all through the metamagnetic transition,
=< o 15.5T 1 indicating no drastic change in the electronic state as ob-
. served by magnetizatich, specific heat and transport
T * . 1 measurement8 in contrast to the large change observed in
% te quantum oscillation experiments!? This apparent discrep-
T : ., | ancy may be directly linked to the microscopic formation of
L v e e . the quasiparticle bands and deserve now theoretical under-
z oy | standings.
00, ° Figure 4 shows thd dependence of the magnetization
1077 (Fhe) along thec axis divided by the external fieldd, M/H ob-

o020 302050 tained from the Ru NMR shift and the previous Si NMR data
at ~1.14 T from the Si NMR Knight shift withA,~2.21
(kOelug) 2 As indicated in the figure, th& dependence of
FIG. 2. Temperature dependence of the hyperfine fisld M/H is remarkably different between the low and high field
=Hy—H,e parallel to thec axis for various fields. Temperature below 15 K, where a nonlinear response appears in the field-
dependence akH,, perpendicular to the axis at 10.7 T is also swept magnetization process. This temperature is denoted as
shown. the onset temperaturd,, for the emergence of the meta-
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FIG. 4. Temperature dependence of MéH deduced from the FIG. 6. Temperature dependence of .l at Hy=7.8 T and
Ru and Si NMR shiftgsee text 9.0, 10.3, and 15.5 T in the polarized state above arid\at

magnetic transition. The nearfj-independent behavior be- By contrast, 1T, T below 8 K increases with the increas-
low 15 K in the low magnetic field regime is understood as alnd field and that aHy=7.8 T continues to increase upon
consequence of the formation of the HF state. Therefore, thgooling as if there exists a critical anomaly almosTat0 K.
monotonous increase below 15 K in the high magnetic field®s the field increases furtherT(T) ~* is dramatically sup-
regime shows that the temperature population effect is hugressed and a peak ofTLT emerges around 4 K, 7 K, and
in this polarized state abous,, . 20 K for H=9, 10.3, and 15.5 T, respectively, as shown in
The T dependence of nuclear-spin lattice relaxation rate"ig. 6. It should be noted that thig T=constant in the high-
divided byT, 1/T,T below and abovél,, are shown in Figs. field regime holds below temperatures much lower than 8 K
5 and 6, respectively. As seen in Fig. 5T{T’s in zero field N the low-field regime. By using an gﬁectwe density of
and 2.93 T belw 8 K stay constant. In the low-field regime, StateSDOS), Ner(Ef) at the Fermi level in the HF state, we
the experimental value of %(1/T,TK2,)=8.16<103  May assume that T{TocNe(Eg)?xy?, wherey=C/T is
(sK)~! is comparable to the calculated one off ITK? theT_-Imear coefﬁmept in the the specific heeﬁ:lx atT—0.
— ggyﬁkB/,u§=8.O4>< 10%(s K )~* based upon the qua- In this context, the field-induced suppression im;I7 under

siparticle Korringa relation. Her&;,, is estimated from 8, 1_0'3’ a_nd 155 T at 1.4 K may be related with the
Kiso~K;/3 sinceK is negligible as mentioned above. The reduction in Nere(Er).  [Ner(Er,H)I/[Neri(Er ,0)]

HF state belw 8 K seems to be dominated kyindependent = V(1/T1T)/(1/T1T)o~1.30, 0.73, and 0.44 at 1.4 K are
excitations since the phenomenological magnetic coherenc@mpatible ~ with [Net(Er ,H)1/[Net#(Er ,0)]= 1/ vo~
length involves only a few lattice distanéThis fact is in  1.27, 0.71, and 0.29 foH=8, 10, and 15.5 T at 1.5 K,
good agreement with the analysis made in the formalisniespectively. The apparent good scaling of TLT
developed by Moriyd® where the parametey,, inversely — *Nes(Ef)?cy? reflects the fact that CeR@i, never
proportional to the staggered susceptibility, is relativelyreaches a magnetic instability evenka, since each quan-

largel4 tity sf;é)uld have a differenT dependence near the critical
point:
o7k T s' prTTm T However, the emergence of a peak iff IT aboveH,,
I 78T %A, CeRu;Si; | reflects the fact that thef4state renormalized at the low
0.6+ 6547 “AAA H < Hy aboveH), is quite different from the case in the unpolarized
I ' 4 state. It is suggested that the HF bandwidth and DOS in the
~ 05 oT :A‘AA ] polarized state are much reduced as compared with those in
4 [ oo o a ] the unpolarized state and at the metamagnetic transition,
S 0.4p 00 O Wogatby - . . . : .
3 I . oPa ] since most weight of #state in the HF state is considered to
~ 03k 2.93T % i be transferred into the ferromagnetically polarized state well
E L Dq, ] below the Fermi level.
-~ 0.2+ o . Next the NMR result is compared with the recent results
- o of inelastic neutron scattering experimettd.he nuclear re-
0.1 o7 laxation study provides a first insight on the low-energy ex-
0- i i 4L citation which cannot be reached easily by inelastic neutron
107 100 10" 102 experiments. Recent development of the latter technique

shows that the AF correlation with characteristic energy

(~kgTy) is replaced abovel,, by a quasistatic long-range
FIG. 5. Temperature dependence of IV of Ru at 0, 2.93, and ferromagnetic correlation with a low-energy windowc4

6.54 T in the unpolarized state below andg;=7.8 T. K). This is in good agreement with the rapid decrease in

Temperature (K)
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1/T,T implying a creation of a highly polarized state and magnetic instability. In the high-field spin-polarized state,
with still the occurrence of a temperature dependent Knighthe size in 1T, T and the temperature where tiigT =const
shift. Let us stress that polarized neutron experimentdaw holds are much smaller than those in the unpolarized
mainly sensitive to a change in thé agnetic form factor, regime. Remarkably, the emergence of peak iy IT/above
shows also no indication of its modification throubﬂ’M in HM reflects the fact that thef4state is renormalized in a

good agreement with the unchange of the hyperfine Coup“n uite different manner from the case in the unpc_)la_l’ized state.
constant® he crossover in the HF state in not only tHevariation but

In conclusion, from the Ru NMR and NQR studies, the @lso theT variation provides clues to elucidate the cause for
three HF states have been unraveled. In the low-field regimdh® metamagnetic transition in CefSi.
the ordinary HF state belo8 K is evidenced from the qua- e thank C. Thessieu and K. Miyake for stimulating dis-
siparticle Korringa relation. AHy=7.8 T, 1T, T continues  cussions. This work was supported by the Priority Area of
to increase upon cooling to 1.4 K, suggesting a very lowthe Physical Properties of Strongly Correlated Electron Sys-
characteristic energy. The scaling ofT{T>=+? at low T  tems in Grant-in-Aid for Scientific Research from the Min-
acrossH), reflects the fact that CeR8i, never reaches a istry of Education, Sport, Science and Culture in Japan.
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