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The authors analyze the effects of electrodynamic retardation on the collective modes in an unmagnetized
infinite superlattice modeled as an array of parallel two-dimensional plasma layers embedded in a dielectric
substrate. The present work concentrates for the most part on correlated semiconductor superlattices, although
the model is equally well suited to metallic superlattices consisting of an alternating array of thin metal layers
and thick insulator slab&.g., 50 A Al layers and 500 A AD, slabs. The analysis is based on the transverse
magnetic(TM) and transverse electrid@E) dispersion relations recently formulated by the authors in the
retarded quasilocalized charge approximatBQLCA) [K. I. Golden, G. Kalman, L. Miao, and R. R. Snapp,

Phys. Rev. B55, 16 349(1997)]. In the nonretarded limit, the QLCA mode structure consist$)adn isolated
in-phase plasmon modéi) a band of gapped plasmorisi) an in-phase acoustic shear mode, émgla band

of gapped shear modes. This paper presents numerical and approximate analytical solutions of the long-
wavelength RQLCA dispersion relations for the collective mddediv) all the way down to very small wave
numbers where retardation effects can be especially pronounced. Additionally, this work presents insightful
approximate analytical formulas for the electromagnetic mode frequencies and gap widths, which add to the
literature on the infinite sequences of TM- and TE-polarized electromagnetic bands. Some noteworthy effects
that emerge from this study are as followa): The appearance of ultralow frequency shear modes arising from
the combined effect of retardation and strong coulomb interactions; the quasilocalization basis of the theory
suggests that these modes can propagate when the two-dimensional plasma layers are in a crystallibg phase.
A negative random-phase approximation shift in the bulk-plasma frequency induced by electrodynamic retar-
dation; this effect can be appreciable in insulator/metal superlat{i664.63-18208)05516-7

. INTRODUCTION Al/Al ,05 consisting of alternating thin metallic layers/thick
insulator slabs. While metallic superlattices are of some in-
In the previous decade a number of investigdforana-  terest in the present work, our main interest will be in corre-
lyzed the effects of electrodynamic retardation on collectivelated semiconductor superlattices, which, in the nonretarded
excitations in a variety of infinite superlattice systems. Bas{c—o) limit, exhibit an energy gap in the plasmon and
ing their calculations on the random-phase approximatiorshear mode dispersiofis.
(RPA) (Refs. 1,4 or on simple RPA-like hydrodynamical The RPA mode structure of the unmagnetized superlattice
models?>°these studies do not consider the effects of strongonsists of(i) an isolated in-phase plasmon mod#g), a band
intralayer and interlayer Coulomb interactions. Our ownOf acoustic plasmon modesiii) an infinite sequence of
studies} carried out within the quasilocalized charge ap-transverse magnetid@M)-polarized(with the magnetic-field
proximation(QLCA) in the nonretardedo(— ) limit, reveal ~ Vvector lying in the superlattice plapeelectromagnetic
that strong Coulomb interactions profoundly modify the bands}®and (iv) an infinite sequence of transverse electric
RPA mode structure of unmagnetized semiconductor supefd E)-polarized(with the electric-field vector lying in the su-
lattices. Thus, it remains to be seen how electrodynamic reperlattice plangbands>*”
tardation effects add to or extend the QLCA mode strufture  Insofar as the RPA plasmon dispersion is concerned, the
in correlated superlattices. This is a central theme of th&ffect of electrodynamic retardation is most pronounced at
present paper. exceedingly small in-plane wave numbér®f the order of
The system of interest in this work is the unmagnetized 4mnge? (m*dc?) ]¥*=w,\ec (ng is the areal density of
infinite superlattice modeled as an array of two-dimensionathe 2D electron layers is the spacing between layets, is
(2D) plasma layers embedded in a dielectric substrate. Thithe bulk plasma frequency is the substrate dielectric con-
model is ideally suited to the GaAs/&a, _,As superlattice stany. At thesek values and extending well into the long-
and it can also be adapted to metallic superlattices, e.gwavelength (up\/e—s/c<k<1/d) domain, the dispersion of
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the in-phase plasmon mode was calculated by King-Smitlin-phase transverse shear mode that exhibits acoustic-phonon
and Inksofi to be like dispersion at long wavelengtf€ and (iv) a band of
gapped shear modé&¥)
w=kc/\es for O<ks= wp\/s—S/C (1.13 In the present work, we wish to establish a precise math-
ematical description of the collective mode structure in the
and domain where both the in-plane and perpendicular wave
numbersk andq, are of the order oa‘op\/s—slc, that is, where
w=w, for k=w,\edc, (1.10  retardation effects are important. In this domain the retarded
QLCA (RQLCA) calculations in Secs. Il, lll, and IV indicate
the first vestige of th&=0 energy gap in the plasmon fre-

; . uency and the existence of a new ultralow frequency shear
plasmon therefore begins as an electromagnetic wave. |

ion n-oh ™ elect i d I ode stage that arises from the combined effect of strong
g;;ndp?g'gg in-phase electromagnetic mode was calCle,, 1omb interactions and retardation. The guasilocalization

hypothesis underlying the derivation of these modes suggests
that they can propagate in a semiconductor superlattice of 2D
crystalline plasma layers. According to the calculations of
Swierkowski, Neilson, and Szymanskirystalline plasma
layers can form atsz(rrnsa’gz)l’zz 25 for a layer spacing
_ - d=0.768/(ng)*? (realizable in a type-I hole superlattice
w=keles for k=wpedc, (1.2p  With ng=1.6x10" cm™? andd=343 A); af is the Bohr ra-
dius.
with the TM-polarized electromagnetic bands confined to the The present paper focuses primarily on collective excita-
k<wiedc, 0= w, propagating sector. Equatiofk.1) and tions at lowerrg values where the plasma layers are in a
(1.2) are approximately correct at the RPA level. In the non-liquid phase. The main goal is to analyze the RQLCA dis-
retarded limit, we found that the in-phase mode frequencyersion relations for the gapped plasmon and shear modes
(1.1b should exhibit a positive RPA frequency shift and to establish approximate analytical formulas for the
(kd)zwp/24 arising from higher-ordein kd) terms in the mode frequencies. Here we are especially interested in the
long-wavelength Kd<1) expansion of the superlattice form evolution of these modes &dncreases from the propagating
factor F(k,0)=sinhkd)/[coshkd)—1].5®' In this paper, en- region O<k<w\eJc to the nonpropagating regiork
route to deriving the non-RPA correlational corrections to=« \e/c. Such calculations are necessary preliminaries to
Egs. (1.1) and (1.2, we restore the missing nonretarded the study of the possible radiation mechanisms of oscilla-
(kd)?w,/24 RPA correction to Eq(1.1b. But in so doing, tions and instabilities in superlattices.
we also discover the existence okdndependent RPA cor- The existence of infinite sequences of TM- and TE-
rection arising from retardation that shifts the bulk-plasmapolarized electromagnetic bands separated by gaps arising
frequency downwards. Admittedly, both RPA corrections arefrom the presence of the plasma layers has been reported for
exceedingly small for the semiconductor superlattice in thea variety of infinite superlattices>° This folding back of the
domain wherek is of the order opr\/s—s/c. Nevertheless, dispersion curves into the first Brillouin zone is a conse-
both have the same magnitude there and, as such, should §eence of the translational symmetry of the superlattice. The
retained if one is to have a precise mathematical descriptiogaps, which appear at the boundaries of the Brillouin zone,
of the evolution of the in-phase plasmon frded=0 up to  are exceedingly narrow in semiconductor superlattices; how-
kd values in the long-wavelength domain where the nonreever, they are far more pronounced in metallic superlattices.
tardedO[(kd)pr] RPA and correlational correctio#® be-  Constantinou and Cottalfl obtained the TM bands by solv-
come dominant. ing the TM dispersion relation for a superlattice model con-
An equally compelling reason for retaining the retardationsisting of an alternatindhBABABstructure with a 2D elec-
correction all the way down tk=0 is that the effect appears tron gas at each interface separating the finite thickAéBs
to be far more pronounced in metallic superlattices. The caldielectric slabgmodulation-doped GaAs/AGa, _,As super-
culations of Babiker, Constantinou, and Cotf&hfor a me- lattice, e.gl. Babiker, Constantinou, and Cottafh obtained
tallic superlattice consisting of alternating insulatbymetal  the TM and TE bands for a metallic superlattice comprised
(2) slabs of comparable thicknessgs andd, indicate that of alternating metal/insulator slalial/Al ,Os, e.g) of finite
retardation brings about an appreciable negative RPA corre@nd comparable thicknesses. These investigators and Haupt
tion in the nonretarded in-phase electromagnetic mode freand Wendlet also obtained the TM bands for a metallic
qguency (1.23. In this paper, we isolate and quantify this superlattice consisting of an alternating metal 1l/metal 2
effect in insulator/metal superlattices having latged, ra-  structure(Ag/Al, e.g) where again the metallic slabs have
tios that can approximate our layered 2D plasma model. finite and comparable thicknesses. Our contributions to this
In contrast to the RPA the nonretarded QLCA modetopic in the present paper are complementary to the above
structure of the unmagnetized semiconductor superlatticerorks in that for the infinite superlattice consisting of 2D
consists of(i) an isolated in-phase longitudinal plasmon, electron layers embedded in a dielectric substrate, we estab-
which, for sufficiently strong interlayer coupling, exhibits lish approximate analytical formulas for the TM- and TE-
crystal-like negative dispersion at long-wavelengthspolarized electromagnetic bands and for the gap widths sepa-
(kd<1),*® (ii) a band of gapped plasmon modedii) an  rating the bands. These oscillation frequency formulas will

with the RPA acoustic band confined to tke w\eJ/c, w
<w, nonpropagating sector of the, k plane; the in-phase

w=w, for 0sk<w,sdc (1.2a

and
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therefore be applicable to both semiconductor superlattices 1
and metallic superlattices consisting of alternating thin Q=5 2 [1—-cogamd)]|lmol,
metal/thick insulator slabs. m=1
The mode frequency calculations of the present paper are s
based on the RQLCA TM and TE dispersion relations de- J(q)== > I coggmd)
rived by us in Ref. €). The organization of the paper is as a 25 T a
follows. In Sec. Il we analyze the collective excitations in a

homogeneous anisotropic medium m&&ebf the correlated 0 E

superlattice. Such a preliminary model is useful in the van- Kla)=3 - Kmocosgqmd)

ishing layer separatiord(—0) limit and will be used to pro-

vide a physically transparent—albeit simplified and some- 5E(wpd/\/2cs)2, Co= C/\/s—s. 2.2

what inconsistent—portrayal of the mode structure and of

the polarization of the modes. In Secs. Il and 1V, we analyzdntralayer(00) and interlayer ¢-10,+ 20, .. .) correlational

the RQLCA dispersion relations for the superlattice in thecoefficientsl andJ,';0 are defined in Ref. ®) in terms of

long-wavelength (&kd<1) regime, and we establish ap- the full hierarchy of superlatticélayer m-layer n) static

proximate analytical mode frequency formulas forthe iso-  structure functionsS,,(k); the Ko coefficient is similarly

lated in-phase plasmon and TM electromagnetic mogigs, defined:

the band of gapped plasmon modés) the Q=0 band of

TM-polarized electromagnetic modéthe reciprocal lattice B , —K'|mld

vector Q= (2#/d)s or, equivalently, the integes enumer- KIm\O_N_ 2 k'd [Simjo(k’) = émole - (23
. . € k

ates the bands(iv) the in-phase transverse shear mage,

the band of gapped shear modes, &ridithe Q=0 band of In thed—0 limit Z is of O(g?), and thus in thé&=0 limit

TE-polarized electromagnetic modes. In Sec. V we establisthe dominant term inw? is of O(q*). In contrast7(q) and

approximate analytical mode frequency formulas for she K(q) assume constant values ag—0, i.e. J-(0)

=1,2,3... TM- and TE-polarized electromagnetic bands, ~(5/2)EmJ‘Lm‘O, K(0)~(612)Z K |mjo- It is of interest to

and we calculate the widths of the gaps. Conclusions arexamine thek—o and gq—oe limits (but keeping in mind

drawn in Sec. VI. that kd<1 andqd<1 are still satisfied For k—o, q=0
one obtains
II. ANISOTROPIC MEDIUM DESCRIPTION
_ _ w? =k3c2, (2.49
In general, for a givergq value (q is the wave number
perpendicular to the lattice planeboth the TM and TE 1
modes split into two independent branches, a high-frequency wi=—— (w§+ k2C§jL), (2.4b
optical (or, rather, polaritonlike EM branch and a low- 1+K

frequency branch. The low-frequency branch of the T™M
mode can be referred to as the plasmé?) pranch. This
latter branch, in the RPA approximation is acoustic, but the w2+:q205+w’2)' (2.53
acoustic character is destroyed once interlayer correlations

are introduce¥and ak=0 gap develops. The low-frequency 1

branch of the TE mode is a shearlike excitation that vanishes  w® =Z(q) w3~ 7 ©302d? X, m?[l . (2.5b
in the RPA limit and will be referred to as tHg& branch; it 4 m=1

also develops a gap &=0. Thus, these low-frequency Tpyg the picture that emerges from this treatment comprises

modes are more precisely referred to as “gapped-plasmonty, modes with complementary behaviors. The eigenmodes
(TM) or “gapped-shear”(TE) excitations. An exception is  are nojarized in théq plane. But it should be noted that, in

the =0 case where the quasiacoustic chara@ier-0 for  general, neither of them is polarized in the=&k or g
k—0) does survive. The high-frequency EM branches are_g g girections. The polarizations also change along the
always on the left of the light line; in contrast, the 1ow- v, pranches as a function & In the absence of correla-
frequencyP or S branches exist on both sides of the light +i5ns theP branch @_) starts out along the light line as a
line. . L . transverse wave propagating alokg(since it is polarized

In the van-lshlng layer sep_aratlon limit, ie., combiried! alongz, it is unaffected by the plasma frequeh@nd ends
—0, qd—0 limit, a superlattice can be described as an any,, a5 4 pulk plasmotwith longitudinal polarization along)
isotropic 3D dlellectrlc mediunfA3DM). Co_nsm_ier f|r'st the w,. On the other hand, the EM branch () also starts
TM modes. Solving the Ref.(6) A3DM longitudinal disper-  , + 2« a transverse wave propagating alqri@nd polarized

sion relation(47) with (45) (suitably modified to take ac- alongx and thus affected by the plasma frequenayd ends
count of the correlation-induced electromagnetic ejfecid up algong the light line as anyEM vsave polarigedr:?mghe

. 2 2 . .
expanding toO(k?) andO(q°), one finds the two solutions  incinal modification due to correlations is manifested

while in theg—oe, k=0 limit one has

w2 through the second term in E.1b: it represents a corre-
wi:ﬁﬂfcg, (2.1a lation maintained shear wave propagating alonwgith the

peculiar o ~qg? dispersion. This depression of the normally
2 o2 202 acoustic shear mode dispersion is an electromagnetic effect
wZ=k°cs+q°csT. (2.1b and an identical behavior has already been demonstrated in
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strongly coupled 3D plasméslincreasingq (over w/c) the nonretarded limit is the acoustic pIaanrBrIn general, a
brings the shear mode into the linear domfaih (2.5)].6(b> rigorous analysis requires the analysis of the superlattice lon-

Further correlational effects are associated with thegitudinal dispersion relatioril16) of Ref. §b) [combined
k?cJt and w3/(1+K) terms in Eqs(2.1) and (2.4). The  with RQLCA Eq. (15) of that same referen¢eo which we
former represent the negative plasmon disper¢imte that now turn. Concentrating on the long-wavelengtd1)
J-<0) induced by correlations: this again is well known in regime of interest in the present work, our task can be re-
the 3D situation. The latter generates a positive shift ( duced to finding solutions fok?= (w/cg)?—k? of the small
<0) of the plasmon frequency due to a combined effect ok dispersion relation
the correlations and transverse interaction: this effect was
discussed in Refs. 8 and 9.

We turn next to the A3DM description of the TE modes. 6
These modes are isotropic in the sgnse that the correlation- K2d2(1+ > % Kmocos{qmd))
independent terms depend aif ¢ k?) only. For smallq and
K the two modes are + k2d2(1+ g % (K|m|o—JLmo)COs{qmd))

2

2 _ @p 2 2\ A2 i
Ty (263 o oxdsnkd s [1—coqma)]|l mol-

~ coskd—cosqd ' (&4
3.1

k2c2
w?® = (K*+ qz)ci(I(qHJT wzs). (2.6b
P
Solutions x?= k% <0 correspond to propagation along the
in-plane wave vectok with exponential decay of the per-
turbed field quantities in the direction. Solutions«®= x>

The highk (g=0) and highg (k=0) limits are simply

w}= k205+ w,zy (2.79 >0 correspond to oblique propagation along the wave vector
K . =k+ &,k which lies in thexz plane if one takek =K.
w2 :L Tk2c2 2.7b The analysis consists in solving E@®.1) for «d as a func-
T 1+K s ' tion of kd while holding the mode parameted fixed in the
two intervals 0<(qd)?<26 and 26<(qd)?< 2. The quan-
and tity 25E(wpdlcs)2 serves as a convenient reference point
2 02 2 for organizing the calculations. Unless otherwise stipulated,
0} =0°Cst+ wy, (283 \ye assume that<1, which is always the case for semicon-

) ) ductor superlattices.
0’ =Z(q)w}, (2.8b
whereJ" =5 /o With J o given by Eqs(30) and(33) of

T A. In-phase modes
Ref. b). In contrast to the TM modes, the polarization is

always fixed along thg axis. Thew, EM branch is similar Beginning with the in-phaseg(d; 0) modes, we seek so-
to that in a(3D) plasma. Thew_ branch is a gapped shear lutions to Eq.(3.1) such thatk“d“<1, consistent with the
excitation with the typicato?~q* type dispersion. assumed smallness 6fqd, andkd. Using a straightforward

method of successive approximations with the trigopnometric
functions replaced by their small-argument expansions, one
obtains two solutions-. : the (+) solution refers to the in-
The A3DM misses noncorrelational effects, which arephase TM EM branch and thie-) solution to the in-phase
caused by finite layer separation. Foremost amongst these ptasmon. The corresponding frequencies are calculated to be:

Ill. SUPERLATTICE TM MODES

4 2

b 1+ K22
) 6 O

w%(k,0)= 1+€+§% Kimlo

1 N 1 E 3
12" 44 “ImoJ | for 0<(kd)2<25* (3.29

[ (kco)? for (kd)?=26* (3.2b
( (kcg)? for 0<(kd)’<28* (3.39
2
2 _ @p 242 i E L
w-(k0) LHkd? 5+ 7 2 Jlmlo” for (kd)?=28*  (3.3b

6 O
\l+g+§%: K\m|0
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S 3 5=162x107%
o = ) (3.4 10
C+

S5
1+3 > (Kjmjo= Jfjo) )
m

B+

Formulas(3.2b and(3.3b are the superlattice counterparts

of A3BDM Egs. (2.4). The plasmon frequency if3.3b Lo A

exhibits the positive RPA dispersionkd)?/24 and the @p _ -

negative correlation-induced Coulomb  dispersion Lol b /

[~ (k?d?/8)| S mJfryjol] discussed above and in Retbf Re- c

tardation effects show up in E¢3.2) as the negative RPA .

and positive correlational  shifts —dwp/12  and 10 B-

+ (6wp/4)|Z K mjol in the plasma frequency. For the semi- | - ™
conductor superlattice model of this pagan array of 2D 10’31073 T — ST 0

electron liquid monolayers embedded in a dielectric sub-
stratg, these shifts are exceedingly small in the weak cou-
pling regime (6=1.64x10* for GaAs/ALGa _,As with
ng=7.3x10" cm 2, d=890 A, m* =.07m,, ¢,=13.1) and
even smaller in the strong-coupling regirig=1.62x< 10 ° FIG. 1. TM plasmon P) and electromagnetitEM) dispersion
for ng=1.3x10'" cm?, d=500 A). Nevertheless, th®(5)  curves calculated from Eq3.1) for a strongly correlated GaAs/
corrections are retained in E¢3.3b [and consequently in  AlGaAs superlattice(§=1.62x10"° for ng=1.3x 10 cm 2 and
Eqg.(3.2a] in order to present a precise analytical descriptiond=500 A). The EM(+) and P (=) modes are labeled hyd val-
of the evolution of the in-phase plasmon kd increases ues: A.(qd=6x10"%), B.(qd=6x10"2), C.(qd=m/6),
from \25* [where theO(5) and O(k?d?) corrections are D_(qd=).

comparabléto values well beyond/26* where theD(k?d?)

dispersion eventually dominates. The next paragraph dizng 6=w§2d2d1/(202)=0.721, we obtain ,(0,0)=

?resste§ §om§]wgat5to preset'.”t an ecI]EuaI:I)’yzcompsl!ingI;E reas%450p’ giving a 5.5% shift. Even better agreement is ob-
or retaining theO(4) corrections in Eq(3.23 and in Eq. tained using the parent TM dispersion relati@l) instead

(3.5) below. ’ o . . .
Retardation effects become more pronounced with in-.Of Eq. (3.23: we calculate a 5.7% negative RPA shift. This

creasingd and ng: thus, they are expected to be of more Is not surprising considering that_ the_ derivation of E2129
significance in metallic superlattices. This has aIread%/ beeﬁOm Eq. (3.) assumess<1, which is no longer the case
pointed out by Babiker, Constantinou, and CottéBeC)>® ere. _ _

(but without giving a mathematical description of the effect ~ FOr the AbOs/Al superlattice withwp,; =158V, ther

in relation to metallic superlattices modeled as alternating™ 2-8 value suggests that the positive shift arising from the
insulator(1)/metal (2) slabs of comparable finite thicknesses Koo intralayer coefficient might be significatinterlayer cor-

d, andd,. This is also the case when the metallic layers arg€lational effects are insignificant in virtue of the smallness
thin compared with the insulator layers so that the metallicof the coupling parametersa/d;~0.008 for d; =500 A).
superlattice can be modelled as an array of 2D plasma layefdur Ky~ —0.003 estimate, in fact, indicates that the posi-
embedded in an insulator substrate. Consider first the situdive intralayer correlational shift is swamped by the negative
tion where the slab thicknesses are comparable. In the nofRPA shift. Thus, for metallic superlattices modeled as alter-
retarded ¢—o°) limit, the BCC formula for the in-phase nating insulator(1)/metal (2) slabs with larged, /d, ratios,
kd=0 plasmon frequency..= wp[1+e1(d;/d,)] ¥ can  the kd=0 in-phase TM mode frequency is reasonably well
be readily derived from the BCC alternating slab dispersiomjescribed by th&d=0 RPA limit of Eq.(3.28 and, conse-
relation [Eq. (5.1) in Ref. 3b)]. Using the approximate quently, by the RPA limit of Eq(3.5) below.

numerical valuess,,=15 eV, e;=3, d; =100 A, d,=50

quoted from Babiker, Constantinou, and Cotf&hifor an

Al,O3/Al superlattice, we calculate , (0,0)|gcc~0.987w.. B. 0<(qd)?<28

from the BCC retarded dispersion relatigkg. (4.2) in R . h icond latti d
Ref. qb)], i.e., a negative RPA shift of 1.3%. This shift ~ Returning to the semiconductor superlattice, we exten

becomes more pronounced at the higigfd, ratios which ~ "OW the calculation of the mode frequgnmes to nonzgulo
begin to approximate the layered 2D electron liquid model ofv@lues in the very narrow intervakd(qd)“<2¢. The analy-
this paper; for example, witll,; =500 A>d,=50A [see, SIS IS facilitated by dividing the problem into the twkad
for example, Jin and Ketterst, we calculate w,  Subintervals & (kd)’<26 and 25<(kd)*<1. Thus thew .
=0.18Qw,, and ©,(0,0)gcc=0.942w., giving a negative EM mode is represented by E(B.2 atqd=0, andw_ is
RPA shift of 5.8%. This compares quite well with the RPA now the “gapped”(w#0 for k=0) P mode.

shift calculated from Eq(3.29: with the bulk-plasma fre- For kd values in the very narrow interval(kd)?<24,
guency given aSwpzwpz[dz/(sldl)]1’220.1820p2~ w, the EM branch dispersion is portrayed by Fig. 1, cufze
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) w; ) The companionA.) EM branch dispersich
w-t—(k!q): +qZCS 2
4= q
5 % Kimlo w2 (k,q)= (k2+q2)cz+w b 12 (3.9
+w2k2d2 _+ 1 2 It asymptoticalzly.approaches the Iight line: this can be com-
127 4 & ~Imlo pared withw? in Eq. (2.4). Correlational terms are not dis-
played in Eq.(3.8) since they would eventually show up as
q%k%c? 2w very high-order undetectable contributions.
+ +O(wpo?). (3.5
w
P

C. 26<(qd)’<=w?
The P branch(Fig. 1, curveA_) ) (d)=m
We consider next the long-wavelength modesddrval-

) - qzcg q2d2 ues in the far wider interval &<(qd)?< 7.
w=(k,q)=kc5| 1= —7——— E (Kjmjo= o) Addressing first the EM branch, one again seeks solutions
P to Eq. (3.1 such that(i) |«d|<1 for |qd|<1 and(ii) «d
q*c2d? =qd+ ¢ for qd finite; for (ii) the task consists in calculating
7 > Al ol (3.6)  the small positive correctiom<|qd|. After some algebra
m=1 involving successive approximations, one obtains the same
also exhibits electromagneticlike dispersion. Formyms) ~ result for(i) and(ii) above(Fig. 1, curvesB, ,C.):
and (3.6) can be compared with A3DM formulag2.1). o
These latter are calculated with the assumption thatO 2k K2+ g2 c + 3.9
andk?c?< w?. Equations(3.5) and(3.6), on the other hand, W3 (k) =(K+a%)cs+ wp qZ+ K2’ 3.9

are the outcome of a formal expansionkid and qd.

Wave numbeiq having lost its role as the third compo-
nent of the wave vector, the last term in £§.6) should be
regarded as a “gap.” The polarization of this mode has al-
ready been discussed. The quasilocalization hypothesis u
derlying the derivation of Eq(3.6) suggests that this low-
frequency mode exists as well when the lattice planes are i
a 2D Wigner crystal phaseWhen the lattice planes are not 2
crystalline, the survival of this initial stage of the gap in Eq.
(3.6 is, in fact, unlikely since in a 2D Coulomb liquid phase
the migration-diffusion timerp of the particles away from a)i(k,tz) =
their instantaneous positions is far too short compared with d
the mode oscillation time to justify the RQLCA basis of Eq.

(3.6) [Ref. 6b)]. This suggests that when the lattice planes Addressing next th® branch, we wish to calculate small-
are in the liquid phase, the correlational terms in Bj6)  kd solutions of Eq.(3.1 first for qd values in the more
can be discarded, leaving only RPA plasmon disperdion,restricted interval 2<(qd)?<1. Again, using the method of
which is always confined to the lower-right quadrantsuccessive approximations, one arrives at the gapped-
bounded by theyd=0 P branch and thé&d axis. plasmon solutior{Fig. 1, curveB_)

As (kd)? increases well beyondszo the point where it is
in the interval 2<(kd)?<1, theA_ branch evolves even- qzdz_ 3 E |
tually into the nonretarded longitudinal bulk plasmon re- 4 2/= " i m0|+
ported[as Eq.(40)] in Ref. 6b). This quasistatic behavior is
characterized by an acousti@¢q) gap, which in the qua- for (kd)?<28<(qd)?<1. The nonretarded acoustin q)
sistatic limit arises ak=0 [see Eq(39) of Ref. b)]. Inthe  shear mode reportefhs Eq.(39)] in Ref. 6b) and in the
present fully retarded description the acoustic gap is slightlypresent work as A3DM Eqd2.5b) is readily recovered from
shifted and is reached at the light line: Eq. (3.1]) by first settingk=0 and then going to the nonre-

tarded limit §=0. From the discussion below E(B.6), the
2 w21 | quasilocalization hypothesis underlying the derivation of Eq.
1 mo (3.1 requireswrp>1. Thus, there exists a critical min
w?’(k= w/cs)— q°d? 5 below which the validity of the QLCA hypothesis becomes
_ _Jt questionable.
T 2 % (Kimo™ Jyao) Whenkd is further increased alonB_ to values in the
(3.7 interval 26<(qd)?<(kd)?<1, successive approximation

calculations result in the bulk mode dispersion

valid for 26<(qd)?2<w? and over the entire long-

wavelength interval & (kd)?<1. A3DM formula(2.53 is

the k=0 counterpart of Eq(3.9). The mode frequenc{B.9)

an also be derived from the King-Smith-Inkson RPA Eg.

3.10;* our result, however, is not restricted |tpd|<1. The

ﬁalculatlon of the EM frequency at the edge of the Brillouin
one|qd| = calls for a separate successive approximation

treatment that yields

2
T
Ez't'kz C2

(3.10

w? (k,0)=w; (3.1

as it can be easily verified directly from E@®.1). The gap is
followed by the quasiacoustic plasmon dispersion portrayed

by Eqgs.(41) and(42) of Ref. Gb). This development is not w2 (k q)=w E It
portrayed correctly by the A3DM because of the missing Y 2" Imio
acoustic portion of the dispersion. (3.12

2
1+k?d? q—
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For finite|qd| values up to the edge of the Brillouin zone,
the effect of retardation on plasmon dispersion becomes even 10
more insignificant fokkd in the interval 2<(kd)?<1. The
plasmon mode is therefore quite accurately portrayed by the 10°
nonretarded Eq36) of Ref. 6b) and in Fig. 1 as curve _ B*
(well beyond the elboyv At exceedingly small wave num- 1
bers kd)?<26, taking account of electrodynamic retarda-
tion would merely add a®( ) correction to the nonretarded w At
k=0 gapped band reportéds Eq.(38)] in Ref. h). w, !

There is no merging of th&—0 portion of the gapped D
plasmon modes into the pair excitation continuum, thus pre- 107 .
cluding the possibility of Landau damping of these modes. '

§=162x10"°

C+

IV. SUPERLATTICE TE MODES TE

We turn next to the analysis of the superlattice transverse I
dispersion relatioi17) [combined with RQLCA Eq(15)] of ke,
Ref. 6b). At long wavelengths the TE dispersion relation (a) w_p
analogous to Eqg3.1) is given by

J sin kd

242
«d xd(cos kd—cosqd) *

1+

5 .(\w/,,,.,
5 % K|m|ocos(qmd)) w \oy‘\

S sin kd 105
1+
xd(cos kd—cosqd)

+k2d?

1

-3 - 1
1077 ke, 10 10

(b) wp

é
T
+§ % (Kimjo= Jjmjo) cos{qmd)) FIG. 2. TE shear $) and electromagneti¢EM) dispersion

curves calculated from Ed4.1) for the superlattice of Fig. 1 with

the sameayd values. The dotted line/w,~1 andw=Kkc; light line

corresponding to thegyd=0 TM mode is shown as a reference

curve. 2b) is a magnified picture of th&_ S curve.

Following the analytical procedure of Sec. Ill our task con-

sists in determining solutions..d of Eq. (4.1); here the(+)

solutions refer to the EM branch and the) solutions to the ~ over the entire long-wavelength intervak@kd)?<1. This

S branch. The problem then consists in solving E1) for ~ mode is the superlattice counterpart of ASDM E(&.79

«d as a function okd for fixed qd values in each of the two and(2.89. Similarly to the TM analysis, the calculation of

intervals O<(qd)2<26 and 25<(qd)?<=?, where again, the TE mode frequency atjd|= 7 calls for a separate suc-

we assumeS<1. The in-phasg=0 limit plays no special cessive approximation treatment, which results in the mode

role for the TE mode and therefore, it will not be afforded afrequency(3.10. Our analysis therefore extends the King-

special treatment. Smith and Inkson smatid TE electromagnetic mode
We consider first the EM branch. Beginning wkhl val- calculatior into the finitegd domain right up to the edge of

ues in the very narrow interval<9(kd)?<26, we solve the the Brillouin zone.

dispersion relatiort4.1) by successive approximation to ob- ~ We consider next the long-wavelength dispersion of3he

=am§1 [1—cogqmd)]|l o). (4.2)

King-Smith and Inkson TE modé&Fig. 2, curveC.) valid

tain branch. Beginning with the in-phasejd=0) mode, we
, solve Eq.(4.1) to obtain(Fig. 2, curveA_)
% (ka)= _F +(R+ g (42 LKA
1+ -+ 5 2 Kimlo 02 (k0)=—3— 2 Jo. 4.3
6 2% m
. o N for (kd)?<26 and
The dispersion is shown in Fig. 2 as cun/s (for qd=0)
andB, [for 0<(qd)?<245]. Equation(4.2) is the superlat- 5 5 k2d2 ¢ T
tice counterpart of A3SDM Eq2.63. At qd=0=kd, TE and w?(k,0)= wp(T— 5) % Jimlo (4.9

TM mode frequencie$4.2) and(3.23 are identical. Ifkd is
increased along curv&, (or B, ) (while holdingqd fixed)

for 26<(kd)?<1 (again, Fig. 2, curved_). Equation(4.3)
to some value in the wider interval <0(qd)?<28

is theq= 0 superlattice counterpart to A3BDM formul2.6b).

<(kd)?<1, the mode frequencis.2) evolves into the RPA
dispersion w? = w2+ (k*+q?)c; reported by King-Smith
and Inksorf:

For qd in the far wider interval 2<(qd)2< 2, our suc-

Equation (4.4) corresponds to A3DM Eq(2.7b. The de-
nominator factor (3 (6/6)+ (6/2)Z,K|me) corresponding
to (1+K) has been left out of Eq4.4) because it is a
higher-order(in §) correction[as it is in Eq.(2.7b]. Equa-

cessive approximation calculation again yields the abovéion (4.4) also applies tagd values in the narrow interval
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0<(qd)?<24 (Fig. 2, curveB_). The quasilocalization hy-  For finite|qd| values up tor and for O<(kd)*<2s, our
pothesis underlying the derivation of E@.3) suggests that analysis of Eq(4.1) results in the nonretarded gapped shear
such a mode can propagatongk) in a superlattice if its ~excitation(38) of Ref. &b) with an additionalO( ) correc-
lattice planes are in a crystalline phase. In an earlier work{ion term arising from retardation. In the much wider interval
Golden and co-workefseported the emergence of a simi- 26<(kd)?<1, we recover the nonretarded shear mode dis-
larly structured (oocng) shear mode in the strongly coupled persion(37) of Ref. 6b) with the same additionaD( ) cor-
classical 3D OCP again suggesting the existence of the quaection attached to the gapped term.
dratic stage in the 3D OCP crystal. Shear waves with phase velocities below the Fermi veloc-
As to the viability of the ultralow frequency mod4.3) in ity would be heavily Landau damped were it not for the
the layered 2D electron liquid phase, the discussion belovenergy gap; instead, only the lower energy portion of the
Eq. (3.6) and in Ref. 8 indicates that this mode, like its 3D shear band penetrates the pair continuum for skmi* in
OCP counterpart, cannot be maintained by particle correlathe long-wavelength domaff’ For phase velocities above
tions in a normal strongly coupled Coulomb liquid. the Fermi velocity, i.e., for>17.5, we have shown that the
On the other hand, the acoustic shear excitaftbd) can  in-phase d=0) mode lies above the pair continuum.
be maintained by particle correlations in a Coulomb liquid soHence all of the higher lying gapped shear excitations also
long as the migration-diffusion timep is longer than the lie above the continuum and, consequently, escape decay by
mode oscillation time, i.e.w7p>1 (corresponding tok pair excitations(Landau damping One can therefore con-
greater than somie,,; see discussion in Ref)8the acous- clude that Landau damping should not seriously affect the
tic shear waved4.4) is therefore expected to propagate whenlong-wavelength shear wave propagation when the 2D elec-
the 2D electron layers are in a strongly correlated Coulomliron layers are in correlated liquid phase.
liquid phase. But then there is still the separate question of
decay of this mode by pair excitatiofisandau dampingto
consider. To approximately determine the criticalwhere V. HIGHER-FREQUENCY ELECTROMAGNETIC BANDS
the mode merges with the pair continuum, it suffices to com- N
pare the Fermi velocity with the phase velocity of a shear In addition to the fundamental TM and TE electromag-
wave propagating in a 2D electron liquid monolajeThe  netic modes portrayed by E¢&.23, (3.5), (3.8—(3.10 and
latter depends on the correlation energy, which is reasonabkf-2), the superlattice exhibits an infinite sequence of higher-
well approximated by the Tanatar-Cepeffé§Monte Carlo-  Iying TM- and TE EM bands separated by band géps to
based formula for the ground-state energy of the 2D crystalbe confused with the correlational=0 gap3, which arise
phase. Our calculation indicates that at/alues below 17.5, from the presence of the plasma layers. Each band is char-
the in-phase acoustic shear mode lies inside the pair corcterized by the value of the reciprocal lattice vec@r
tinuum and is, therefore, heavily Landau damped. Thus, in=27s/d, wheres is a positive integer that labels the band;
phase shear waves can propagate only if the intralayer codfe fundamental TM and TE EM branchémalyzed in the
pling is sufficiently high and then only at wave numbérs Previous sectionsare assigned the labe=0. Moreover,
>Kpin>26/d. eachs=1 band consists of a lowet)(subband and an upper
For 0<(qd)2<25 and O<(kd)2<234, our analysis of the (U) subband, which appear as zig-zag lines indhe plane

TE dispersion relatioii4.1) results in the ultralow frequency for a fixed value of the in-plane wave numbetFigs. 3 and
gappedS mode 4); this folding back of the dispersion curves is due to the

translational symmetry of the superlattice.
1 The infinite higher-lying gapped bands have been re-
w?(k,q)= 7 (K2+g3)c2 q2d2 D) |1 ol + K2d2Y, o] - ported by a number of investigatdrsfor a variety of super-
m=1 m lattice configurations described in the Introduction. The cal-
(4.9 culations that follow are complementary to the studies of
Constantinou and Cottahand Haupt and Wendl@in that
they provide approximate analytical formulas for the TM and
TE electromagnetic bands in an infinite superlattice array of
2D plasma layers embedded in a dielectric substrate. These
formulas will therefore be applicable both to semiconductor
superlattices and to metallic superlattices modelled as an ar-
ray of 2D metallic layers embedded in an insulating sub-

Equation(4.5) is the full superlattice counterpart of A3SDM
Eqg. (2.6b. Again, this stage is expected to be viable in a
semiconductor superlattice array of 2D crystalline layers.

For qd values in the much wider interval&<(qd)?<1,
our calculations yieldFig. 2, curveC_)

2

2 wp T strate.
w=(k,q)= 7" (qzdzmél ||m0|+k2d2% ‘]lm|0) In calculating the mode frequencies from TM Eg.1)
and TE Eq.4.1), one can show that the correlational contri-
butions are even more insignificant for the higher lying elec-
tromagnetic bands. Thus, it suffices to solve E&sl) and
(4.1 with the correlational coefficientsyo,Kmjo. o Set
valid over the long-wavelength intervabk?d?<1. Inthe  equal to zero. The subband frequencies can be readily calcu-
kd=0 limit, the gap values obtained from Eq&l.5 and lated by assuming solutions of the forrd=(Q=*q)d+e
(4.6) are identical—as they should be—to their respectivewheree is a small quantity to be determined by substitution
plasmon counterpart Eq$3.6) and (3.11). (The distinction into the RPA limit of Egs(3.6) and(4.4). After some alge-
between thes and P modes is meaningless ktl=0.) bra one obtains

20

x|1= (kK% +q?)d?

. (4.6
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FIG. 3. Common TM and TE frequency ktl=0 vsqd in the
first Brillouin zone for thes=0,1,2, electromagnetic bands in an
uncorrelated GaAs/AGa _,As superlattice(6=1.64x10"* for
ng=7.3x10" cm 2 and d=890 A) calculated from Eq(3.1) or
(4.1) atkd=0.

lower subbands

Q%2 +kcZ, qd=0
(Q-9%2+Kc+wle (ka), 0<qd<w
ofka=f 7 LT
(Q—a C§+k2c§+2w’2)a_<k,a), qd=m
(5.1
upper subbands:
Qe+ k’ci+2whar, (K,0), qd=0

(Q+q)2ci+k2ci+wia ., (k,q), 0<qd<m

wj(k,q)= 2
Q+y c2+k3cZ, qd=,
(5.2
wherea. (k,q)=1 for the TE bands and
(Q*q)?
a.(k,q)= 0r 21K (5.3

for the TM bands. The TE and TM dispersion curves are
displayed in Figs. 3—7. The width of a gap between a lower

and upper subband &=0 is calculated to b& w(k=0,q
=0)=w,\d/2/(ms). The gap width Aw(k=0,q=0)
=(0.0029%) w,, is quite small for the semiconductor super-
lattice with =1.64x 10" 4, whereas for the metallic super-
lattice discussed in Sec. Ill, the gap widthw=(0.195)w,
for 6=0.72 is substantially larger.

VI. CONCLUSIONS

In this paper we have analyzed the role of electrodynamic
retardation in mode dispersion in infinite superlattices mod-
eled as an array of regularly spaced 2D plasma layers em-
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§=0.721
kd=0
4.036m
" \

wd
Cs

3.048m
3

2.070m
2m

1.128m
g

0.361m
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<
3

qd

FIG. 4. Common TM and TE frequency ktl=0 vsqd in the
first Brillouin zone for thes=0,1,2, electromagnetic bands in a
correlated (;=2.8) Al/Al,O; superlattice(6=0.721 for w,=15
eV, dy=50 A, dgyige=500 A) calculated from Eq(3.1) atkd=0.
Compare with Fig. 3 and note that the gaps are proportiondto

evolution of the in-phasegd=0) plasmon from its embry-
onic TM-electromagnetic stagé&d. (3.33] in thek<w/c;
domain to its optical-phonon stadé&q. (3.3b] in the k
>wy/cs domain.

(i) In addition to the numerically generated dispersion
curves in Figs. 1 and 2, we have established approximate
analytical formulas for the evolution of the gapped plasmon
and shear excitations from the propagating regiogkO
<wlcg to the nonpropagating regiok>w/cg of the wk
plane. In the random-phase approximatiRPA) the in-
phase plasmon and long-wavelength acoustic band lie en-
tirely in the lower-right quadranf the w, k plane bounded
by dispersion curveg3.3a,h with J;‘m|0=0, Kimo=0, m
=0,x1,+2,...); in the RPA the out-of-phase mode lies at
the bottom of the acoustic baddf intralayer correlations
are introduced, the band of correlation-softened acoustic
plasmons continues to remain confined to the lower-right
guadrant again with the out-of-phase mode lying at the bot-

41 rj
d'—'—‘“
31 =%
wd L= /
21 =
Cs
n
mEn
4 6=0.721
i d ™
oL

0 2 4

kd

6 8

bedded in a dielectric material. While metallic superlattices k|G, 5. Dispersion curves for the T=0,1 bands andg=2
have been of interest in the present work, our main emphasigwer subband in the correlated Al (5=0.721) superlattice
has been on correlated semiconductor superlattices. The fddalculated from Eq(3.1). Each shaded region represents a band of

lowing are the main accomplishments of this paper.

modes; only the in-phaseq{=0) and out-of-phase qd= )

(i) We now have a precise mathematical description of théoundaries are labeled.
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am i = 0 =0.721
‘ - TE
/ 3T(
wd
Cs 21T
wd
Cs
™
O .
0 2 4 6 8
kd
FIG. 6. Dispersion curves for the T&=0,1 bands and=2
lower subband in the correlated Al/&; (6=0.721) superlattice 10

calculated from Eq(4.1). Note that the narrowing of the gaps with d 20 1 2
increasingkd is a finite-s effect not reflected in Eq$5.1) and(5.2). q kd
FIG. 7. Three-dimensional view of the=0,1 TE electromag-

tom of the band. If interlayer correlations are also intro-netic bands for the correlated Al/f; (6=0.721) superlattice cal-
duced, the dispersion changes dramatically with the appeagulated from Eq(4.1).
ance of theg-dependent energy gaps lat0: the gapped
plasmon band now occupies both lower quadrants boundettie energy gap in the initial TM electromagnetic st&g§®)
by dispersion curve$3.2g and (3.3b and at long wave- of the plasmon.
lengths the out-of-phase plasmon now lies at the top of the (v) The in-phase shear excitation also has a similarly
gapped bandFig. 1. structured initial quadratic stagewék?) arising from the

(iii) We have derived an approximate analytical formulasame effects.
[Eq. (3.23] for the shift in the bulk plasma frequenay, (vi) We have calculated the mode frequenciésys.
arising from electrodynamic retardation. This effect can bg5.1)—(5.3)] and dispersion curve$igs. 3—7 for the infinite
quite pronounced in metallic superlattices. sequences of TM- and TE-polarized electromagnetic bands

(iv) The solution(4.5) of TM Eq. (3.1) or of TE Eq.(4.2) in an infinite superlattice of 2D plasma layers embedded in a
for (qcs)2<w§ and k=0 depicts the shear excitation in a dielectric substrate. The bands are separated by gaps that
quadratic p=q?) stage. This excitation arises from the com- arise from the presence of the plasma layers. The analytical
bined effect of strong interlayer correlations and electrody+mode frequency formulas constitute the principal contribu-
namic retardation. The quasilocalization hypothesis underlytion to the literaturg® on these higher lying EM bands.
ing the derivation of Eg4.5) for o _(0,q) suggests that such
an ultralow frequency wave can propagate in a semiconduc-
tor superlattice when its lattice planes are in a 2D Wigner
crystal phase. For €@kd<.25, we observe that the This work was partially supported by NSF Grant Nos.
w2 (0,q) term shows up quite naturally as the first vestige ofPHY-9115615 and PHY-9115714.
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