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Screened Coulomb potential for a quantum wire in the Thomas-Fermi approximation
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We derive the dielectric function and screened Coulomb potential of a quantum wire by using a one-
dimensional1D) generalization of the Thomas-Fermi approximati®fA). To apply the TFA approach to all
temperatures we employ a constructive method based on the standarappeaiémant technique to approxi-
mate the dependence of the temperature of the 1D TFA parametée?sn/du. [S0163-182008)05115-7

[. INTRODUCTION 10) systems, dominate the long-range behavior of the
screened potential, and tend to disappear when the carrier
Quasifree carriers in low-dimensional systems can beccupation probability becomes a smooth function of the
generated by a variety of processes. For instance, they can b&ave vectoik, that is, when the temperature increases suffi-
produced by modulation doping or optically by intense illu- ciently. In contrast to metals, for which the intrinsic energy
mination of a nominally undoped quantum well. The way scales are usually much larger than the temperature, in low-
these carriers screen the bare Coulomb potential depends dimensional semiconductor structures the experimental tem-
the dimensionality of the system. When the dimensionalityperature can be compared to the intrinsic energies. For ex-
of the system is lowered, the screening effects decrease. Thainple, for the quantum wiréQW) to be in the quantum
is, the influence of screening in two dimensions is considerlimit, the doping must necessarily be low and hence the
ably weaker than in three dimensions and this trend continFermi energy is also small. For these reasons we will also
ues if one passes from two-dimensio@D) quantum wells  study here how the screening parameter changes with tem-
to quasi-one-dimensional quantum wires. This occurs beperature. In this way we intend to present a complete and
cause, if we assume that the quasifree carriers are confined fmactical TFA model for electrons confined to the lowest
low-dimensional2D or 1D) systems, screening between any subband of a QW. For a semiconductor QW, some of their
two charges occurs mainly inside the system, correspondingnany-body properties have been discussed, for example, in
to field linesinsidethe material, whereas the field lines that the extensive work of Hu and Das Sarthand the refer-
abandon the system are not directly affected by thosences quoted therein. These properties can manifest as lattice
charges. Clearly, screening is not decreased in this way in Beierls distortion, disorder-induced Anderson localization,
bulk (3D) material since all field lines are screened by thehole screening effects, plasma effects, and impurity scatter-
charge carriers. For example, absorption spectrum calculdang, the last two being the most important ones for actual
tions for a cylindrical GaAs quantum wire shows that for semiconductor QW's! Because the plasmon dispersion in a
quasi-1D systems the effect of state filling is a more impor-QW goes to zero as the momentupgets small, dynamical
tant source of optical nonlinearities than the effect ofeffects are expected to be important for sneallin fact, Hu
screening:? It might be for this reason, weak screening in and Das Sarma have argued that for 1D systems low-energy
one dimension, that the behavior in real space of thevirtual plasmon excitations can be crucial in dynamical
screened Coulomb potential in quantum wires has not beescreening since they cause the Fermi surface to disagipear
investigated in detail. Therefore, the purpose of this paper ithe sense that elementary excitations are very different from
to derive expressions for the small-wave-vector dielectrichose of the noninteracting systernisut when impurity scat-
function and for the long-range screened Coulomb potentiakering is included, the Fermi surface reappears because these
We resort to the well-known Thomas-Fermi approximationplasmons are damped by impurity scattering, which is con-
(TFA), which provides a simple model for screening and hassistent with Raman scattering and photoluminescence experi-
been extensively used in tWo and three dimensiorfsAn  ments since these experiments are explained successfully on
advantage of the TFA screening model is that it generallythe basis of standard Fermi-liquid thedfy:? Therefore, in
allows one to include in a relatively simple way the depen-light of these results, it seems that our static screening
dence on the temperature and on the electron density, unlikbeory, which does not include plasma effects, can be safely
more sophisticated models such as the random-phase agpplied to most semiconductor QW’s, but it should not be
proximation(RPA).” However, it is well known that the TFA applied to very clean QW'éwhere by clean we mean that it
has an important disadvantage: It cannot reproduce Friedécks impurity scattering
oscillations of degenerated systems at low temperatures that The paper is structured as follows. In Sec. Il we derive the
arise from the abrupt change in screening at a wave vector dfiFA dielectric function, which agrees, as expected, in the
k=2kg, wherekg is the carrier wave vector at the Fermi corresponding limit, with those of Lee and Speétoalcu-
surface. These oscillations occur in 82D ° and 1D(Ref.  lated in the self-consistent approximation or RPA. In Sec. I
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we find for all temperatures an approximated analytical ex- )

pression of the TFA screening parameggr In Sec. IV we (qz_ Ev W
derive the asymptotic behavior of the 1D screened potential

in terms ofgs. Finally, Sec. V is devoted to some conclud- We solve this equation forp(x,y,q,) by using the corre-

ing remarks. sponding Green function in cylindrical coordinate®,z of
this inhomogeneous Hemholtz equatidnye find

P

BO0Y.0) =4 —p(xy.d). (2.7

Il. TFA DIELECTRIC FUNCTION

To develop a 1D TFA, we use the standard 3D ¢(r,0,9,)= E f Ko(qss(r,r’,0)p(r’,0,g,)r'dr'de’,
proceduré. We will consider only the presence of a periodic K 2.9
background potential through an effective mass. If we '
have a charge particlgor convenience, let us assume that it where K(q,s(r,r’,)) is the modified Bessel function of
is positive placed at a given position in an electron gas andsecond class and(r,r’,6)=r2+(r’')2—2rr’ cosé. Fi-
rigidly held there, it will attract electrons, creating a surplusnpally, since the 1D potential can be calculateddas,(q,)
of negative charge in its neighborhood, which reduces ognqu%0 &(r,6,0,), wherea is the radius of the cylindri-

?clreen:c,”:ts ffleltd.e!(_tet us mtroldufce tv‘;ﬁ eIectr?stat|ﬁ po“;nbal section of the QWor yields the order of magnitude of
1als. e first¢™" arises only from the positive-charge the cross section of the QW for other noncircular sections

particles and satisfies the Poisson equation given by and we have that Kq(q,s(r.r’,6))~—In(q,a/2)
- ) —In[s(r,r’,a)/a]—_y~—|n(qza/2) for very small values of
—V2¢8X‘:4; p&(r), (2.)  q,a, we thus arrive at
wherep®!is the particle charge density ards the dielec- bro(d) = — gln 9:2 2.9
tric constant of the medium. The secods the full physi- 109, x|\ 2 |PD '

cal potential produced by both the positive-charged particle S . )
and the cloud of screening electrons; it satisfies where p,p=[pr'dr’'d¢’ is the lineal charge density. By
performing the same treatment fg we obtain

T
—VZp=4—p(r), (2.2 2 (g

« ST =~ — ln(%) Pi5- (2.10
wherep is the full density,

Together with Eq(2.3) for 1D densities and Eq2.6), these

p(r)=p®(r)+p"r), (2.3 equations give
andp™ is the charge density induced in the electron gas by ext
the presence of the external particle. In a static model, since d1p= 1D (2.12
L .. 1D . .
the external charge has an electrostatic influence over a finite 1421n gza) x(a)
vicinity that surrounds itg has to have a nonlocal relation 2 K

with ¢ given by . . . . ,
Comparing this equation with E@2.5) leads to the relation

L e(r=r")

M= | dr ——— (1), 2.4 € a
¢ M=) 2.4 @) _ o % x(Kq)_ (2.12
which implies that the corresponding Fourier transform sat-
isfies Except for the assumption that the externally applied
ox charge is weak enough to produce only a linear response in
k$®(q) the electron gas, the foregoing analysis has been exact. The

¢(q)= (2.9

e(q) ’ following step is to calculatey using the Thomas-Fermi
method, which has the advantage that it is applicable even

wheree(q) is the wave-vector-dependent dielectric constant, hen a linear relation betwegr® and ¢ does not hold, but

of the metal. oo . .
. . . has the limitation that is reliable only for a very slowly vary-
The most natural quantity to be calculated is not the d|-Ing external potential.

electric constant but the charge densit} induced in the Let us considerp as a slowly varying function df in the

. 1 d
glectron gas by the to_ta_l potentidl When p™ af‘d ¢ are  sense that the energy of the charge carrier that is under its
linearly related(for sufficiently weaké), then their Fourier o a. oncais given by

transform satisfies
indy 4y _ 2 h2K32

p"(d)=x(q)¢(q). (2.6 E(k)= 5 —ed (2.13
We can relates to y by taking the Fourier transforms of the
Poisson equation®.1) and(2.2). Since these transforms de- and thus the energy is modified from its free-electron value
pend on the dimensionality of the system involved, we perby the total local potential. This only makes sense in terms of
form for z-oriented 1D systems the Fourier transform to wave packets since we must require titdiz) varies slowly
yield on the scale of the Fermi wavelength.



57 SCREENED COULOMB POTENTIAL FOR A QUANTWM . .. 9871

To calculate the charge density produced by these eledions since these oscillations cannot be reproduced by the
trons we substitute Eq2.13 into the 1D electronic number TFA. As mentioned in Sec. I, it is knowh that in low-
densityn=N/L, whereL is the length of the system, to find temperature 1D systems these oscillations also dominate, as

in 3D and 2D systems, the long-range behavior of the
dk, 1 scrzened Coulorr]nb pﬁtential. Since Friedel oscitl)la;c)i(;tr:}s:‘e tend
n[u+ep(z :2f — , to disappear when the carrier occupation probabi
[nteg(2)] T exp[,B(ﬁzk§/2m* —ep—u)]+1 Fermi distribution becomes a smooth function of the wave
(2.14 vector, then a necessary condition for the TFA to be able to
where 8= 1/kgT with a similar expression fong, but with  yield a better description of the system including screening

p=0. Thus the induced charge density effects, is to increase the temperature. Therefore, in order to
present a complete one-parameter TFA theory it is important
p"I= —eln[ u+ed(z)]— no( )}, (2.19 to be able to find the dependencemqfon the temperature.

We now proceed in the same way as in Refs. 14 and 15 to
which is the basic equation of the nonlinear Thomas—Fermj;a|Cu|ateqS: 2e?(dng/du) approximately as a function of
theory. If we expand Eq2.15 we obtain to leading order  the temperature. Following the standard procedure, we per-

form a series representation fofu) given by Eq.(2.14),

,Ng which involves the expansion of the kernel
x(g;)=—e o (216 [z7! exp(BhAZ2m*)+1]7L, valid for Rgz>—1,'¢ which
. ) ] leads to
Comparing Eq(2.16 with Eqg. (2.6) we find that
* (_ l)n+1zn
an = _ 3.1
x(4,)= —eza—ﬂo, (2.17) v=2, on (3.9)

where dny/du is independent of]. Substitution into Eq. where v=(n/2) JmBh%2m* and z=ef*. We reverse this
(2.12 gives the Thomas-Fermi dielectric response function series by using the well-known rules of series reversion,
which gives
e(d,) =k~ 0, In(q2), (2.18 .

where we have introduced the dimensionless Thomas-Fermi efr=p+ > an". (3.2
parameteis=2e? (dny/du). It is straightforward to calcu- n=2

late ano/dp at 0 K by u5|'ng the def|n|'t|omo=2f0 dk/7 Up to third order inv this expression can be approximated
= (2/7)(V2m* Eg/h), which leads directly todng/du ad4

= 2m*/ ke ?, whereke is the Fermi wave number. Notice

that from the definition of the parametgy, its units depend 3
on the dimensionality since, depends on the dimension of Bu~In v+ 2 A", (3.3
the system. n=1

We point out that Eq(2.18 is consistent with the dielec- _ _
tric response function performed by Lee and Spédtothe whereA, = — 12~ —0.7071,A,=3/4~ 1/‘@%0'1726’_ and
RPA because the latter reduces to E218 wheng,a— 0. Ag=41\6—1/2—8/3v2~ —0.7526. We performed, in the
To show this, we take@'P from Eq.(13) of Ref. 7, which is same way as Aguilera-Navaret al.™ did, a Padesumma-

given by tion in order to extend or accelerate the convergence of the
partial summation given by Ed3.3). To do this, we first
2 transform Eq.(3.3) into a power series by using the related
01D 8e )
€=kt quaz[Kl(an)l1(an)_1/2]F(qz,w), function
z
(2.19 dBu
o : , ~1+Av+2A12+3A,0° (3.4
wherel,,K; are the modified Bessel functions of first and Yy ! 1 2" '

second classes arfd(q,,w) is the temperature-dependent
Lindhard function, which in the long-wavelength limifior ~ Since the right-hand side of this equation is a simple power
which the RPA and TFA coincideg<2k) turns out to be ~ series inv, it is now possible to represent it by a Pade
F(q,0)=— 2m*L/7%%ke . In Eq.(2.19 we wrote Q1D as a approximant® The Padeapproximant technique consists of
superscript ofe to emphasize that Lee and Speftoalcu-  Systematically expressing the power series of Bd) as the
lated e for a quasi-1D system for which, unlike our case, ratio of two polynomials

more than the lowest subband is taking into account. Hence,
by substituting the dominant terms of the Bessel function for
small arguments, Eq2.19 reduces to Eq(2.18.

Potpux+:-+px-
1+ g x+- -+ quxM”

(3.5

The symbol= means “represented by.” The coefficierds
The TFA can be considered a useful and simple model o&nd g; are determined from the A’s b+ M linear equa-
screening when the system does not exhibit Friedel oscillations, which follows from the basic definition

At Apx+AX3+- o=

(0=

L
M

Ill. TFA PARAMETER
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< L+M+1 _W2ﬁ2n2+K nh T +1| nf B
(x)—E Axk=0(x ). (3.6) = 17\/m E”?‘/zm*

From Eq.(3.6) it is read_ily seen thgt the Padgproximant + Kz In 1+K3 N 77'3* +C, (3.10
matches the power-series expansion up to otdeM. An BK3 2 2m
interesting feature of the Padeiccessions is that when the

whereC is a numerical constant that can be found by inte-
r-grating numericallyn(u). Since qs= 2e2(anglop), we

poles of the function are beyond the interval to be repre
sented, the Padapproximant converges faster than the pa
tial summations of the series. Sinedu/dv is not expected

to have poles forv=0, the Padeapproximant should be a -
better representation than the power series. We thus write 1 #hn h [ 1
*

—=—+K;— \/———+
gs 8m*e?  ‘4e? V2m*g 2e?ng
dBu
V—— dv (V) L+M=<4, (3.7 fh T
4¢? m* B
where[L/M] denotes the ratio of two polynomials of order +K3 : (3.11
L andM, respectively. Four Padierms, namely[L/0] (I 14K ﬂ B
=0,...,3), areexcluded from the present study since they 3o 2m*

are simply partial sums to ordér of the right-hand side of
Eqg. (3.4 and are thus trivial approximations. On the other
hand, sinceBu is a monotonically increasing function of IV. SCREENING POTENTIAL

only the [L/M] Pade approximation that would yield @ Now let us suppose that the external poten#i&t is that
monotonically increasing behavior Bju with respect tovis - of 5 point charge that ig=e/r. If this charge is confined in

acceptable. In particular, since the approximati988M] 5 Qw of radiusa its Fourier transform potential is given by
(M=1,2,3) are decreasing functions af these forms will

not be considered in the present analysis. The same criterion e
applies to[1/M] (M=2,3). In general, the forniL/L] is ®Yq,)=—-2-In(g,a). 4.1
known to be useful for approximating functions that ap- K
proach a constant value for large valuesof his feature is

enough reason for not considering further forf@é2] and The total potential in the semiconductor will then be

[1/1]. The surviving tern] 2/1] does not have singularities 4%q,) —2eIn(q,a)
in the v range O<v<<o0, as should be expected, and this term d(q,)= Z Ly 4.2)
can be written as €(q)  1-qsin(a.2)
K The Fourier transform can be inverted to give
2V
1 (v)=1+Kyv+ T+ Kap' (3.8 = da, " In(q,a) is
2= 7 0 27° I-giin(qa) Y

where we have already imposed the condifgw—In v asv
tends to zero, which is required physically at low densitiesThis expression does not converge formally for a real value
(classical limi}. Finally, in order to have an approximation of z, but we shall perform an analytical extrapolation by
for v(dBu/dv) valid for every value ofu, even for very  extendingz to the complex domain and keeping just the real
low temperatures or high densities, we shall add to our Padgart of the resulting expression. For both small and large
representation given by Ed3.8) the asymptotic limit of values ofqs, we can expand Eq4.3) in a geometrical series
Bu—2mv? (Ref. 19 valid for large values ob: and identify each of its termi$leading, respectively, to the
expressions
dBu Kov

— s 2
a 1+Kv+ 1+K3V+2’7TV , (3.9

g e s
— n

$(2)= ——+;; P

where the coefficient&,, K,, andK; are determined by

expanding this expression in a Taylor series around zero up o { g2 (M)

to order 3 and equating each power coefficient with the ones a2 w?

of Eq. (3.4 leading to K;=A;—4(m—A,)%/3A;~14.91,

Ko=4(m—A,)%/3A;~—15.61, andKy=(3/2)Az/(7—A,) 4.9

~—0.3802. It is interesting to remark that, in contrast to the

approximation performed by Aguilera-Navarei al® for

the 3D case, that the asymptotic behaviouds given by an $(2)=— E 8(2)+0

integer power ofv in the 1D case allows us to match a

uniqueexpression fop on its whole domain. Thus, by inte- wherel” denotes the Gamma functidh§ is the Dirac delta

grating Eq.(3.9) we find thatu is given by function, and Re indicates the real part of the quantity in

, 0s<1

v=1lu=—iz

1
), g1, (4.5
0|s
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square brackets. By using E@.3591-5)) of Ref. 20 it is  imant expression fogs appropriate for all temperatur¢gqg.

easy to show that Eq4.4) can be written explicitly up to (3.11)]. These expressions are relatively simple and can be

order 4 ings as useful for 1D systems that, as discussed in the Introduction,
satisfy the following two conditions. First, the temperature of
the system must be such that the carrier distributions are

e e C+inz eq§ m? 3 sufficiently smooth and thus they do not exhibit Friedel os-
P)=— o+ Ut g~ E[C2+ {(2,1)] cillations. Second, the system has enough impurity scattering
in order to damp plasmon screening effects. This latter con-
3 3 w2 dition seems to be satisfied in most of the actual semicon-
+3C In z— E|n2 z] - E( 2C3+ —C-6C{(2D)  ductor Qwstti2

Let us compare the asymptotic behaviors for laggeof

w2 the 3D® 2D,° and 1D screened Coulomb systems, which are
+4{(3,D—Inz 6C+07+6§(2,1)) +2C?In® z proportional toe™ %", 1/q2, and 16 [see Eq(4.5)], respec-
tively. From these expressions it can be seen that the poten-
5 4 tials decrease more slowly as a functionqafwhen the di-
—2In° z +0(qs). (4.6)  mensionality decreases. That is to say, by lowering the

dimensionality the screening effect gets diminished. This re-
sult is reinforced by noting that the correcting terms to the
Coulomb potential in Eq(4.6) contain terms proportional to
1/z so that this potential still has a long scope. In contrast,
the 2D and 3D screened potentials have as first correcting
terms those proportional to larger inverse powers of their
respective variables, that is,pf/and 1f2.

Here C~0.577 is the Euler constant arddj,k)==,"_,1/(
+k)! is the Rieman zeta function. Note that both E@s5)
and (4.6) do not depend om, the radius of the QW, which
means that these results are the same for any small
Equationg4.4) and(4.5) illustrate the two limiting behav-
iors of ¢. The former shows thap reduces to the Coulomb A qher point to emphasize is a common characteristic of

potential whert,—0, as it should be expected. This limitis yhe TEA potential for all of the three dimensionalitiéD,
the appropriate limit to be taken in the TFA since we reca_IIZD’ and 1D that consists in the existence of at least one

that the TFA is valid for a small perturbation of the Fermi bounded state for a large valge. This follows for the 3D
dlstrll)_utlon. The othgr limit of smald}s §hown n Eq.(4.5)_ case from the well-known general theorem for 3D central
exhibits a very confined behavior, which, strictly Speak'ng'force system&! while for the 2D case it was shown numeri-

cannot be represenf[eql by the TFA. Howe\_/er, it is inte;restin%a"y by Spectoret al® and for the 1D case the existence, in
to note that even within the TFA that confined behavior CaNphe extreme case of an attractive Diracpotential, of a

never be reached because the valugob bounded, as can ponded state is well known.
be seen from Eq3.11). For instance, since the larger terms
in Eq. (3.11) are positive, this equation shows thigthas its
larger values for small temperature8-G ) and in factqg
cannot be larger tham?#°n/8m* e2.

We hope that this work may stimulate further theoretical
and experimental work in the study of screening in 1D sys-
tems and other nanostructured systems.
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