PHYSICAL REVIEW B VOLUME 57, NUMBER 16 15 APRIL 1998-II

Dissipative electron transport through Andreev interferometers

H. A. Blom
Department of Applied Physics, Chalmers University of Technology anebGig University, SE-412 96 @&borg, Sweden

A. Kadigrobov
Department of Applied Physics, Chalmers University of Technology aneb@m University, SE-412 96 @borg, Sweden
and B. I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Science of Ukraine,
4 Lenin Avenue, 310164 Kharkov, Ukraine

A. M. Zagoskin
Physics and Astronomy Department, University of British Columbia, 6224 Agricultural Road, British Columbia, Canada V6T 171

R. I. Shekhter and M. Jonson
Department of Applied Physics, Chalmers University of Technology anebGy University, SE-412 96 ®borg, Sweden
(Received 25 June 1997; revised manuscript received 12 Novembey 1997

We consider the conductance of an Andreev interferometer, i.e., a hybrid structure where a dissipative
current flows through a mesoscopic normil) (sample in contact with two superconductirg) (‘mirrors.”
Giant conductance oscillations are predicted if the superconducting phase différencaried. Conductance
maxima appear whea is on odd multiple ofr due to a bunching at the Fermi energy of quasiparticle energy
levels formed by Andreev reflections at the S boundaries. For a ballistic normal sample the oscillation
amplitude is giant, and proportional to the number of open transverse modes. We estimate, using both ana-
lytical and numerical methods, how scattering and mode mixing—which tend to lift the level degeneracy at the
Fermi energy—effect the giant oscillations. These are shown to survive in a diffusive sample at temperatures
much smaller than the Thouless temperature, provided there are potential barriers between the sample and the
normal electron reservoirs. Our results are in good agreement with previous work on conductance oscillations
of diffusive samples, which we propose can be understood in terms of a Feynman path-integral description of
quasiparticle trajectorie§S0163-182@08)06815-5

[. INTRODUCTION percurrent or applying a magnetic field through a supercon-
ducting loop. The normal element is connected to two elec-
Recently, considerable attention has been devoted to méon reservoirs, as shown schematically in Fig. 1. The normal
soscopic superconductivity, i.e., to the transport properties dglectron transport may be in the ballistic regime or in the
mesoscopic Systems with mixed norm&])(and supercon- diffusive regime; both cases will be discussed. In addition
ducting (S) elements, where interesting quantum interfer-
ence effects have been discovered. Interesting physics ap-
pears in such systems because electrons undergo Andreev o o
reflections at theN-S boundaries, whereby the macroscopic s 7 S , 2
phase of a superconducting condensate is imposed on the - -~
guasiparticle wave functions in the normal regions. If trans-
port in the normally conducting part of the sample is phase
coherent, there is a possibility that interference between An-
dreev scattering at twéor more N-S interfaces makes the
conductance of the hybrid system sensitive to the phase dif-

ference¢ between the superconducting elements; in this case FIG. 1. Schematic picture of an Andreev 'nterf.erometer consist
. . ing of a normal () metal (diffusive transport regimein contact
one may describe the system as an Andreev interferometer. . . :
ith two superconducting elementS)( which are characterized by

Thls paper 1s goncerned with a theoretical qescnptlon Oft?/]e phasesp; and ¢, of their respective order parameters. The
hybrid mesoscopic systems of the Andreev Ir]terferommeﬁormal metals are in contact with two reservoRg and R, via

type. In particular we are interested in the normal conducie,qs The thick lines at the junctions between the leads and the
tance as a function of the phase difference between the CORgmal metal represent potential barriers, which act as beam split-
densates of two separate superconducting elements acting @8 partially reflecting quasiparticles impinging on the junctions
“mirrors” by reflecting the quasiparticles in the normally (cf. Fig. 2. If transport is phase coherent, quasiparticles at the
conducting element. By connecting the mirrors by a supergermi level(zero excitation energyare phase conjugated after An-
conducting element, a supercurrent may flow within the Sudreev reflection at the\-S interfaces, so that Andreev-reflected
perconductor creating a phase gradient. The phase differeneeles(dashed lingretrace the path of the incoming electrfisll
between the mirrors is then controlled by changing the sutine), and vice versa.
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we will make the important distinction between the caseghe same junction through which it entered, is reflected to-
when potential barriers gsharp geometrical features serve ward the second superconducting mirBy, where it is An-

as “beam splitters™ at the junctions between the leads angy eey reflected as an electron, and finally it paggétline)

the normal ele_ment, and when the passage'between Ie_ads ugh the junction to the second resenRjrnow carrying
sample is unhindered by quantum-mechanical scattering b?ﬁformation about the differenceb= ¢, — b, between the

tween distinct quasu;lassmal trajectories at these;unctlons.phases of the two superconducting mirrgtise difference
The rest of this introduction will be divided into two aopears because the phase picked up on Andreev reflection
parts: (i) a general introduction to the subject of Andreevd.rf)f in sian betw P Ipt h ? d a hole-elect
interferometry, andii) a qualitative discussion based on qua-¢"c'> [N SIgN DEIWEEN an electron-nole and a hoe-electron
&eflectlor). It follows™> that such trajectories contribute a

siparticle trajectories which makes it possible to understan ; ; ;
the main features of the conductance oscillations of varioufe™ 10 the conductance that oscillates with periad(gather

types of Andreev interferometers as a function of the supert’@nm) as function of¢. .
conducting phase difference. As we have indicated above, the influence of the super-

conducting phase difference on the conductance of an An-
dreev interferometer structure is an interference effect. The
A. Origin of conductance oscillations macroscopic phases of the superconducting condensates,
in Andreev interferometers or—using a different language—of the order parameter or of
In the early 1980s Spivak and Khmel'nitskii shovfed the gap function of th_e respe(_:tive superco_nducting mirror,
weak-localization corrections to the conductance of a diffu-2"€ imposed on the microscopic wave functions of the elec-
sive sample containing two superconducting mirrors to béronlike and holelike quasiparticles when they undergo An-
sensitive to the superconducting phase difference. The effe€f€eVv scattering at the-S boundaries. The dominating role
can be understood in terms of the usual interpretation off these scattering phases is due to the effect of compensa-
weak localization as due to coherent backscattering. The irfion of the phases gained along the electron and hole sections
terference of probability amplitudes for classical quasiparti-of the trajectories connecting the Andreev reflection. Return-
cle trajectories(or “Feynman paths) bouncing off both ing to Fig. 1, we note that it illustrates how an electtbole)
mirrors will depend on the phases of the respective conderwith energy infinitely close to but abougelow) the Fermi
sates. Considering a closed diffusive path touching bbt®  energy follows a trajectoryfull (dashedl line] toward an
interfaces—where electrons will be reflected as holes, andl-S interface. When it is Andreev reflected as a hole, con-
vice versa—the interference between quasiparticles movingervation of energy and momentum makes its energy infi-
in opposite directions, clockwise and counterclockwisenitely close to but belowabove the Fermi energy, and the
around the path, results in a phase differencedb2tween hole (electron retraces the pathdashed(full) line] of the
the interfering amplitudes, i.e., twice the phase differencéncoming electronhole). In this way the phase acquired by
between the two superconductors. This is because the phage electron is “eaten up” as the hole retraces the electron
picked up due to Andreev reflections off the two mirrors ispath in the opposite direction, and the net change of phase is
+ ¢, depending on whether the motion is clockwise or anti-due to the Andreev reflection only.
clockwise. It follows that the weak-localization correction to  The possibility of phase compensation exists only for qua-
the conductance of a normal sample with two superconductsiparticles whose energies are very close to the Fermi energy.
ing mirrors has a component that oscillates with a periodBecause energy and momentum are conserved in the An-
equal torr as the phase difference between the superconductireev scattering process, a quasiparticle with excitation en-
ors is varied. ergy E measured from the Fermi energy is reflected as a
In the beginning of the 1990s, a dependence on the phad®le in a direction that differs from the incoming path by an
difference ¢ was discovered not only for the conductanceangle of ordeiE/er . This implies that for finite quasiparticle
fluctuations but for the main conductance as well. Not onlyexcitation energies the phase compensation will not be com-
conductance fluctuations but the ensemble-averaged condyglete. Since the dominating role of the superconducting
tance itself can therefore be controlled by the phase differphase difference is lost when the uncompensated phase along
ence between two superconducting mirrorSHybrid N-S  the quasiparticle trajectory connecting the two superconduct-
systems(Andreev interferometeyswhich show such a be- ing mirrors is of order 2, it follows immediately that only
havior at very low temperatures have lead-sample junctionguasiparticles whose excitation energies are less than a criti-
which act as “beam splitters” in the sense that a quasipartical energyE. may contribute to the)-dependent part of the
cle approaching the junction along a quasi-classical trajeceonductance. For ballistic sampl&s.~7%vg/L, while E;
tory is only partially transmitted. Hence a beam-splitting ~%D/L? in the diffusive transport regime, where it is known
junction has the effect of partly reflecting a quasi-particleas the Thouless enerdy¢ is the Fermi velocity, and is
coming from oneN-S interface toward the secord-S in-  the diffusion constant
terface, as illustrated in Fig. 1. This has the important con- The restriction on quasiparticle excitation energies trans-
sequence that when a quasiparticle finally leaves the samplates into a temperature dependence, where the Thouless en-
to contribute to the current, there is a certain probability forergy sets the characteristic temperature scale. Nazarov and
it to have interacted wittboth superconducting mirrors. To Stouf and Volkov, Allsopp, and Lambettfor example, sug-
be specific, an electron entering the sample from one resegested a “thermal mechanism” that gives a large amplitude
voir, R; say (referring to Fig. }, may follow a trajectory of the 27-periodic conductance oscillations with at tem-
(full line) where first it is reflected as a hole by one mirror, peratures close to the Thouless temperature. Their result is
say Sy, then it returngdashed line in Fig. Jito bounce off  due to a dependence of the effective diffusion coefficient on
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the energy of the quasiparticles in a hybB8dN-S sample S S
and will be further discussed below. o %

In addition to dephasing effects due to finite excitation
energies phase coherence may be broken by inelastic scatter-
ing. The interference effects described can therefore only be
observed if the length of the normally conducting part of
the sample is, at most, of the order of the phase breaking
lengthL 4 or the normal metal coherence lendgth, which-
ever of them is smaller. In the ballistic transport regime
=hve/KeT, Wf11/|2Ie in the diffusive transport regime one has FIG. 2. A potential barrier at the junction between the normal
Lr=(AD/kgT)™". . .. metal and the lead to a reservoir splits the quasiparticle beam com-
A large _nslimber of experimental and theoreticalj g from one of the superconducting mirrotsf. arrows. This
investigation§~** followed the early work on the tunable makes it possible for quasiparticles having undergone Andreev re-
conductance of mesoscopic samples of the Andreev interfefrection at both mirrors to contribute to the current even if their
ometer type. For diffusive samples the amplitude of the conexcitation energy is zero and therefore reflected lielectron ex-
ductance oscillations has been found to be large in the senggations retrace the paths of the electitiole) excitations. It fol-
that it is comparable to the conductance in the absence d$ws that the conductance may dependdond, even at zero tem-
superconducting elements. The conductance maxima usualperature(see texk
appear at even multiples of. As discussed by Kadigrobov

et al,*® the situation is quite different for ballistic Andreev count. Scattering of charge carriers can be due(1p

interferometers, where the conductance oscillations may bﬁotential barriers or geometrical featur@mam splittersat

Equantal.e., tge :)scnla_tlonbamphtudfe may bedml:_ch Ia_rgerthe junctions between the mesoscopic sample and the leads
an the conductance In absence of Superconaucting mimorg, ype electron reservoir2) impurity scattering inside the

The system discussed in Ref. 18 is shown in Fig. 1; th : : :
i ! ' esoscopic region, an@) non-Andreev(norma) reflection
normal part of a hybrids-N-S system is weakly coupled to at theN-S interfaces.

two n(:rfrlnal eflectron reservorrs, tant(rj] hetr;]ce thetﬁ|35|pat|v|e Here we shall emphasize the crucial role played by beam
current flows Irom one reservoir to the other via the no.rmasplitters in distinguishing between different types of oscilla-
metal element. Two low-transparency barriers form the junc

i bet I d leddsing o th . q tion phenomena. Therefore we choose to separately discuss
lons between sample and ie dsing o the reservoiysan two different types of hybridS-N-S structures: those with
act as beam splitters in the sense outlined above.

T ant duct It ise b thand those without beam splitters. In particular we will show
€ giant conductance osciiiations arise because g,y that the presence of beam splitters is necessary for
structure considered in Ref. 18 permits resonant transmissi

% illati i i imi

; nductance oscillations witkp to appear in the limit of

of electrons and holes via the normal part of the sample__ . .. ; b bp
o . . “yanishing temperaturésee Fig. 2

Resonant transmission occurs when the spatial quantization

of the electron-hole motion in the mesoscopic normal ele-

ment leads to allowed energy levels coinciding with the 1. Andreev interferometers without beam splitters

Fermi energy(at zero temperature and small bias voltage the | the absence of beam splitters, quasiparticles are ballis-
energy of the e|eCtr0nS incident from the source reservoir |%Ca"y injected into the mesoscopic Samp'e a|ong quasic'as_
equal to the Fermi energylt follows from the semiclassical  sjcal trajectories without suffering any quantum-mechanical
Bohr-Sommerfeld quantization rufef. Eq. (14) below] that  scattering between trajectories at the junctions between
all the NJ_ CondUCting transverse modes in the norma“y Con'samp|e an(ﬂeads going to thpreservoirsl In this case the
ducting element have one quantized level at the Fermi enquasiparticles therefore freely pass the contact region with-
ergy if the phase differencg between the two superconduct- oyt undergoing reflection. It is not difficult to convince one-
ors is equal to an odd multiple of. This means that fo’b  self that in such a system there are no low-energy quasipar-
=m(2k+1), k=0,£1,=2... each transverse mode can tjcle trajectories connecting the reservar reservoirs and
resonantly transmit electrons, and henble transverse hoth superconductors. This is because a quasiparticle with a
modes contribute to the resonance simultaneously. As a reanishingly small excitation energy is perfectly backscat-
sult the amplitude of the conductance oscillations reaches thered at theN-S boundaries in the sense that the angle of
maximal valueGa=N, 2¢//h when ¢ is an odd multiple of  Andreev scattering is equal te. Therefore such a trajectory
7 (giant oscillations In Ref. 19, conductance oscillations cannot connect more than two bodissy, the reservoir and
with a change in the supercurrent flowing along teS  one of theN-S interface$. Of course, for excitations with
boundary (the boundary between a superconductor and ginite excitation energiek the backscattering is not perfect,
normal metallic leafiwas suggested, the amplitude of the and, in contrast to the case whEn-=0, the angle of reflec-
oscillations being much greater thafyh. tion differs from 7 by a valuea~E/er. An interference
effect involving the condensate phases of both mirrors is
now possible, since an electron Andreev reflected as a hole at
the N-S interface follows a different trajectory than the im-
pinging electron, and hence has a finite probability not to
In all experimental and theoretical studies of Andreev in-reach the injector region. In this case, as shown in Fig. 3, it
terferometers, three types of quasiparticle scattering mechéas possible that the trajectory will reach the second supercon-
nisms (in various combinationshave to be taken into ac- ductor before finally escaping to a reservoir. One may readily

B. Understanding conductance oscillations
in Andreev interferometers in terms of Feynman paths
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S anglea~E/eg, this can be converted to a criterion for the
o, excitation energy of the fornE=E_.. We recall that inter-
7 ference is destroyed for energies-E.. Hence we conclude

that there is a distinct group of quasiparticles with excitation
energy around the Thouless energ¥., for which there is

K an interference effect controlled by the superconducting
phase differenceb. As a result the temperature dependence
of the conductance oscillations is nonmonotonic. The ampli-
tude of the oscillations vanishes as the temperature goes to
zero, and has a maximum when the temperature is of the
order of the Thouless temperatufe=E./kg. At elevated

FIG. 3. At finite excitation energieE the path of an Andreev temperaturesT>T., the parameter controlling the decrease
reflected hole(electron in a ballistic system deviates by a finite in amplitude of the conductance oscillation€ig/kgT. This
anglea(E) from the path of the incoming electrahole). If E is  is simply the relative number of electrons with energy of
sufficiently large—but not otherwise—one quasiparticle trajectoryorderE.. These electrons are responsible for the interference
may therefore, as shown here, hit both superconductors. effect we are discussing, which is nothing but the “thermal

effect” of Refs. 8 and 9.

evaluate the role of the described Andreev reflection of ex- NOw we turn to structures with beam splitters; below we
citations with finite energies in the formation of phase-show that beam-splitting scattering between different trajec-
sensitive trajectories for both the ballistic and diffusive tories at the junctions between the mesoscopic sample and
cases. the reservoirs qualitatively changes the interference pattern.

In the ballistic case an injected electron which is Andreevin this case quasiparticles with low excitation energiés,
reflected as a hole will not directly return to the injector if <E, may contribute—in some cases resonantly—to the in-
the distanced._ to the superconducting mirror is large com- terference effects causing the conductance to oscillate as a
pared to the injector openirdy,. The precise criterion is that function the superconducting phase difference.
it will not return if aLy>dy, wherea~E/e¢ (see Fig. 3. If
one takes into account that the excitation energy as explaine
above is limited by theballistic) Thouless energyE, in
order for phase coherence to be maintained, one concludes Scattering due to potential barriers or geometrical features
that an interference effect involving both Andreev mirrors isat junctions between the mesoscopic region and the reser-
possible only if the injector opening is smaller than the elecwvoirs qualitatively change the nature of quasiparticle trajec-
tron deBroglie wavelength; this is because, sine€E) tories. In particular, a particle reflected from BRS bound-
<a(Ec=hvg/Ly), it follows thatal <dq if dg<Ag. (For  ary does not necessarily leave the sample for the reservoir
a degenerate electron gas the de Broglie wavelength is equdirectly. Instead, it may be reflected by the junction and re-
to the Fermi wavelength.The inevitable conclusion is that enter the mesoscopic region. There is a certain probability
an interference mechanism involving thermally excited quathat such reflections creates low-energy trajectories that con-
siparticles cannot play a role in realistic experiments usingiect the reservais) with both superconductors. An example
ballistic samples. Under these circumstances the effect af such a trajectory is shown in Fig. 1.
scattering by impurities inside the mesoscopic sample is de- The role of beam splitters in Andreev interferometers was
cisive for the desired interference phenomenon involvingdirst noticed by Nakano and Takayandgi. number of other
two superconducting mirrors to occur. In other words—ininterference phenomena also involving quasiparticles at the
the absence of beam splitters—we need to consider a mesbBermi energy(zero-temperature phenomerizas been dis-
scopic sample in the diffusive transport regime. cussed in the literature. For instance, Weesl3? showed

In the diffusive case interference between Andreev scatthat elastic scatterers generate multiple reflections altise
tering at two spatially separated superconducting mirrordoundary, resulting in an enhancement of the conductance
may occur if the mirror-reflected trajectory diverges from theabove its classical value. In ballistic structures resonant tun-
incident trajectory by more than a de Broglie wavelengthneling through Andreev energy levels coinciding with the
g, Which we take to be the width of any particular trajec- Fermi level was predicted in Refs. 18 and 22. For diffusive
tory. In this case we may say that, by Andreev reflection ofstructures containing beam splitters, a significant increase of
an excitation with a large enough energy, the reflected quathe Aharonov-Bohm oscillations of the conductance was
siparticle is sent into a different, classically distinguishableshown to exist in Refs. 13, 14, and 20-23. Beenakker,
trajectory. When the separation becomes greaterXahis ~ Melsen, and Brouwé?r showed that the angular distribution
trajectory interacts with a different set of impurities which of quasiparticles Andreev reflected by a disordered normal-
will take the reflected particle on a diffusive random walk metal—-superconductor junction has a narrow peak centered
along a completely different Feynman path. As the distribu-around the angle of incidence. The peak is higher than the
tion of trajectories is homogeneous in the diffusive limit, coherent backscattering peak in the normal state by a large
there is a finite probability for the trajectorfgvhich starts factor G/G, (G is the conductance of the junction, afg
from a reservoir to include points with Andreev reflections = 2e?/h). The authors identified the enhanced backscattering
from both superconductors. This implies that the criterion foras the origin of the increase of the oscillation amplitude pre-
the incident and reflected trajectories to be sufficiently sepadicted in Refs. 14 and 18. As a final example, we note that it
rated after a diffusing length dfy is aLp=M\g. Since the was shown in Ref. 20 that the beam splitter violates the

d2' Giant conductance oscillations in Andreev interferometers
containing beam splitters
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“sum rule” according to which the conductance in the ab-
sence of junction scattering is equal to the number of trans-
verse modes and does not depend on the superconductir§
phase difference.

All the mentioned interference phenomena involving qua-
siparticles at the Fermi levelE=0) have the same nature
for both ballistic and diffusive structures. This follows from
the complete phase conjugation of electron and hole excita
tions at the Fermi energy. At the Fermi energy even a R
random-walk-type diffusive electron trajectory caused by
impurity scattering is completely reversed by the Andreev- FIG. 4. Schematic picture of an Andreev interferometer of the
reflected hole, and there is a complete compensation of theame type as shown in Fig. 1. The fglashed arrows indicate
phase. In particular the giant oscillations of conductance wittelectrons €) [holes f)] moving in the ballistic segments 1-5 of
phase difference is insensitive to impurities, as there is a the sample. In the model calculation described in the text Andreev
finite scattering volume in which the phase gains along thénd/or normal scatter_ing may occur_at the two superconducting mir-
electron-hole trajectories are completely compensated. rors (S), and scattering bgtwegn different segments and channels

When the transparency associated with junction scattering"°de$ may occur at the junctions markédandB.
has intermediate values both the thermal effect and the reso-
nant oscillation effect contribute simultaneously provided the !l. MODEL FOR AN ANDREEV INTERFEROMETER

temperature is. close to the Thouless temp_erature. In experi- | ihis section we describe our model for an Andreev
ments measuring the conductance oscillations for Structurggie ferometer. As schematically shown in Fig. 4, this
with beam splitter§'0—1210:2572% e temperature was of the cqongists of a  superconductor-normasemiconductor
order of the Thoule_:ss temperature or higher, _an_d he_nce boghperconductorSQrN-S) sample coupled to two normal elec-
effect_s could contribute. The effects can be distinguished by, reservoirs between which a voltage bias is applied. Ap-
lowering the temperature below the Thouless temperature, Fealing to experimenf’§’;37‘4° we neglect scattering of
then the amplitude of the conductance oscillations decreasglectrons by impurities inside the sample for the time being,
in the case of the thermal effe(it goes to zero as the tem- and return to this point in Sec. VI. Nevertheless, the junc-
perature goes to zeravhile the resonant amplitude of the tions between th&-N-S sample and the normal leads to the
conductance increases and is maximal at zero temperaturelectron reservoirs are inevitably sources of scattering. So,
Experimental evidence is just beginning to app&ar® whereas we consider electron transport to be adiabatic inside
While the role of the thermal mechanism was investigatedhe sample—the current being carried M, channels
in detail in Refs. 8 and 9, for the giant conductance oscilla{modes—electrons can be scattered between different con-
tions the role of intensity of scattering for all types of scat-duction channels at these junctions. Taking this into account
tering mentioned abovénormal[non-Andreey reflection at amounts to a first generalization of our earlier treatment of
the N-S boundaries, and junction and impurity scattefing this problem® In our model the coupling between the
remains without a quantitative description. The objective ofsample and the reservoirs is controlled by potential barriers
this paper is to fill this gap. (beam splitters; see abogveppearing at the junctions be-
The paper is organized as follows: in Sec. Il we describgween the leads from the reservoirs and the sample. We as-
how Andreev interferometers are modeled in this work; insume that in the case of low barrier transparency the approxi-
Sec. lll, we develop a resonant perturbation theory to findnation of a nearly isolated sample is adequate and that
the conductance in the case of ballistic transport inside thehannel mixing is absent; we shall then study what happens
sample and weak coupling of the sample to the reservoirs. Iwhen the coupling increases in Sec. Ill.
comparison with Ref. 18, here we allow scattering between Another fact ignored in our earlier workis the possible
different conduction channels at the two junctions betweerinormal” reflection of quasiparticles at thl-S boundaries,
sample and leads to reservoirs. In Sec. IV, in addition, wea mechanism that would compete with the Andreev reflec-
take into account the normal reflection that accompanies thé#on. Such normal reflection occurs if the composition of the
Andreev reflection of an electrofhole) at a real normal S-N-Sstructure is such that quasiparticles are reflected at the
conductor-superconductor interface, and obtain an explicinterfaces due to the potential barriers such as Schottky bar-
analytical expression for the conductance of the system asréers or barriers arising due to a mismatch between the Fermi
function of the number of transverse channels. For casegelocities of electrons in the different conductors making up
when it is inconvenient to obtain analytical results, such asghe structure(the effect of such a mismatch on the energy
when the coupling is not weak, we present some results gfpectrum of bound states and the Josephson curr@NnS
numerical calculations in Sec. V. Then, in Sec. VI, we relaxheterostructures was considered in Rej. £ven at an ideal
the condition of the sample being in the ballistic transportN-S boundary, “grazing” electrons moving nearly parallel
regime, and calculate the giant conductance oscillations for 0 theN-S boundarywithin a range of angles-(E/eg)] are
diffusive hybrid S-N-S structure using the Feynman path normally reflected with probability unitthey cannot be An-
integral approach for the transition probability amplitude. Indreev reflectet®?=*° It follows that properties oN-S het-
the conclusiongSec. VII), we discuss the range of param- erostructures are affected, leading to, in particular, an “ex-
eters for which the conductance oscillations can be giant itess resistance” effe¢a decrease of the total resistance of
real experiments. the sample after a transition of the superconducting part into

=
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the normal state’®** This effect is especially large for o o
semiconductor{or semimetal- superconductor heterostruc- Y — 3
tures, aser in the above estimation is the Fermi energy of — - .

the normal conductor. However, the contribution of the graz- clom o

ing electrons to the giant conductance oscillations can be (Om)‘ ’ i

neglected even for superconductor-semiconductor hetero- c <

structures. The fact is that only electrons with enerdies

<E, contribute to the oscillations. Hence the relative num-

ber of grazing electrons in this range of energy &kl 1

<E./e<1 (for the ballistic casegN=<+Ag/L<1). The . N - .

normal reflections of quasiparticles at the interfaces caused " 'C: 5 Detail of the junctionA andB in Fig. 4) coupling the
by interface potential barriers, by the mismatch betweerl€Servoirs via leads to the normal part of the system. A scattering

matrix connects the amplitudes of incoming and outgoing quasipar-

Fermi velocities, and so on, will here be described by a phe-
ticles; see the text.

nomenological parameter: the probability amplitude for nor-
i~ A7 . . . .
mal reflection: o _ nels in the adiabatic segmentahich, here and below, for
When normal reflection is possible the degeneracy of thene sake of simplicity, are considered to have the same num-
quasiparticle energy level&\ndreev levels which occurs at  per of open transverse channeldence the scattering matrix
the Fermi level is lifted. As a result the “giant” conductance -onnectsc™ and c®  which are N, -component vectors
oscillations as a function of the phase difference between t o e (o) h ; ; ;
P N&hose coefficienta®" and b describe the incoming

two superconductors are greatly reduced. Despite the exper)- : . ! noc :
mental fact that the probability for normal reflection is ?B? outgoing adiabatic wave functiofsee Fig. 5 and Eg.

small3*3"~4%the criteria for how small the normal reflection

probability must be for the giant oscillations to survive is 3

obviously an important question, which we consider in Sec. clow =" saﬁcgm_ 2)

IV. Below we formulate our transport problem for a general B=1

case which includes both the possibility for scattering be- . - L

tween conduction channels at the sample-lead junctions and We assume the cou_plmg matrito be symmetric with

normal reflections at thél-S interfaces. respect to the left and right S"’?”"p'e segmegiabeled 2and4

It is convenient to divide our model Andreev interferom- " F19- 4. Therefore the matrix can be written as

eter into five different segments, so that the electron trans- 2 A e
oS X - Si11 S12 S12

port to a good approximation is adiabatic in each segment. AT T

We then use a phenomenological method for describing the S=| %2 %2 %3, 3)

two manifestly nonadiabatic junction regiofrearkedA and S12. %23 S22

B in Fig. 4. The quasiparticle wave functions in the adia- where$,; areN, XN, matrices which mix the conduction

batic segments 1-5 shown in Fig. 4 can be found with thehannels when an electrgar hole is transferred from th@

help of the Bogoliubov—de Gennes equation. As channelp the o« segment. Electrons and holes are, however, not

mixing is absent in the adiabatic segments the electronlikgyixed. The elements o8m (nm=1,2,...N,) are the

and holelike components of the wave function in &  ropability amplitudes for an electrofr hole in the mth

transverse mode in segmenmtare channel of the3 section to be transferred to tm¢h channel
N, sink, (n)y of the « section. We assume that scattering of an incident
Uy (X,y) = E (a(ae)neikl(f)x_l_bgle)ne—ikge)x L , quas!partlcle at the junction causes transmission of thg elec-
n=1 ‘ ‘ \/hk@/m tron into each of theN, open transverse channels with a
D probability which is of the same order of magnitude for all
Ny ) . sink, (n)y channels. This implies that the matrix elements of the matri-
va(x,y)= > (ahe ™ X+b{" en ) T cesSyp, Sy, Sp3—1, andsy;— 1 are of order YN, .
n=1 fiky"/m We choose to parametrize tBamatrix in a way such that

there is no channel mixing if the sample is completely de-
coupled from the reservoirs. This coupling is determined by
the elements of the matris, which are the probability am-
plitudes for electrorthole) transitions from a lea¢segments

{1 or 9 to the samplésegments 2 and 3 or 3 andl 4n order

to describe the strength of the coupling, we introduce the
parametefe, and write

Herea!?) andb®), (a{), andb'")) are the probability ampli-
tudes for free motion of electroritoles forward and back-
ward, respectively, in channel and segmentax of the
samplek, (n)=n=/d, n=0,1,2 ... is thequantized trans-
verse wave vector assuming a hard wall confining potentia
d is the width of the sample;k{®M=[kZ—k?(n)
+2mE/#%?]Y2is the electror{hole) longitudinal momentum;
ke is the Fermi wave vectolE is the electron energy mea- € M2
sured from the Fermi energy; andandy are longitudinal élZ:(N_) Si2- 4
and transverse coordinates in the sample, respectively. Nona- L

diabatic scattering of electrons in the junction regi¢geee  The scattering matrix3) has to be unitary—a requirement
Fig. 4) is described by a unitary scattering mat8xconnect- that leads to five relations between the eight matr?s;,g,s
ing the wave functions in the surrounding sample segmentsee Eqs(Al1)—(A5) in Appendix A. (Note that each matrix
Scattering at these junctions mix the transverse méadlemn-  has independent Hermitian and anti-Hermitian ppkiée are
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i i i i h a ,h a h) 2o ,h
thus left with three u.ndeter.n_wlned matrices, which we ch_oose e — 588" — 5, N =5 ale"
to bes;, and the anti-Hermitian part &, (the last choice is

i i ; - 2 e )2 ,h
made only for the sake of calculational convenience; see Ap a(se )—sz3a(2e )_822b<3e )_Slza&e ),

pendix A. We assume the Hermitian and anti-Hermitian parts
of S,, to be of the same order in the parametgr since in
the general case they are connected by a Kramers-Kronig
relation. It follows from the unitarity conditions that the ma- . - -

. . (emtyleh) g e eh) g jehpleh) _a Aeh)
trix elements ofs;, are of order YN, . Hence the matrix Us™ ay SUz g SpUy by =S85

elements of,, are of order unity. . S (eh) o
The conductance of our model system is in the limit ofHere the diagonal matricad,,” " simply keep track of the

vanishing bias voltage determined by the Landauer formulghase gained by electrqns and hoIe; during their free motion
as modified by Lambert for a system with Andreev across segment. The diagonal matrix elements are

reflections®

®
U(39,h)’rb(3e,h) _ §22U ge,h)aée,h) _ §23U519'h)Tb51e'h) — ”Slzage,h) ,

- (e) _ie(
u@ny=e*nle, uM(n)=e*n'e, n=1,2,...N,,

2e? 2(RARA—TATR) (©)
G=" | Tot Tat ="t (§) . N
TaotTatRaAt R, wherel , is the length of sectiom in Fig. 4.

h
) ) , The set of equation$7) and (8) must be supplemented
Heree is the electron chargdy is Planck’s constant, and  \yith boundary conditions at thi-S interfaces. In the gen-

N, eral case when both Andreev and normal reflections at the
T.= 2 (A) N-S boundaries are possible, the boundary conditions are
A - Tk s
(&) _ ol Wi p(Dai2k @I (e) 4 (1) qi skl oy (M)
as =e'" 1 ry’e' " T2hy 41y el o2y
N, 2N [ N 2n A 2,n] (10)
— (A) . . (o)
Ra gl Py © a(ztlr::elqll[_r'(Al)*ewknlzb(zt‘?r:_,’_r;\ll)*eﬂan |2b(2r’1r3]
N, for the left (first) boundary] sk=k® —kM], and
To= (0) , N
o= 2, big)= el D+ ridaly],
: ’ : (11
2 b =e oL~ alf +rip*all)
Ro= 3, ol
k=1 for the right (second boundary, see Fig. 4. The probability

amplitudes for normal and Andreev reflections at theS
boundary are given bg'¥ry and e¥r,. It follows that

Ir @)%+ |r1?|2=128 For convenience explicit expressions
for these quantities in terms of the complex order parameter

) . of the superconductor and the reflection and transmission
is the probability for the same electron to be reflected as aBrobabiIity amplitudes of the normal barrier at theS in-
electron(hole) into any outgoing channel in the same left terface are given in Appendix B

f H (0 (0 (0 ’
lead it came from. S|m|IarIyT;§(_ Y () qndpk(_) (p™) Equations(7), (8), (10), and(11), together with the con-
are normal(Andreey probabilities for an incoming electron §,ctance formula5), form a complete set of equations that
from thekth transverse channel of the right lead to be trans'permits us to find the conductance of the system under con-
mitted as an electrohole) into any outgoing channel of the  gijeration. For the case of a sample isolated from the reser-
left lead, gnd to be reflected as an elect(bale) pack into oirs (e,=0), the set of equation8) together with the
any outgoing channel of the right lead, respectively. boundary condition§10) and (11) under an assumption of
_ In-order to proceed, we have to solve the matching equage refiection properties at the twe-S boundaries being
tions for the wave functions in sample and leads. The matchdentical, gives the proper wave functions and the spectral

ing problem under consideration is illustrated in Fig. 4, 1ction of the sample. The latter is as follows:
where solid and dashed arrows symbolically show electron

a}nd hole plane waves mgving to tf:}e right and left, respec- Qn=C0S¢_ —|ry|2 cos e, +]|r a2 cos ¢. (12)
tively. The coefficientsa®" and b{®" are N, -component

vectors, the components of which are the probability ampliHere ¢_=2mEU#%%k,, <P+=_2knL,Zand the parallel com-
tudesa®” andb(®" ; see Eq(1). Matching the wave func- ponent of the wave vector i, =[kg—k, (n)?]®¥?, where

an 1

In Eq. (6), ¥ [7{"] is the probability for an electron ap-
proaching the sample in theh transverse channel of the left
lead to be transmitted as an electrigole) into any of the
outgoing channels of the right lead. The quanﬂﬁ)/) [P(kA)]

tions at the junctions using E¢R), one obtains the following K. (n) is the projection of the wave vector on thé-S
set of equations for these amplitudes: boundariesn labels transverse modes, agdis the phase
difference between the order parameters in the two supercon-
bi®M =82 +5,a2" +8hEM ductors.
(@) For energies€ small compared to the energy gaps in the
bge,m — gllage,h) + “5120 ge.h)age,m + §120 E;e’h)bﬁf’h) superconductors, the equatiQy=0 determines the discrete

Andreev energy levels of the system. This relation can be
and rewritten as
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Eni=[ (2l +1)+arcco$|ra|? cos ¢—|ry|? cose, )] neously results in a broadening and a shift of the Andreev
) energy levels. The former effect is due to quasiparticle tun-

xh Ky 13 neling from the sample to the reservoirs after a finite time,
2mL’ and the latter to mixing of the transverse modes that inevita-

. bly accompanies a finite couplingifetime broadening for
where the longitudinal and transverse quant_um numbers ak Andreev-reflection processesNS point contacts was
1=0,£1+2,... andn=1,2,... N, respectively. analyzed in Refs. 50 and 5Below we show the broadening

In Sec. I we Q|scuss the nonadlabatlg scattering of elecy 4 the shift to be of the same order in the transparency of
trons at the junctions, and present analytical formulas for thene parrier connecting sample and reservoirs. The result is a
case of a weak coupling of the sample to the reservays ( proadening of the peaks of resonant sample conductance, but
<1), and numerical results of computer simulations in they,eir giant amplitude remains. This is because a Breit-
general case. The role of the non-Andreeorma) reflec-  \yigner type of resonance is broadened without loss of am-

tion at theN-S boundaries is discussed in Sec. IV. plitude when the coupling is increased. It turns out that the
broadening of each state tends to compensate for the shifting
ll. ROLE OF SCATTERING AND MODE MIXING around the energies of previously degenerate states. Readers
AT THE POINTS OF COUPLING TO THE RESERVOIRS who are not interested in technical details may want to turn

We start our analvsis by assuming a weak couplin begirectly to Eq.(31), which expresses this result. Results of
y y ng . PING B€4L merical calculations presented in Sec. V show this picture
tween sample an@leads t9 reservoirs. In this case the pa-

rametere, introduced in Eq(4) is much smaller than 1. It is to hold up to & value foe, which is about half its maximum
er q ' value. A further increase of the coupling results in a large

convenient to develop a qualitative understanding Startin%ecrease of the amplitude and an increase of the broadening
from the so-called Andreev levels that form in the isolatedOf the peaks

sample wher, is strictly zero. We consider values ¢fnear In the weak coupling case the set of equatiéfis (8),

odd multiples ofm for which Andreev levels will appear at (10), and(11) which determines the transmission probability

the Fermi energyf¢= ¢,— ¢, where ¢, and ¢, are the ; ; :
phases of the gap functions in the left and right SlJloercor]flmplltudes can be solved analytically by perturbation theory

. I In the small param . Below, thi rturbation theor
ductor; see Fig. ¥ We concentrate on energies in a narrow the small parametee, . Below, this perturbation theory

. . - .~ will be developed.
'”te.“’a' AE~ehve/L around the Fermi energy, within As shown in Appendix A, all the matrices which describe
which the quantum states of electrons perturbed by a co

. ) S i f el holes inside th A
pling of the sample to the reservoirs are expected to be four%cattgnng of electrons and holes inside the santpjeand

(hvg/L is the characteristic spacing of mode energy level$23~ 1 are proportlona}l toe, if the cogpllng Matrixsy, IS

near the Fermi energy proportpnal toJe, and ife, <1. I_—|enc§ it follows that the set
In the absence of normal reflection at tieS boundaries  ©f €guations7)—~(11) can be written in the form

(ry=0), Eq.(13) reduces t&

12
~ ~ EI’
[W<E>—em|H>=(—> IK). (15
m(21+1) = p=(VkE—k, (n)2+2mE/A2 r N,
ip(eh)
_ \/k'é—kl(n)z—ZmE/hz)L, T(k;e;)vectqd_H) has 1A, unknown components, via;:=" ,
bi®" for i=2, 3, and 4. The vectoK) has N, known
|=0+1+2 ... . (14)  elementsg{®" for k=1 and 5, and BI, elements which are

zero. The matriXW(E) has 1, block matrices along the

Herem is the electron mass,=1,+13+1, is the length of  diagonal with nonzero elements,
the normal part of the sample, and all reflections are assumed
to be of the Andreev type. The phagecomes with a plus or [W o 5(E) Tnm= SnnWig(E), (16)
a minus sign in Eq(14) depending on whether the electron- .
hole excitations move as electrons or holes when going fronfhére @,8=1,2,...,12 ancth,m=1,... N, . The matrix
the left to the rightN-S interface. w(M(E) has been obtained for teh fixed transverse mode

Expression(14) for the spectrum tells us that wheg in the absence of couplings(=0) by matchir_lg the electron
=m(2l' +1) there is one Andreev state at the Fermi leve/@nd hole components of the wave functions at HeS
for each transverse modidex n) simultaneously, i.e., the Poundaries using Eqg10) and (11) and at the junctions
energy of the state whose quantum numibassociated with  coupling the sample to the electron reservoirs using (Ep.
the longitudinal motion equall coincides with the Fermi for fixed channel numben and ¢,=0. The matrix{2 has
energy irrespective of mode numberTherefore, the degen- elements descr|b|pg ‘mixing between modes. The explicit
eracy of the energy level at the Fermi enery<0) is given  forms of operator$V, Q and vectorgH),|K) are straightfor-
by the number of open transverse modies, whenever¢p ~ wardly found by comparing Eqs8) and (15).
equals an odd multiple of. This results in a giant probabil- ~ In order to use the resonant perturbation theory, we have
ity for resonant transmission of electrons from one reservoif0 consider some properties of the unperturbed system rel-
to the other. The amplitude of the corresponding conducevant to our problem. It is straightforward to see from Eq.
tance oscillationsAGxN, e?/#,*® is therefore much larger (16) that the determinant of the matri&(E) can be written
than the conductance quantum. as a product oN, factors,

A finite coupling of the sample to the reservoiwshich is R
of course necessary for a current to be obseryahitaulta- Det W(E)=Det WY (E)x---xDet wWNI(E), (17)
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and that its value is zero at any eigenvaEle E,, of the W= —i(™|W'(E,)|gw™), (24)
unperturbed system. The eigenfunctiog$”) of the unper-
turbed problem satisfy the following equation:

Q= (™[ Q) (25)
A () —
W(En)|4")=0 (18) Ko (4 M]K), (26)
Developing the perturbation theory, we assume the following
inequality to be satisfied: We have also dropped the subsctipas we have assumed it
does not change under the perturbation considered. Using
Ap<d<L, (19  Eq. (18 for ¢ =0, it is straightforward to calculat&/, and

whereh is the de Broglie wavelengtfFermi wavelength show it to be real, i.e., the Hermitian and anti-Hermitian
" 9 9 9 parts of the coupling matriX2 provide a broadening and

of the electron, whilel andL are the width and length of the . ;
sample. We note that the perturbation of the energy has to bZerr:':l oSfi;hoef Enfzr%/ Li:a/eclts)nfig;? t?\?amn?;?i;e;gﬁgxgy. tlg our
much smaller than the distance between neighboring ener y q ] m

. < . Be of order unity? It is then easy to see that, far from the
levels corresponding to quantization of the longitudinal mo- )
tion of electrons: that is resonance, wherev g /L>|E—E,|> ¢ Aive /L, the first term
' ' on the right-hand side of E¢23) dominates, and one obtains

E,—ﬁUF/L<hUF/L. (20)

€ 1/2 Kn
) (27)

Here we develop the perturbation theory for a general case in 7’n%(N_L m
order to use the results in Sec. IV as well. Therefore, in order " "
to find the correct zero-order wave function, the vedidr  Knowing y, we may calculat¢gH), which contains the coef-
must be taken as a superposition of g states inside the ficientsa, andb,, from Eq.(21). By using Eq.(7) the prob-

resonant regioriNg is possibly but not necessarily smaller ability of transmission of an electrafole) from one reser-
thanN,) voir to the other is

Ngr

(e,h)yj2__ 2
)= 3, 7ol oi™)+ Ho). @2 b 9
In the range of resonant energi¢E,— E,|<¢ive/L, the
The summation in Eq(21) goes over theNg transverse amplitudesy,~1/yJ/N, € are much larger and, therefore, the
modes inside the resonant region, which extends over amansmission probability amplitudes
interval of ordere,Zive /L on either side of the Fermi energy;
|[H,) is a small additiore e, . The unknown coefficienty, Ng e e
should be found with the solvability condition of the equa- b= >, sT'y,(e*n " lsall) (@M 4 g=ikn "lap(O)en)
tion for [H,), that is readily available from Ed15) in the n=1

linear approximation ire,<<1: (29)
Nk obtained fr(%grge%qsﬂ), ((%)1()é ha;md(4), are independe.nt o, .
W(E)|H)=—3 Yn[W'(En,O(E—En,|)—€rﬂ]|lﬂ|(n)> Note thataj, ) andby ™" are the known amplitudes of
n=1 the wave function of the electrgole) in the nth transverse
12 mode in sample segments 3 and 4, when isolated from the
+(i) IK). (22)  reservoirs. Hencea(g?r?(e'h) and bfg(e’h) are of order unity,
N, and it follows that the probability for an electron in theh

dransverse mode of segment 1—the lead from the left
reservoir—to be transmitted to any of th¢, transverse
modes in segment 5—the lead to the right reserisee Fig.
4)—via the sample is

Here the superscript prime indicates derivation with respe
to energyE. When obtaining Eq(22) we used inequality
(20) and expandeW®V(E) in a Taylor series aroun,, | (with
the restriction E—E,||<#Avg/L) in every term of the sum,

and took into account Eq18). N, N, Ng N
Multiplying both sides of Eq(22) from the left by bra- T(Mo) — pleh2__ gmn2p, (M2 "R

vector§(¢fm)| [which can be determined from the equation (eh) mZ:1 1Bsim' mzzl nzl sl ™ Ny

(y{™|W(E)=0], one readily obtains the solvability condi- (30)

tions for Eq.(22) that determine the coefficients,. In this L . Ny fmn2
way we obtain the main equation which has to be solved inT_he last similarity relation follows S'nC‘Ek=1|512| ~ € and

order to gety, : these coefficients, according to EG& and ~ SiNce, in the resonance region, according to E2),

(21), determine the probability of the resonant transmissior] 7£m0)|~1/\/NL € [to see this, note that EqR7) is valid up

of an electron from one reservoir to the other via the sampléo the resonant region whefE—E, |~ €,4ve/L; the super-
script mg indicates that the incoming electron in segment 1

€ \1? moves in mode numbany]. Therefore in accordance with

“T) Km. (23 the Landauer-Lambert formulgp), the order-of-magnitude
conductance in the resonant region of a system Within-

Here we have used the short-hand notation coming electrons is

Nr
ngl [I(E- En)Wrgamn_ € Qmnlyn=
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g2 N 2 the general case of the transverse mode mixing also show
G~ I E TEZ%))~ T N, , (32 such a dip in the middle of the resonant péake below
me=1 '
while off the resonanc&~ €?Nge?/h [cf. Eq. (28)]. IV. INFLUENCE OF NORMAL QUASIPARTICLE
Since at zero temperature the energy of the incoming REFLECTION AT THE N-S BOUNDARIES

electrons coincides with the Fermi energy, resonant trans- ON GIANT CONDUCTANCE OSCILLATIONS
mission occurs in the vicinity ofp=m(21+1), I=0,£1 | ; ; ; ;

) _ ' o n experiments a typical-S boundary is an interface of
+2,..., thewidth of the resonance being of order<1. If P yp Y

two different conductors, resulting in two-channel reflection
of electrons at th&l-S boundary that is an incident electron
is reflected back remaining in the state of an electronlike
excitation with probabilityr|? (the normal channglnd in

reflections from theéN-S boundaries are only of the Andreev
type, it follows thatNg in Eq. (32) is equal toR, . In this
case the conductance oscillates withthe amplitude of the

oscillations being proportional to the tot_al number of thea state of a holelike excitation with probability ,|2=1
transverse modey, . In the above analysis, for the sake of —|ry|? (the Andreev channglIn the general case of non-

s!mplicity, we assumed the number of transverse mode_s, inéquivalent normal barriers at ti¢-S boundaries, the quan-
side the Sa”.‘p'e and the leads to b? equal, but it can easily tfl‘ied energy levels of aB-N-S system are repelled from the
shown that if these numbers are different the conductance ¥ermi level. and the degeneracy is lifted. However, we know
proportional to the smallest one. Lrom experiment$ that a situation with a low probability for

As demonstrated in this section, for the many-channe on-Andreev(norma) reflection can be realized in practice.

case, W'th a mixing of transverse mo_des at the junctions, OY% herefore it is important to derive a criterion for how low
analytical approach permits us to estimate the conductance (L

th on far f th Itis al ible 1o f flis probability for normal reflection must be to preserve the
€ region far from the resonance. 1t 1S alSo possibie 10 1iNGyiant conductance oscillations. In this section we discuss the
the width of the resonant peak and its heigld., the ampli-

S . . role of the normal reflections for the oscillations of the con-
tude of the conductance oscillationbut it does not permit 4\ - in a ballistiS-N-S system with combined An-

us to find the fine structure of the resonant peak as it ISireev and normal reflections at the S boundaries
determined by the set dfi, >1 algebraic equations of Eq. '

(23). Here we instead consider the fine structure of the reso-
nant peak using the most simple model of a one-channel
sample weakly coupled to the reservoirs. In this case calcu-
lations of the conductance in the vicinity of the resonance For the symmetric case of identical barriers at the two

A. Normal reflection from two identical barriers
at the N-S interfaces

(8p=|¢p— m|<1) give the result N-S boundaries, the normal reflection lifts this degeneracy at
the Fermi energy, as can be deduced from(Eg).. We show
G_2_62 (4y)? below, however, that the lifting of the degeneracy is re-
 h [(2y)%+(8¢)?]? stricted in the sense that the amplitude of the giant conduc-
) tance oscillations remain@oportionalto N, .
X[(2y cosklg+ &6 sinklg)®+(6¢)%]  (32) We begin with a qualitative argument, and neglect as a

first step the quantization of the transverse momentum.
the junctions, andy=|s,|2~ ¢, <1). It follows that there is Hence we considek, (n) to be a continuous variable

a dip in the middle of the resonant pe@atthich appears due [k.(n)—k_]. Within this_ approximation th_e spectrum
to an interference between the wave functions of the clockEi(K1) and the wave functionlk, ) of a quasiparticle are
wise and counterclockwise motions of the quasiparticles characterized by one discrete quantum nuribassociated

(k is the electron wave numbel; is the distance between

When 6¢4=0, the conductance is with the longitudinal quantization and by one continuous
variable, the transverse wave vedtor. As can be seen from
2e2 Eq. (13), energy levels are at the Fermi ener@~0) if two
G=—- cos ki3, (33  conditions are satisfied, viz.
and hence it goes to zero for certain values of the wave ¢=m(25+1) (35
numberk; the resonant peak is split into two peaks. and
In the many-channel case every mode has its own longi-
tudinal momentum, and the conductance, being a sum over ¢ =2kL=2mqq, (36)

the channels, is self-averaged with respect to momentum. . . .
Such an averaging of the conductance in %) followed wherek_(we have droppec_i the subscriptnow is a contlnu—_
by a multiplication by the number of transverse modes gives®!S variables, andqp are integer numbers. It fPHOWS that in
as a result. for the conductance the absence of transverse momentum quantization the sym-
’ ’ metric barriers at th&l-S boundaries do not completely re-
2e2 (29)%+3(5)? move the degeneracy of the energy level at the Fermi energy.
G=N, TZ)/Z W (34  The extent of the degeneracy depends on the number of
Y transverse wave vectofsf. Eq. (36)] for which Eq.(13) is
This result tells us that there is a dip in the middle of thesatisfied. This number is determined by the largest possible
resonant peak with a depth §of the height of the resonant Vvalue ofgg, which will be estimated below.
peak. Equation34) is valid in the absence of transverse  From its definition one notes thiit= \kZ2—k? varies be-

mode mixing. Numerical calculations of the conductance fortween zero and, and hence from E(36) one concludes
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that O<qo=<kgL/7r. This implies that the maximum value of If |ry|<e, we have the giant conductance oscillations pre-
o, let us call itNy, is of orderkgL>1. Therefore, when- dicted in Ref. 18. Iflry|>¢,, the maximal conductance is
ever¢=mw(2sy+ 1), there is a degenerate energy level at thedetermined by EQq.(38). The minimal conductance—
Fermi level with degeneracy-Ny. The number of states occurring wheng=2xwl—when we are off resonance is
through which an electron can be resonantly transmitted
from one reservoir to the other is even greater, however. This 2e? 6,2/4
is because the width of the energy levels broadened due to Gmin~N, h s 2
the coupling of the sample to the electron reservoirgks [ral*+er/a
~ehve/L and all the quantum states inside this range ofrhe ratio between the maximal and the minimal conduc-
energy resonantly transfer reservoir electrons through thgynces is therefore
sample. In order to determine the number of states within
this energy range, we estimate the total width of the intervals Gmn & [Irn2+€4
in the k space around points= gy /L, inside which wave .~ > N7z (42
functions|l,k, ) of the system correspond to energy levels max Iral*+ e

L
inside this range of energ¥ (k,)<eAivg /L. We do so by  Hence it follows that
expanding the cosines in E¢L3) in a Taylor series in the

(41)

small deviationsék and SE=¢ivg/L near one of the 53/4, [rul<e
points where the cosines are equal to ufithese points are
determined by Eqg35) and (36)]. Employing the sum rule G.. €ro [Tl ~Iral
[ral?+|rn|?=1, one can show that the energy levels are in- Gm'n ~{ €|yl (43
side the resonant rande< SE= e, ive /L if dk<e, /|ry|L, e BTN er<[ral<|ryl
assumingdry|> €, . Multiplication by the numbeN, of such 1 Ir Al <e

’ A r-

intervals gives the total range of the “resonant” momenta as

In a situation whenry|~|r 4| the amplitude of the conduc-
Ak~ ST ke, €<|ryl. (37)  tance oscillations is greater by a factdr ¢,>1 than in the
Irul absence of the superconducting mirrorsrif| <e, the am-
e Plitude of the conductance oscillationsasN, .

A similar analysis shows that é,=|ry|, all N, transvers ; , ,
In the above analysis we considered the case of equivalent

modes take part in the resonant transition; the oscillations .
disappear ifr | =[1— |ry|?]H2< e boundary potentials, so that the probabilities of normal re-
P

Now we go one step further and take the transverse quaI{I_ection. are equal at the twdl-S interfaces. When these
tization into account. In the limit N, <e,<1 the quantized Probabilities are not equal, the energy levels never reach the
values of momentumk,=[k2—(nm/d)2]Y2 are almost Fermi energy, and resonant transmission occurs only if the

n— LRF

evenly distributed between zero akd. Hence it follows a?%?rr;etl?il\,;enn?afgobfl;ggé:?:éow we analyze the situation
that the probability for a transverse mode to be inside thé q '

resonant intervallk is P=Ak/kg=¢,/|ry|. Therefore the _ _ _
total number of transverse modes inside the resonant regionB- Normal reflections from nonequivalentN-S boundaries

Ak is Ng~N, P=N, & /|ry|. From here and from E¢31) Matching of the wave functions of the electronlike and
it follows that the maximum conductandehen electrons  holelike excitations at two nonequivaletS boundaries re-
are resonantly transmitted through the samjde sults in a spectral function of the form
2 _ ), (2 1)|,(2
G, N, 2o € 39 Qn=cose_—|r{l|r|cos e +|r{l|rP|cos ¢,
h |yl (44)

Analytical calculations presented in Appendix [Eee Eg. and the energy levels of the system are determined by solu-
(C9] show the conductance of a sample with symmétH&  tions to the equation
boundariegi.e., boundaries with equal probabilities of nor-
mal reflection to be cos MEUAZk,=|r||r(?|cos &,L—|r||r'?|cos ¢.
(45)
2¢? €22
G

=N, =— ~ — . (39 Herer("® andr{? are the probability amplitudes for an
N J(1+]ral? cos ¢+ e7/2)?—[ry[* electron to be normally and Andreev reflected, respectively,

As is evident from Eq(39), the maximum conductance oc- 2t the left(1) and right(2) poquarieslg(Nl'z)|2+.|rg1*2)|2 =1

curs wheng= (2l + 1), which is when energy levels line AS follows from Eq.(44), if ri{’ andr{{ are different there

up with the Fermi energy and, therefore, resonant transitiof® @n €nergy gap in the spectrum around the Fermi energy
of electrons from one reservoir to the other via the sampléince the maximal value of the right side of E@4) is
takes place. Using Eq39), it is straightforward to see that smaller than unity, and hence there is no energy level at the

the maximal conductance is Fermi energy for anyp. For a weak asymmetry between the
boundaries,dry=|rn1—rn2/ <1, the maximal value of the
22 ) right-hand side of Eq(44) differs from unity by an amount
Gmax~N. h (40)

rnf2+eld SM=(5ry)>2. (46)
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Hence it follows that resonant transmission of electrons ocFirst we eliminatea, andb, by expressing them in terms of
curs only if ory<e¢,. Analytical calculations carried out for b, anda,,
the general case in Appendix C shows the conductance to be . A
a;=URjUzb,= by,

GoN 2e? 6r2/2 . (53
~N, — : by=U,4R,Usas=a,a,.
h V@+|rdl[riPcos ¢+ €122 = [r 2 r (|2 T T
(47) In the next step we eliminatg, andb,, and to proceed we
. . first define
It follows from Eq. (47) that the maximal conductance is,
; — (1) _(2) A A A A
with ora=|ry’—r¥’|, Bi=a(1—3,ma) 1, -
2e? €212 B (1_a a1
Gmax=N, e — r T —. (48) Br=a(l=Szgza;) 7,
\/5rA+6r(1_|rA |[ra]) + €14 and then
Therefore the giant oscillations are of the same kind as de- A a A na
scribed above iir y<e, , but the maximal value of the con- Y1 =S3utSaaBiSau
ductance decreases with increasifig, ; when ér 5> €, the . . oA
maximal value of the conductance is Y21=S3a 1 S32B1523 » (55)
2e? 6,2 Y1r=S21r + 523 BrSanr »
Gmac=N, — —. (49
h orp . . oA
Yor= S22+ S23 BrSzx -
V. NUMERICAL CALCULATIONS Using these quantities we can conveniently find the follow-
ing expressions foa; andbs:
In the range of parameters whegg and hence the cou-
pIing bet_ween sample and reservoir_s is not small, the ap- ag=yya;+ ¥z bs, "
proximations used above are not valid and the set of equa- (56)
tions (7) must be solved exactly. In order to find the largest b= (1—U3YU3v2)  t03(¥1ra5+ YorUzynay).
value of e, for which the conductance oscillations are giant,
and to find the dependence of the conductance on parametdr§1ally we can calculate
of the system, we have resorted to numerical methods. We . " - P
have solved the problem for different coupling strengths by=(S1y+S12B1S20) 81+ (S1a+$1281S29)bs, (57)
[from 20% to 100% of the largest value ef for which the . oA . o~
scattering matrixS of Eq. (3) is still unitary; see beloyy for 5= (S11r +S13 BrS31r) @5+ (S12r + S13 81 S32r) Uzdz.

a varying number of transverse modss (from 510 40,  The studied system is symmetric in the sense that the two
and for different values of the phase differenpebetween  goatering matrices connecting the sample and the reservoirs
the two superconducting condensatizem 0 to 2r). are equal, and the probability of normal reflection is the same

To calculate the conductance of our system we use thg, o superconducting mirrors. These symmetries make
Lambert formula. The transmission and reflection amplitudes,, ther simplifications possible.

are calculated by matching the waves. Our task is to find the According to the discussion in Sec. [ee Ref. 52 the
probability amplitudes fob, andbs for quasiparticles going  scattering matrixs in Eq. (3) can be taken to be a random
into the reservoirs as functions of parameters of the syStelarix. For our numerical calculations we determine it as
and of the amplitudea; andas of quasiparticles approach- yascribed in Appendix A.

ing the sample from the reservoirs. One parameter is the The geattering matrix describing coupling and mode mix-
number of modesl, >1, which we relate to the width of the g at the junctions has been realized in two different ways.
normal conductorgassuming a two-dimensional systee®  First py assigning random numbers to its elements. Here a
_ critical valuee. of the coupling strengtla, was found in the
W= (N, +0.9/2. (50 sense that the scattering matrix was nonunitaryefor e.. .

tions are performed using the scattering matrix of Appendix¢@n be varied between 0 and 1. The results from these cal-

A culations are shown in Figs. 6 and 7. Every point is an av-
erage of ten realizations of the random scattering matrix. The

b, a; spread in conductance was4h when normal reflection

by | = ‘SI a, |, (51 Was al_:»sent at tm-_S mterface_s, an_d &/h When the normal
as bs reflection probability was at its highest studied value. The

position of the peak was not seen to change for different

realizations. The critical value of the coupling was in this

N ~ . case determined by the highest eigenvalue. This gave as a

U3 ™bs | =S| Usas |. (52)  result that only some modes were strongly coupled in the
a4 by limit of high €.

bs as
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0.2 0.4 0.8 0.8 10 T0.2 0.4 06 0.8 1.0

d FIG. 6. lefefrencc_eﬁG l:;etr:/veen maxima r?‘nﬁ mrl]nlma |n_the cr?n- FIG. 8. DifferencesG between maxima and minima in conduc-

. uctgnce asa .unctlon 0 the parameetgn/v ich aracten;est € tance as a function of coupling (the scattering matrix is realized
junction scattering matnce(seahzz_ed by first m(_ethod mzentloned in by second method: see texThe probability for normal reflection
texp. Resu_lts are plotted for varying pro_bab|||t|Bs=|rN| for nor- [rn|?=0. The results agree with the analytical results in the weak
mal reﬂec(;lon a&thizgpirhconduclttmg m|rrors_£hTtr|11e numbker of tlr,ansénd intermediate ranges of coupling, where the resonant peak is
verse moces am, =4%. g results agree wi € weak-coupling proportional to the number of channels.

limit calculated analytically; see E@4598).

The second type of realization of the scattering matrix The main result from the analytical calculations to be
was done with Btiiker matrice$® describing a coupling compared with the numerical results @ ax—Gnin- This is
mode by mode between sample and reservoirs. In this case general approximately equal ®,,,. From Eq.(38), we
an additional unitary matrix was used, which only mixed theobtain
modes; see Appendix A. Both matrices were parametrized by
the coupling parameta. The result of these calculations are
shown in Figs. 8—10. The only parameter to be changed in
order to obtain different realizations of the random scattering
matrix was an angle;; , which only changed the position of Which agrees with numerical results when<|ry|.
the resonant peak. For zero angle the shape of the peak is The first realization of the random scattering matrix has
seen in Fig. 11. The number of open modes are in this reakeen found to describe the weak-coupling case, as the ob-

ization equal to the size of the matrix as all eigenvalues haveerved peaks were narrow even for 1. The second real-
an amplitude of unity. ization with separate matrix mixing modes, gave the possi-

2e? ¢
Gmax‘x NL T |

Tl (59)

15 ' 15.0

5.0

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0

FIG. 7. DifferencesG between maxima and minima in the con- FIG. 9. DifferencesG between maxima and minima in conduc-
ductance as a function of the probabili®=|ry|? for normal re-  tance as a function of couplifi§ The number of open transverse
flection at the superconducting mirrdsame data as in Fig).6The modes areN, =30. The results agree with E¢8) for weak cou-

results agree with the weak-coupling limit calculated analytically;pling. For strong coupling the giant effect vanishes in a two-
see Eq.(59). dimensional sample according to the discussion in Sec. I.
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FIG. 10. DifferenceéG between maxima and minima in con-
ductance as a function of normal reflection probability|? (same
data as in Fig. ® The number of open transverse modes\is
=30, and results for different strength of the coupling are shown
The results agree with analytical calculations. Jihg? dependence
agrees with Eq(58).

bility to study weak and intermediate coupling and the
amplitude of oscillations were seen to diminish whewas
increased; see Fig. 11.

VI. GIANT CONDUCTANCE OSCILLATIONS
FOR A DIFFUSIVE NORMAL-SAMPLE —FEYNMAN PATH-
INTEGRAL APPROACH

In this section we want to study the conductance oscilla
tions by considering the probability amplitude for transmis-

30.0 T T T
~~
< 200 | .
o
]
[9\]
i
&)
100 | )
0.0 1 1 1
0.0 05 1.0 15 2.0
o/

FIG. 11. The resonance peaks at zero probability for normal

reflection at theN-S boundaries. The results are from numerical
calculations withN, =30 and for different strength of coupling
=[0.2,0.4,0.6,0.8,1)0 where the most narrow peak is for weakest
coupling'€=0.2. Note that the amplitude of oscillation is much
larger than the conductance quantum evereferl. This is because
quasiparticle waves may pass the junction in our realization of th
scattering matrix even €=1.

57

sion and reflection of electrons and holes between the reser-
voirs via anS-N-S system the diffusive transport regime
(see Fig. 1 as a sum of Feynman patffsAs we will show
below, one does not actually need to do any complicated
summations to find this probability amplitude, because for
electron energies below the Thouless endEgyor, equiva-
lently, for temperatures below the Thouless temperalyre
=E_./kg) the hole exactly retraces the electron diffusive path
after Andreev reflection. It follows that the phase gain of the
electron along any resonant path between Kh& bound-
aries(see Fig. 1is compensated for by the hole phase gain
along the same path. Therefore, the phase gain is determined
only by the phases imposed on the quasiparticles by the su-
perconductors when a trajectory encountersNR& bound-
aries. As a result the amplitude does not depend on either the
form, the length of the diffusive path between the supercon-
ductors, or the configuration of impuritiegvhich means
there is no need to perform any ensemble averaging of the
conductance The dependence of the resonant probability
amplitude on the phase difference between the superconduct-
ors and on the scattering amplitudes at the barriers is easily
found by calculating the number of reflections at tdeS
boundaries and the number of backscattering events at the
barriers. The conductance is equal to the probability of trans-
mission (the modulus squared of the probability amplitude
multiplied by the number of different classical resonant paths
(more strictly, by the number of tubes of width\ ¢ around
these path¥) starting out from a reservoir lead, a number
that can be straightforwardly estimated. We emphasize again
that since the conductance associated with resonant transmis-
sion and reflection does not depend on the impurity configu-
ration, there is no need to average it with respect to the
impurity positions.
" We start by deriving an equation that connects the Feyn-
man path integrals for electrons and holes. To do this we
shall need the boundary conditions at ldnS boundary for
the relevant Green'’s functions.

The probability amplitude< &M (r,r’;t—t') for an elec-
tron (hole) to propagate from point at timet to pointr’ at
timet’ is given by the time-dependent Green’s function sat-
isfying the following equation:

(Fitalt+HKED(r rt—t')=8(r—r')8(t—t")a'®M,

(h) =

a'®=1, 0. (59)

a

Here the plugminus sign is for electrongholes. The initial
condition is
KEM(rr;t—t")=0

for t—t'<0, (60)

andH in Eqg. (59) is the Hamiltonian describing a metal in
the diffusive transport regime:

H=— (#/2M)V2+ V(1) — e . (61)
The potentiaVn, is
vimp<r>=$ v(r—=Ry), (62)

e
andv(r—R;) is the potential of an impurity at poirR; .
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In order to derive the boundary conditions, we observevhere the phas® , will be discussed below. The Lagrang-
that the time Fourier transform &M (r,r’:t—t’) for the  ian £ for those sections of the path where the particle moves

case of electrons satisfies the equation as an electron is
(H—E—inK@(r,r")=a(r—r"), (63) L=mi5=V[r(1)]. (70
while for the hole case the equation is For those sections of the path where the particle moves as a

A hole, we have
(H+E+ipKI(r,r)=0 (64) ”
L=—mri+V[ry(t)]. (72
(7 is a small positive constantAt the N-S boundaries the _
Green'’s function& &"(r,r') are connected with each other Herem is the electron mass, and andr, are the electron

by the Andreev reflection condition for a fixed energy: and hole coordinates, respectively. The potentiaV/isV,
+Vimp: Vo describes the barriers between the sample and the

KOL(r(12 ry =gl (P12t VOK ©) (112 1), (65  leads to the reservoifs/in, is defined in Eq(62)]. While

performing the integration in Eq68), one has to use the
Herer? and®, , are the coordinate and phase of the gapN-S boundary conditions for electron and hole trajectories
function at the firs{second N-S boundary, respectively, and given by Eq.(67). The boundary conditions results in an
e Ve=|A|/(E—i|A[?—E?), where|A| is the magnitude of additional termW¥,, which depends on the macroscopic
the gap. Now, an inverse Fourier transformation of &%)  phases of the superconductors:
results in the relation

W= (7/2+ 1) PP + (7124 ) PP + (12— py) PV

K(h)(r(l'z),r’;T)=ei¢l:2f OdT'K<§> +(ml2— $y) PR (72
. In this expressiom (%)) andP{) count how many electron-
x(r(l'z),r’;r’)f dE &Vegi(m ~nE/M hole (hole-electroh transformations have occurred at the
- N-S boundaries for a certain trajectory.
(66) Transport properties of a diffusive system are usually cal-

, _ . culated in the semiclassical approximation, which implies
wherer=t—t'. We are interested in the case when the char{for instance that the cross section for impurity scattering is
acteristic time of transmissioty—t, is of the order of the larger than)\é. We adopt this point of view when we now
time, L?/D, it takes to diffuse the length of the sample. proceed to calculate the functional integral in E8@). This
Since this time can be expressed in terms of the Thoulesgieans that the method of steepest descent is useful for per-
energy asi/E., the characteristic time d|ffere2n¢e— 7'[in " forming the integration in Eq68), and hence classical tra-
the last integral of Eq(66) is of the order oL/D=#/E. jectories that minimize the action E9) contributes to the
Therefore}® in the last integral of Eq(66), the main contri- integral®
bution is from energies inside an energy interval of order As the transmissiofor reflection probability for an elec-
Ec<[A]. In this interval We~m/2, and hence the second tron with energyE can be written in terms of the Green’s
integral in Eq.(66) is a Dirac é function. Therefore, the function for the same energy, we Fourier transform the am-
boundary condition for the time-dependent electron and holgjitude K using the semiclassical approximati¢see, e.g.,
Green’s functions at thdl-S boundaries is Ref. 56. As a result the probability amplitud&(E) for

K12 170y a2 @112 -y (6) transmission(or reflection is equal to

(ra)
According to the Feynman approatha probability am- A(E)=> R(S)exp{f ps(s)ddi+WA(S) |, (73
plitude can be written as a path integral. Here we are inter- s (ra)

ested in the following probability amplitude: where summation is with respect to classical trajecto8es
) that start at point,; and end at point, in reservoirs along
K(ryityir.ty)= f( 2:12 eISUOYAD I (1)}D{ry(t)}. which an electron with energl reaches _reservqir &ince
(r,ty) an electron or a hoJestarting from reservoir 1, or is reflected
(68 back into reservoir 1as an electron or a holepg(s) is the
ﬁlassical momentum as a function of the coordirmtdong
) o . . . ajectory S, being equal to the electron momentyyg and
which start from a point, in the first reservoir at timg, and hole momentunpy, at the electron and hole sections of the

end at a pointr, at time t, in either the first or second trajectoryS, respectivelyR(S) is a product of the probabil-

fr?c?rr(\e/glr,r;‘?gctqgnagla?c;ﬁgl?lsebt;o'r? dZ?g]sS ;t:hoa:taanppegtrhdtl#z tﬁ?y amplitudes of reflection and transition at the barriers be-
v : u €S- yp tween the sample and the reservoirs that occur for the elec-

classical action is tron and hole along patB. ¥ ,(S) is the phase gained along
6 the pathS by Andreev reflections at thbl-S boundaries.
S=j L dt+W,, (69) When counting the number of trajectories, one has to take
ty into account the fact that the trajectories have to be consid-



10010 H. A. BLOM et al. 57

ered as tubes with a width of the order of the de Broglie Y2 6¢?
wavelengthk iz=h/pg (see above RA:W- (79

Now we can calculate the probability amplitudes for an
electron at the Fermi level with enerdy=0 from one res-  Herey<1 is the probability to pass through the barrier at the
ervoir to be reflected as a hole back to the same reservoifunction.
and to be transmitted as an electron to the other reservoir via From Eq. (75), it follows that the electron-hole back-
the diffusive normal metal part of the sample. It is crucial for scattering amplitude is zero = . This is due to the in-

the calculation that aE=0 under Andreev reflection the terference between the clockwise and counterclockwise qua-
hole and electron momenta are equal but their velocities haVﬁparticle trajectorie¢in the sense discussed abpvand can
equal magnitude but opposite signs. This means that the clage explained as follows. The amplitude of the electron-hole
sical trajectories of the electron and hole that end and start %Ckscattering can be represented as a sum Of Contributions
the same points at thi-S boundaries exactly repeat each arising from trajectories with different numbers of Andreev
other in both ballistic and diffusive sampléss the classical reflections at the superconductors. The ratio between succes-
trajectory is uniquely determined by the starting point andsjye terms in this geometric series is equal to the amplitude
the velocity of the particle Hence it follows that for any of one Andreev reflection at each of the thieS boundaries.
classical trajectory with Andreev reflections a0 the to-  Therefore it depends on the phase difference between the
tal classical actiorfgi;ps(s)ds/ﬁ (which is the sum of the superconductors, and becomes equal to 1 at resonance, when

electron and hole actionis equal to zero as the electron and trajectories with very large number of Andreev reflections
hole momenta are equap{=py,), and the integrations are 9ive the same contribution as the ones containing only few
along the same trajectory but in opposite directions. ThereAndreev events. This is of course the reason why a reso-
fore, the phase gain along such trajectofiese Eq.(73)] nance in the electron-hole backscattering channel occurs. In
does not depend on either their form, the length of the gdif.2ddition all terms in the series will be multiplied by a factor
fusion path, or the configuration of the impurities. For reso-€ % wheres labels theN-S boundary from which the elec-
the scattering amplitudes at the junctions is easily carried ol/iS€ trajectories and=2 for counterclockwise trajectories.

in the case of low transparency of the barriers at the juncAn important consequence of the existence of these multipli-
tions. ers is that, on resonance, whe#,(~ ¢,= ), the ratio of

The conductance of a hybrid sample containing both northis extra exponents for clockwise and counterclockwise tra-

mal metal and superconductors, the normal conductance igctories is equal te-1, and the resonant contributions from
determined’ by the Landauer-Lambert formuk®), which ~ clockwise and counterclockwise trajectories to the amplitude

for a symmetric system reduces to for electron-hole backscattering cancel each other. A visible
manifestation of this cancellation effect is a splitting of the
262 resonant conductance peak neg# 7, so thatG(¢=)
—n58
G=—— (To+Ra). 74 =0

If normal reflection is possible at tHé-S boundaries ad-
ditional multipliers appear in the amplitudes for clockwise
The probabilitiesT, andR, were defined abovief. Eq.(5)].  and counterclockwise trajectories. These dfée’”s (r& is
It is important to note that trajectories which connect the twothe amplitude of Andreev reflection at thth N-S boundary
reservoirs necessarily have a different number of electrogs=1,2)).
and hole sections, while for trajectories which start and end | the case of nonequivalent barrier§)#r(?, there is
in the same reservoir these numbers are equal. This is g compensation of the clockwise and counterclockwise con-
crucial circumstance when one sums amplitudes in order tgiptions as is the case whef)=r@=1. In fact, if r"

. .. . . . A
obtain the total transmission amplitude, and implies that<r$\z)’ the splitting of the resonant peak disappears.

there is no complete compensation of the electron and hole In the semiclassical approximation the total number of

phase gains along.those trajectqnes_whlch contribute to th(glectrons that contribute to the resonant phase-sensitive con-
transmission amplitude of quasiparticles. As a result, de-

L - .~ ~ductance is equal to the numié¢r of semiclassical tubes of
structive interference suppresses the transmission amplitude, .
; L : fameter\ that cover the cross section of a lead between
and the main contribution to the conductance is from thos

trajectories along which the electron is reflected back into thihe reservoir and the diffusive samjikessuming the lead has

same reservoir as a hole. This is the channel to be discuss dsmaller cross seciion than ié-S bouno_larle)s Hence,

below. A classical path corresponding to this type of reflec, O the Lgmber_t formule(?é_l) an_d Eq.(79), it fOIIOWS. t_hat

tion is shown in Fig. 1. in the semiclassical approximation the phase—sensmve reso-
After passing the beam splitter at junctién(that is, after nant conductance for a diffusive sample is equal to

tunneling through the barrier of this junctipthe classical 52

diffusive electron trajectory can first encounter either the left G=(2e?/h)N y°6¢ _ (76)

N-S boundary(clockwise motion or the rightN-S boundary T (Yt 09°)°

(counterclockwise motion Adding the amplitudes of clock-

wise and counterclockwise trajectorighey form a geomet- Equation(76) implies that the resonant conductance peaks

ric serie$ and expanding the amplitudes &= ¢—7<<1, are split in such a way that the conductance goes to zero

one finds the total probability for an electron being reflectedvhen ¢ is an odd multiple ofr (see Fig. 12 This splitting

back into the same reservoir as a hole to be appears due to the interference between the clockwise and
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' over starting points to a summation over path lengths, when
calculating the averaged conductance. For this purpose we
0.25 assume a Gaussian length distribution of the diffusive paths
that start at on&-S boundary and end up at the otHé+S
~0.20 boundary(we choose the Gaussian form of the distribution
< function as an example; simple considerations show that
S ple; p
& choosing a more general distribution function only results in
20-15 additional factors of order unify
O
0.10 1 (/3—/30)2>
F(L) NET ex 2 (77
0.05 Here £, is the average length of the path§yE& L%vg /D).
By averaging the conductance at a fixed energy over random
0.00 path lengths described by the distribution functi@i), one

¢1/n easily finds a cutoff factor of order exp[E/E.]%/4) appear-
ing in the interference terms of the conductance. Therefore,
FIG. 12. The resonant conductance peaks are split due to inteflestructive interference sets in B&E_ (this well-known
ference between clockwise and counterclockwise quasiparticle mdact justifies the form of the distribution function assumed
tion along the trajectories that are associated with the formation ofbove. The conductance oscillations caused by interference
Andreev leveldcf. Eq. (76)]; herey is 0.05 and 0.2. only occur for energies below or of the order Bf. As a
result, at temperatureB>E_/kg, the amplitude of the con-

counterclockwise motion of the particles inside the norma/ductance oscillations decreases with the temperature as
sample when electrons are reflected as holes back to tifes/T: in agreement with Refs. 2, 8, and 9. _
same reservoifsee above In order to find the temperature dependence of the giant

The above calculations give a qualitative explanation tgfonductance  oscillations ~ discussed —here  wheh
analytical and numerical results for the diffusive case pre® GrEc/Kg, and for low junction barrier transparencies, we
sented in Refs. 13, 14, and 20-23 if the results are obtained!M oOver the paths contributing to the resonance effect at a
for a low barrier transparency of the junctions between the€rtain energye, average the conductance over the path
sample and the reservoirs. lengths using the distribution functio¥7) and integrate

It should be noted that for the geometry considered irPver energy taking the factordfo/JE) properly into ac-
some of the papers cited above, where there is only ongount(fo is the Fermi function As a result, we find that the
reservoir present, the conductance is determined only by trescillating part of the conductance caused by the resonant
probability for an electron to be scattered back into the reseffect is

ervoir as a hole. Therefore, the conductance is determined by e ¢ E
the same equatiofEq. (76)], and hence must also be equal 8G,es=N, — S 9(p). (78)
to zero at¢ equal to odd multiples ofr for the equivalent h kgT

N-S barrier case. The spliting must disappear for Non-jere ¢ is the transparency of the barrier at the junction,

equivqlent barriers at the-S boundarieg(see, e.g., Figs. 6 9(¢) is a 2r-periodic temperature-independent function
and 7 in Ref. 23; a decrease of the barrier transparency at thgiiy an amplitude of order unity.

junction between the sample and the reservoir results in the The physical reason for resulf8) is that the position of

co_nductance peaks being close to those shown in Fig. 12 @fie resonant energy peak is tuned by the superconducting

this pape). ) ) ] phase difference. With a change ofp it can be inside or
We conclude this section by using the Feynman pathyside the energy interval of ord&;, associated with the

integral approach to consider qualitatively the temperaturgonquctance oscillations. As the width of the resonant peak
dependence of the oscillating part of the conductance for thg, SE~¢,E., the main contribution to the conductance os-

diffusive case and for temperatures above the Thouless tenyations comes from the energy intervé~e E,, and

peratureE. /kg . If the energy of an electron-hole excitation pence the relative number of quasuparticles contributing to

is not equal to zero, there is no exact compensation of thge gscillations is, E, /kgT. This is why this factor appears
phases gained along the electron and hole portions of the, Eq. (79).

paths connected by Andreev reflections. In this case the
phase of the transmission amplitude depends on the
lengths of the electron-hole paths, which in their turn depend
on the starting points inside the lead between sample and In this paper we have presented a more thorough discus-
reservoir. The conductance of the system is a sum of absaion than in a previous short communicatidof giant con-

lute squares of amplitudes corresponding to trajectories witlductance oscillations in hybrid mesoscopic systems of the
different starting points in the lead for the classical paths. OrAndreev interferometer type, i.eS-N-S structures where
the other hand, classical paths starting from points separatete N part is connected to normal electron reservoirs. In Ref.
by a distance greater tharx , meet different random sets of 18 giant conductance oscillations were predicted for a ballis-
impurities® As a result their path lengths have random val-tic normal sample when transverse mode mixing was absent.
ues. Hence it follows that one can change the summatioffhe origin of this effect is a degenera¢ipunching” effect)

VIl. CONCLUSIONS
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of the Andreev energy levels at the Fermi energy. This detLamberf proposed a mechanism for conductance oscilla-
generacy of the Andreev spectrum arises due to an equalityons in diffusive samples that is effective if the temperature
of the longitudinal momenta of Fermi energy electrons ands close to the Thouless temperatiteermal effect They
holes undergoing Andreev reflection. Any process that vioused the dependence of the diffusion coefficient on the qua-
lates this equality lifts the degeneracy and, therefore, desiparticle energy, and found conductance oscillations with
creases the amplitude of the conductance oscillations. ~ the superconducting phase difference in the absence of bar-
In this paper we considered the effect of giant Conducfiers. The amplitude of the oscillations was found to reach its
tance oscillations taking into account transverse mode mixhighest value at the Thouless energy. We propose that this
ing at the junctions between the normal part of the samplé&ffect can be qualitatively understood if one takes into ac-
and the reservoirs. We also considered normal reflection igount the fact that under Andreev transformation atNas
addition to Andreev reflection at thd-S boundaries, and boundary there is a finite angle between the trajectories of
scattering of electrons and holes by impurities inside the northe incident and reflected particles, which is proportional to
mal sample. their excitation energy. Simple estimations show that near
Normal reflection of quasiparticles Bt S boundaries de- the Thouless temperature the classical trajectories of the
creases the probability of Andreev reflection, and as a corelectron and hole can be separated by a distance of the order
sequence also decreases the amplitude of the conductar@kthe de Broglie wavelengttthat is, the width of the semi-
oscillations. We have shown that the probability amplitudeclassical trajectorigsbefore the particle leaves the normal
for the oscillations is giantthat is proportional to the num- diffusive part of the sample for a reservoir. When this hap-
ber of transverse modes, ) until the amplitude of the nor- Pens the trajectories meet different sets of impurities, and can
mal reflection is smaller than or of the same order as théliffuse along very different paths inside the sample. This
transparencye,| of the barriers at the junctions. permits the quasiparticles also to encounter the o3
We have also shown that giant oscillations survive in apoundary, and undergo Andreev reflection there before leav-
diffusive sample at temperatures much lower than the Thoulnd the sample. Therefore, the conductance starts to depend
less temperature. This is because, after the electron-hoR) the superconducting phase difference, and conductance
transformation associated with an Andreev reflection, théscillations arise. When the temperature is higher than the
electron and hole move along the same classical diffusivd houless temperature, the phase gains of the quasiparticles
trajectory in opposite directions but with equal momenta. As2long the semiclassical paths are not compensated for, and
a result the phase gain of the electron and hole along thigre much larger than unity; the destructive interference kills
diffusive path compensate for each other. The probabilitythe thermal effect, in agreement with the results of the papers
amplitude for transmission through the sample does not decited above.
pend on the form or the length of the diffusive path, but only ~When the transparency of the barriers at the junctions has
on the phase difference between the superconduc¢ters intermediate values, both the thermal effect and the resonant
there is no destructive interferenc&he number of all pos- Oscillation effect co_nsidered in this paper are in essence si-
sible different semiclassical pathsSé;)\é= N, , whereS is multaneously, provided the temper_atgre is near the Thoule_ss
the cross-section area, as each path has a width of the ord&mperature. The effects can be distinguished by decreasing
of the de Broglie wavelengthg . Therefore the amplitude of the temperature, which rgsu_lts ina decrease of the amplitude
the conductance oscillations in the diffusive case remain8f the conductance oscillations in the case of the thermal
giant and proportional to the number of transverse modes  €ffect (vanishing at zero temperatyrewhile the resonant
as for ballistic samples. The above qualitative picture agree@MPlitude of the conductance increases and has its largest
with analytical calculations for the diffusive case in Refs. 15,Value at zero temperature.
14, 20, 23, and 22.
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the barrier transparency and proportional to the number of
transverse modeN, . When the transparency of the barriers APPENDIX A: ELEMENTS OF THE SCATTERING
is increased, our numerical calculations show that the ampli- MATRIX DESCRIBING COUPLING

tude decreases. In the absence of barriers at the junctions the ) o ) )
amplitude becomes zero. The latter result agrees with the We are to describe leads of finite width and the scattering

sum rule in Ref. 20, according to which the conductance ignatrix should mix different modes. Tt@matrix will then be

equal to the number of transverse modes—in the absence 8f Siz€ N, X3N, and the unitary condition for the subma-

barriers—times the conductance quantum and does not d#fices of sizeN, XN, gives

pend on the superconducting phase difference. This can be

gualitatively understood since an electréhole) coming §11§L= 1—2§12§{2, (A1)

from the reservoir after being first Andreev reflected at one

N-S boundary as a holéelectron then at zero temperature

returns to the reservoir by retracing the path of the incoming

particle without reaching the secohdd S boundary. s af s af A ot
Recently Nazarov and Stobfand Volkov, Allsopp, and 225231 $23522= ~ 12512, (A3)

80800+ 8p815= 1- 8181, (A2)
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$11S1,+ S1o(Shot+ gga):o, (A4)  where|y,) are eigenvectors tg; . If the corresponding ei-
genvalues are called,, ,

812811+ (820+ §,981,=0. (A5) N,

NL NL
Hence we have five matrix equations for eight matriges si'™= 21 21 7 (Wl S ) = 21 7MW,
each matrix has an independent Hermitian and anti- a=1p= “

Hermitian par}, and there are three undetermined matrices. (A10)
We choose them to &, and the anti-Hermitian part &,.  With elements in the matrig; of order unity,
As stated above, the anti-Hermitian part is not determined
by the unitary conditions for the matr& In the general case N (m)12
it is of the same order of magnitude as the Hermitian part, as ;1 |7 |°=1 (A11)

they are connected with the Kramers-Kronig relation. There-

fore, the matrix elements,,> ¢, . An analogous analysis of we obtainz{™o1/\/N,. Our random matri%;, will be mul-

the rest of the equations shows the matrix elements,9f tiplied by Ve, /N, before eigenvalues are calculated. Then

ands,; to be of the same order of magnitude. by settinge= ¢, /e.=1, and approaching the strong-coupling
If $,, and the anti-Hermitian pa#t,’ commute, and other limit, a maximum valuee, is found, fulfilling the unitary

matrices are expressed in termssgf they may be simulta- conditions. The strength of the coupling of the reservoirs is

neously diagonalized. THe, eigenvalues of matrices; are  now parametrized by €[0,1]. The matrixs,, in the weak-

denoted\;;, where indices numbering the eigenvalues arecoupling limit for one channel is seen to be proportional to

suppressed. Directly from the unitary conditions, we obtaine, ,> and therefore the random matrix giviméf.}) is multi-

plied by €,/\/N,. Then by using the eigenvectors of the

Nl = V1=2[A g%, matrix S;,, we transform all the matrices;; back to the
initial representation in which they are not diagonal, and
[Nog= V1—|N1d = [N2d?, (A6) their matrix elements are the probability amplitudes of scat-
. N tering to the respective transverse modes.
ANt Moot hog) =0, To realize another type of scattering matrix to describe
5 B the coupling to the reservoirs, we do as follows. The essen-
IN1d "+ 2N 22 [N ozl cOs oo~ 29 =0, tial features of the junction are coupling to electron reser-

which give the requirementp,,— ¢,3e[7/2,3m/2]. Now  Voirs and mixing between modes; botrlfeatures may be pa-
use a Hermitiars,,, i.e., real eigenvaluesh,,=nw. We set  rametrized by the strength of the coupliagThe coupling to
$3=0 in order to agree with the weak-coupling limit, where the reservoirs is described by @iker matrices’® If this is

no phase gain is expected in passing the reservoir. Mih done mode by mode, there will be no m|X|ng An additional

and\{) as eigenvalues of known Hermitian matrices, weunitary matrix is used to mix modes. This matrix has all
obtain diagonal elements equal to each other, and all off-diagonal

elements equal to each other, describing scattering into the
|)\11|:,/1_2|)\12|2, same mode and mixing between modes, respectively. By
keeping the elements equal, an isotropic situation is simu-

AP =2, lated where scattering into any mode is possible. The ele-
mentsu of the N, X N, unitary matrix must fulfill
M= =Vl ),
H H uii |2+ (N, = 1)]uy| =1, (A12)
A=A+, (A7) . . .
uii Uy Ui ug + (N —2)[ug[=0.
O N N ()? aggl? This gives|u;;|?<1/(N, —1), the phases afi; andu; are
) 4 2 connected by
A (H) iy (A) N, —2) |u;;
Nop=hzz +ih2z <pij=go”—arcc0%——( ¢2 _||u”||> (A13)
I

Nag= VI—|N 1"\ p)".
we note that forN, >4, |u;;| and |u;| are not allowed to

A symmetric random matrix with normally distributed ele- have the same value. We wish to consider la¥geand write
ments will have real eigenvalues distributed according to thehe elements
semicircle law. We have used values of mean 0 and variance ) _
1 creating random matric&sg, andsSy , luii|*=1—Ck, (ALd)
Si(jnm): <¢n|§ij | ¢m>! (A8) 2_ Ce
|uij | - N —1
1

where| ¢.,,) is a complete set of vectors

in order to agree with the limie=0 when mixing is ex-
pected to be absent since the waves in the decoupled sample

do not feel the reservoirs. The conditi@mitary U) gives

NJ.
(bl = a; 71, (A9)
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4(N, —1) APPENDIX C: ACTIVE CHANNELS

—_— . Al15
iy (A15) As for N, >1, the set of equations E@23) cannot be

analytically solved, and the amplitudgg cannot be explic-
ity found, and we estimate the numbblz of transverse
Srnodes inside the resonant region ,ve /L, €, hve /L) and
se Eq.(31) to obtain the conductance to within a factor of
the order of unity. We determindy in the following way:

The parameters are the couplilzg the number of modes
N, , and the angley;; . We write the anglep;; €[ 0,27] to
agree with the weak-coupling limit, where no phase gain i
expected. By using different angles, we obtain an ensembl

of matrices describing different samples.
2

The eigenvalues of the unitaty all have amplitudes of o :
length unity. This means that all modes will be open for NRZJ dEm v(E), (C1)
transmissiori Opening of transmission channels has been o F r
observed in experimgnfé ) ~ wherev(E) is the state density function
To describe coupling the results by tiker> are used in " "
diagonal matrices. All these matricgs are multiplied byU. 5 5 |9Q
¢ 5 plied byY WE)=3 3, AE-E)=3 |528Q. (€2

APPENDIX B: NORMAL REFLECTION . . .
AT THE N-S INTERFACE Here the spectrum functio@,, is determined by Eq44).

To find the state density function(E) we use the method
Reflection of an electron at the interface of two normaldeve|oped in Ref. 61. Ag¢p_/9E=*(Ahv) L, with v
conductors due to the interface potential barrier, such as the 4 kZ—k,(n)%m, the factordQ,/JE in Eq. (C2) is a

Schottky barrier, or due to the mismatch between the Fermy;qonometrical function of- ¢ , like Q,, and it is produc-
velocities of the electrons of the conductors, of the|reffect|ve>[ive to expandv into Fourier ‘series inp. and write it as

masses, and so on, can be characterized with a scatterirﬁgbws.

matrix
NJ_ 9] 9]
R o t - i(so_+key)
so=a{ [ 2] tlu=1 @ MB=3 X 3 Ay (9
This matrix connects the constant factars and b, of the _, (%" — (27— |dQy i(se ko)
plane waves coming in and going out of the barrier inside theAsk=(27) fo d90+f0 de- JE O(Qp)e 3P TEe),
semiconductor, respectively, with thoag andb, inside the (C4)
metal:
2 In this paper we assume the lendthand the widthd of the
b= 2 Si(f)ak, i=1.2. (B2) sample to satisfy the inequality
k=1
d NE
(Hence|to|? is the transparency of the barrieiVhen the >NT (CH

metal is in a superconducting state the matrix of reflection of
the semiconductor charge carriers at MS boundary(the  Using this inequality{Eqg. (D1)], and the estimation of Eq.
semiconductor is on the right and the superconductor is ofD5) in Appendix D, one sees that the main contribution to

the left of theN-S boundary is the state density function EQC2) is of the terms
N . rN I’A L 27 2w —
:eI\I’ )’ BS - f .
n —rz r""\‘l (B3) Aso (277)2ﬁv 0 do. o d(P—lsm ‘P—|
where

Xe - 5(cosp — |rnal|rnzlcos ¢

. VIto|*+4]r ol sir? g

eV= T [r [PV (B4) +[ra1llrazlcos ¢). (Co)
_ _ Performing integration with respect to_ in Eq. (C6) and
_ ro€'X2 sin g (B5) overE in Eq. (C1), with application of Eqs(C3) and (C4),
n= VtoP - a[roZ SiP? g one obtains the conductarie
i 2 * 2m
el® _ e —2sle
ra=it2 , B6 G=N, 5— & _Z e e cosspi(¢)de
SRR E A Pt e e
X
ei v L (87) (pl((PJr)
E+iV]A[Z—EZ =arccos|ryi|[ryz/cog¢.)
Here|A| and ¢ are the modulus and the phase of the super- —[raillrazlcos ¢) (C7)

conducting gap, respectively, atifl is the electron energy
measured from the Fermi level. From E¢B3)—(B7), it is
straightforward to see thét |2+ |ry|2=1. e1(¢1)=2m—arccos$|ryi||rno|cog ¢ 1) —|r aa||r azlcOS @)

if0<¢_<m, and
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if m7<¢_<2m. Performing summation in E4C7), one ob-
tains

e
G=N, el
szn €do.
o 1-|ryallrnalcos o, +|radllrazlcos ¢+ er/2’
(CY
as|ry12=<1 integration in Eq(C8) gives
N e’ €
- mh \/(1+|rAl||rA2|COS¢+Er2/2)2_|er|2|rN2|(2§)

If the boundaries are symmetric, thatrig;=ry,, the con-
ductance is

e ]

mh \[(1+|rpl% cos b+ €22)2—ry]?)
(C10

2 €

_NL
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that appears in the density state functj@y. (D2)] and the
transition probabilityf Eqgs.(29) and(30)]. Using the Poisson
formula, one can write

S= lim i 2 fNidx éxvl—x2/a2+i2wkxe—w\k\§.
6—0 NJ— k=— JO
(D2)
Here

As A>1 one can use the saddle-point method to obtain

) 3/4

From Eq.(D4), it follows that terms withk which are less or
of the order of\/a contribute to the sum and, therefois
less thanyA/N, . As N, ~kgd, we have the following esti-
mation of the sum of fast oscillating terms:

[

)\2
N2+ (2mak)?

1 «

S=— — —iml4
N, U\ Vme K

X ei \/}\EJr(Zﬂn'ak)2

=—

(D4)

In this appendix we evaluate a sum of fast oscillatingTherefore the sum of fast oscillating terms can be neglected

terms

Ny

D lL{KE ~[(h/d)n]2} 22
Nl n=0

1

S

(D1)

S< Lke/(ked). (D5)

if
OI> s D6
L T (D6)
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