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Screened Coulomb potential for a quantum wire in the Thomas-Fermi approximation
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We derive the dielectric function and screened Coulomb potential of a quantum wire by using a one-
dimensional~1D! generalization of the Thomas-Fermi approximation~TFA!. To apply the TFA approach to all
temperatures we employ a constructive method based on the standard Pade´ approximant technique to approxi-
mate the dependence of the temperature of the 1D TFA parameterqs52e2]n/]m. @S0163-1829~98!05115-7#
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I. INTRODUCTION

Quasifree carriers in low-dimensional systems can
generated by a variety of processes. For instance, they ca
produced by modulation doping or optically by intense ill
mination of a nominally undoped quantum well. The w
these carriers screen the bare Coulomb potential depend
the dimensionality of the system. When the dimensiona
of the system is lowered, the screening effects decrease.
is, the influence of screening in two dimensions is consid
ably weaker than in three dimensions and this trend con
ues if one passes from two-dimensional~2D! quantum wells
to quasi-one-dimensional quantum wires. This occurs
cause, if we assume that the quasifree carriers are confin
low-dimensional~2D or 1D! systems, screening between a
two charges occurs mainly inside the system, correspon
to field linesinside the material, whereas the field lines th
abandon the system are not directly affected by th
charges. Clearly, screening is not decreased in this way
bulk ~3D! material since all field lines are screened by t
charge carriers. For example, absorption spectrum calc
tions for a cylindrical GaAs quantum wire shows that f
quasi-1D systems the effect of state filling is a more imp
tant source of optical nonlinearities than the effect
screening.1,2 It might be for this reason, weak screening
one dimension, that the behavior in real space of
screened Coulomb potential in quantum wires has not b
investigated in detail. Therefore, the purpose of this pape
to derive expressions for the small-wave-vector dielec
function and for the long-range screened Coulomb poten
We resort to the well-known Thomas-Fermi approximati
~TFA!, which provides a simple model for screening and h
been extensively used in two3–5 and three dimensions.6 An
advantage of the TFA screening model is that it gener
allows one to include in a relatively simple way the depe
dence on the temperature and on the electron density, un
more sophisticated models such as the random-phase
proximation~RPA!.7 However, it is well known that the TFA
has an important disadvantage: It cannot reproduce Fri
oscillations of degenerated systems at low temperatures
arise from the abrupt change in screening at a wave vecto
k52kF , wherekF is the carrier wave vector at the Ferm
surface. These oscillations occur in 3D,8 2D,9 and 1D~Ref.
570163-1829/98/57~16!/9869~6!/$15.00
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10! systems, dominate the long-range behavior of
screened potential, and tend to disappear when the ca
occupation probability becomes a smooth function of
wave vectork, that is, when the temperature increases su
ciently. In contrast to metals, for which the intrinsic ener
scales are usually much larger than the temperature, in l
dimensional semiconductor structures the experimental t
perature can be compared to the intrinsic energies. For
ample, for the quantum wire~QW! to be in the quantum
limit, the doping must necessarily be low and hence
Fermi energy is also small. For these reasons we will a
study here how the screening parameter changes with
perature. In this way we intend to present a complete
practical TFA model for electrons confined to the lowe
subband of a QW. For a semiconductor QW, some of th
many-body properties have been discussed, for example
the extensive work of Hu and Das Sarma11 and the refer-
ences quoted therein. These properties can manifest as la
Peierls distortion, disorder-induced Anderson localizati
hole screening effects, plasma effects, and impurity sca
ing, the last two being the most important ones for act
semiconductor QW’s.11 Because the plasmon dispersion in
QW goes to zero as the momentumq gets small, dynamica
effects are expected to be important for smallq. In fact, Hu
and Das Sarma have argued that for 1D systems low-en
virtual plasmon excitations can be crucial in dynamic
screening since they cause the Fermi surface to disappea~in
the sense that elementary excitations are very different f
those of the noninteracting systems!, but when impurity scat-
tering is included, the Fermi surface reappears because t
plasmons are damped by impurity scattering, which is c
sistent with Raman scattering and photoluminescence exp
ments since these experiments are explained successful
the basis of standard Fermi-liquid theory.11,12 Therefore, in
light of these results, it seems that our static screen
theory, which does not include plasma effects, can be sa
applied to most semiconductor QW’s, but it should not
applied to very clean QW’s~where by clean we mean that
lacks impurity scattering!.

The paper is structured as follows. In Sec. II we derive
TFA dielectric function, which agrees, as expected, in
corresponding limit, with those of Lee and Spector7 calcu-
lated in the self-consistent approximation or RPA. In Sec.
9869 © 1998 The American Physical Society
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we find for all temperatures an approximated analytical
pression of the TFA screening parameterqs . In Sec. IV we
derive the asymptotic behavior of the 1D screened poten
in terms ofqs . Finally, Sec. V is devoted to some conclu
ing remarks.

II. TFA DIELECTRIC FUNCTION

To develop a 1D TFA, we use the standard 3
procedure.6 We will consider only the presence of a period
background potential through an effective massm* . If we
have a charge particle~for convenience, let us assume that
is positive! placed at a given position in an electron gas a
rigidly held there, it will attract electrons, creating a surpl
of negative charge in its neighborhood, which reduces
screens its field. Let us introduce two electrostatic pot
tials. The firstfext arises only from the positive-charge
particles and satisfies the Poisson equation given by

2¹2fext54
p

k
rext~rW !, ~2.1!

whererext is the particle charge density andk is the dielec-
tric constant of the medium. The secondf is the full physi-
cal potential produced by both the positive-charged part
and the cloud of screening electrons; it satisfies

2¹2f54
p

k
r~rW !, ~2.2!

wherer is the full density,

r~rW !5rext~rW !1r ind~rW !, ~2.3!

andr ind is the charge density induced in the electron gas
the presence of the external particle. In a static model, s
the external charge has an electrostatic influence over a fi
vicinity that surrounds it,f has to have a nonlocal relatio
with fext given by

fext5E drW8
e~rW2rW8!

k
f~rW8!, ~2.4!

which implies that the corresponding Fourier transform s
isfies

f~q!5
kfext~q!

e~q!
, ~2.5!

wheree(q) is the wave-vector-dependent dielectric const
of the metal.

The most natural quantity to be calculated is not the
electric constant but the charge densityr ind induced in the
electron gas by the total potentialf. When r ind and f are
linearly related~for sufficiently weakf!, then their Fourier
transform satisfies

r ind~q!5x~q!f~q!. ~2.6!

We can relatee to x by taking the Fourier transforms of th
Poisson equations~2.1! and~2.2!. Since these transforms de
pend on the dimensionality of the system involved, we p
form for z-oriented 1D systems thez Fourier transform to
yield
-
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22

]2

]x22
]2

]y2Df~x,y,qz!54
p

k
r~x,y,qz!. ~2.7!

We solve this equation forf(x,y,qz) by using the corre-
sponding Green function in cylindrical coordinatesr ,u,z of
this inhomogeneous Hemholtz equation;13 we find

f~r ,u,qz!5
2

k E K0„qzs~r ,r 8,u!…r~r 8,u8,qz!r 8dr8du8,

~2.8!

where K0„qzs(r ,r 8,u)… is the modified Bessel function o
second class ands(r ,r 8,u)5Ar 21(r 8)222rr 8 cosu. Fi-
nally, since the 1D potential can be calculated asf1D(qz)
5 limqza→0 f(r ,u,qz), wherea is the radius of the cylindri-
cal section of the QW~or yields the order of magnitude o
the cross section of the QW for other noncircular sectio!
and we have that17 K0„qzs(r ,r 8,u)…'2 ln(qza/2)
2 ln@s(r,r8,u)/a#2g'2ln(qza/2) for very small values of
qza, we thus arrive at

f1D~qz!52
2

k
lnS qza

2 D r1D , ~2.9!

where r1D5*rr 8dr8du8 is the lineal charge density. By
performing the same treatment forfext we obtain

f1D
ext~qz!52

2

k
lnS qza

2 D r1D
ext. ~2.10!

Together with Eq.~2.3! for 1D densities and Eq.~2.6!, these
equations give

f1D5
f1D

ext

112 lnS qza

2 D x~q!

k

. ~2.11!

Comparing this equation with Eq.~2.5! leads to the relation

e~qz!

k
5112 lnS qza

2 D x~q!

k
. ~2.12!

Except for the assumption that the externally appl
charge is weak enough to produce only a linear respons
the electron gas, the foregoing analysis has been exact.
following step is to calculatex using the Thomas-Ferm
method, which has the advantage that it is applicable e
when a linear relation betweenr ind andf does not hold, but
has the limitation that is reliable only for a very slowly var
ing external potential.

Let us considerf as a slowly varying function ofz in the
sense that the energy of the charge carrier that is unde
influence is given by

E~kz!5
\2kz

2

2m*
2ef ~2.13!

and thus the energy is modified from its free-electron va
by the total local potential. This only makes sense in terms
wave packets since we must require thatf(z) varies slowly
on the scale of the Fermi wavelength.
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To calculate the charge density produced by these e
trons we substitute Eq.~2.13! into the 1D electronic numbe
densityn5N/L, whereL is the length of the system, to fin

n@m1ef~z!#52E dkz

p

1

exp@b~\2kz
2/2m* 2ef2m!#11

,

~2.14!

whereb51/kBT with a similar expression forn0 , but with
m50. Thus the induced charge density

r ind52e$n@m1ef~z!#2n0~m!%, ~2.15!

which is the basic equation of the nonlinear Thomas-Fe
theory. If we expand Eq.~2.15! we obtain to leading order

x~qz!52e2
]n0

]m
. ~2.16!

Comparing Eq.~2.16! with Eq. ~2.6! we find that

x~qz!52e2
]n0

]m
, ~2.17!

where ]n0 /]m is independent ofq. Substitution into Eq.
~2.12! gives the Thomas-Fermi dielectric response functio

e~qW z!5k2qs ln~qza!, ~2.18!

where we have introduced the dimensionless Thomas-F
parameterqs52e2 (]n0 /]m!. It is straightforward to calcu-
late ]n0 /]m at 0 K by using the definitionn052*0

` dk/p
5 (2/p)(A2m* EF/\), which leads directly to]n0 /]m
5 2m* /pkF\2, wherekF is the Fermi wave number. Notic
that from the definition of the parameterqs , its units depend
on the dimensionality sincen0 depends on the dimension o
the system.

We point out that Eq.~2.18! is consistent with the dielec
tric response function performed by Lee and Spector7 in the
RPA because the latter reduces to Eq.~2.18! whenqza→0.
To show this, we takeeQ1D from Eq.~13! of Ref. 7, which is
given by

eQ1D5k1
8e2

Lqz
2a2 @K1~qza!I 1~qza!21/2#F~qz ,v!,

~2.19!

where I 1 ,K1 are the modified Bessel functions of first an
second classes andF(qz ,v) is the temperature-depende
Lindhard function, which in the long-wavelength limit~for
which the RPA and TFA coincide;q!2kF! turns out to be
F(q,0)52 2m* L/p\2kF . In Eq. ~2.19! we wrote Q1D as a
superscript ofe to emphasize that Lee and Spector7 calcu-
lated e for a quasi-1D system for which, unlike our cas
more than the lowest subband is taking into account. He
by substituting the dominant terms of the Bessel function
small arguments, Eq.~2.19! reduces to Eq.~2.18!.

III. TFA PARAMETER

The TFA can be considered a useful and simple mode
screening when the system does not exhibit Friedel osc
c-

i

mi

,
e,
r

f
a-

tions since these oscillations cannot be reproduced by
TFA. As mentioned in Sec. I, it is known10 that in low-
temperature 1D systems these oscillations also dominate
in 3D and 2D systems, the long-range behavior of
screened Coulomb potential. Since Friedel oscillations t
to disappear when the carrier occupation probability~the
Fermi distribution! becomes a smooth function of the wav
vector, then a necessary condition for the TFA to be able
yield a better description of the system including screen
effects, is to increase the temperature. Therefore, in orde
present a complete one-parameter TFA theory it is impor
to be able to find the dependence ofqs on the temperature.

We now proceed in the same way as in Refs. 14 and 1
calculateqs52e2 (]n0 /]m) approximately as a function o
the temperature. Following the standard procedure, we
form a series representation forn(m) given by Eq.~2.14!,
which involves the expansion of the kern
@z21 exp(b\2kz

2/2m* )11#21, valid for Re$z%.21,16 which
leads to

n5 (
n51

`
~21!n11zn

An
, ~3.1!

where n5(n/2)Apb\2/2m* and z5ebm. We reverse this
series by using the well-known rules of series reversion17

which gives

ebm5n1 (
n52

`

annn. ~3.2!

Up to third order inn this expression can be approximate
as14

bm' ln n1 (
n51

3

Annn, ~3.3!

whereA1521/&'20.7071,A253/421/)'0.1726, and
A354/A621/228/3&'20.7526. We performed, in the
same way as Aguilera-Navarroet al.15 did, a Pade´ summa-
tion in order to extend or accelerate the convergence of
partial summation given by Eq.~3.3!. To do this, we first
transform Eq.~3.3! into a power series by using the relate
function

n
dbm

dn
'11A1n12A1n213A2n3. ~3.4!

Since the right-hand side of this equation is a simple pow
series inn, it is now possible to represent it by a Pad´
approximant.18 The Pade´ approximant technique consists o
systematically expressing the power series of Eq.~3.4! as the
ratio of two polynomials

A01A1x1A2x21¯8F L

M G~x![
p01p1x1¯1pLxL

11q1x1¯1qMxM .

~3.5!

The symbol8 means ‘‘represented by.’’ The coefficientspi
and qi are determined from the A’s byL1M linear equa-
tions, which follows from the basic definition
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F L

M G~x!2 (
k50

L1M

Akx
k[O~xL1M11!. ~3.6!

From Eq.~3.6! it is readily seen that the Pade´ approximant
matches the power-series expansion up to orderL1M . An
interesting feature of the Pade´ successions is that when th
poles of the function are beyond the interval to be rep
sented, the Pade´ approximant converges faster than the p
tial summations of the series. Sincendm/dn is not expected
to have poles forn>0, the Pade´ approximant should be a
better representation than the power series. We thus wri

n
dbm

dn
8F L

M G~n!, L1M<4, ~3.7!

where@L/M # denotes the ratio of two polynomials of ord
L and M , respectively. Four Pade´ forms, namely,@L/0# ( l
50, . . .,3), areexcluded from the present study since th
are simply partial sums to orderL of the right-hand side of
Eq. ~3.4! and are thus trivial approximations. On the oth
hand, sincebm is a monotonically increasing function ofn,
only the @L/M # Padé approximation that would yield a
monotonically increasing behavior ofbm with respect ton is
acceptable. In particular, since the approximations@0/M #
(M51,2,3) are decreasing functions ofn, these forms will
not be considered in the present analysis. The same crite
applies to@1/M # (M52,3). In general, the form@L/L# is
known to be useful for approximating functions that a
proach a constant value for large values ofn. This feature is
enough reason for not considering further forms@2/2# and
@1/1#. The surviving term@2/1# does not have singularitie
in then range 0,n,`, as should be expected, and this te
can be written as

F2

1G~n!511K1n1
K2n

11K3n
, ~3.8!

where we have already imposed the conditionbm→ ln n asn
tends to zero, which is required physically at low densit
~classical limit!. Finally, in order to have an approximatio
for n (dbm/dn) valid for every value ofm, even for very
low temperatures or high densities, we shall add to our P´
representation given by Eq.~3.8! the asymptotic limit of
bm→2pn2 ~Ref. 19! valid for large values ofn :

n
dbm

dn
511K1n1

K2n

11K3n
12pn2, ~3.9!

where the coefficientsK1 , K2 , and K3 are determined by
expanding this expression in a Taylor series around zero
to order 3 and equating each power coefficient with the o
of Eq. ~3.4! leading to K15A124(p2A2)2/3A3'14.91,
K254(p2A2)2/3A3'215.61, andK35(3/2)A3 /(p2A2)
'20.3802. It is interesting to remark that, in contrast to t
approximation performed by Aguilera-Navarroet al.15 for
the 3D case, that the asymptotic behavior ofm is given by an
integer power ofn in the 1D case allows us to match
uniqueexpression form on its whole domain. Thus, by inte
grating Eq.~3.9! we find thatm is given by
-
-

r

on

-

s

de

p
s

e

m5
p2\2n2

8m*
1K1

n\

2
A p

2m* b
1

1

b
lnFn\

2
A pb

2m* G
1

K2

bK3
lnF11K3

n\

2
A pb

2m* G1C, ~3.10!

whereC is a numerical constant that can be found by in
grating numericallyn(m). Since qs52e2 (]n0 /]m), we
have

1

qs
5

p2\2n

8m* e2 1K1

\

4e2 A p

2m* b
1

1

2e2nb

1K2

\

4e2 A p

m* b

11K3

n\

2
A pb

2m*

. ~3.11!

IV. SCREENING POTENTIAL

Now let us suppose that the external potentialfext is that
of a point charge that isf5e/r . If this charge is confined in
a QW of radiusa its Fourier transform potential is given b

fext~qz!522
e

k
ln~qza!. ~4.1!

The total potential in the semiconductor will then be

f~qz!5
fext~qz!

e~qz!
5

22e ln~qza!

12qs ln~qza!
. ~4.2!

The Fourier transform can be inverted to give

f~z!52
2e

k E
0

` dqz

2p
eiqzz

ln~qza!

12qs ln~qza!
. ~4.3!

This expression does not converge formally for a real va
of z, but we shall perform an analytical extrapolation b
extendingz to the complex domain and keeping just the re
part of the resulting expression. For both small and la
values ofqs , we can expand Eq.~4.3! in a geometrical series
and identify each of its terms20 leading, respectively, to the
expressions

f~z!52
e

kz
1

e

k

qs

p (
n50

`

qs
n

3ReF ]n12

]nn12 S G~n!

mn D GU
n51,m52 iz

, qs,1

~4.4!

f~z!52
e

kqs
d~z!1OS 1

qs
2D , qs@1, ~4.5!

whereG denotes the Gamma function,13 d is the Dirac delta
function, and Re indicates the real part of the quantity
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square brackets. By using Eq.~4.359~1-5!! of Ref. 20 it is
easy to show that Eq.~4.4! can be written explicitly up to
order 4 inqs as

f~z!52
e

kz
1

e

k
qs

C1 ln z

z
1

eqs
2

kz H p2

8
2

3

2
@C21z~2,1!#

13C ln z2
3

2
ln2 zJ 2

eqs
3

kz H 2C31
p2

2
C26Cz~2,1!

14z~3,1!2 ln zS 6C1C
p2

2
16z~2,1! D12C2 ln2 z

22ln3 zJ 1O~qs
4!. ~4.6!

Here C'0.577 is the Euler constant andz( j ,k)5( l 50
` 1/(l

1k) j is the Rieman zeta function. Note that both Eqs.~4.5!
and ~4.6! do not depend ona, the radius of the QW, which
means that these results are the same for any smalla.

Equations~4.4! and~4.5! illustrate the two limiting behav-
iors of f. The former shows thatf reduces to the Coulomb
potential whenqs→0, as it should be expected. This limit
the appropriate limit to be taken in the TFA since we rec
that the TFA is valid for a small perturbation of the Ferm
distribution. The other limit of smallqs shown in Eq.~4.5!
exhibits a very confined behavior, which, strictly speakin
cannot be represented by the TFA. However, it is interes
to note that even within the TFA that confined behavior c
never be reached because the value ofqs is bounded, as can
be seen from Eq.~3.11!. For instance, since the larger term
in Eq. ~3.11! are positive, this equation shows thatqs has its
larger values for small temperatures (b→`) and in factqs
cannot be larger thanp2\2n/8m* e2.

V. CONCLUDING REMARKS

In summary, our main results within the TFA valid fo
very thin QW’s are given by asymptotic expressions of
screened potential@Eqs.~4.5! and ~4.6!# and a Pade´ approx-
ad

d

uc
l.
f.
ll

,
g
n

e

imant expression forqs appropriate for all temperatures@Eq.
~3.11!#. These expressions are relatively simple and can
useful for 1D systems that, as discussed in the Introduct
satisfy the following two conditions. First, the temperature
the system must be such that the carrier distributions
sufficiently smooth and thus they do not exhibit Friedel o
cillations. Second, the system has enough impurity scatte
in order to damp plasmon screening effects. This latter c
dition seems to be satisfied in most of the actual semic
ductor QW’s.11,12

Let us compare the asymptotic behaviors for largeqs of
the 3D,6 2D,5 and 1D screened Coulomb systems, which
proportional toe2qsr , 1/qs

2, and 1/qs @see Eq.~4.5!#, respec-
tively. From these expressions it can be seen that the po
tials decrease more slowly as a function ofqs when the di-
mensionality decreases. That is to say, by lowering
dimensionality the screening effect gets diminished. This
sult is reinforced by noting that the correcting terms to t
Coulomb potential in Eq.~4.6! contain terms proportional to
1/z so that this potential still has a long scope. In contra
the 2D and 3D screened potentials have as first correc
terms those proportional to larger inverse powers of th
respective variables, that is, 1/r2 and 1/r 2.

Another point to emphasize is a common characteristic
the TFA potential for all of the three dimensionalities~3D,
2D, and 1D! that consists in the existence of at least o
bounded state for a large valueqs . This follows for the 3D
case from the well-known general theorem for 3D cent
force systems,21 while for the 2D case it was shown numer
cally by Spectoret al.5 and for the 1D case the existence,
the extreme case of an attractive Diracd potential, of a
bounded state is well known.

We hope that this work may stimulate further theoretic
and experimental work in the study of screening in 1D s
tems and other nanostructured systems.
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