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Dissipative electron transport through Andreev interferometers
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We consider the conductance of an Andreev interferometer, i.e., a hybrid structure where a dissipative
current flows through a mesoscopic normal (N) sample in contact with two superconducting (S) ‘‘mirrors.’’
Giant conductance oscillations are predicted if the superconducting phase differencef is varied. Conductance
maxima appear whenf is on odd multiple ofp due to a bunching at the Fermi energy of quasiparticle energy
levels formed by Andreev reflections at theN-S boundaries. For a ballistic normal sample the oscillation
amplitude is giant, and proportional to the number of open transverse modes. We estimate, using both ana-
lytical and numerical methods, how scattering and mode mixing—which tend to lift the level degeneracy at the
Fermi energy—effect the giant oscillations. These are shown to survive in a diffusive sample at temperatures
much smaller than the Thouless temperature, provided there are potential barriers between the sample and the
normal electron reservoirs. Our results are in good agreement with previous work on conductance oscillations
of diffusive samples, which we propose can be understood in terms of a Feynman path-integral description of
quasiparticle trajectories.@S0163-1829~98!06815-5#
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I. INTRODUCTION

Recently, considerable attention has been devoted to
soscopic superconductivity, i.e., to the transport propertie
mesoscopic systems with mixed normal (N) and supercon-
ducting (S) elements, where interesting quantum interf
ence effects have been discovered. Interesting physics
pears in such systems because electrons undergo And
reflections1 at theN-S boundaries, whereby the macroscop
phase of a superconducting condensate is imposed on
quasiparticle wave functions in the normal regions. If tra
port in the normally conducting part of the sample is pha
coherent, there is a possibility that interference between
dreev scattering at two~or more! N-S interfaces makes the
conductance of the hybrid system sensitive to the phase
ferencef between the superconducting elements; in this c
one may describe the system as an Andreev interferome

This paper is concerned with a theoretical description
hybrid mesoscopic systems of the Andreev interferome
type. In particular we are interested in the normal cond
tance as a function of the phase difference between the
densates of two separate superconducting elements acti
‘‘mirrors’’ by reflecting the quasiparticles in the normall
conducting element. By connecting the mirrors by a sup
conducting element, a supercurrent may flow within the
perconductor creating a phase gradient. The phase differ
between the mirrors is then controlled by changing the
570163-1829/98/57~16!/9995~22!/$15.00
e-
of

-
p-
ev

the
-
e
n-

if-
e
r.
f
r
-
n-
as

r-
-
ce
-

percurrent or applying a magnetic field through a superc
ducting loop. The normal element is connected to two el
tron reservoirs, as shown schematically in Fig. 1. The norm
electron transport may be in the ballistic regime or in t
diffusive regime; both cases will be discussed. In addit

FIG. 1. Schematic picture of an Andreev interferometer cons
ing of a normal (N) metal ~diffusive transport regime! in contact
with two superconducting elements (S), which are characterized by
the phasesf1 and f2 of their respective order parameters. Th
normal metals are in contact with two reservoirsR1 and R2 via
leads. The thick lines at the junctions between the leads and
normal metal represent potential barriers, which act as beam s
ters partially reflecting quasiparticles impinging on the junctio
~cf. Fig. 2!. If transport is phase coherent, quasiparticles at
Fermi level~zero excitation energy! are phase conjugated after An
dreev reflection at theN-S interfaces, so that Andreev-reflecte
holes~dashed line! retrace the path of the incoming electrons~full
line!, and vice versa.
9995 © 1998 The American Physical Society



e
e
n

s
b
s

o
ev
a
an
ou
e

d
fu
b

ffe
o
i

rt

e

an
vin
is

c
h
is
ti
to
uc
io
u

a
ce
nl
d
fe

-
on
rt
je
ng
cle

on
p

fo

se

r

to-

ction
ron
a

er-
An-
he

ates,
r of
or,

lec-
n-

e
nsa-
tions
rn-

n-
nfi-

y
ron
e is

ua-
rgy.
An-
en-

an

om-
ing
long

uct-

criti-

n

ns-
s en-
and

de

lt is
on

9996 57H. A. BLOM et al.
we will make the important distinction between the cas
when potential barriers or~sharp! geometrical features serv
as ‘‘beam splitters’’ at the junctions between the leads a
the normal element, and when the passage between lead
sample is unhindered by quantum-mechanical scattering
tween distinct quasiclassical trajectories at these junction

The rest of this introduction will be divided into tw
parts: ~i! a general introduction to the subject of Andre
interferometry, and~ii ! a qualitative discussion based on qu
siparticle trajectories which makes it possible to underst
the main features of the conductance oscillations of vari
types of Andreev interferometers as a function of the sup
conducting phase difference.

A. Origin of conductance oscillations
in Andreev interferometers

In the early 1980s Spivak and Khmel’nitskii showe2

weak-localization corrections to the conductance of a dif
sive sample containing two superconducting mirrors to
sensitive to the superconducting phase difference. The e
can be understood in terms of the usual interpretation
weak localization as due to coherent backscattering. The
terference of probability amplitudes for classical quasipa
cle trajectories~or ‘‘Feynman paths’’! bouncing off both
mirrors will depend on the phases of the respective cond
sates. Considering a closed diffusive path touching bothN-S
interfaces—where electrons will be reflected as holes,
vice versa—the interference between quasiparticles mo
in opposite directions, clockwise and counterclockw
around the path, results in a phase difference of 2f between
the interfering amplitudes, i.e., twice the phase differen
between the two superconductors. This is because the p
picked up due to Andreev reflections off the two mirrors
6f, depending on whether the motion is clockwise or an
clockwise. It follows that the weak-localization correction
the conductance of a normal sample with two supercond
ing mirrors has a component that oscillates with a per
equal top as the phase difference between the supercond
ors is varied.

In the beginning of the 1990s, a dependence on the ph
differencef was discovered not only for the conductan
fluctuations but for the main conductance as well. Not o
conductance fluctuations but the ensemble-averaged con
tance itself can therefore be controlled by the phase dif
ence between two superconducting mirrors.3–7 Hybrid N-S
systems~Andreev interferometers! which show such a be
havior at very low temperatures have lead-sample juncti
which act as ‘‘beam splitters’’ in the sense that a quasipa
cle approaching the junction along a quasi-classical tra
tory is only partially transmitted. Hence a beam-splitti
junction has the effect of partly reflecting a quasi-parti
coming from oneN-S interface toward the secondN-S in-
terface, as illustrated in Fig. 1. This has the important c
sequence that when a quasiparticle finally leaves the sam
to contribute to the current, there is a certain probability
it to have interacted withboth superconducting mirrors. To
be specific, an electron entering the sample from one re
voir, R1 say ~referring to Fig. 1!, may follow a trajectory
~full line! where first it is reflected as a hole by one mirro
saySf1 , then it returns~dashed line in Fig. 1! to bounce off
s
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the same junction through which it entered, is reflected
ward the second superconducting mirrorSf2

where it is An-

dreev reflected as an electron, and finally it passes~full line!
through the junction to the second reservoirR2 now carrying
information about the differencef5f12f2 between the
phases of the two superconducting mirrors~the difference
appears because the phase picked up on Andreev refle
differs in sign between an electron-hole and a hole-elect
reflection!. It follows3,5 that such trajectories contribute
term to the conductance that oscillates with period 2p ~rather
thanp! as function off.

As we have indicated above, the influence of the sup
conducting phase difference on the conductance of an
dreev interferometer structure is an interference effect. T
macroscopic phases of the superconducting condens
or—using a different language—of the order parameter o
the gap function of the respective superconducting mirr
are imposed on the microscopic wave functions of the e
tronlike and holelike quasiparticles when they undergo A
dreev scattering at theN-S boundaries. The dominating rol
of these scattering phases is due to the effect of compe
tion of the phases gained along the electron and hole sec
of the trajectories connecting the Andreev reflection. Retu
ing to Fig. 1, we note that it illustrates how an electron~hole!
with energy infinitely close to but above~below! the Fermi
energy follows a trajectory@full ~dashed! line# toward an
N-S interface. When it is Andreev reflected as a hole, co
servation of energy and momentum makes its energy i
nitely close to but below~above! the Fermi energy, and the
hole ~electron! retraces the path@dashed~full ! line# of the
incoming electron~hole!. In this way the phase acquired b
an electron is ‘‘eaten up’’ as the hole retraces the elect
path in the opposite direction, and the net change of phas
due to the Andreev reflection only.

The possibility of phase compensation exists only for q
siparticles whose energies are very close to the Fermi ene
Because energy and momentum are conserved in the
dreev scattering process, a quasiparticle with excitation
ergy E measured from the Fermi energyeF is reflected as a
hole in a direction that differs from the incoming path by
angle of orderE/eF . This implies that for finite quasiparticle
excitation energies the phase compensation will not be c
plete. Since the dominating role of the superconduct
phase difference is lost when the uncompensated phase a
the quasiparticle trajectory connecting the two supercond
ing mirrors is of order 2p, it follows immediately that only
quasiparticles whose excitation energies are less than a
cal energyEc may contribute to thef-dependent part of the
conductance. For ballistic samplesEc;\vF /L, while Ec
;\D/L2 in the diffusive transport regime, where it is know
as the Thouless energy~vF is the Fermi velocity, andD is
the diffusion constant!.

The restriction on quasiparticle excitation energies tra
lates into a temperature dependence, where the Thoules
ergy sets the characteristic temperature scale. Nazarov
Stout8 and Volkov, Allsopp, and Lambert,9 for example, sug-
gested a ‘‘thermal mechanism’’ that gives a large amplitu
of the 2p-periodic conductance oscillations withf at tem-
peratures close to the Thouless temperature. Their resu
due to a dependence of the effective diffusion coefficient
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the energy of the quasiparticles in a hybridS-N-S sample
and will be further discussed below.

In addition to dephasing effects due to finite excitati
energies phase coherence may be broken by inelastic sc
ing. The interference effects described can therefore only
observed if the lengthL of the normally conducting part o
the sample is, at most, of the order of the phase brea
lengthLf or the normal metal coherence lengthLT , which-
ever of them is smaller. In the ballistic transport regimeLT
5\vF /kBT, while in the diffusive transport regime one ha
LT5(\D/kBT)1/2.

A large number of experimental and theoretic
investigations8–31 followed the early work on the tunabl
conductance of mesoscopic samples of the Andreev inte
ometer type. For diffusive samples the amplitude of the c
ductance oscillations has been found to be large in the s
that it is comparable to the conductance in the absenc
superconducting elements. The conductance maxima us
appear at even multiples ofp. As discussed by Kadigrobo
et al.,18 the situation is quite different for ballistic Andree
interferometers, where the conductance oscillations may
giant—i.e., the oscillation amplitude may be much larg
than the conductance in absence of superconducting mir
The system discussed in Ref. 18 is shown in Fig. 1;
normal part of a hybridS-N-S system is weakly coupled to
two normal electron reservoirs, and hence the dissipa
current flows from one reservoir to the other via the norm
metal element. Two low-transparency barriers form the ju
tions between sample and leads~going to the reservoirs!, and
act as beam splitters in the sense outlined above.

The giant conductance oscillations arise because
structure considered in Ref. 18 permits resonant transmis
of electrons and holes via the normal part of the sam
Resonant transmission occurs when the spatial quantiza
of the electron-hole motion in the mesoscopic normal e
ment leads to allowed energy levels coinciding with t
Fermi energy~at zero temperature and small bias voltage
energy of the electrons incident from the source reservo
equal to the Fermi energy!. It follows from the semiclassica
Bohr-Sommerfeld quantization rule@cf. Eq. ~14! below# that
all theN' conducting transverse modes in the normally co
ducting element have one quantized level at the Fermi
ergy if the phase differencef between the two superconduc
ors is equal to an odd multiple ofp. This means that forf
5p(2k11), k50,61,62 . . . each transverse mode ca
resonantly transmit electrons, and henceN' transverse
modes contribute to the resonance simultaneously. As a
sult the amplitude of the conductance oscillations reaches
maximal valueGmax5N'2e2/h whenf is an odd multiple of
p ~giant oscillations!. In Ref. 19, conductance oscillation
with a change in the supercurrent flowing along theN-S
boundary ~the boundary between a superconductor an
normal metallic lead! was suggested, the amplitude of th
oscillations being much greater thane2/h.

B. Understanding conductance oscillations
in Andreev interferometers in terms of Feynman paths

In all experimental and theoretical studies of Andreev
terferometers, three types of quasiparticle scattering me
nisms ~in various combinations! have to be taken into ac
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e

g

l

r-
-
se
of
lly

be
r
rs.
e

e
l
-

e
on
e.
on
-

e
is

-
n-

e-
he

a

-
a-

count. Scattering of charge carriers can be due to~1!
potential barriers or geometrical features~beam splitters! at
the junctions between the mesoscopic sample and the l
to the electron reservoirs,~2! impurity scattering inside the
mesoscopic region, and~3! non-Andreev~normal! reflection
at theN-S interfaces.

Here we shall emphasize the crucial role played by be
splitters in distinguishing between different types of oscil
tion phenomena. Therefore we choose to separately dis
two different types of hybridS-N-S structures: those with
and those without beam splitters. In particular we will sho
below that the presence of beam splitters is necessary
conductance oscillations withf to appear in the limit of
vanishing temperature~see Fig. 2!.

1. Andreev interferometers without beam splitters

In the absence of beam splitters, quasiparticles are ba
tically injected into the mesoscopic sample along quasic
sical trajectories without suffering any quantum-mechani
scattering between trajectories at the junctions betw
sample and~leads going to the! reservoirs. In this case th
quasiparticles therefore freely pass the contact region w
out undergoing reflection. It is not difficult to convince on
self that in such a system there are no low-energy quasi
ticle trajectories connecting the reservoir~or reservoirs! and
both superconductors. This is because a quasiparticle w
vanishingly small excitation energy is perfectly backsc
tered at theN-S boundaries in the sense that the angle
Andreev scattering is equal top. Therefore such a trajector
cannot connect more than two bodies~say, the reservoir and
one of theN-S interfaces!. Of course, for excitations with
finite excitation energiesE the backscattering is not perfec
and, in contrast to the case whenE50, the angle of reflec-
tion differs from p by a valuea'E/eF . An interference
effect involving the condensate phases of both mirrors
now possible, since an electron Andreev reflected as a ho
the N-S interface follows a different trajectory than the im
pinging electron, and hence has a finite probability not
reach the injector region. In this case, as shown in Fig. 3
is possible that the trajectory will reach the second superc
ductor before finally escaping to a reservoir. One may rea

FIG. 2. A potential barrier at the junction between the norm
metal and the lead to a reservoir splits the quasiparticle beam c
ing from one of the superconducting mirrors~cf. arrows!. This
makes it possible for quasiparticles having undergone Andreev
flection at both mirrors to contribute to the current even if th
excitation energy is zero and therefore reflected hole~electron! ex-
citations retrace the paths of the electron~hole! excitations. It fol-
lows that the conductance may depend onf1-f2 even at zero tem-
perature~see text!.
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evaluate the role of the described Andreev reflection of
citations with finite energies in the formation of phas
sensitive trajectories for both the ballistic and diffusi
cases.

In the ballistic case an injected electron which is Andre
reflected as a hole will not directly return to the injector
the distanceL0 to the superconducting mirror is large com
pared to the injector openingd0 . The precise criterion is tha
it will not return if aL0.d0 , wherea'E/eF ~see Fig. 3!. If
one takes into account that the excitation energy as expla
above is limited by the~ballistic! Thouless energyEc in
order for phase coherence to be maintained, one concl
that an interference effect involving both Andreev mirrors
possible only if the injector opening is smaller than the el
tron deBroglie wavelength; this is because, sincea(E)
,a(Ec5\vF /L0), it follows thataL0,d0 if d0,lB . ~For
a degenerate electron gas the de Broglie wavelength is e
to the Fermi wavelength.! The inevitable conclusion is tha
an interference mechanism involving thermally excited q
siparticles cannot play a role in realistic experiments us
ballistic samples. Under these circumstances the effec
scattering by impurities inside the mesoscopic sample is
cisive for the desired interference phenomenon involv
two superconducting mirrors to occur. In other words—
the absence of beam splitters—we need to consider a m
scopic sample in the diffusive transport regime.

In the diffusive case interference between Andreev s
tering at two spatially separated superconducting mirr
may occur if the mirror-reflected trajectory diverges from t
incident trajectory by more than a de Broglie waveleng
lB , which we take to be the width of any particular traje
tory. In this case we may say that, by Andreev reflection
an excitation with a large enough energy, the reflected q
siparticle is sent into a different, classically distinguisha
trajectory. When the separation becomes greater thanlB this
trajectory interacts with a different set of impurities whic
will take the reflected particle on a diffusive random wa
along a completely different Feynman path. As the distrib
tion of trajectories is homogeneous in the diffusive lim
there is a finite probability for the trajectory~which starts
from a reservoir! to include points with Andreev reflection
from both superconductors. This implies that the criterion
the incident and reflected trajectories to be sufficiently se
rated after a diffusing length ofLD is aLD>lB . Since the

FIG. 3. At finite excitation energiesE the path of an Andreev
reflected hole~electron! in a ballistic system deviates by a finit
anglea(E) from the path of the incoming electron~hole!. If E is
sufficiently large—but not otherwise—one quasiparticle traject
may therefore, as shown here, hit both superconductors.
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anglea;E/eF , this can be converted to a criterion for th
excitation energy of the formE>Ec . We recall that inter-
ference is destroyed for energiesE@Ec . Hence we conclude
that there is a distinct group of quasiparticles with excitat
energy around the Thouless energy;Ec , for which there is
an interference effect controlled by the superconduct
phase differencef. As a result the temperature dependen
of the conductance oscillations is nonmonotonic. The am
tude of the oscillations vanishes as the temperature goe
zero, and has a maximum when the temperature is of
order of the Thouless temperatureTc5Ec /kB . At elevated
temperatures,T@Tc , the parameter controlling the decrea
in amplitude of the conductance oscillations isEc /kBT. This
is simply the relative number of electrons with energy
orderEc . These electrons are responsible for the interfere
effect we are discussing, which is nothing but the ‘‘therm
effect’’ of Refs. 8 and 9.

Now we turn to structures with beam splitters; below w
show that beam-splitting scattering between different traj
tories at the junctions between the mesoscopic sample
the reservoirs qualitatively changes the interference patt
In this case quasiparticles with low excitation energies,E
,Ec , may contribute—in some cases resonantly—to the
terference effects causing the conductance to oscillate
function the superconducting phase difference.

2. Giant conductance oscillations in Andreev interferometers
containing beam splitters

Scattering due to potential barriers or geometrical featu
at junctions between the mesoscopic region and the re
voirs qualitatively change the nature of quasiparticle traj
tories. In particular, a particle reflected from anN-S bound-
ary does not necessarily leave the sample for the reser
directly. Instead, it may be reflected by the junction and
enter the mesoscopic region. There is a certain probab
that such reflections creates low-energy trajectories that c
nect the reservoir~s! with both superconductors. An examp
of such a trajectory is shown in Fig. 1.

The role of beam splitters in Andreev interferometers w
first noticed by Nakano and Takayanagi.3 A number of other
interference phenomena also involving quasiparticles at
Fermi energy~zero-temperature phenomena! has been dis-
cussed in the literature. For instance, Weeset al.32 showed
that elastic scatterers generate multiple reflections at theN-S
boundary, resulting in an enhancement of the conducta
above its classical value. In ballistic structures resonant t
neling through Andreev energy levels coinciding with t
Fermi level was predicted in Refs. 18 and 22. For diffus
structures containing beam splitters, a significant increas
the Aharonov-Bohm oscillations of the conductance w
shown to exist in Refs. 13, 14, and 20–23. Beenakk
Melsen, and Brouwer15 showed that the angular distributio
of quasiparticles Andreev reflected by a disordered norm
metal–superconductor junction has a narrow peak cent
around the angle of incidence. The peak is higher than
coherent backscattering peak in the normal state by a la
factor G/G0 ~G is the conductance of the junction, andG0
52e2/h!. The authors identified the enhanced backscatte
as the origin of the increase of the oscillation amplitude p
dicted in Refs. 14 and 18. As a final example, we note tha
was shown in Ref. 20 that the beam splitter violates

y
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‘‘sum rule’’ according to which the conductance in the a
sence of junction scattering is equal to the number of tra
verse modes and does not depend on the supercondu
phase difference.

All the mentioned interference phenomena involving qu
siparticles at the Fermi level (E50) have the same natur
for both ballistic and diffusive structures. This follows fro
the complete phase conjugation of electron and hole exc
tions at the Fermi energy. At the Fermi energy even
random-walk-type diffusive electron trajectory caused
impurity scattering is completely reversed by the Andre
reflected hole, and there is a complete compensation of
phase. In particular the giant oscillations of conductance w
phase differencef is insensitive to impurities, as there is
finite scattering volume in which the phase gains along
electron-hole trajectories are completely compensated.

When the transparency associated with junction scatte
has intermediate values both the thermal effect and the r
nant oscillation effect contribute simultaneously provided
temperature is close to the Thouless temperature. In exp
ments measuring the conductance oscillations for struct
with beam splitters4,10–12,16,25–29,33the temperature was of th
order of the Thouless temperature or higher, and hence
effects could contribute. The effects can be distinguished
lowering the temperature below the Thouless temperature
then the amplitude of the conductance oscillations decre
in the case of the thermal effect~it goes to zero as the tem
perature goes to zero! while the resonant amplitude of th
conductance increases and is maximal at zero tempera
Experimental evidence is just beginning to appear.34–36

While the role of the thermal mechanism was investiga
in detail in Refs. 8 and 9, for the giant conductance osci
tions the role of intensity of scattering for all types of sc
tering mentioned above~normal @non-Andreev# reflection at
the N-S boundaries, and junction and impurity scatterin!
remains without a quantitative description. The objective
this paper is to fill this gap.

The paper is organized as follows: in Sec. II we descr
how Andreev interferometers are modeled in this work;
Sec. III, we develop a resonant perturbation theory to fi
the conductance in the case of ballistic transport inside
sample and weak coupling of the sample to the reservoirs
comparison with Ref. 18, here we allow scattering betwe
different conduction channels at the two junctions betwe
sample and leads to reservoirs. In Sec. IV, in addition,
take into account the normal reflection that accompanies
Andreev reflection of an electron~hole! at a real normal
conductor-superconductor interface, and obtain an exp
analytical expression for the conductance of the system
function of the number of transverse channels. For ca
when it is inconvenient to obtain analytical results, such
when the coupling is not weak, we present some result
numerical calculations in Sec. V. Then, in Sec. VI, we re
the condition of the sample being in the ballistic transp
regime, and calculate the giant conductance oscillations f
diffusive hybrid S-N-S structure using the Feynman pa
integral approach for the transition probability amplitude.
the conclusions~Sec. VII!, we discuss the range of param
eters for which the conductance oscillations can be gian
real experiments.
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II. MODEL FOR AN ANDREEV INTERFEROMETER

In this section we describe our model for an Andre
interferometer. As schematically shown in Fig. 4, th
consists of a superconductor-normal~semiconductor!-
superconductor (S-N-S) sample coupled to two normal elec
tron reservoirs between which a voltage bias is applied. A
pealing to experiments,33,37–40 we neglect scattering o
electrons by impurities inside the sample for the time bei
and return to this point in Sec. VI. Nevertheless, the jun
tions between theS-N-S sample and the normal leads to th
electron reservoirs are inevitably sources of scattering.
whereas we consider electron transport to be adiabatic in
the sample—the current being carried inN' channels
~modes!—electrons can be scattered between different c
duction channels at these junctions. Taking this into acco
amounts to a first generalization of our earlier treatment
this problem.18 In our model the coupling between th
sample and the reservoirs is controlled by potential barr
~beam splitters; see above! appearing at the junctions be
tween the leads from the reservoirs and the sample. We
sume that in the case of low barrier transparency the appr
mation of a nearly isolated sample is adequate and
channel mixing is absent; we shall then study what happ
when the coupling increases in Sec. III.

Another fact ignored in our earlier work18 is the possible
‘‘normal’’ reflection of quasiparticles at theN-S boundaries,
a mechanism that would compete with the Andreev refl
tion. Such normal reflection occurs if the composition of t
S-N-S structure is such that quasiparticles are reflected at
interfaces due to the potential barriers such as Schottky
riers or barriers arising due to a mismatch between the Fe
velocities of electrons in the different conductors making
the structure~the effect of such a mismatch on the ener
spectrum of bound states and the Josephson current inS-N-S
heterostructures was considered in Ref. 41!. Even at an ideal
N-S boundary, ‘‘grazing’’ electrons moving nearly paralle
to theN-S boundary@within a range of angles;(E/eF)# are
normally reflected with probability unity~they cannot be An-
dreev reflected!.42–45 It follows that properties ofN-S het-
erostructures are affected, leading to, in particular, an ‘‘
cess resistance’’ effect~a decrease of the total resistance
the sample after a transition of the superconducting part

FIG. 4. Schematic picture of an Andreev interferometer of
same type as shown in Fig. 1. The full~dashed! arrows indicate
electrons (e) @holes (h)# moving in the ballistic segments 1–5 o
the sample. In the model calculation described in the text Andr
and/or normal scattering may occur at the two superconducting
rors (S), and scattering between different segments and chan
~modes! may occur at the junctions markedA andB.
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the normal state!.46,44 This effect is especially large fo
semiconductor-~or semimetal-! superconductor heterostruc
tures, aseF in the above estimation is the Fermi energy
the normal conductor. However, the contribution of the gr
ing electrons to the giant conductance oscillations can
neglected even for superconductor-semiconductor het
structures. The fact is that only electrons with energiesE
<Ec contribute to the oscillations. Hence the relative nu
ber of grazing electrons in this range of energy isdN
<AEc /eF!1 ~for the ballistic case,dN<AlB /L!1!. The
normal reflections of quasiparticles at the interfaces cau
by interface potential barriers, by the mismatch betwe
Fermi velocities, and so on, will here be described by a p
nomenological parameter: the probability amplitude for n
mal reflection.47

When normal reflection is possible the degeneracy of
quasiparticle energy levels~Andreev levels! which occurs at
the Fermi level is lifted. As a result the ‘‘giant’’ conductanc
oscillations as a function of the phase difference between
two superconductors are greatly reduced. Despite the ex
mental fact that the probability for normal reflection
small,33,37–40the criteria for how small the normal reflectio
probability must be for the giant oscillations to survive
obviously an important question, which we consider in S
IV. Below we formulate our transport problem for a gene
case which includes both the possibility for scattering
tween conduction channels at the sample-lead junctions
normal reflections at theN-S interfaces.

It is convenient to divide our model Andreev interferom
eter into five different segments, so that the electron tra
port to a good approximation is adiabatic in each segm
We then use a phenomenological method for describing
two manifestly nonadiabatic junction regions~markedA and
B in Fig. 4!. The quasiparticle wave functions in the adi
batic segments 1–5 shown in Fig. 4 can be found with
help of the Bogoliubov–de Gennes equation. As chan
mixing is absent in the adiabatic segments the electron
and holelike components of the wave function in thenth
transverse mode in segmenta are

ua~x,y!5 (
n51

N'

~aa,n
~e! eikn

~e!x1ba,n
~e! e2 ikn

~e!x!
sin k'~n!y

A\kn
~e!/m

,

~1!

va~x,y!5 (
n51

N'

~aa,n
~h! e2 ikn

~h!x1ba,n
~h! eikn

~h!x!
sin k'~n!y

A\kn
~h!/m

.

Hereaa,n
(e) andba,n

(e) ~aa,n
(h) andba,n

(h) ! are the probability ampli-
tudes for free motion of electrons~holes! forward and back-
ward, respectively, in channeln and segmenta of the
sample;k'(n)5np/d, n50,1,2, . . . is thequantized trans-
verse wave vector assuming a hard wall confining poten
d is the width of the sample; kn

(e,h)5@kF
22k'

2 (n)
62mE/\2#1/2 is the electron~hole! longitudinal momentum;
kF is the Fermi wave vector;E is the electron energy mea
sured from the Fermi energy; andx and y are longitudinal
and transverse coordinates in the sample, respectively. N
diabatic scattering of electrons in the junction regions~see
Fig. 4! is described by a unitary scattering matrixŜ connect-
ing the wave functions in the surrounding sample segme
Scattering at these junctions mix the transverse modes~chan-
f
-
e
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ed
n
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e

he
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.
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t.
e

e
el
e
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a-

ts.

nels! in the adiabatic segments~which, here and below, for
the sake of simplicity, are considered to have the same n
ber of open transverse channels!. Hence the scattering matri
connectsca

(in) and ca
(out) , which areN'-component vectors

whose coefficientsaa,n
(e,h) and ba,n

(e,h) describe the incoming
and outgoing adiabatic wave functions@see Fig. 5 and Eq
~1!#,

ca
~out!5 (

b51

3

Ŝabcb
~ in! . ~2!

We assume the coupling matrixŜ to be symmetric with
respect to the left and right sample segments~labeled 2 and 4
in Fig. 4!. Therefore the matrix can be written as

Ŝ5S ŝ11

ŝ12

ŝ12

ŝ12

ŝ22

ŝ23

ŝ12

ŝ23

ŝ22

D , ~3!

where ŝab are N'3N' matrices which mix the conduction
channels when an electron~or hole! is transferred from theb
to the a segment. Electrons and holes are, however,
mixed. The elements ofŝab

nm (n,m51,2, . . . ,N') are the
probability amplitudes for an electron~or hole! in the mth
channel of theb section to be transferred to thenth channel
of the a section. We assume that scattering of an incid
quasiparticle at the junction causes transmission of the e
tron into each of theN' open transverse channels with
probability which is of the same order of magnitude for
channels. This implies that the matrix elements of the ma
cesŝ12, ŝ22, ŝ2321, andŝ1121 are of order 1/AN'.

We choose to parametrize theŜ matrix in a way such that
there is no channel mixing if the sample is completely d
coupled from the reservoirs. This coupling is determined
the elements of the matrixŝ12 which are the probability am-
plitudes for electron~hole! transitions from a lead~segments
1 or 5! to the sample~segments 2 and 3 or 3 and 4!. In order
to describe the strength of the coupling, we introduce
parametere r and write

ŝ125S e r

N'
D 1/2

s̄12. ~4!

The scattering matrix~3! has to be unitary—a requiremen
that leads to five relations between the eight matricesŝab ,
see Eqs.~A1!–~A5! in Appendix A. ~Note that each matrix
has independent Hermitian and anti-Hermitian parts.! We are

FIG. 5. Detail of the junction~A andB in Fig. 4! coupling the
reservoirs via leads to the normal part of the system. A scatte
matrix connects the amplitudes of incoming and outgoing quasi
ticles; see the text.
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thus left with three undetermined matrices, which we cho
to beŝ12 and the anti-Hermitian part ofŝ22 ~the last choice is
made only for the sake of calculational convenience; see
pendix A. We assume the Hermitian and anti-Hermitian pa
of ŝ22 to be of the same order in the parametere r , since in
the general case they are connected by a Kramers-Kr
relation. It follows from the unitarity conditions that the m
trix elements ofŝ12 are of order 1/AN'. Hence the matrix
elements ofs̄12 are of order unity.

The conductance of our model system is in the limit
vanishing bias voltage determined by the Landauer form
as modified by Lambert for a system with Andre
reflections:7

G5
2e2

h S T01TA1
2~RARA82TATA8 !

TA1TA81RA1RA8
D . ~5!

Heree is the electron charge,h is Planck’s constant, and

TA5 (
k51

N'

tk
~A! ,

RA5 (
k51

N'

rk
~A!,

~6!

T05 (
k51

N'

tk
~0! ,

R05 (
k51

N'

rk
~0! .

In Eq. ~6!, tk
(0) @tk

(A)# is the probability for an electron ap
proaching the sample in thekth transverse channel of the le
lead to be transmitted as an electron~hole! into any of the
outgoing channels of the right lead. The quantityrk

(0) @rk
(A)#

is the probability for the same electron to be reflected as
electron ~hole! into any outgoing channel in the same le
lead it came from. Similarly,tk8

(0) (tk8
(0)) andrk8

(0) (rk8
(A))

are normal~Andreev! probabilities for an incoming electro
from thekth transverse channel of the right lead to be tra
mitted as an electron~hole! into any outgoing channel of th
left lead, and to be reflected as an electron~hole! back into
any outgoing channel of the right lead, respectively.

In order to proceed, we have to solve the matching eq
tions for the wave functions in sample and leads. The ma
ing problem under consideration is illustrated in Fig.
where solid and dashed arrows symbolically show elect
and hole plane waves moving to the right and left, resp
tively. The coefficientsaa

(e,h) and ba
(e,h) are N'-component

vectors, the components of which are the probability am
tudesaa,n

(e,h) andba,n
(e,h) ; see Eq.~1!. Matching the wave func-

tions at the junctions using Eq.~2!, one obtains the following
set of equations for these amplitudes:

b1
~e,h!5 ŝ11a1

~e,h!1 ŝ12a2
~e,h!1 ŝ12b3

~e,h! ,
~7!

b5
~e,h!5 ŝ11a5

~e,h!1 ŝ12Û3
~e,h!a3

~e,h!1 ŝ12Û4
~e,h!b4

~e,h!

and
e

p-
ts

ig

f
la

n

-

a-
h-
,
n

c-

i-

b2
~e,h!2 ŝ22a2

~e,h!2 ŝ23b3
~e,h!5 ŝ12a1

~e,h! ,

a3
~e,h!2 ŝ23a2

~e,h!2 ŝ22b3
~e,h!5 ŝ12a1

~e,h! ,
~8!

Û3
~e,h!†b3

~e,h!2 ŝ22Û3
~e,h!a3

~e,h!2 ŝ23Û4
~e,h!†b4

~e,h!5 ŝ12a5
~e,h! ,

Û4
~e,h!†a4

~e,h!2 ŝ23Û3
~e,h!a3

~e,h!2 ŝ22Û4
~e,h!b4

~e,h!5 ŝ12a5
~e,h! .

Here the diagonal matricesÛa
(e,h) simply keep track of the

phase gained by electrons and holes during their free mo
across segmenta. The diagonal matrix elements are

ua
~e!~n!5eikn

~e!l a, um
~h!~n!5e2 ikn

~h!l a, n51,2, . . . ,N' ,
~9!

wherel a is the length of sectiona in Fig. 4.
The set of equations~7! and ~8! must be supplemente

with boundary conditions at theN-S interfaces. In the gen-
eral case when both Andreev and normal reflections at
N-S boundaries are possible, the boundary conditions ar

a2,n
~e!5eiC1@r N

~1!ei2kn
~e!l 2b2,n

~e!1r A
~1!eidknl 2b2,n

~h!#,
~10!

a2,n
~h!5eiC1@2r A

~1!* eidknl 2b2,n
~e!1r N

~1!* e2 i2kn
~h!l 2b2,n

~h!#

for the left ~first! boundary@dk[k(e)2k(h)#, and

b4,n
~e!5eiC2@r N

~2!a4,n
~e!1r A

~2!a4,n
~h!#,

~11!

b4,n
~h!5eiC2@2r A

~2!* a4,n
~e!1r N

~2!* a4,n
~h!#

for the right ~second! boundary, see Fig. 4. The probabilit
amplitudes for normal and Andreev reflections at theN-S
boundary are given byeiCr N and eiCr A . It follows that
ur N

(1,2)u21ur A
(1,2)u251.48 For convenience explicit expression

for these quantities in terms of the complex order param
of the superconductor and the reflection and transmiss
probability amplitudes of the normal barrier at theN-S in-
terface are given in Appendix B.

Equations~7!, ~8!, ~10!, and ~11!, together with the con-
ductance formula~5!, form a complete set of equations th
permits us to find the conductance of the system under c
sideration. For the case of a sample isolated from the re
voirs (e r50), the set of equations~8! together with the
boundary conditions~10! and ~11! under an assumption o
the reflection properties at the twoN-S boundaries being
identical, gives the proper wave functions and the spec
function of the sample. The latter is as follows:

Qn5cosw22ur Nu2 cosw11ur Au2 cosf. ~12!

Here w252mEL/\2kn , w152knL, and the parallel com-
ponent of the wave vector iskn5@kF

22k'(n)2# (1/2), where
k'(n) is the projection of the wave vector on theN-S
boundaries,n labels transverse modes, andf is the phase
difference between the order parameters in the two super
ductors.

For energiesE small compared to the energy gaps in t
superconductors, the equationQn50 determines the discret
Andreev energy levels of the system. This relation can
rewritten as
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En,l5@p~2l 11!6arccos~ ur Au2 cosf2ur Nu2 cosw1!#

3
\2kn

2mL
, ~13!

where the longitudinal and transverse quantum numbers
l 50,61,62, . . . andn51,2, . . . ,N' , respectively.

In Sec. III we discuss the nonadiabatic scattering of el
trons at the junctions, and present analytical formulas for
case of a weak coupling of the sample to the reservoirse r
!1), and numerical results of computer simulations in
general case. The role of the non-Andreev~normal! reflec-
tion at theN-S boundaries is discussed in Sec. IV.

III. ROLE OF SCATTERING AND MODE MIXING
AT THE POINTS OF COUPLING TO THE RESERVOIRS

We start our analysis by assuming a weak coupling
tween sample and~leads to! reservoirs. In this case the pa
rametere r introduced in Eq.~4! is much smaller than 1. It is
convenient to develop a qualitative understanding star
from the so-called Andreev levels that form in the isolat
sample whene r is strictly zero. We consider values off near
odd multiples ofp for which Andreev levels will appear a
the Fermi energy~f5f22f1 , wheref1 and f2 are the
phases of the gap functions in the left and right superc
ductor; see Fig. 4!. We concentrate on energies in a narro
interval DE;e r\vF /L around the Fermi energy, within
which the quantum states of electrons perturbed by a c
pling of the sample to the reservoirs are expected to be fo
~\vF /L is the characteristic spacing of mode energy lev
near the Fermi energy!.

In the absence of normal reflection at theN-S boundaries
(r N50), Eq. ~13! reduces to49

p~2l 11!6f5~AkF
22k'~n!212mE/\2

2AkF
22k'~n!222mE/\2!L,

l 50,61,62, . . . . ~14!

Herem is the electron mass,L5 l 21 l 31 l 4 is the length of
the normal part of the sample, and all reflections are assu
to be of the Andreev type. The phasef comes with a plus or
a minus sign in Eq.~14! depending on whether the electro
hole excitations move as electrons or holes when going f
the left to the rightN-S interface.

Expression~14! for the spectrum tells us that whenf
5p(2l 811) there is one Andreev state at the Fermi le
for each transverse mode~index n! simultaneously, i.e., the
energy of the state whose quantum numberl associated with
the longitudinal motion equalsl 8 coincides with the Ferm
energy irrespective of mode numbern. Therefore, the degen
eracy of the energy level at the Fermi energy (E50) is given
by the number of open transverse modesN' , wheneverf
equals an odd multiple ofp. This results in a giant probabil
ity for resonant transmission of electrons from one reserv
to the other. The amplitude of the corresponding cond
tance oscillations,DG}N'e2/\,18 is therefore much large
than the conductance quantum.

A finite coupling of the sample to the reservoirs~which is
of course necessary for a current to be observable! simulta-
re
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neously results in a broadening and a shift of the Andre
energy levels. The former effect is due to quasiparticle t
neling from the sample to the reservoirs after a finite tim
and the latter to mixing of the transverse modes that inev
bly accompanies a finite coupling~lifetime broadening for
the Andreev-reflection processes atN-S point contacts was
analyzed in Refs. 50 and 51!. Below we show the broadenin
and the shift to be of the same order in the transparenc
the barrier connecting sample and reservoirs. The result
broadening of the peaks of resonant sample conductance
their giant amplitude remains. This is because a Br
Wigner type of resonance is broadened without loss of a
plitude when the coupling is increased. It turns out that
broadening of each state tends to compensate for the shi
around the energies of previously degenerate states. Rea
who are not interested in technical details may want to t
directly to Eq.~31!, which expresses this result. Results
numerical calculations presented in Sec. V show this pict
to hold up to a value fore r which is about half its maximum
value. A further increase of the coupling results in a lar
decrease of the amplitude and an increase of the broade
of the peaks.

In the weak coupling case the set of equations~7!, ~8!,
~10!, and~11! which determines the transmission probabil
amplitudes can be solved analytically by perturbation the
in the small parametere r . Below, this perturbation theory
will be developed.

As shown in Appendix A, all the matrices which describ
scattering of electrons and holes inside the sample~ŝ22 and
ŝ2321̂! are proportional toe r if the coupling matrixŝ12 is
proportional toAe r and if e r!1. Hence it follows that the se
of equations~7!–~11! can be written in the form

@Ŵ~E!2e rV̂#uH&5S e r

N'
D 1/2

uK &. ~15!

The vectoruH& has 12N' unknown components, viz.ai
(e,h) ,

bi
(e,h) for i 52, 3, and 4. The vectoruK & has 4N' known

elements,ak
(e,h) for k51 and 5, and 8N' elements which are

zero. The matrixŴ(E) has 12N' block matrices along the
diagonal with nonzero elements,

@Wa,b~E!#nm5dnmwab
~n!~E!, ~16!

where a,b51,2, . . . ,12 andn,m51, . . . ,N' . The matrix
ŵ(n)(E) has been obtained for thenth fixed transverse mode
in the absence of coupling (e r50) by matching the electron
and hole components of the wave functions at theN-S
boundaries using Eqs.~10! and ~11! and at the junctions
coupling the sample to the electron reservoirs using Eq.~8!
for fixed channel numbern and e r50. The matrixV̂ has
elements describing mixing between modes. The exp
forms of operatorsŴ, V̂ and vectorsuH&,uK & are straightfor-
wardly found by comparing Eqs.~8! and ~15!.

In order to use the resonant perturbation theory, we h
to consider some properties of the unperturbed system
evant to our problem. It is straightforward to see from E
~16! that the determinant of the matrixŴ(E) can be written
as a product ofN' factors,

Det Ŵ~E!5Det ŵ~1!~E!3¯3Det ŵ~N'!~E!, ~17!
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and that its value is zero at any eigenvalueE5En,l of the
unperturbed system. The eigenfunctionsuc l

(n)& of the unper-
turbed problem satisfy the following equation:

Ŵ~En,l !uc l
~n!&50 ~18!

Developing the perturbation theory, we assume the follow
inequality to be satisfied:

lF!d!L, ~19!

wherelF is the de Broglie wavelength~Fermi wavelength!
of the electron, whiled andL are the width and length of th
sample. We note that the perturbation of the energy has t
much smaller than the distance between neighboring en
levels corresponding to quantization of the longitudinal m
tion of electrons; that is,

e r\vF /L!\vF /L. ~20!

Here we develop the perturbation theory for a general cas
order to use the results in Sec. IV as well. Therefore, in or
to find the correct zero-order wave function, the vectoruH&
must be taken as a superposition of theNR states inside the
resonant region~NR is possibly but not necessarily small
thanN'!

uH&5 (
n51

NR

gnuc l
~n!&1uH1&. ~21!

The summation in Eq.~21! goes over theNR transverse
modes inside the resonant region, which extends over
interval of ordere r\vF /L on either side of the Fermi energy
uH1& is a small addition}e r . The unknown coefficientsgn
should be found with the solvability condition of the equ
tion for uH1&, that is readily available from Eq.~15! in the
linear approximation ine r!1:

Ŵ~E!uH1&52 (
n51

NR

gn@Ŵ8~En,l !~E2En,l !2e rV̂#uc l
~n!&

1S e r

N'
D 1/2

uK &. ~22!

Here the superscript prime indicates derivation with resp
to energyE. When obtaining Eq.~22! we used inequality
~20! and expandedŴ(E) in a Taylor series aroundEn,l ~with
the restrictionuE2En,l u!\vF /L! in every term of the sum
and took into account Eq.~18!.

Multiplying both sides of Eq.~22! from the left by bra-
vectors^c l

(m)u @which can be determined from the equati
^c l

(m)uŴ(Em)50#, one readily obtains the solvability cond
tions for Eq.~22! that determine the coefficientsgn . In this
way we obtain the main equation which has to be solved
order to getgn ; these coefficients, according to Eqs.~7! and
~21!, determine the probability of the resonant transmiss
of an electron from one reservoir to the other via the sam

(
n51

NR

@ i ~E2En!Wn8dmn2e rVmn#gn5S e r

N'
D 1/2

Km . ~23!

Here we have used the short-hand notation
g

be
gy
-

in
r

an

ct

n

n
le

Wn852 i ^c~n!uŴ8~En!ugw~n!&, ~24!

Vmn5^c~m!uV̂uc~n!&, ~25!

Km5^c~m!uK &. ~26!

We have also dropped the subscriptl , as we have assumed
does not change under the perturbation considered. U
Eq. ~18! for e r50, it is straightforward to calculateWn8 and
show it to be real, i.e., the Hermitian and anti-Hermiti
parts of the coupling matrixV̂ provide a broadening and
shift of the energy levels of the sample, respectively. In o
analysis of Eq.~23!, we consider the matrix elementsVnm to
be of order unity.52 It is then easy to see that, far from th
resonance, where\vF /L@uE2Enu@e r\vF /L, the first term
on the right-hand side of Eq.~23! dominates, and one obtain

gn'S e r

N'
D 1/2 Kn

iWn8~E2En!
. ~27!

Knowing gn we may calculateuH&, which contains the coef-
ficientsa3 andb4 , from Eq.~21!. By using Eq.~7! the prob-
ability of transmission of an electron~hole! from one reser-
voir to the other is

ub5
~e,h!u2;e r

2. ~28!

In the range of resonant energies,uE2Enu<e r\vF /L, the
amplitudesgn;1/AN'e r are much larger and, therefore, th
transmission probability amplitudes

b5,m
~e,h!5 (

n51

NR

s12
mngn~e6 ikn

~e,h!l 3a3,n
~0!~e,h!1e6 ikn

~e,h!l 4b4,n
~0!~e,h!!,

~29!

obtained from Eqs.~7!, ~21!, and~4!, are independent ofe r .
Note thata3,n

(0)(e,h) andb4,n
(0)(e,h) are the known amplitudes o

the wave function of the electron~hole! in thenth transverse
mode in sample segments 3 and 4, when isolated from
reservoirs. Hencea3,n

(0)(e,h) and b4,n
(0)(e,h) are of order unity,

and it follows that the probability for an electron in themth
transverse mode of segment 1—the lead from the
reservoir—to be transmitted to any of theN' transverse
modes in segment 5—the lead to the right reservoir~see Fig.
4!—via the sample is

T
~e,h!

~m0!
5 (

m51

N'

ub5,m
~e,h!u2; (

m51

N'

(
n51

NR

us12
mnu2ugn

~m0!u2;
NR

N'

.

~30!

The last similarity relation follows since(k51
N' us12

mnu2;e r and
since, in the resonance region, according to Eq.~23!,
ugn

(m0)u;1/AN'e r @to see this, note that Eq.~27! is valid up
to the resonant region whereuE2Enu;e r\vF /L; the super-
script m0 indicates that the incoming electron in segmen
moves in mode numberm0#. Therefore in accordance with
the Landauer-Lambert formula~5!, the order-of-magnitude
conductance in the resonant region of a system withN' in-
coming electrons is
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G;
e2

h (
m051

N'

T
~e,h!

~m0!
;

e2

h
N' , ~31!

while off the resonanceG;e r
2NRe2/h @cf. Eq. ~28!#.

Since at zero temperature the energy of the incom
electrons coincides with the Fermi energy, resonant tra
mission occurs in the vicinity off5p(2l 11), l 50,61,
62, . . . , thewidth of the resonance being of ordere r!1. If
reflections from theN-S boundaries are only of the Andree
type, it follows thatNR in Eq. ~31! is equal toR' . In this
case the conductance oscillates withf, the amplitude of the
oscillations being proportional to the total number of t
transverse modesN' . In the above analysis, for the sake
simplicity, we assumed the number of transverse modes
side the sample and the leads to be equal, but it can easi
shown that if these numbers are different the conductanc
proportional to the smallest one.

As demonstrated in this section, for the many-chan
case, with a mixing of transverse modes at the junctions,
analytical approach permits us to estimate the conductanc
the region far from the resonance. It is also possible to fi
the width of the resonant peak and its height~i.e., the ampli-
tude of the conductance oscillations!, but it does not permit
us to find the fine structure of the resonant peak as i
determined by the set ofN'@1 algebraic equations of Eq
~23!. Here we instead consider the fine structure of the re
nant peak using the most simple model of a one-chan
sample weakly coupled to the reservoirs. In this case ca
lations of the conductance in the vicinity of the resonan
(df[uf2pu!1) give the result

G5
2e2

h

~4g!2

@~2g!21~df!2#2

3@~2g coskl31df sin kl3!21~df!2# ~32!

~k is the electron wave number,l 3 is the distance betwee
the junctions, andg5us12u2;e r!1!. It follows that there is
a dip in the middle of the resonant peak~which appears due
to an interference between the wave functions of the clo
wise and counterclockwise motions of the quasiparticle!.
Whendf50, the conductance is

G5
2e2

h
cos2 kl3 , ~33!

and hence it goes to zero for certain values of the w
numberk; the resonant peak is split into two peaks.

In the many-channel case every mode has its own lo
tudinal momentum, and the conductance, being a sum
the channels, is self-averaged with respect to moment
Such an averaging of the conductance in Eq.~32! followed
by a multiplication by the number of transverse modes giv
as a result, for the conductance,

G5N'

2e2

h
2g2

~2g!213~df!2

@~2g!21~df!2#2 . ~34!

This result tells us that there is a dip in the middle of t
resonant peak with a depth of1

9 of the height of the resonan
peak. Equation~34! is valid in the absence of transvers
mode mixing. Numerical calculations of the conductance
g
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the general case of the transverse mode mixing also s
such a dip in the middle of the resonant peak~see below!.

IV. INFLUENCE OF NORMAL QUASIPARTICLE
REFLECTION AT THE N-S BOUNDARIES

ON GIANT CONDUCTANCE OSCILLATIONS

In experiments a typicalN-S boundary is an interface o
two different conductors, resulting in two-channel reflecti
of electrons at theN-S boundary that is an incident electro
is reflected back remaining in the state of an electronl
excitation with probabilityur Nu2 ~the normal channel! and in
a state of a holelike excitation with probabilityur Au251
2ur Nu2 ~the Andreev channel!. In the general case of non
equivalent normal barriers at theN-S boundaries, the quan
tized energy levels of anS-N-S system are repelled from th
Fermi level, and the degeneracy is lifted. However, we kn
from experiments33 that a situation with a low probability for
non-Andreev~normal! reflection can be realized in practice
Therefore it is important to derive a criterion for how lo
this probability for normal reflection must be to preserve t
giant conductance oscillations. In this section we discuss
role of the normal reflections for the oscillations of the co
ductance in a ballisticS-N-S system with combined An-
dreev and normal reflections at theN-S boundaries.

A. Normal reflection from two identical barriers
at the N-S interfaces

For the symmetric case of identical barriers at the t
N-S boundaries, the normal reflection lifts this degeneracy
the Fermi energy, as can be deduced from Eq.~13!. We show
below, however, that the lifting of the degeneracy is
stricted in the sense that the amplitude of the giant cond
tance oscillations remainsproportional to N' .

We begin with a qualitative argument, and neglect a
first step the quantization of the transverse momentu
Hence we considerk'(n) to be a continuous variable
@k'(n)→k'#. Within this approximation the spectrum
El(k') and the wave functionsu l ,k'& of a quasiparticle are
characterized by one discrete quantum numberl associated
with the longitudinal quantization and by one continuo
variable, the transverse wave vectork' . As can be seen from
Eq. ~13!, energy levels are at the Fermi energy (E50) if two
conditions are satisfied, viz.

f5p~2s011! ~35!

and

w152kL52pq0 , ~36!

wherek ~we have dropped the subscriptn! now is a continu-
ous variable;s0 andq0 are integer numbers. It follows that i
the absence of transverse momentum quantization the s
metric barriers at theN-S boundaries do not completely re
move the degeneracy of the energy level at the Fermi ene
The extent of the degeneracy depends on the numbe
transverse wave vectors@cf. Eq. ~36!# for which Eq.~13! is
satisfied. This number is determined by the largest poss
value ofq0 , which will be estimated below.

From its definition one notes thatk5AkF
22k'

2 varies be-
tween zero andkF , and hence from Eq.~36! one concludes
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that 0<q0<kFL/p. This implies that the maximum value o
q0 , let us call itN0 , is of orderkFL@1. Therefore, when-
everf5p(2s011), there is a degenerate energy level at
Fermi level with degeneracy;N0 . The number of states
through which an electron can be resonantly transmi
from one reservoir to the other is even greater, however. T
is because the width of the energy levels broadened du
the coupling of the sample to the electron reservoirs isdE
;e r\vF /L and all the quantum states inside this range
energy resonantly transfer reservoir electrons through
sample. In order to determine the number of states wit
this energy range, we estimate the total width of the interv
in the k space around pointsk5pq0 /L, inside which wave
functions u l ,k'& of the system correspond to energy leve
inside this range of energy,El(k')<e r\vF /L. We do so by
expanding the cosines in Eq.~13! in a Taylor series in the
small deviationsdk and dE5e r\vF /L near one of the
points where the cosines are equal to unity@these points are
determined by Eqs.~35! and ~36!#. Employing the sum rule
ur Au21ur Nu251, one can show that the energy levels are
side the resonant rangeE<dE5e r\vF /L if dk<e r /ur NuL,
assumingur Nu@e r . Multiplication by the numberN0 of such
intervals gives the total range of the ‘‘resonant’’ momenta

Dk;
e r

ur Nu
kF , e r!ur Nu. ~37!

A similar analysis shows that ife r>ur Nu, all N' transverse
modes take part in the resonant transition; the oscillati
disappear ifur Au5@12ur Nu2#1/2!e r .

Now we go one step further and take the transverse qu
tization into account. In the limit 1/N'!e r!1 the quantized
values of momentumkn5@kF

22(np/d)2#1/2 are almost
evenly distributed between zero andkF . Hence it follows
that the probability for a transverse mode to be inside
resonant intervalDk is P5Dk/kF5e r /ur Nu. Therefore the
total number of transverse modes inside the resonant re
Dk is NR;N'P5N'e r /ur Nu. From here and from Eq.~31!
it follows that the maximum conductance~when electrons
are resonantly transmitted through the sample! is

Gmax}N'

2e2

h

e r

ur Nu
. ~38!

Analytical calculations presented in Appendix C@see Eq.
~C9!# show the conductance of a sample with symmetricN-S
boundaries~i.e., boundaries with equal probabilities of no
mal reflection! to be

G.N'

2e2

h

e r
2/2

A~11ur Au2 cosf1e r
2/2!22ur Nu4

. ~39!

As is evident from Eq.~39!, the maximum conductance oc
curs whenf5p(2l 11), which is when energy levels lin
up with the Fermi energy and, therefore, resonant transi
of electrons from one reservoir to the other via the sam
takes place. Using Eq.~39!, it is straightforward to see tha
the maximal conductance is

Gmax'N'

2e2

h

e r /2

Aur Nu21e r
2/4

. ~40!
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If ur Nu!e r we have the giant conductance oscillations p
dicted in Ref. 18. Ifur Nu@e r , the maximal conductance i
determined by Eq. ~38!. The minimal conductance—
occurring whenf52p l—when we are off resonance is

Gmin'N'

2e2

h

e r
2/4

Aur Au21e r
2/4

. ~41!

The ratio between the maximal and the minimal cond
tances is therefore

Gmin

Gmax
'

e r

2
Aur Nu21e r

2/4

ur Au21e r
2/4

. ~42!

Hence it follows that

Gmin

Gmax
'5

e r
2/4, ur Nu!e r

e r , ur Nu;ur Au

e r ur Nu
2ur Au

, e r!ur Au!ur Nu

1, ur Au!e r .

~43!

In a situation whenur Nu;ur Au the amplitude of the conduc
tance oscillations is greater by a factorN'e r@1 than in the
absence of the superconducting mirrors. Ifur Nu<e r the am-
plitude of the conductance oscillations is}N' .

In the above analysis we considered the case of equiva
boundary potentials, so that the probabilities of normal
flection are equal at the twoN-S interfaces. When these
probabilities are not equal, the energy levels never reach
Fermi energy, and resonant transmission occurs only if
asymmetry is not too large. Below we analyze the situat
of nonequivalentN-S boundaries.

B. Normal reflections from nonequivalentN-S boundaries

Matching of the wave functions of the electronlike an
holelike excitations at two nonequivalentN-S boundaries re-
sults in a spectral function of the form

Qn5cosw22ur N
~1!uur N

~2!ucosw11ur A
~1!uur A

~2!ucosf,
~44!

and the energy levels of the system are determined by s
tions to the equation

cos 2mEL/\2kn5ur N
~1!uur N

~2!ucos 2knL2ur A
~1!uur A

~2!ucosf.
~45!

Here r N
(1,2) and r A

(1,2) are the probability amplitudes for a
electron to be normally and Andreev reflected, respectiv
at the left~1! and right~2! boundaries:ur N

(1,2)u21ur A
(1,2)u2 51.

As follows from Eq.~44!, if r N
(1) and r N

(2) are different there
is an energy gap in the spectrum around the Fermi ene
since the maximal value of the right side of Eq.~44! is
smaller than unity, and hence there is no energy level at
Fermi energy for anyf. For a weak asymmetry between th
boundaries,dr N5ur N12r N2u!1, the maximal value of the
right-hand side of Eq.~44! differs from unity by an amount

dM5~dr N!2. ~46!
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Hence it follows that resonant transmission of electrons
curs only if dr N<e r . Analytical calculations carried out fo
the general case in Appendix C shows the conductance t

G'N'

2e2

h

e r
2/2

A~11ur A
~1!uur A

~2!ucosf1e r
2/2!22ur N

~1!u2ur N
~2!u2

.

~47!

It follows from Eq. ~47! that the maximal conductance i
with dr A5ur A

(1)2r A
(2)u,

Gmax'N'

2e2

h

e r
2/2

Adr A
21e r

2~12ur A
~1!uur A

~2!u!1e r
4/4

. ~48!

Therefore the giant oscillations are of the same kind as
scribed above ifdr A<e r , but the maximal value of the con
ductance decreases with increasingdr A ; when dr A@e r the
maximal value of the conductance is

Gmax.N'

2e2

h

e r
2

dr A
. ~49!

V. NUMERICAL CALCULATIONS

In the range of parameters wheree r and hence the cou
pling between sample and reservoirs is not small, the
proximations used above are not valid and the set of eq
tions ~7! must be solved exactly. In order to find the large
value ofe r for which the conductance oscillations are gia
and to find the dependence of the conductance on param
of the system, we have resorted to numerical methods.
have solved the problem for different coupling streng
@from 20% to 100% of the largest value ofe r for which the
scattering matrixŜ of Eq. ~3! is still unitary; see below#, for
a varying number of transverse modesN' ~from 5 to 40!,
and for different values of the phase differencef between
the two superconducting condensates~from 0 to 2p!.

To calculate the conductance of our system we use
Lambert formula. The transmission and reflection amplitu
are calculated by matching the waves. Our task is to find
probability amplitudes forb1 andb5 for quasiparticles going
into the reservoirs as functions of parameters of the sys
and of the amplitudesa1 anda5 of quasiparticles approach
ing the sample from the reservoirs. One parameter is
number of modesN'.1, which we relate to the width of the
normal conductors~assuming a two-dimensional system! as

W5~N'10.5!lF/2. ~50!

The matching of amplitudes at the left~1! and right~2! junc-
tions are performed using the scattering matrix of Appen
A:

S b1

b2

a3

D 5ŜlS a1

a2

b3

D , ~51!

S b5

û3
21b3

a4

D 5ŜrS a5

û3a3

b4

D . ~52!
-

be

e-
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First we eliminatea2 andb4 by expressing them in terms o
b2 anda4 ,

a25û2R̂l û2b25â lb2 ,
~53!

b45û4R̂r û4a45â ra4 .

In the next step we eliminatea4 andb2 , and to proceed we
first define

b̂ l5â l~12 ŝ22l â l !
21,

~54!

b̂ r5â r~12 ŝ33r â r !
21,

and then

ĝ1l5 ŝ31l1 ŝ32l b̂ l ŝ21l ,

ĝ2l5 ŝ33l1 ŝ32l b̂ l ŝ23l ,
~55!

ĝ1r5 ŝ21r1 ŝ23r b̂ r ŝ31r ,

ĝ2r5 ŝ22r1 ŝ23r b̂ r ŝ32r .

Using these quantities we can conveniently find the follo
ing expressions fora3 andb3 :

a35ĝ1la11ĝ2lb3 ,
~56!

b35~12û3ĝ2r û3ĝ2l !
21û3~ ĝ1ra51ĝ2r û3ĝ1la1!.

Finally we can calculate

b15~ ŝ11l1 ŝ12l b̂ l ŝ21l !a11~ ŝ13l1 ŝ12l b̂ l ŝ23l !b3 ,
~57!

b55~ ŝ11r1 ŝ13r b̂ r ŝ31r !a51~ ŝ12r1 ŝ13r b̂ r ŝ32r !û3a3 .

The studied system is symmetric in the sense that the
scattering matrices connecting the sample and the reser
are equal, and the probability of normal reflection is the sa
for both superconducting mirrors. These symmetries m
further simplifications possible.

According to the discussion in Sec. III~see Ref. 52!, the
scattering matrixŜ in Eq. ~3! can be taken to be a random
matrix. For our numerical calculations we determine it
described in Appendix A.

The scattering matrix describing coupling and mode m
ing at the junctions has been realized in two different wa
First by assigning random numbers to its elements. Her
critical valueec of the coupling strengthe r was found in the
sense that the scattering matrix was nonunitary fore r.ec .
We find it convenient to define a parameterẽ[e r /ec , which
can be varied between 0 and 1. The results from these
culations are shown in Figs. 6 and 7. Every point is an
erage of ten realizations of the random scattering matrix. T
spread in conductance was 4e2/h when normal reflection
was absent at theN-S interfaces, and 2e2/h when the normal
reflection probability was at its highest studied value. T
position of the peak was not seen to change for differ
realizations. The critical value of the coupling was in th
case determined by the highest eigenvalue. This gave
result that only some modes were strongly coupled in
limit of high ẽ.
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The second type of realization of the scattering ma
was done with Bu¨ttiker matrices53 describing a coupling
mode by mode between sample and reservoirs. In this
an additional unitary matrix was used, which only mixed t
modes; see Appendix A. Both matrices were parametrized
the coupling parameterẽ. The result of these calculations a
shown in Figs. 8–10. The only parameter to be change
order to obtain different realizations of the random scatter
matrix was an anglew i i , which only changed the position o
the resonant peak. For zero angle the shape of the pe
seen in Fig. 11. The number of open modes are in this r
ization equal to the size of the matrix as all eigenvalues h
an amplitude of unity.

FIG. 6. DifferencedG between maxima and minima in the co
ductance as a function of the parameterẽ, which characterizes the
junction scattering matrices~realized by first method mentioned i
text!. Results are plotted for varying probabilitiesR5ur Nu2 for nor-
mal reflection at the superconducting mirrors. The number of tra
verse modes areN'540. The results agree with the weak-couplin
limit calculated analytically; see Eq.~58!.

FIG. 7. DifferencedG between maxima and minima in the co
ductance as a function of the probabilityR5ur Nu2 for normal re-
flection at the superconducting mirrors~same data as in Fig. 6!. The
results agree with the weak-coupling limit calculated analytica
see Eq.~58!.
x

se

y

in
g

is
l-
e

The main result from the analytical calculations to
compared with the numerical results isGmax2Gmin . This is
in general approximately equal toGmax. From Eq.~38!, we
obtain

Gmax}N'

2e2

h

e r

ur Nu
, ~58!

which agrees with numerical results whene r,ur Nu.
The first realization of the random scattering matrix h

been found to describe the weak-coupling case, as the
served peaks were narrow even forẽ51. The second real-
ization with separate matrix mixing modes, gave the pos

s-

;

FIG. 8. DifferencedG between maxima and minima in condu
tance as a function of couplingẽ ~the scattering matrix is realized
by second method; see text!. The probability for normal reflection
ur Nu250. The results agree with the analytical results in the we
and intermediate ranges of coupling, where the resonant pea
proportional to the number of channels.

FIG. 9. DifferencedG between maxima and minima in condu
tance as a function of couplingẽ. The number of open transvers
modes areN'530. The results agree with Eq.~58! for weak cou-
pling. For strong coupling the giant effect vanishes in a tw
dimensional sample according to the discussion in Sec. I.
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bility to study weak and intermediate coupling and t
amplitude of oscillations were seen to diminish whenẽ was
increased; see Fig. 11.

VI. GIANT CONDUCTANCE OSCILLATIONS
FOR A DIFFUSIVE NORMAL-SAMPLE –FEYNMAN PATH-

INTEGRAL APPROACH

In this section we want to study the conductance osci
tions by considering the probability amplitude for transm

FIG. 10. DifferencedG between maxima and minima in con
ductance as a function of normal reflection probabilityur Nu2 ~same
data as in Fig. 9!. The number of open transverse modes isN'

530, and results for different strength of the coupling are sho
The results agree with analytical calculations. Theur Nu2 dependence
agrees with Eq.~58!.

FIG. 11. The resonance peaks at zero probability for nor
reflection at theN-S boundaries. The results are from numeric
calculations withN'530 and for different strength of couplingẽ
5@0.2,0.4,0.6,0.8,1.0#, where the most narrow peak is for weake
coupling ẽ50.2. Note that the amplitude of oscillation is muc
larger than the conductance quantum even forẽ51. This is because
quasiparticle waves may pass the junction in our realization of
scattering matrix even ifẽ51.
-
-

sion and reflection of electrons and holes between the re
voirs via an S-N-S system the diffusive transport regim
~see Fig. 1! as a sum of Feynman paths.54 As we will show
below, one does not actually need to do any complica
summations to find this probability amplitude, because
electron energies below the Thouless energyEc ~or, equiva-
lently, for temperatures below the Thouless temperatureTc
5Ec /kB! the hole exactly retraces the electron diffusive pa
after Andreev reflection. It follows that the phase gain of t
electron along any resonant path between theN-S bound-
aries~see Fig. 1! is compensated for by the hole phase ga
along the same path. Therefore, the phase gain is determ
only by the phases imposed on the quasiparticles by the
perconductors when a trajectory encounters theN-S bound-
aries. As a result the amplitude does not depend on eithe
form, the length of the diffusive path between the superc
ductors, or the configuration of impurities~which means
there is no need to perform any ensemble averaging of
conductance!. The dependence of the resonant probabi
amplitude on the phase difference between the supercond
ors and on the scattering amplitudes at the barriers is ea
found by calculating the number of reflections at theN-S
boundaries and the number of backscattering events at
barriers. The conductance is equal to the probability of tra
mission~the modulus squared of the probability amplitud!
multiplied by the number of different classical resonant pa
~more strictly, by the number of tubes of width;lF around
these paths54! starting out from a reservoir lead, a numb
that can be straightforwardly estimated. We emphasize a
that since the conductance associated with resonant trans
sion and reflection does not depend on the impurity confi
ration, there is no need to average it with respect to
impurity positions.

We start by deriving an equation that connects the Fe
man path integrals for electrons and holes. To do this
shall need the boundary conditions at anN-S boundary for
the relevant Green’s functions.

The probability amplitudeK (e,h)(r ,r 8;t2t8) for an elec-
tron ~hole! to propagate from pointr at time t to point r 8 at
time t8 is given by the time-dependent Green’s function s
isfying the following equation:

~7 i\]/]t1Ĥ !K ~e,h!~r ,r 8;t2t8!5d~r2r 8!d~ t2t8!a~e,h!,

a~e!51, a~h!50. ~59!

Here the plus~minus! sign is for electrons~holes!. The initial
condition is

K ~e,h!~r ,r 8;t2t8!50 for t2t8,0, ~60!

and Ĥ in Eq. ~59! is the Hamiltonian describing a metal i
the diffusive transport regime:

Ĥ52~\/2m!¹21Vimp~r !2eF . ~61!

The potentialVimp is

Vimp~r !5(
j

v~r2Rj !, ~62!

andv(r2Rj ) is the potential of an impurity at pointRj .
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In order to derive the boundary conditions, we obse
that the time Fourier transform ofK (e,h)(r ,r 8;t2t8) for the
case of electrons satisfies the equation

~Ĥ2E2 ih!KE
~e!~r ,r 8!5d~r2r 8!, ~63!

while for the hole case the equation is

~Ĥ1E1 ih!KE
~h!~r ,r 8!50 ~64!

~h is a small positive constant!. At the N-S boundaries the
Green’s functionsKE

(e,h)(r ,r 8) are connected with each othe
by the Andreev reflection condition for a fixed energy:

K2E
~h! ~r ~1,2!,r 8!5ei ~F1,21CE!KE

~e!~r ~1,2!,r 8!. ~65!

Here r (1,2) andF1,2 are the coordinate and phase of the g
function at the first~second! N-S boundary, respectively, an
eiCE5uDu/(E2 iAuDu22E2), whereuDu is the magnitude of
the gap. Now, an inverse Fourier transformation of Eq.~65!
results in the relation

K ~h!~r ~1,2!,r 8;t!5eif1,2E
20

`

dt8KE
~e!

3~r ~1,2!,r 8;t8!E
2`

`

dE eiCEei ~t82t!E/\,

~66!

wheret5t2t8. We are interested in the case when the ch
acteristic time of transmissiont22t1 is of the order of the
time, L2/D, it takes to diffuse the lengthL of the sample.
Since this time can be expressed in terms of the Thou
energy as\/Ec , the characteristic time differenceut2t8u in
the last integral of Eq.~66! is of the order ofL2/D5\/Ec .
Therefore,55 in the last integral of Eq.~66!, the main contri-
bution is from energies inside an energy interval of ord
Ec!uDu. In this interval CE'p/2, and hence the secon
integral in Eq. ~66! is a Dirac d function. Therefore, the
boundary condition for the time-dependent electron and h
Green’s functions at theN-S boundaries is

K ~h!~r ~1,2!,r 8;t!5ei ~f1,21p/2!K ~e!~r ~1,2!,r 8;t!. ~67!

According to the Feynman approach,54 a probability am-
plitude can be written as a path integral. Here we are in
ested in the following probability amplitude:

K~r1 ,t1 ;r2 ,t2!5E
~r1 ,t1!

~r2 ,t2!

eiS$r ~ t !%/\D$re~ t !%D$rh~ t !%.

~68!

This expression sums over all possible paths of an elec
which start from a pointr1 in the first reservoir at timet1 and
end at a pointr2 at time t2 in either the first or second
reservoir, and of all possible hole paths that appear du
Andreev reflections at theN-S boundaries. For any path th
classical action is

S5E
t1

t2
L dt1CA , ~69!
e

p

r-

ss

r
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to

where the phaseCA will be discussed below. The Lagrang
ianL for those sections of the path where the particle mo
as an electron is

L5mṙe
22V@re~ t !#. ~70!

For those sections of the path where the particle moves
hole, we have

L52mṙh
21V@rh~ t !#. ~71!

Herem is the electron mass, andre and rh are the electron
and hole coordinates, respectively. The potential isV5V0
1Vimp ; V0 describes the barriers between the sample and
leads to the reservoirs@Vimp is defined in Eq.~62!#. While
performing the integration in Eq.~68!, one has to use the
N-S boundary conditions for electron and hole trajector
given by Eq. ~67!. The boundary conditions results in a
additional termCA , which depends on the macroscop
phases of the superconductors:

CA5~p/21f1!Pe
~1!1~p/21f2!Pe

~2!1~p/22f1!Ph
~1!

1~p/22f2!Ph
~2! . ~72!

In this expressionP(e,h)
(1) andP(e,h)

(2) count how many electron
hole ~hole-electron! transformations have occurred at th
N-S boundaries for a certain trajectory.

Transport properties of a diffusive system are usually c
culated in the semiclassical approximation, which impl
~for instance! that the cross section for impurity scattering
larger thanlB

2. We adopt this point of view when we now
proceed to calculate the functional integral in Eq.~68!. This
means that the method of steepest descent is useful for
forming the integration in Eq.~68!, and hence classical tra
jectories that minimize the action Eq.~69! contributes to the
integral.54

As the transmission~or reflection! probability for an elec-
tron with energyE can be written in terms of the Green
function for the same energy, we Fourier transform the a
plitude K using the semiclassical approximation~see, e.g.,
Ref. 56!. As a result the probability amplitudeA(E) for
transmission~or reflection! is equal to

A~E!5(
$S%

R~S!expF E
~r1!

~r2!

pS~s!ds/\1CA~S!G , ~73!

where summation is with respect to classical trajectorieS
that start at pointr1 and end at pointr2 in reservoirs along
which an electron with energyE reaches reservoir 2~since
an electron or a hole! starting from reservoir 1, or is reflecte
back into reservoir 1~as an electron or a hole!; pS(s) is the
classical momentum as a function of the coordinates along
trajectoryS, being equal to the electron momentumpe and
hole momentumph at the electron and hole sections of th
trajectoryS, respectively.R(S) is a product of the probabil-
ity amplitudes of reflection and transition at the barriers b
tween the sample and the reservoirs that occur for the e
tron and hole along pathS. CA(S) is the phase gained alon
the pathS by Andreev reflections at theN-S boundaries.
When counting the number of trajectories, one has to t
into account the fact that the trajectories have to be con
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ered as tubes with a width of the order of the de Brog
wavelengthldB5h/pF ~see above!.

Now we can calculate the probability amplitudes for
electron at the Fermi level with energyE50 from one res-
ervoir to be reflected as a hole back to the same reser
and to be transmitted as an electron to the other reservoi
the diffusive normal metal part of the sample. It is crucial f
the calculation that atE50 under Andreev reflection th
hole and electron momenta are equal but their velocities h
equal magnitude but opposite signs. This means that the
sical trajectories of the electron and hole that end and sta
the same points at theN-S boundaries exactly repeat eac
other in both ballistic and diffusive samples~as the classica
trajectory is uniquely determined by the starting point a
the velocity of the particle!. Hence it follows that for any
classical trajectory with Andreev reflections, atE50 the to-
tal classical action* (r1)

(r2)
pS(s)ds/\ ~which is the sum of the

electron and hole actions! is equal to zero as the electron an
hole momenta are equal (pe5ph), and the integrations ar
along the same trajectory but in opposite directions. The
fore, the phase gain along such trajectories@see Eq.~73!#
does not depend on either their form, the length of the
fusion path, or the configuration of the impurities. For res
nant transmission the summation in Eq.~73! with respect to
the scattering amplitudes at the junctions is easily carried
in the case of low transparency of the barriers at the ju
tions.

The conductance of a hybrid sample containing both n
mal metal and superconductors, the normal conductanc
determined57 by the Landauer-Lambert formula~5!, which
for a symmetric system reduces to7

G5
2e2

h
~T01RA!. ~74!

The probabilitiesT0 andRA were defined above@cf. Eq.~5!#.
It is important to note that trajectories which connect the t
reservoirs necessarily have a different number of elec
and hole sections, while for trajectories which start and e
in the same reservoir these numbers are equal. This
crucial circumstance when one sums amplitudes in orde
obtain the total transmission amplitude, and implies t
there is no complete compensation of the electron and
phase gains along those trajectories which contribute to
transmission amplitude of quasiparticles. As a result,
structive interference suppresses the transmission amplit
and the main contribution to the conductance is from th
trajectories along which the electron is reflected back into
same reservoir as a hole. This is the channel to be discu
below. A classical path corresponding to this type of refl
tion is shown in Fig. 1.

After passing the beam splitter at junctionA ~that is, after
tunneling through the barrier of this junction! the classical
diffusive electron trajectory can first encounter either the
N-S boundary~clockwise motion! or the rightN-S boundary
~counterclockwise motion!. Adding the amplitudes of clock
wise and counterclockwise trajectories~they form a geomet-
ric series! and expanding the amplitudes indf5f2p!1,
one finds the total probability for an electron being reflec
back into the same reservoir as a hole to be
ir,
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RA5
g2df2

~g21df2!2 . ~75!

Hereg!1 is the probability to pass through the barrier at t
junction.

From Eq. ~75!, it follows that the electron-hole back
scattering amplitude is zero iff5p. This is due to the in-
terference between the clockwise and counterclockwise q
siparticle trajectories~in the sense discussed above!, and can
be explained as follows. The amplitude of the electron-h
backscattering can be represented as a sum of contribu
arising from trajectories with different numbers of Andre
reflections at the superconductors. The ratio between suc
sive terms in this geometric series is equal to the amplit
of one Andreev reflection at each of the twoN-S boundaries.
Therefore it depends on the phase difference between
superconductors, and becomes equal to 1 at resonance,
trajectories with very large number of Andreev reflectio
give the same contribution as the ones containing only
Andreev events. This is of course the reason why a re
nance in the electron-hole backscattering channel occurs
addition all terms in the series will be multiplied by a fact
eifs, wheres labels theN-S boundary from which the elec
tron first is Andreev reflected. In our notations51 for clock-
wise trajectories ands52 for counterclockwise trajectories
An important consequence of the existence of these mult
ers is that, on resonance, when (f12f25p), the ratio of
this extra exponents for clockwise and counterclockwise
jectories is equal to21, and the resonant contributions fro
clockwise and counterclockwise trajectories to the amplitu
for electron-hole backscattering cancel each other. A vis
manifestation of this cancellation effect is a splitting of t
resonant conductance peak nearf5p, so thatG(f5p)
50.58

If normal reflection is possible at theN-S boundaries ad-
ditional multipliers appear in the amplitudes for clockwi
and counterclockwise trajectories. These arer A

(s)eics
„r A

(s) is
the amplitude of Andreev reflection at thesth N-S boundary
(s51,2)….

In the case of nonequivalent barriers,r A
(1)Þr A

(2) , there is
no compensation of the clockwise and counterclockwise c
tributions as is the case whenr A

(1)5r A
(2)51. In fact, if r A

(1)

!r A
(2) , the splitting of the resonant peak disappears.
In the semiclassical approximation the total number

electrons that contribute to the resonant phase-sensitive
ductance is equal to the numberN' of semiclassical tubes o
diameterlF that cover the cross section of a lead betwe
the reservoir and the diffusive sample~assuming the lead ha
a smaller cross section than theN-S boundaries!. Hence,
from the Lambert formula~74! and Eq.~75!, it follows that
in the semiclassical approximation the phase-sensitive r
nant conductance for a diffusive sample is equal to

G5~2e2/h!N'

g2df2

~g21df2!2 . ~76!

Equation~76! implies that the resonant conductance pea
are split in such a way that the conductance goes to z
whenf is an odd multiple ofp ~see Fig. 12!. This splitting
appears due to the interference between the clockwise
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counterclockwise motion of the particles inside the norm
sample when electrons are reflected as holes back to
same reservoir~see above!.

The above calculations give a qualitative explanation
analytical and numerical results for the diffusive case p
sented in Refs. 13, 14, and 20–23 if the results are obta
for a low barrier transparency of the junctions between
sample and the reservoirs.

It should be noted that for the geometry considered
some of the papers cited above, where there is only
reservoir present, the conductance is determined only by
probability for an electron to be scattered back into the r
ervoir as a hole. Therefore, the conductance is determine
the same equation@Eq. ~76!#, and hence must also be equ
to zero atf equal to odd multiples ofp for the equivalent
N-S barrier case. The splitting must disappear for no
equivalent barriers at theN-S boundaries~see, e.g., Figs. 6
and 7 in Ref. 23; a decrease of the barrier transparency a
junction between the sample and the reservoir results in
conductance peaks being close to those shown in Fig. 1
this paper!.

We conclude this section by using the Feynman pa
integral approach to consider qualitatively the temperat
dependence of the oscillating part of the conductance for
diffusive case and for temperatures above the Thouless
peratureEc /kB . If the energy of an electron-hole excitatio
is not equal to zero, there is no exact compensation of
phases gained along the electron and hole portions of
paths connected by Andreev reflections. In this case
phase of the transmission amplitudeA depends on the
lengths of the electron-hole paths, which in their turn depe
on the starting points inside the lead between sample
reservoir. The conductance of the system is a sum of a
lute squares of amplitudes corresponding to trajectories w
different starting points in the lead for the classical paths.
the other hand, classical paths starting from points separ
by a distance greater thanlF , meet different random sets o
impurities.59 As a result their path lengths have random v
ues. Hence it follows that one can change the summa

FIG. 12. The resonant conductance peaks are split due to i
ference between clockwise and counterclockwise quasiparticle
tion along the trajectories that are associated with the formatio
Andreev levels@cf. Eq. ~76!#; hereg is 0.05 and 0.2.
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over starting points to a summation over path lengths, w
calculating the averaged conductance. For this purpose
assume a Gaussian length distribution of the diffusive pa
that start at oneN-S boundary and end up at the otherN-S
boundary~we choose the Gaussian form of the distributi
function as an example; simple considerations show
choosing a more general distribution function only results
additional factors of order unity!,

F~L!5
1

ApL0

expS 2
~L2L0!2

L0
2 D . ~77!

HereL0 is the average length of the paths (L05L2vF /D).
By averaging the conductance at a fixed energy over rand
path lengths described by the distribution function~77!, one
easily finds a cutoff factor of order exp(2@E/Ec#

2/4) appear-
ing in the interference terms of the conductance. Theref
destructive interference sets in atE@Ec ~this well-known
fact justifies the form of the distribution function assum
above!. The conductance oscillations caused by interfere
only occur for energies below or of the order ofEc . As a
result, at temperaturesT@Ec /kB , the amplitude of the con-
ductance oscillations decreases with the temperature
Ec /T, in agreement with Refs. 2, 8, and 9.

In order to find the temperature dependence of the g
conductance oscillations discussed here whenT
@GrEc /kB , and for low junction barrier transparencies, w
sum over the paths contributing to the resonance effect
certain energyE, average the conductance over the pa
lengths using the distribution function~77! and integrate
over energy taking the factor (2] f 0 /]E) properly into ac-
count~f 0 is the Fermi function!. As a result, we find that the
oscillating part of the conductance caused by the reson
effect is

dGres5N'

e2

h

e rEc

kBT
g~f!. ~78!

Here e r is the transparency of the barrier at the junctio
g(f) is a 2p-periodic temperature-independent functio
with an amplitude of order unity.

The physical reason for result~78! is that the position of
the resonant energy peak is tuned by the superconduc
phase differencef. With a change off it can be inside or
outside the energy interval of orderEc associated with the
conductance oscillations. As the width of the resonant p
is dE;e rEc , the main contribution to the conductance o
cillations comes from the energy intervalE;e rEc , and
hence the relative number of quasuparticles contributing
the oscillations ise rEc /kBT. This is why this factor appear
in Eq. ~78!.

VII. CONCLUSIONS

In this paper we have presented a more thorough dis
sion than in a previous short communication18 of giant con-
ductance oscillations in hybrid mesoscopic systems of
Andreev interferometer type, i.e.,S-N-S structures where
theN part is connected to normal electron reservoirs. In R
18 giant conductance oscillations were predicted for a ba
tic normal sample when transverse mode mixing was abs
The origin of this effect is a degeneracy~‘‘bunching’’ effect!
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of the Andreev energy levels at the Fermi energy. This
generacy of the Andreev spectrum arises due to an equ
of the longitudinal momenta of Fermi energy electrons a
holes undergoing Andreev reflection. Any process that v
lates this equality lifts the degeneracy and, therefore,
creases the amplitude of the conductance oscillations.

In this paper we considered the effect of giant cond
tance oscillations taking into account transverse mode m
ing at the junctions between the normal part of the sam
and the reservoirs. We also considered normal reflectio
addition to Andreev reflection at theN-S boundaries, and
scattering of electrons and holes by impurities inside the n
mal sample.

Normal reflection of quasiparticles atN-S boundaries de-
creases the probability of Andreev reflection, and as a c
sequence also decreases the amplitude of the conduc
oscillations. We have shown that the probability amplitu
for the oscillations is giant~that is proportional to the num
ber of transverse modesN'! until the amplitude of the nor-
mal reflection is smaller than or of the same order as
transparencyue r u of the barriers at the junctions.

We have also shown that giant oscillations survive in
diffusive sample at temperatures much lower than the Th
less temperature. This is because, after the electron-
transformation associated with an Andreev reflection,
electron and hole move along the same classical diffus
trajectory in opposite directions but with equal momenta.
a result the phase gain of the electron and hole along
diffusive path compensate for each other. The probab
amplitude for transmission through the sample does not
pend on the form or the length of the diffusive path, but on
on the phase difference between the superconductors~i.e.,
there is no destructive interference!. The number of all pos-
sible different semiclassical paths isS/lB

25N' , whereS is
the cross-section area, as each path has a width of the
of the de Broglie wavelengthlB . Therefore the amplitude o
the conductance oscillations in the diffusive case rema
giant and proportional to the number of transverse modesN'

as for ballistic samples. The above qualitative picture agr
with analytical calculations for the diffusive case in Refs. 1
14, 20, 23, and 22.

The presence of potential barriers at the junctions betw
the sample and the normal electron reservoirs is most cru
for the giant oscillations to exist. In the weak-coupling ca
(e r!1) we have shown analytically and numerically that t
amplitude of the conductance oscillations is independen
the barrier transparency and proportional to the numbe
transverse modesN' . When the transparency of the barrie
is increased, our numerical calculations show that the am
tude decreases. In the absence of barriers at the junction
amplitude becomes zero. The latter result agrees with
sum rule in Ref. 20, according to which the conductance
equal to the number of transverse modes—in the absenc
barriers—times the conductance quantum and does no
pend on the superconducting phase difference. This ca
qualitatively understood since an electron~hole! coming
from the reservoir after being first Andreev reflected at o
N-S boundary as a hole~electron! then at zero temperatur
returns to the reservoir by retracing the path of the incom
particle without reaching the secondN-S boundary.

Recently Nazarov and Stoof,8 and Volkov, Allsopp, and
-
ity
d
-

e-

-
x-
le
in

r-

n-
nce
e

e

a
u-
le
e
e
s
is
y
e-

der

s

es
,

n
ial
e

of
of

li-
the
e

is
of
e-
be

e

g

Lambert9 proposed a mechanism for conductance osci
tions in diffusive samples that is effective if the temperatu
is close to the Thouless temperature~thermal effect!. They
used the dependence of the diffusion coefficient on the q
siparticle energy, and found conductance oscillations w
the superconducting phase difference in the absence of
riers. The amplitude of the oscillations was found to reach
highest value at the Thouless energy. We propose that
effect can be qualitatively understood if one takes into
count the fact that under Andreev transformation at anN-S
boundary there is a finite angle between the trajectories
the incident and reflected particles, which is proportional
their excitation energy. Simple estimations show that n
the Thouless temperature the classical trajectories of
electron and hole can be separated by a distance of the o
of the de Broglie wavelength~that is, the width of the semi-
classical trajectories! before the particle leaves the norm
diffusive part of the sample for a reservoir. When this ha
pens the trajectories meet different sets of impurities, and
diffuse along very different paths inside the sample. T
permits the quasiparticles also to encounter the otherN-S
boundary, and undergo Andreev reflection there before le
ing the sample. Therefore, the conductance starts to dep
on the superconducting phase difference, and conducta
oscillations arise. When the temperature is higher than
Thouless temperature, the phase gains of the quasipart
along the semiclassical paths are not compensated for,
are much larger than unity; the destructive interference k
the thermal effect, in agreement with the results of the pap
cited above.

When the transparency of the barriers at the junctions
intermediate values, both the thermal effect and the reso
oscillation effect considered in this paper are in essence
multaneously, provided the temperature is near the Thou
temperature. The effects can be distinguished by decrea
the temperature, which results in a decrease of the ampli
of the conductance oscillations in the case of the ther
effect ~vanishing at zero temperature!, while the resonant
amplitude of the conductance increases and has its lar
value at zero temperature.
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APPENDIX A: ELEMENTS OF THE SCATTERING
MATRIX DESCRIBING COUPLING

We are to describe leads of finite width and the scatter
matrix should mix different modes. TheS matrix will then be
of size 3N'33N' and the unitary condition for the subma
trices of sizeN'3N' gives

ŝ11ŝ11
† 5122ŝ12ŝ12

† , ~A1!

ŝ22ŝ22
† 1 ŝ23ŝ23

† 51̂2 ŝ12ŝ12
† , ~A2!

ŝ22ŝ23
† 1 ŝ23ŝ22

† 52 ŝ12ŝ12
† , ~A3!
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ŝ11s12
† 1 ŝ12~ ŝ22

† 1 ŝ23
† !50, ~A4!

ŝ12ŝ11
† 1~ ŝ221 ŝ23!ŝ12

† 50. ~A5!

Hence we have five matrix equations for eight matrices~as
each matrix has an independent Hermitian and a
Hermitian part!, and there are three undetermined matric
We choose them to beŝ12 and the anti-Hermitian part ofŝ22.

As stated above, the anti-Hermitian part is not determin
by the unitary conditions for the matrixŜ. In the general case
it is of the same order of magnitude as the Hermitian part
they are connected with the Kramers-Kronig relation. The
fore, the matrix elementsŝ22}e r . An analogous analysis o
the rest of the equations shows the matrix elements ofŝ23
and ŝ11 to be of the same order of magnitude.

If ŝ12 and the anti-Hermitian partŝ22
(A) commute, and othe

matrices are expressed in terms ofŝ12 they may be simulta-
neously diagonalized. TheN' eigenvalues of matricesŝi j are
denotedl i j , where indices numbering the eigenvalues
suppressed. Directly from the unitary conditions, we obta

ul11u5A122ul12u2,

ul235A12ul12u22ul22u2,
~A6!

l11* l121l12* ~l221l23!50,

ul12u212ul22uul23ucos~f222f23!50,

which give the requirementf222f23P@p/2,3p/2#. Now
use a Hermitianŝ12, i.e., real eigenvalues,f125np. We set
f2350 in order to agree with the weak-coupling limit, whe
no phase gain is expected in passing the reservoir. Withl12

and l22
(A) as eigenvalues of known Hermitian matrices, w

obtain

ul11u5A122ul12u2,

l11
~A!5l22

~A! ,

l11
~H !52Aul11u22~l11

~A!!2,

l115l11
~H !1 il11

~A! , ~A7!

l22
~H !52

l11
~H !

2
1A~l11

~H !!2

4
1

ul12u2

2
,

l225l22
~H !1 il22

~A! ,

l235A12ul12u22ul22u2.

A symmetric random matrix with normally distributed el
ments will have real eigenvalues distributed according to
semicircle law. We have used values of mean 0 and varia
1 creating random matricesŝ12 and ŝ22

(A) ,

si j
~nm!5^fnuŝi j ufm&, ~A8!

whereufm& is a complete set of vectors

^fmu5 (
a51

N'

ha
~m!uca&, ~A9!
i-
.

d

s
-

e

e
ce

whereuca& are eigenvectors toŝi j . If the corresponding ei-
genvalues are calledla ,

si j
~nm!5 (

a51

N'

(
b51

N'

ha
~m!hb

~n!* ^cbuŝi j uca&5 (
a51

N'

ha
~m!ha

~n!* la .

~A10!

With elements in the matrixŝi j of order unity,

(
a51

N'

uha
~m!u251, ~A11!

we obtainha
(m)}1/AN'. Our random matrixŝ12 will be mul-

tiplied by Ae r /N' before eigenvalues are calculated. Th
by settingẽ5e r /ec51, and approaching the strong-couplin
limit, a maximum valueec is found, fulfilling the unitary
conditions. The strength of the coupling of the reservoirs
now parametrized byẽP@0,1#. The matrixŝ22 in the weak-
coupling limit for one channel is seen to be proportional
e r ,53 and therefore the random matrix givingl22

(A) is multi-
plied by e r /AN'. Then by using the eigenvectors of th
matrix ŝ12, we transform all the matricesŝi j back to the
initial representation in which they are not diagonal, a
their matrix elements are the probability amplitudes of sc
tering to the respective transverse modes.

To realize another type of scattering matrix to descr
the coupling to the reservoirs, we do as follows. The ess
tial features of the junction are coupling to electron res
voirs and mixing between modes; both features may be
rametrized by the strength of the couplingẽ. The coupling to
the reservoirs is described by Bu¨ttiker matrices.53 If this is
done mode by mode, there will be no mixing. An addition
unitary matrix is used to mix modes. This matrix has
diagonal elements equal to each other, and all off-diago
elements equal to each other, describing scattering into
same mode and mixing between modes, respectively.
keeping the elements equal, an isotropic situation is sim
lated where scattering into any mode is possible. The
mentsu of the N'3N' unitary matrix must fulfill

uuii u21~N'21!uui j u251,
~A12!

uii* ui j 1ui j* uii 1~N'22!uui j u250.

This givesuui j u2<1/(N'21), the phases ofui j and uii are
connected by

w i j 5w i i 2arccosS 2
~N'22!

2

uui j u
uuii u

D , ~A13!

we note that forN'.4, uui j u and uuii u are not allowed to
have the same value. We wish to consider largeN' and write
the elements

uuii u2512cẽ,
~A14!

uui j u25
cẽ

N'21

in order to agree with the limitẽ50 when mixing is ex-
pected to be absent since the waves in the decoupled sa
do not feel the reservoirs. The condition~unitary Û! gives
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c5
4~N'21!

N'
2 . ~A15!

The parameters are the couplingẽ, the number of modes
N' , and the anglew i i . We write the anglew i i P ẽ@0,2p# to
agree with the weak-coupling limit, where no phase gain
expected. By using different angles, we obtain an ensem
of matrices describing different samples.

The eigenvalues of the unitaryÛ all have amplitudes of
length unity. This means that all modes will be open
transmission.60 Opening of transmission channels has be
observed in experiments.24

To describe coupling the results by Bu¨ttiker53 are used in
diagonal matrices. All these matricesŝi j are multiplied byÛ.

APPENDIX B: NORMAL REFLECTION
AT THE N-S INTERFACE

Reflection of an electron at the interface of two norm
conductors due to the interface potential barrier, such as
Schottky barrier, or due to the mismatch between the Fe
velocities of the electrons of the conductors, of their effect
masses, and so on, can be characterized with a scatt
matrix

ŝ~0!5eixS r 0

2t0*
t0

r 0*
D , ur 0u21ut0u251. ~B1!

This matrix connects the constant factorsa1 and b1 of the
plane waves coming in and going out of the barrier inside
semiconductor, respectively, with thosea2 andb2 inside the
metal:

bi5 (
k51

2

sik
~0!ak , i 51,2. ~B2!

~Hence ut0u2 is the transparency of the barrier.! When the
metal is in a superconducting state the matrix of reflection
the semiconductor charge carriers at theN-S boundary~the
semiconductor is on the right and the superconductor is
the left of theN-S boundary! is

ĥ5eiCS r N

2r A*
r A

r N*
D , ~B3!

where

eiC52 i
Aut0u414ur 0u2 sin2 cE

e2 icE2ur 0u2e1 icE
, ~B4!

r N5
r 0eix2 sin cE

Aut0u414ur 0u2 sin2 cE

, ~B5!

r A5 i t 0
2 eif

Aut0u414ur 0u2 sin2 cE

, ~B6!

eicE5
uDu

E1 iAuDu22E2
. ~B7!

Here uDu andf are the modulus and the phase of the sup
conducting gap, respectively, andE is the electron energy
measured from the Fermi level. From Eqs.~B3!–~B7!, it is
straightforward to see thatur Au21ur Nu251.
s
le

r
n

l
he

i
e
ing

e

f

n

r-

APPENDIX C: ACTIVE CHANNELS

As for N'@1, the set of equations Eq.~23! cannot be
analytically solved, and the amplitudesgn cannot be explic-
itly found, and we estimate the numberNR of transverse
modes inside the resonant region (2e r\vF /L,e r\vF /L) and
use Eq.~31! to obtain the conductance to within a factor
the order of unity. We determineNR in the following way:

NR5E
2`

`

dE
e r

2

~EL/\vF!21e r
2 n~E!, ~C1!

wheren(E) is the state density function

n~E!5(
l

(
n51

N'

d~E2En,l !5 (
n51

N' U]Qn

]E Ud~Qn!. ~C2!

Here the spectrum functionQn is determined by Eq.~44!.
To find the state density functionn(E) we use the method

developed in Ref. 61. As]w2 /]E56(\v)21L, with v
5\AkF

22k'(n)2/m, the factor]Qn /]E in Eq. ~C2! is a
trigonometrical function of6w6 , like Qn , and it is produc-
tive to expandn into Fourier series inw6 and write it as
follows:

n~E!5 (
n50

N'

(
s52`

`

(
k52`

`

As,ke
i ~sw21kw1!, ~C3!

As,k5~2p!22E
0

2p

dw̄1E
0

2p

dw̄2U]Qn

]E Ud~Qn!e2 i ~sw̄21kw̄1!.

~C4!

In this paper we assume the lengthL and the widthd of the
sample to satisfy the inequality

d

L
@AlF

L
. ~C5!

Using this inequality@Eq. ~D1!#, and the estimation of Eq
~D5! in Appendix D, one sees that the main contribution
the state density function Eq.~C2! is of the terms

As,05
L

~2p!2\v E
0

2p

dw̄1E
0

2p

dw̄2usin w̄2u

3e2 isw̄2d~cos w̄22ur N1uur N2ucos w̄1

1ur A1uur A2ucosf!. ~C6!

Performing integration with respect tow̄2 in Eq. ~C6! and
over E in Eq. ~C1!, with application of Eqs.~C3! and ~C4!,
one obtains the conductance62

G5N'

e2

2p\
e r (

s52`

`

e22usuerE
0

2p

cossw1~w1!dw1

3w1~w1!

5arccos~ ur N1uur N2ucos~w1!

2ur A1uur A2ucosf! ~C7!

if 0<w2<p, and

w1~w1!52p2arccos~ ur N1uur N2ucos~w1!2ur A1uur A2ucosf!
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if p<w2<2p. Performing summation in Eq.~C7!, one ob-
tains

G5N'

e2

p\
e r

3E
0

2p e rdw1

12ur N1uur N2ucosw11ur A1uur A2ucosf1e r
2/2

,

~C8!

as ur N1,2u<1 integration in Eq.~C8! gives

G5N'

e2

p\

e r
2

A~11ur A1uur A2ucosf1e r
2/2!22ur N1u2ur N2u2)

.

~C9!

If the boundaries are symmetric, that isr N15r N2 , the con-
ductance is

G5N'

e2

p\

e r
2

A~11ur Au2 cosf1e r
2/2!22ur Nu4)

.

~C10!

APPENDIX D: FAST-OSCILLATING TERMS

In this appendix we evaluate a sum of fast oscillati
terms

S5
1

N'
(
n50

N'

eiL $kF
2

2@~h/d!n#2%1/2
~D1!
iz.

s,

n

ns

B

k,
that appears in the density state function@Eq. ~D2!# and the
transition probability@Eqs.~29! and~30!#. Using the Poisson
formula, one can write

S5 lim
d→0

1

N'
(

k52`

` E
0

N'

dx eilA12x2/a21 i2pkxe2pukud.

~D2!

Here

l5LkF , a5kFd/p. ~D3!

As l@1 one can use the saddle-point method to obtain

S5
1

N'

a

Al
Ape2 ip/4 (

k52`

` S l2

l21~2pak!2D 3/4

3eiAl21~2pak!2
. ~D4!

From Eq.~D4!, it follows that terms withk which are less or
of the order ofl/a contribute to the sum and, therefore,S is
less thanAl/N' . As N';kFd, we have the following esti-
mation of the sum of fast oscillating terms:

S<ALkF/~kFd!. ~D5!

Therefore the sum of fast oscillating terms can be neglec
if

d

L
@AlF

L
. ~D6!
.
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