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Retardation effects on collective excitations in correlated superlattices
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The authors analyze the effects of electrodynamic retardation on the collective modes in an unmagnetized
infinite superlattice modeled as an array of parallel two-dimensional plasma layers embedded in a dielectric
substrate. The present work concentrates for the most part on correlated semiconductor superlattices, although
the model is equally well suited to metallic superlattices consisting of an alternating array of thin metal layers
and thick insulator slabs~e.g., 50 Å Al layers and 500 Å Al2O3 slabs!. The analysis is based on the transverse
magnetic~TM! and transverse electric~TE! dispersion relations recently formulated by the authors in the
retarded quasilocalized charge approximation~RQLCA! @K. I. Golden, G. Kalman, L. Miao, and R. R. Snapp,
Phys. Rev. B55, 16 349~1997!#. In the nonretarded limit, the QLCA mode structure consists of~i! an isolated
in-phase plasmon mode,~ii ! a band of gapped plasmons,~iii ! an in-phase acoustic shear mode, and~iv! a band
of gapped shear modes. This paper presents numerical and approximate analytical solutions of the long-
wavelength RQLCA dispersion relations for the collective modes~i!–~iv! all the way down to very small wave
numbers where retardation effects can be especially pronounced. Additionally, this work presents insightful
approximate analytical formulas for the electromagnetic mode frequencies and gap widths, which add to the
literature on the infinite sequences of TM- and TE-polarized electromagnetic bands. Some noteworthy effects
that emerge from this study are as follows:~a! The appearance of ultralow frequency shear modes arising from
the combined effect of retardation and strong coulomb interactions; the quasilocalization basis of the theory
suggests that these modes can propagate when the two-dimensional plasma layers are in a crystalline phase.~b!
A negative random-phase approximation shift in the bulk-plasma frequency induced by electrodynamic retar-
dation; this effect can be appreciable in insulator/metal superlattices.@S0163-1829~98!05516-7#
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I. INTRODUCTION

In the previous decade a number of investigators1–5 ana-
lyzed the effects of electrodynamic retardation on collect
excitations in a variety of infinite superlattice systems. B
ing their calculations on the random-phase approxima
~RPA! ~Refs. 1,4! or on simple RPA-like hydrodynamica
models,2,3,5 these studies do not consider the effects of stro
intralayer and interlayer Coulomb interactions. Our ow
studies,6 carried out within the quasilocalized charge a
proximation~QLCA! in the nonretarded (c→`) limit, reveal
that strong Coulomb interactions profoundly modify t
RPA mode structure of unmagnetized semiconductor su
lattices. Thus, it remains to be seen how electrodynamic
tardation effects add to or extend the QLCA mode structu6

in correlated superlattices. This is a central theme of
present paper.

The system of interest in this work is the unmagnetiz
infinite superlattice modeled as an array of two-dimensio
~2D! plasma layers embedded in a dielectric substrate. T
model is ideally suited to the GaAs/AlxGa12xAs superlattice
and it can also be adapted to metallic superlattices, e
570163-1829/98/57~16!/9883~10!/$15.00
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Al/Al 2O3 consisting of alternating thin metallic layers/thic
insulator slabs. While metallic superlattices are of some
terest in the present work, our main interest will be in cor
lated semiconductor superlattices, which, in the nonretar
(c→`) limit, exhibit an energy gap in the plasmon an
shear mode dispersions.6

The RPA mode structure of the unmagnetized superlat
consists of~i! an isolated in-phase plasmon mode,~ii ! a band
of acoustic plasmon modes,~iii ! an infinite sequence o
transverse magnetic~TM!-polarized~with the magnetic-field
vector lying in the superlattice plane! electromagnetic
bands,3,5 and ~iv! an infinite sequence of transverse elect
~TE!-polarized~with the electric-field vector lying in the su
perlattice plane! bands.2,3~b!

Insofar as the RPA plasmon dispersion is concerned,
effect of electrodynamic retardation is most pronounced
exceedingly small in-plane wave numbersk of the order of
@4pnse

2/(m* dc2)#1/2[vpA«s/c ~ns is the areal density of
the 2D electron layers,d is the spacing between layers,vp is
the bulk plasma frequency,«s is the substrate dielectric con
stant!. At thesek values and extending well into the long
wavelength (vpA«s/c!k!1/d) domain, the dispersion o
9883 © 1998 The American Physical Society
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9884 57GOLDEN, KALMAN, MIAO, AND SNAPP
the in-phase plasmon mode was calculated by King-Sm
and Inkson4 to be

v5kc/A«s for 0<k<vpA«s/c ~1.1a!

and

v5vp for k>vpA«s/c, ~1.1b!

with the RPA acoustic band confined to thek>vA«s/c, v
<vp nonpropagating sector of thev, k plane; the in-phase
plasmon therefore begins as an electromagnetic wave
companion in-phase TM electromagnetic mode was ca
lated to be4

v5vp for 0<k<vpA«s/c ~1.2a!

and

v5kc/A«s for k>vpA«s/c,
~1.2b!

with the TM-polarized electromagnetic bands confined to
k<vA«s/c , v>vp propagating sector. Equations~1.1! and
~1.2! are approximately correct at the RPA level. In the no
retarded limit, we found that the in-phase mode freque
~1.1b! should exhibit a positive RPA frequency sh
(kd)2vp/24 arising from higher-order~in kd! terms in the
long-wavelength (kd!1) expansion of the superlattice form
factor F(k,0)5sinh(kd)/@cosh(kd)21#.6~b! In this paper, en-
route to deriving the non-RPA correlational corrections
Eqs. ~1.1! and ~1.2!, we restore the missing nonretarde
(kd)2vp/24 RPA correction to Eq.~1.1b!. But in so doing,
we also discover the existence of ak-independent RPA cor
rection arising from retardation that shifts the bulk-plas
frequency downwards. Admittedly, both RPA corrections
exceedingly small for the semiconductor superlattice in
domain wherek is of the order ofvpA«s/c. Nevertheless,
both have the same magnitude there and, as such, shou
retained if one is to have a precise mathematical descrip
of the evolution of the in-phase plasmon fromkd50 up to
kd values in the long-wavelength domain where the non
tardedO@(kd)2vp# RPA and correlational corrections6~b! be-
come dominant.

An equally compelling reason for retaining the retardat
correction all the way down tok50 is that the effect appear
to be far more pronounced in metallic superlattices. The
culations of Babiker, Constantinou, and Cottam3~b! for a me-
tallic superlattice consisting of alternating insulator~1!/metal
~2! slabs of comparable thicknessesd1 and d2 indicate that
retardation brings about an appreciable negative RPA cor
tion in the nonretarded in-phase electromagnetic mode
quency ~1.2a!. In this paper, we isolate and quantify th
effect in insulator/metal superlattices having larged1 /d2 ra-
tios that can approximate our layered 2D plasma model.

In contrast to the RPA the nonretarded QLCA mo
structure of the unmagnetized semiconductor superla
consists of~i! an isolated in-phase longitudinal plasmo
which, for sufficiently strong interlayer coupling, exhibi
crystal-like negative dispersion at long-waveleng
(kd!1!,6~b! ~ii ! a band of gapped plasmon modes,6 ~iii ! an
th
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in-phase transverse shear mode that exhibits acoustic-ph
like dispersion at long wavelengths,6~b! and ~iv! a band of
gapped shear modes.6~b!

In the present work, we wish to establish a precise ma
ematical description of the collective mode structure in
domain where both the in-plane and perpendicular w
numbersk andq, are of the order ofvpA«s/c, that is, where
retardation effects are important. In this domain the retar
QLCA ~RQLCA! calculations in Secs. II, III, and IV indicate
the first vestige of thek50 energy gap in the plasmon fre
quency and the existence of a new ultralow frequency sh
mode stage that arises from the combined effect of str
Coulomb interactions and retardation. The quasilocalizat
hypothesis underlying the derivation of these modes sugg
that they can propagate in a semiconductor superlattice o
crystalline plasma layers. According to the calculations
Swierkowski, Neilson, and Szymanski,7 crystalline plasma
layers can form atr s5(pnsaB*

2)1/2525 for a layer spacing
d50.768/(pns)

1/2 ~realizable in a type-I hole superlattic
with ns51.631010 cm22 andd5343 Å!; aB* is the Bohr ra-
dius.

The present paper focuses primarily on collective exc
tions at lowerr s values where the plasma layers are in
liquid phase. The main goal is to analyze the RQLCA d
persion relations for the gapped plasmon and shear mo
and to establish approximate analytical formulas for
mode frequencies. Here we are especially interested in
evolution of these modes ask increases from the propagatin
region 0<k,vA«s/c to the nonpropagating regionk
>vA«s/c. Such calculations are necessary preliminaries
the study of the possible radiation mechanisms of osci
tions and instabilities in superlattices.

The existence of infinite sequences of TM- and T
polarized electromagnetic bands separated by gaps ar
from the presence of the plasma layers has been reporte
a variety of infinite superlattices.2,3,5This folding back of the
dispersion curves into the first Brillouin zone is a cons
quence of the translational symmetry of the superlattice. T
gaps, which appear at the boundaries of the Brillouin zo
are exceedingly narrow in semiconductor superlattices; h
ever, they are far more pronounced in metallic superlattic
Constantinou and Cottam3~a! obtained the TM bands by solv
ing the TM dispersion relation for a superlattice model co
sisting of an alternatingABABABstructure with a 2D elec-
tron gas at each interface separating the finite thicknessA/B
dielectric slabs~modulation-doped GaAs/AlxGa12xAs super-
lattice, e.g.!. Babiker, Constantinou, and Cottam3~b! obtained
the TM and TE bands for a metallic superlattice compris
of alternating metal/insulator slabs~Al/Al 2O3, e.g.! of finite
and comparable thicknesses. These investigators and H
and Wendler5 also obtained the TM bands for a metall
superlattice consisting of an alternating metal 1/meta
structure~Ag/Al, e.g.! where again the metallic slabs hav
finite and comparable thicknesses. Our contributions to
topic in the present paper are complementary to the ab
works in that for the infinite superlattice consisting of 2
electron layers embedded in a dielectric substrate, we es
lish approximate analytical formulas for the TM- and TE
polarized electromagnetic bands and for the gap widths s
rating the bands. These oscillation frequency formulas w
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57 9885RETARDATION EFFECTS ON COLLECTIVE . . .
therefore be applicable to both semiconductor superlatt
and metallic superlattices consisting of alternating t
metal/thick insulator slabs.

The mode frequency calculations of the present paper
based on the RQLCA TM and TE dispersion relations
rived by us in Ref. 6~b!. The organization of the paper is a
follows. In Sec. II we analyze the collective excitations in
homogeneous anisotropic medium model6~b! of the correlated
superlattice. Such a preliminary model is useful in the v
ishing layer separation (d→0) limit and will be used to pro-
vide a physically transparent—albeit simplified and som
what inconsistent—portrayal of the mode structure and
the polarization of the modes. In Secs. III and IV, we analy
the RQLCA dispersion relations for the superlattice in t
long-wavelength (0<kd!1) regime, and we establish ap
proximate analytical mode frequency formulas for~i! the iso-
lated in-phase plasmon and TM electromagnetic modes,~ii !
the band of gapped plasmon modes,~iii ! the Q50 band of
TM-polarized electromagnetic modes~the reciprocal lattice
vector Q5(2p/d)s or, equivalently, the integers enumer-
ates the bands!, ~iv! the in-phase transverse shear mode,~v!
the band of gapped shear modes, and~vi! the Q50 band of
TE-polarized electromagnetic modes. In Sec. V we estab
approximate analytical mode frequency formulas for thes
51,2,3, . . . TM- and TE-polarized electromagnetic band
and we calculate the widths of the gaps. Conclusions
drawn in Sec. VI.

II. ANISOTROPIC MEDIUM DESCRIPTION

In general, for a givenq value ~q is the wave number
perpendicular to the lattice planes! both the TM and TE
modes split into two independent branches, a high-freque
optical ~or, rather, polaritonlike! EM branch and a low-
frequency branch. The low-frequency branch of the T
mode can be referred to as the plasmon (P) branch. This
latter branch, in the RPA approximation is acoustic, but
acoustic character is destroyed once interlayer correlat
are introduced6 and ak50 gap develops. The low-frequenc
branch of the TE mode is a shearlike excitation that vanis
in the RPA limit and will be referred to as theS branch; it
also develops a gap atk50. Thus, these low-frequenc
modes are more precisely referred to as ‘‘gapped-plasm
~TM! or ‘‘gapped-shear’’~TE! excitations. An exception is
the q50 case where the quasiacoustic character~v→0 for
k→0! does survive. The high-frequency EM branches
always on the left of the light line; in contrast, the low
frequencyP or S branches exist on both sides of the lig
line.

In the vanishing layer separation limit, i.e., combinedkd
→0, qd→0 limit, a superlattice can be described as an
isotropic 3D dielectric medium~A3DM!. Consider first the
TM modes. Solving the Ref. 6~b! A3DM longitudinal disper-
sion relation~47! with ~45! ~suitably modified to take ac
count of the correlation-induced electromagnetic effect! and
expanding toO(k2) andO(q2), one finds the two solutions

v1
2 5

vp
2

11K1q2cs
2, ~2.1a!

v2
2 5k2cs

21q2cs
2I. ~2.1b!
es
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I~q!5
1

2 (
m>1

@12cos~qmd!#uI m0u,

JL~q!5
d

2 (
m

Jm0
I cos~qmd!,

K~q!5
d

2 (
m

Km0cos~qmd!

d[~vpd/&cs!
2, cs5c/A«s . ~2.2!

Intralayer~00! and interlayer (610,620, . . . ) correlational
coefficientsI m0 andJm0

L are defined in Ref. 6~b! in terms of
the full hierarchy of superlattice~layer m-layer n! static
structure functionsSmn(k); the Km0 coefficient is similarly
defined:

K umu05
1

Ne
(
k8

1

k8d
@Sumu0~k8!2dm0#e2k8umud. ~2.3!

In the d→0 limit I is of O(q2), and thus in thek50 limit
the dominant term inv2

2 is of O(q4). In contrastJ(q) and
K(q) assume constant values asq→0, i.e. JL(0)
'(d/2)(mJumu0

L , K(0)'(d/2)(mK umu0 . It is of interest to
examine thek→` and q→` limits ~but keeping in mind
that kd!1 andqd!1 are still satisfied!. For k→`, q50
one obtains

v1
2 5k2cs

2, ~2.4a!

v2
2 5

1

11K ~vp
21k2cs

2JL!, ~2.4b!

while in theq→`, k50 limit one has

v1
2 5q2cs

21vp
2, ~2.5a!

v2
2 5I~q!vp

2'
1

4
vp

2q2d2 (
m>1

m2uI m0u. ~2.5b!

Thus, the picture that emerges from this treatment compr
two modes with complementary behaviors. The eigenmo
are polarized in thekq plane. But it should be noted that, i
general, neither of them is polarized in thek5êxk or q
5êzq directions. The polarizations also change along
two branches as a function ofk. In the absence of correla
tions theP branch (v2) starts out along the light line as
transverse wave propagating alongk ~since it is polarized
alongz, it is unaffected by the plasma frequency! and ends
up as a bulk plasmon~with longitudinal polarization alongx!
at vp . On the other hand, the EM branch (v1) also starts
out as a transverse wave propagating alongq ~and polarized
alongx and thus affected by the plasma frequency! and ends
up along the light line as an EM wave polarized alongz. The
principal modification due to correlations is manifest
through the second term in Eq.~2.1b!: it represents a corre
lation maintained shear wave propagating alongq with the
peculiarv;q2 dispersion. This depression of the norma
acoustic shear mode dispersion is an electromagnetic e
and an identical behavior has already been demonstrate
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9886 57GOLDEN, KALMAN, MIAO, AND SNAPP
strongly coupled 3D plasmas.8 Increasing q ~over v/c!
brings the shear mode into the linear domain@cf. ~2.5!#.6~b!

Further correlational effects are associated with
k2cs

2JL and vp
2/(11K) terms in Eqs.~2.1! and ~2.4!. The

former represent the negative plasmon dispersion~note that
JL,0! induced by correlations: this again is well known
the 3D situation. The latter generates a positive shiftK
,0) of the plasmon frequency due to a combined effect
the correlations and transverse interaction: this effect
discussed in Refs. 8 and 9.

We turn next to the A3DM description of the TE mode
These modes are isotropic in the sense that the correla
independent terms depend on (q21k2) only. For smallq and
k the two modes are

v1
2 5

vp
2

11K1~q21k2!cs
2, ~2.6a!

v2
2 5~k21q2!cs

2S I~q!1JT
k2cs

2

vp
2 D . ~2.6b!

The highk (q50) and highq (k50) limits are simply

v1
2 5k2cs

21vp
2, ~2.7a!

v2
2 5

1

11K J
Tk2cs

2, ~2.7b!

and

v1
2 5q2cs

21vp
2, ~2.8a!

v2
2 5I~q!vp

2, ~2.8b!

whereJT5(mJumu0
T with Jumu0

T given by Eqs.~30! and~33! of
Ref. 6~b!. In contrast to the TM modes, the polarization
always fixed along they axis. Thev1 EM branch is similar
to that in a~3D! plasma. Thev2 branch is a gapped shea
excitation with the typicalv2;q4 type dispersion.

III. SUPERLATTICE TM MODES

The A3DM misses noncorrelational effects, which a
caused by finite layer separation. Foremost amongst the
e

f
s

.
n-

in

the nonretarded limit is the acoustic plasmon.10 In general, a
rigorous analysis requires the analysis of the superlattice
gitudinal dispersion relation~16! of Ref. 6~b! @combined
with RQLCA Eq. ~15! of that same reference# to which we
now turn. Concentrating on the long-wavelength (kd!1)
regime of interest in the present work, our task can be
duced to finding solutions fork2[(v/cs)

22k2 of the small
k dispersion relation

k2d2X11
d

2 (
m

K umu0cos~qmd!C
1k2d2X11

d

2 (
m

~K umu02Jumu0
L !cos~qmd!C

52
dkd sin kd

coskd2cosqd
1d (

m>1
@12cos~qmd!#uI m0u.

~3.1!

Solutionsk25k2
2 ,0 correspond to propagation along th

in-plane wave vectork with exponential decay of the per
turbed field quantities in thez direction. Solutionsk25k1

2

.0 correspond to oblique propagation along the wave ve
K15k1êzk1 which lies in thexz plane if one takesk5êxk.
The analysis consists in solving Eq.~3.1! for kd as a func-
tion of kd while holding the mode parameterqd fixed in the
two intervals 0<(qd)2!2d and 2d!(qd)2<p2. The quan-
tity 2d[(vpd/cs)

2 serves as a convenient reference po
for organizing the calculations. Unless otherwise stipulat
we assume thatd!1, which is always the case for semico
ductor superlattices.

A. In-phase modes

Beginning with the in-phase (qd50) modes, we seek so
lutions to Eq.~3.1! such thatk2d2!1, consistent with the
assumed smallness ofd, qd, andkd. Using a straightforward
method of successive approximations with the trigonome
functions replaced by their small-argument expansions,
obtains two solutionsk6 : the ~1! solution refers to the in-
phase TM EM branch and the~2! solution to the in-phase
plasmon. The corresponding frequencies are calculated to
v1
2 ~k,0!55

vp
2

11
d

6
1

d

2 (
m

K umu0

F11k2d2S 1

12
1

1

4 (
m

Jumu0
L D G for 0<~kd!2<2d* ~3.2a!

~kcs!
2 for ~kd!2>2d* ~3.2b!

v2
2 ~k,0!55

~kcs!
2 for 0<~kd!2<2d* ~3.3a!

vp
2

11
d

6
1

d

2 (
m

K umu0

F11k2d2S 1

12
1

1

4 (
m

Jumu0
L D G for ~kd!2>2d* ~3.3b!
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d* 5
d

11
d

2 (
m

~K umu02Jumu0
L !

. ~3.4!

Formulas~3.2b! and ~3.3b! are the superlattice counterpar
of A3DM Eqs. ~2.4!. The plasmon frequency in~3.3b!
exhibits the positive RPA dispersion (kd)2/24 and the
negative correlation-induced Coulomb dispersi
@2(k2d2/8)u(mJumu0

L u# discussed above and in Ref. 6~b!. Re-
tardation effects show up in Eq.~3.2! as the negative RPA
and positive correlational shifts 2dvp/12 and
1(dvp/4)u(mK umu0u in the plasma frequency. For the sem
conductor superlattice model of this paper~an array of 2D
electron liquid monolayers embedded in a dielectric s
strate!, these shifts are exceedingly small in the weak c
pling regime ~d51.6431024 for GaAs/AlxGa12xAs with
ns57.331011 cm22, d5890 Å, m* 5.07ms , «s513.1! and
even smaller in the strong-coupling regime~d51.6231026

for ns51.331010 cm22, d5500 Å!. Nevertheless, theO(d)
corrections are retained in Eq.~3.3b! @and consequently in
Eq. ~3.2a!# in order to present a precise analytical descript
of the evolution of the in-phase plasmon askd increases
from A2d* @where theO(d) and O(k2d2) corrections are
comparable# to values well beyondA2d* where theO(k2d2)
dispersion eventually dominates. The next paragraph
gresses somewhat to present an equally compelling re
for retaining theO(d) corrections in Eq.~3.2a! and in Eq.
~3.5! below.

Retardation effects become more pronounced with
creasingd and ns : thus, they are expected to be of mo
significance in metallic superlattices. This has already b
pointed out by Babiker, Constantinou, and Cottam~BCC!3~b!

~but without giving a mathematical description of the effe!
in relation to metallic superlattices modeled as alternat
insulator~1!/metal~2! slabs of comparable finite thickness
d1 andd2 . This is also the case when the metallic layers
thin compared with the insulator layers so that the meta
superlattice can be modelled as an array of 2D plasma la
embedded in an insulator substrate. Consider first the s
tion where the slab thicknesses are comparable. In the
retarded (c→`) limit, the BCC formula for the in-phase
kd50 plasmon frequencyv`5vp2@11«1(d1 /d2)#21/2 can
be readily derived from the BCC alternating slab dispers
relation @Eq. ~5.1! in Ref. 3~b!#. Using the approximate
numerical valuesvp2515 eV, e153, d15100 Å, d2550 Å
quoted from Babiker, Constantinou, and Cottam3~b! for an
Al2O3/Al superlattice, we calculatev1(0,0)uBCC'0.987v`

from the BCC retarded dispersion relation@Eq. ~4.2! in
Ref. 3~b!#, i.e., a negative RPA shift of 1.3%. This shi
becomes more pronounced at the higherd1 /d2 ratios which
begin to approximate the layered 2D electron liquid mode
this paper; for example, withd15500 Å@d2550 Å @see,
for example, Jin and Ketterson11#, we calculate v`

50.180vp2 and v1(0,0)uBCC50.942v` giving a negative
RPA shift of 5.8%. This compares quite well with the RP
shift calculated from Eq.~3.2a!: with the bulk-plasma fre-
quency given asvp5vp2@d2 /(«1d1)] 1/250.182vp2'v`
-
-

n

i-
on

-

n

g

e
c
rs
a-
n-

n

f

and d5vp2
2 d2d1 /(2c2)50.721, we obtain v1(0,0)5

0.945vp , giving a 5.5% shift. Even better agreement is o
tained using the parent TM dispersion relation~3.1! instead
of Eq. ~3.2a!: we calculate a 5.7% negative RPA shift. Th
is not surprising considering that the derivation of Eq.~3.2a!
from Eq. ~3.1! assumesd!1, which is no longer the cas
here.

For the Al2O3/Al superlattice withvp2515 eV, the r s

52.8 value suggests that the positive shift arising from
K00 intralayer coefficient might be significant~interlayer cor-
relational effects are insignificant in virtue of the smallne
of the coupling parameterr sa/d1'0.008 for d15500 Å!.
Our K00'20.003 estimate, in fact, indicates that the po
tive intralayer correlational shift is swamped by the negat
RPA shift. Thus, for metallic superlattices modeled as alt
nating insulator~1!/metal ~2! slabs with larged1 /d2 ratios,
the kd50 in-phase TM mode frequency is reasonably w
described by thekd50 RPA limit of Eq. ~3.2a! and, conse-
quently, by the RPA limit of Eq.~3.5! below.

B. 0<„qd…

2!2d

Returning to the semiconductor superlattice, we exte
now the calculation of the mode frequencies to nonzeroqd
values in the very narrow interval 0,(qd)2!2d. The analy-
sis is facilitated by dividing the problem into the twokd
subintervals 0<(kd)2!2d and 2d!(kd)2!1. Thus thev1

EM mode is represented by Eq.~3.2! at qd50, andv2 is
now the ‘‘gapped’’~vÞ0 for k50! P mode.

For kd values in the very narrow interval 0<(kd)2!2d,
the EM branch dispersion is portrayed by Fig. 1, curveA1

FIG. 1. TM plasmon (P) and electromagnetic~EM! dispersion
curves calculated from Eq.~3.1! for a strongly correlated GaAs
AlGaAs superlattice~d51.6231026 for ns51.331010 cm22 and
d5500 Å!. The EM ~1! and P ~2! modes are labeled byqd val-
ues: A6(qd5631024), B6(qd5631022), C6(qd5p/6),
D2(qd5p).
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v1
2 ~k,q!5

vp
2

11
d

6
1

d

2 (
m

K umu0

1q2cs
2

1vp
2k2d2S 1

12
1

1

4 (
m

Jumu0
L D

1
q2k2cs

4

vp
2 1O~vp

2d2!. ~3.5!

The P branch~Fig. 1, curveA2!

v2
2 ~k,q!5k2cs

2S 12
q2cs

2

vp
2 2

q2d2

4 (
m

~K umu02Jumu0
L !D

1
q4cs

2d2

4 (
m>1

m2uI m0u ~3.6!

also exhibits electromagneticlike dispersion. Formulas~3.5!
and ~3.6! can be compared with A3DM formulas~2.1!.
These latter are calculated with the assumption thatd→0
andk2c2!v2. Equations~3.5! and~3.6!, on the other hand
are the outcome of a formal expansion inkd andqd.

Wave numberq having lost its role as the third compo
nent of the wave vector, the last term in Eq.~3.6! should be
regarded as a ‘‘gap.’’ The polarization of this mode has
ready been discussed. The quasilocalization hypothesis
derlying the derivation of Eq.~3.6! suggests that this low
frequency mode exists as well when the lattice planes ar
a 2D Wigner crystal phase.7 When the lattice planes are no
crystalline, the survival of this initial stage of the gap in E
~3.6! is, in fact, unlikely since in a 2D Coulomb liquid phas
the migration-diffusion timetD of the particles away from
their instantaneous positions is far too short compared w
the mode oscillation time to justify the RQLCA basis of E
~3.6! @Ref. 6~b!#. This suggests that when the lattice plan
are in the liquid phase, the correlational terms in Eq.~3.6!
can be discarded, leaving only RPA plasmon dispersio4

which is always confined to the lower-right quadra
bounded by theqd50 P branch and thekd axis.

As (kd)2 increases well beyond 2d to the point where it is
in the interval 2d!(kd)2!1, theA2 branch evolves even
tually into the nonretarded longitudinal bulk plasmon r
ported@as Eq.~40!# in Ref. 6~b!. This quasistatic behavior i
characterized by an acoustic (v}q) gap, which in the qua-
sistatic limit arises atk50 @see Eq.~39! of Ref. 6~b!#. In the
present fully retarded description the acoustic gap is slig
shifted and is reached at the light line:

v2~k5v/cs!5
vp

2

4
q2d2

(
m>1

m2uI m0u

11
d

2 (
m

~K umu02Jumu0
L !

~3.7!

as it can be easily verified directly from Eq.~3.1!. The gap is
followed by the quasiacoustic plasmon dispersion portra
by Eqs.~41! and ~42! of Ref. 6~b!. This development is no
portrayed correctly by the A3DM because of the miss
acoustic portion of the dispersion.
l-
n-

in

.

th

s

,
t

-

ly

d

The companion (A1) EM branch dispersion4

v1
2 ~k,q!5~k21q2!cs

21vp
2 q2

k2 ~3.8!

asymptotically approaches the light line: this can be co
pared withv1

2 in Eq. ~2.4!. Correlational terms are not dis
played in Eq.~3.8! since they would eventually show up a
very high-order undetectable contributions.

C. 2d!„qd…

2<p2

We consider next the long-wavelength modes forqd val-
ues in the far wider interval 2d!(qd)2<p2.

Addressing first the EM branch, one again seeks soluti
to Eq. ~3.1! such that~i! ukdu!1 for uqdu!1 and ~ii ! kd
5qd1« for qd finite; for ~ii ! the task consists in calculatin
the small positive correction«!uqdu. After some algebra
involving successive approximations, one obtains the sa
result for ~i! and ~ii ! above~Fig. 1, curvesB1 ,C1!:

v1
2 ~k,q!5~k21q2!cs

21vp
2 q2

q21k2 , ~3.9!

valid for 2d!(qd)2,p2 and over the entire long
wavelength interval 0<(kd)2!1. A3DM formula~2.5a! is
thek50 counterpart of Eq.~3.9!. The mode frequency~3.9!
can also be derived from the King-Smith-Inkson RPA E
~3.10!;4 our result, however, is not restricted touqdu!1. The
calculation of the EM frequency at the edge of the Brillou
zoneuqdu5p calls for a separate successive approximat
treatment that yields

v1
2 S k,6

p

d D5S p2

d2 1k2D cs
2. ~3.10!

Addressing next theP branch, we wish to calculate smal
kd solutions of Eq.~3.1! first for qd values in the more
restricted interval 2d!(qd)2!1. Again, using the method o
successive approximations, one arrives at the gapp
plasmon solution~Fig. 1, curveB2!

v2
2 ~k,q!5vp

2F S q2d2

4
2

d

2D (
m>1

m2uI m0u1
k2

q2G ~3.11!

for (kd)2!2d!(qd)2!1. The nonretarded acoustic~in q!
shear mode reported@as Eq.~39!# in Ref. 6~b! and in the
present work as A3DM Eq.~2.5b! is readily recovered from
Eq. ~3.11! by first settingk50 and then going to the nonre
tarded limitd50. From the discussion below Eq.~3.6!, the
quasilocalization hypothesis underlying the derivation of E
~3.11! requiresvtD.1. Thus, there exists a criticalq min
below which the validity of the QLCA hypothesis becom
questionable.

When kd is further increased alongB2 to values in the
interval 2d!(qd)2!(kd)2!1, successive approximatio
calculations result in the bulk mode dispersion

v2
2 ~k,q!5vp

2F11k2d2S 1

12
1

1

4 (
m

Jumu0
L D 2

q2

k2G .
~3.12!
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For finite uqdu values up to the edge of the Brillouin zon
the effect of retardation on plasmon dispersion becomes e
more insignificant forkd in the interval 2d!(kd)2!1. The
plasmon mode is therefore quite accurately portrayed by
nonretarded Eq.~36! of Ref. 6~b! and in Fig. 1 as curveC2

~well beyond the elbow!. At exceedingly small wave num
bers (kd)2!2d, taking account of electrodynamic retard
tion would merely add anO(d) correction to the nonretarde
k50 gapped band reported@as Eq.~38!# in Ref. 6~b!.

There is no merging of thek→0 portion of the gapped
plasmon modes into the pair excitation continuum, thus p
cluding the possibility of Landau damping of these mode

IV. SUPERLATTICE TE MODES

We turn next to the analysis of the superlattice transve
dispersion relation~17! @combined with RQLCA Eq.~15!# of
Ref. 6~b!. At long wavelengths the TE dispersion relatio
analogous to Eq.~3.1! is given by

k2d2S 11
d sin kd

kd~coskd2cosqd!
1

d

2 (
m

K umu0cos~qmd! D
1k2d2S 11

d sin kd

kd~coskd2cosqd!

1
d

2 (
m

~K umu02Jumu0
T ! cos~qmd! D

5d (
m>1

@12cos~qmd!#uI m0u. ~4.1!

Following the analytical procedure of Sec. III our task co
sists in determining solutionsk6d of Eq. ~4.1!; here the~1!
solutions refer to the EM branch and the~2! solutions to the
S branch. The problem then consists in solving Eq.~4.1! for
kd as a function ofkd for fixed qd values in each of the two
intervals 0<(qd)2!2d and 2d!(qd)2<p2, where again,
we assumed!1. The in-phaseq50 limit plays no special
role for the TE mode and therefore, it will not be afforded
special treatment.

We consider first the EM branch. Beginning withkd val-
ues in the very narrow interval 0<(kd)2!2d, we solve the
dispersion relation~4.1! by successive approximation to ob
tain

v1
2 ~k,q!5

vp
2

11
d

6
1

d

2 (
m

K umu0

1~k21q2!cs
2. ~4.2!

The dispersion is shown in Fig. 2 as curvesA1 ~for qd50!
andB1 @ for 0,(qd)2!2d#. Equation~4.2! is the superlat-
tice counterpart of A3DM Eq.~2.6a!. At qd505kd, TE and
TM mode frequencies~4.2! and~3.2a! are identical. Ifkd is
increased along curveA1 ~or B1! ~while holdingqd fixed!
to some value in the wider interval 0<(qd)2!2d
!(kd)2!1, the mode frequency~4.2! evolves into the RPA
dispersion v1

2 5vp
21(k21q2)cs

2 reported by King-Smith
and Inkson.4

For qd in the far wider interval 2d!(qd)2,p2, our suc-
cessive approximation calculation again yields the ab
en

e

-

e

-

e

King-Smith and Inkson TE mode~Fig. 2, curveC1! valid
over the entire long-wavelength interval 0<(kd)2!1. This
mode is the superlattice counterpart of A3DM Eqs.~2.7a!
and ~2.8a!. Similarly to the TM analysis, the calculation o
the TE mode frequency atuqdu5p calls for a separate suc
cessive approximation treatment, which results in the m
frequency~3.10!. Our analysis therefore extends the Kin
Smith and Inkson small-qd TE electromagnetic mode
calculation4 into the finite-qd domain right up to the edge o
the Brillouin zone.

We consider next the long-wavelength dispersion of thS
branch. Beginning with the in-phase (qd50) mode, we
solve Eq.~4.1! to obtain~Fig. 2, curveA2!

v2
2 ~k,0!5

k4cs
2d2

4 (
m

Jumu0
T , ~4.3!

for (kd)2!2d and

v2
2 ~k,0!5vp

2S k2d2

4
2

d

2D(
m

Jumu0
T ~4.4!

for 2d!(kd)2!1 ~again, Fig. 2, curveA2!. Equation~4.3!
is theq50 superlattice counterpart to A3DM formula~2.6b!.
Equation ~4.4! corresponds to A3DM Eq.~2.7b!. The de-
nominator factor (11(d/6)1(d/2)(mK umu0) corresponding
to (11K) has been left out of Eq.~4.4! because it is a
higher-order~in d! correction@as it is in Eq.~2.7b!#. Equa-
tion ~4.4! also applies toqd values in the narrow interva

FIG. 2. TE shear (S) and electromagnetic~EM! dispersion
curves calculated from Eq.~4.1! for the superlattice of Fig. 1 with
the sameqd values. The dotted linev/vp'1 andv5kcs light line
corresponding to theqd50 TM mode is shown as a referenc
curve. 2~b! is a magnified picture of theA2 S curve.
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0<(qd)2!2d ~Fig. 2, curveB2!. The quasilocalization hy-
pothesis underlying the derivation of Eq.~4.3! suggests tha
such a mode can propagate~alongk! in a superlattice if its
lattice planes are in a crystalline phase. In an earlier wo
Golden and co-workers8 reported the emergence of a sim
larly structured (v}k3D

2 ) shear mode in the strongly couple
classical 3D OCP again suggesting the existence of the
dratic stage in the 3D OCP crystal.

As to the viability of the ultralow frequency mode~4.3! in
the layered 2D electron liquid phase, the discussion be
Eq. ~3.6! and in Ref. 8 indicates that this mode, like its 3
OCP counterpart, cannot be maintained by particle corr
tions in a normal strongly coupled Coulomb liquid.

On the other hand, the acoustic shear excitation~4.4! can
be maintained by particle correlations in a Coulomb liquid
long as the migration-diffusion timetD is longer than the
mode oscillation time, i.e.,vtD.1 ~corresponding tok
greater than somekmin ; see discussion in Ref. 8!; the acous-
tic shear wave~4.4! is therefore expected to propagate wh
the 2D electron layers are in a strongly correlated Coulo
liquid phase. But then there is still the separate question
decay of this mode by pair excitations~Landau damping! to
consider. To approximately determine the criticalr s where
the mode merges with the pair continuum, it suffices to co
pare the Fermi velocity with the phase velocity of a sh
wave propagating in a 2D electron liquid monolayer.12 The
latter depends on the correlation energy, which is reason
well approximated by the Tanatar-Ceperley13 ~Monte Carlo-
based! formula for the ground-state energy of the 2D crys
phase. Our calculation indicates that atr s values below 17.5,
the in-phase acoustic shear mode lies inside the pair
tinuum and is, therefore, heavily Landau damped. Thus,
phase shear waves can propagate only if the intralayer
pling is sufficiently high and then only at wave numbersk
.kmin@A2d/d.

For 0<(qd)2!2d and 0<(kd)2!2d, our analysis of the
TE dispersion relation~4.1! results in the ultralow frequenc
gappedS mode

v2
2 ~k,q!5

1

4
~k21q2!cs

2S q2d2 (
m>1

uI m0u1k2d2(
m

Jumu0
T D .

~4.5!

Equation~4.5! is the full superlattice counterpart of A3DM
Eq. ~2.6b!. Again, this stage is expected to be viable in
semiconductor superlattice array of 2D crystalline layers

For qd values in the much wider interval 2d!(qd)2!1,
our calculations yield~Fig. 2, curveC2!

v2
2 ~k,q!5

vp
2

4 S q2d2 (
m>1

uI m0u1k2d2(
m

Jumu0
T D

3F12
2d

~k21q2!d2G . ~4.6!

valid over the long-wavelength interval 2d!k2d2!1. In the
kd50 limit, the gap values obtained from Eqs.~4.5! and
~4.6! are identical—as they should be—to their respect
plasmon counterpart Eqs.~3.6! and ~3.11!. ~The distinction
between theS andP modes is meaningless atkd50.!
k,
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For finite uqdu values up top and for 0<(kd)2!2d, our
analysis of Eq.~4.1! results in the nonretarded gapped she
excitation~38! of Ref. 6~b! with an additionalO(d) correc-
tion term arising from retardation. In the much wider interv
2d!(kd)2!1, we recover the nonretarded shear mode d
persion~37! of Ref. 6~b! with the same additionalO(d) cor-
rection attached to the gapped term.

Shear waves with phase velocities below the Fermi vel
ity would be heavily Landau damped were it not for th
energy gap; instead, only the lower energy portion of
shear band penetrates the pair continuum for somek.k* in
the long-wavelength domain.6~b! For phase velocities abov
the Fermi velocity, i.e., forr s.17.5, we have shown that th
in-phase (qd50) mode lies above the pair continuum
Hence all of the higher lying gapped shear excitations a
lie above the continuum and, consequently, escape deca
pair excitations~Landau damping!. One can therefore con
clude that Landau damping should not seriously affect
long-wavelength shear wave propagation when the 2D e
tron layers are in correlated liquid phase.

V. HIGHER-FREQUENCY ELECTROMAGNETIC BANDS

In addition to the fundamental TM and TE electroma
netic modes portrayed by Eqs.~3.2a!, ~3.5!, ~3.8!–~3.10! and
~4.2!, the superlattice exhibits an infinite sequence of high
lying TM- and TE EM bands separated by band gaps~not to
be confused with the correlationalk50 gaps!, which arise
from the presence of the plasma layers. Each band is c
acterized by the value of the reciprocal lattice vectorQ
52ps/d, wheres is a positive integer that labels the ban
the fundamental TM and TE EM branches~analyzed in the
previous sections! are assigned the labels50. Moreover,
eachs>1 band consists of a lower (l ) subband and an uppe
(u) subband, which appear as zig-zag lines in thev-q plane
for a fixed value of the in-plane wave numberk ~Figs. 3 and
4!; this folding back of the dispersion curves is due to t
translational symmetry of the superlattice.

The infinite higher-lying gapped bands have been
ported by a number of investigators3,5 for a variety of super-
lattice configurations described in the Introduction. The c
culations that follow are complementary to the studies
Constantinou and Cottam3 and Haupt and Wendler5 in that
they provide approximate analytical formulas for the TM a
TE electromagnetic bands in an infinite superlattice array
2D plasma layers embedded in a dielectric substrate. Th
formulas will therefore be applicable both to semiconduc
superlattices and to metallic superlattices modelled as an
ray of 2D metallic layers embedded in an insulating su
strate.

In calculating the mode frequencies from TM Eq.~3.1!
and TE Eq.~4.1!, one can show that the correlational cont
butions are even more insignificant for the higher lying ele
tromagnetic bands. Thus, it suffices to solve Eqs.~3.1! and
~4.1! with the correlational coefficientsI umu0 ,Kmu0 ,Jumu0

L,T set
equal to zero. The subband frequencies can be readily ca
lated by assuming solutions of the formkd5(Q6q)d1«
where« is a small quantity to be determined by substituti
into the RPA limit of Eqs.~3.6! and ~4.4!. After some alge-
bra one obtains
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lower subbands:

vl
2~k,q!55

Q2cs
21k2cs

2, qd50

~Q2q!2cs
21k2cs

21vp
2a2~k,q!, 0,qd,p

SQ2
p

dD2

cs
21k2cs

212vp
2a2Sk,

p

dD, qd5p

~5.1!

upper subbands:

vu
2~k,q!55

Q2cs
21k2cs

212vp
2a1~k,0!, qd50

~Q1q!2cs
21k2cs

21vp
2a1~k,q!, 0,qd,p

S Q1
p

d D 2

cs
21k2cs

2, qd5p,

~5.2!

wherea6(k,q)51 for the TE bands and

a6~k,q!5
~Q6q!2

~Q6q!21k2 ~5.3!

for the TM bands. The TE and TM dispersion curves a
displayed in Figs. 3–7. The width of a gap between a low
and upper subband atk50 is calculated to beDv(k50, q
50)5vpAd/2/(ps). The gap width Dv(k50, q50)
5(0.0029/s)vp is quite small for the semiconductor supe
lattice with d51.6431024, whereas for the metallic supe
lattice discussed in Sec. III, the gap widthDv5(0.19/s)vp
for d50.72 is substantially larger.

VI. CONCLUSIONS

In this paper we have analyzed the role of electrodyna
retardation in mode dispersion in infinite superlattices m
eled as an array of regularly spaced 2D plasma layers
bedded in a dielectric material. While metallic superlattic
have been of interest in the present work, our main emph
has been on correlated semiconductor superlattices. The
lowing are the main accomplishments of this paper.

~i! We now have a precise mathematical description of

FIG. 3. Common TM and TE frequency atkd50 vs qd in the
first Brillouin zone for thes50,1,2, electromagnetic bands in a
uncorrelated GaAs/AlxGa12xAs superlattice~d51.6431024 for
ns57.331011 cm22 and d5890 Å! calculated from Eq.~3.1! or
~4.1! at kd50.
e
r

ic
-
-

s
is

ol-

e

evolution of the in-phase (qd50) plasmon from its embry-
onic TM-electromagnetic stage@Eq. ~3.3a!# in the k,vp /cs
domain to its optical-phonon stage@Eq. ~3.3b!# in the k
.vp /cs domain.

~ii ! In addition to the numerically generated dispersi
curves in Figs. 1 and 2, we have established approxim
analytical formulas for the evolution of the gapped plasm
and shear excitations from the propagating region 0<k
,v/cs to the nonpropagating regionk.v/cs of the vk
plane. In the random-phase approximation~RPA! the in-
phase plasmon and long-wavelength acoustic band lie
tirely in the lower-right quadrant~of thev, k plane! bounded
by dispersion curves~3.3a,b! with Jumu0

L 50, K umu050, m
50,61,62, . . .!; in the RPA the out-of-phase mode lies
the bottom of the acoustic band.4 If intralayer correlations
are introduced, the band of correlation-softened acou
plasmons continues to remain confined to the lower-ri
quadrant again with the out-of-phase mode lying at the b

FIG. 4. Common TM and TE frequency atkd50 vs qd in the
first Brillouin zone for thes50,1,2, electromagnetic bands in
correlated (r s52.8) Al/Al2O3 superlattice~d50.721 for vp515
eV, dAl550 Å, doxide5500 Å! calculated from Eq.~3.1! at kd50.
Compare with Fig. 3 and note that the gaps are proportional toAd.

FIG. 5. Dispersion curves for the TMs50,1 bands ands52
lower subband in the correlated Al/Al2O3 (d50.721) superlattice
calculated from Eq.~3.1!. Each shaded region represents a band
modes; only the in-phase (qd50) and out-of-phase (qd5p)
boundaries are labeled.
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tom of the band. If interlayer correlations are also int
duced, the dispersion changes dramatically with the app
ance of theq-dependent energy gaps atk50: the gapped
plasmon band now occupies both lower quadrants boun
by dispersion curves~3.2a! and ~3.3b! and at long wave-
lengths the out-of-phase plasmon now lies at the top of
gapped band~Fig. 1!.

~iii ! We have derived an approximate analytical form
@Eq. ~3.2a!# for the shift in the bulk plasma frequencyvp
arising from electrodynamic retardation. This effect can
quite pronounced in metallic superlattices.

~iv! The solution~4.5! of TM Eq. ~3.1! or of TE Eq.~4.1!
for (qcs)

2!vp
2 and k50 depicts the shear excitation in

quadratic (v}q2) stage. This excitation arises from the co
bined effect of strong interlayer correlations and electro
namic retardation. The quasilocalization hypothesis unde
ing the derivation of Eq.~4.5! for v2(0,q) suggests that suc
an ultralow frequency wave can propagate in a semicon
tor superlattice when its lattice planes are in a 2D Wig
crystal phase. For 0,kd!A2d , we observe that the
v2

2 (0,q) term shows up quite naturally as the first vestige

FIG. 6. Dispersion curves for the TEs50,1 bands ands52
lower subband in the correlated Al/Al2O3 (d50.721) superlattice
calculated from Eq.~4.1!. Note that the narrowing of the gaps wi
increasingkd is a finite-d effect not reflected in Eqs.~5.1! and~5.2!.
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e

-
y-
ly-

uc-
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of

the energy gap in the initial TM electromagnetic stage~3.6!
of the plasmon.

~v! The in-phase shear excitation also has a simila
structured initial quadratic stage (v}k2) arising from the
same effects.

~vi! We have calculated the mode frequencies@Eqs.
~5.1!–~5.3!# and dispersion curves~Figs. 3–7! for the infinite
sequences of TM- and TE-polarized electromagnetic ba
in an infinite superlattice of 2D plasma layers embedded i
dielectric substrate. The bands are separated by gaps
arise from the presence of the plasma layers. The analy
mode frequency formulas constitute the principal contrib
tion to the literature3,5 on these higher lying EM bands.
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FIG. 7. Three-dimensional view of thes50,1 TE electromag-
netic bands for the correlated Al/Al2O3 (d50.721) superlattice cal-
culated from Eq.~4.1!.
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