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Theory of the periodic orbits of a chaotic quantum well
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A theory is developed for the periodic orbits of an electron trapped in a rectangular potential well under the
influence of an electric field normal to the barriers and a magnetic field. When the magnetic field is parallel to
the electric field the dynamics of an electron in the well is integrable; however, when it is tilted by ardangle
the system undergoes a transition to chaos. Motivated by recent experimental and theoretical studies of mag-
netotunneling in quantum wells that emphasize the role of periodic orbits, we present here a unified theory of
all the periodic orbits within the well that are of relevance to experiments. We define the appropriate scaled
variables for the problem, which we divide into two qualitatively different cases, the single-barrier model
(depending on two parametgrnd the double-barrier modédepending on three parameterd/e show that
in both cases all relevant orbits are related to bifurcations of period-one traversing orbits. A full analytic theory
is derived for the period and stability of these traversing orbits; and analytic and numerical results are obtained
for the important period-two and period-three orbits. An unusual feature of the classical mechanics of the
double-barrier is a discontinuity in the classical Poingaep, which leads to a new type of bifurcation that we
term a cusp bifurcation. We show that all the periodic orbits that traverse the well exist only in finite intervals
of voltage and magnetic field, appearing and disappearing in bifurcations. These intervals are shown to corre-
spond to the appearance of new resonance peaks in the experimental data, laying the foundation for a quan-
titative semiclassical treatment of the systé®0163-182808)05107-§

I. INTRODUCTION the theory is a relationship between the quantum density of
states(DOS) and a sum over isolated unstable periodic clas-
Most of our intuition about the properties of quantum sys-sical orbits first derived by Gutzwillefthe “Gutzwiller
tems comes from the consideration of Hamiltonians withTrace Formula’).®> However this semiclassical formulation
high symmetry, for which the classical motion is integrablehad to be extended to account quantitatively for experimental
and hence the Schdinger equation is separable. Symmetry-Spectra, since these depend on other factors in addition to the
breaking terms are typically treated by perturbation theorydensity of state8.
and the physics is described in terms of transitions induced Until recently there were no comparable applications of
between stationary states of the symmetric problem. Thisemiclassical theory to condensed-matter systems. Within
approach fails when the symmetry-breaking terms becomthe past few years, however, several such systems have been
too large and many levels of the unperturbed system ariglentified: ballistic microcavities? two-dimensional antidot
strongly mixed. In this situation one approach is direct nu-arrays; ° and the system that is the subject of this paper,
merical solution of the nonseparable Salimger equation resonant tunneling diode in a magnetic field tilted by an
using a large basis set and calculation of the expectatiodngled with respect to the tunneling direction. It has become
values of interest from the numerically determined eigenclear that of the three, the latter system allows the most de-
states. For most problems of interest the computational effofteiled comparison between theory and experiment, because
involved is substantial, particularly if one wishes to explore athe microscopic Hamiltonian is known so accurately and be-
large parameter space of Hamiltonians and not just a singleause several continuous experimental control parameters
fixed set of parameters. Moreover, an exclusively numericamay be tunedn situ to map out a large parameter space.
approach makes it very difficult to understand qualitatively ~ This system was first identified and studied by Fromhold
the dependence of physical properties on the parameters 8nd co-workers? who immediately understood the close
the problem and thus to generalize the results to other relatehalogy to the Garton-Tomkihspectral oscillations in the
systems. diamagnetic Kepler problem. When the tilt angleis zero
An alternative approach that can give greater physical inthe experiment corresponds to a conventional resonant mag-
sight is to use the semiclassical methods developed for nometotunneling geometry; there is resonant structure im-iie
integrable systems during the past two decades by researctharacteristic(causing peaks ird?l/dV?) with each peak
ers studying ‘“quantum chaos,” i.e., the quantum corresponding to the subband thresholds in the quantum
manifestations of chaotic classical dynamics. This approackvell. The experiments were done at fixed magnetic feld
has been used successfully in atomic physics during the past1l T, for which the emitter state of the resonant tunneling
decade. Of particular note is the theory of the spectra oflevice is primarily then=0 Landau level, so that the ob-
Rydberg states in a high magnetic fig¢ilamagnetic Kepler served peaks were only due to quantum-well states with sub-
problem,}? where a qualitativend quantitative understand- band quantum numbgy and Landau index=0, as selec-
ing has been obtained semiclassically in excellent agreemetibn rules prohibit tunneling to other Landau levels.
with experiments. In that case the essential idea underlyingypically of order 20, such resonance pealssibbands
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were observed over the interval zero to one volt. Howeverfum manifestations of theansitionto chaos with its associ-
when the magnetic field was tilted by a substantial amounated KAM (Kolmogorov-Arnold-Moser behavior in phase
(6>20°), Fromhold and co-workefsfound that in certain space’?
voltage intervals the number of tunneling resonances would In this paper we will lay the groundwork for a detailed
abruptly increase, indicating the presence of tunneling prosemiclassical theory of these experiments by developing a
cesses that could not be explained by the subband structug¥stematic theory of the relevant classical periodic orbits.
of the well at #=0. They interpreted these new peaks inTh_e com_plete basis Qf such a se_mlclassmal theory did not
terms of density-of-states oscillations associated semiclasgfXist until recently, since no semiclassical formula for the
cally with the short periodic orbits of the well, specifically "éSonant tunneling current was known. Specifically, although
those that collide with both the emitter and collector barriersth€ Previous work on scasand on scaled spectfe®indi- -
Numerical integration of the classical equations of motionc@ted the crucial role of periodic orbits within the well, it
revealed a number of relevant periodic orbits and that ifV@s unclear how to derive a formula in which the contribu-
most of the voltage range &=11T these orbits were un- tion of the V\_/ell_ wave functlon_s was expressed entirely in
stable fixed points of the classical Poincarap in an almost (€MS Of periodic orbit properties in the well. We have re-
completely chaotic phase space. It was found that the spa€ntly derived such a formuf&:and using the results of this
ing of the new resonances in voltage was consistent with th¥/°Tk, have shown that it can explain qualitatively and quan-
period of the orbits identified, as was their appearance d{tatively many aspects of the experimental data of Ref. 12.
particular values of the magnetic field. In more recent work A Key property of the experimental system that is ex-
those authofd have emphasized that in many cases thes®loited in our derlvat|_on is that the tunneling is _sequent_|al.
oscillations should be interpreted as arising from individuaA" €lectron tunnels into the well from the emitter, gains
electron eigenstates in the well that concentrate on the rekinetic energy under the high voltage across the well, and
evant classical periodic orbitthe “scarred” wave func- cplllde's with the collector barrier. After several_such colli-
tions), and not by the level clustering normally associatedSions in the well, the electron begins to lose this energy by
with the DOS oscillations given by Gutzwiller's trace for- OPtic phonon emission, and only tunnels out after of order
mula. Most of this work was done at high magnetic field andg®ne hundred_ collisions. Therefore the tunnellng rresonances
large tilt angles such that the classical dynamics is almosi'® ;ubstantlally broadened and only are sensitive to struc-
completely chaotic. ture in Fhe DOS on energy scaleshi/ 7,,~5 meV. Under
Another important series of experimelitiooked at the- ~ Such circumstances the system may be treated by the
V peaks in the entiréplane parameter space of magnetic Bardeen tunnelmg_ Hamﬂtomgn formalisth, which ex-
field and voltage, varying the tilt fron#=0 to #=45° in presses the tunnelln.g current in terms of wave fu_nctlons of
small increments so that the resonance structure could gg€ isolated well, which may then be reexpressed in terms of
carefully analyzed in the transition regime between chao e_semlclas_swal Green fu_nct|0n, an_d ultimately terms of
and integrability. They found a complicated pattern of peakper'Od'C orblt(PO_) properties. We find for the oscillatory
doubling and peak tripling in various regions of tBeV part of the tunneling current:
plane, which extended to much lower magnetic field than IS
previously reported. Such experiments are particularly inter- ~ Wys= ReE Aﬂexp(—TM/TOpt)ex;{ i # — —”) D
esting from the theoretical point of view because, as dis- ®
cussed below, classically the system is undergoing a transiwherew, is the oscillatory part of the tunneling rate from
tion to chaos as a function of continuous parametershe emitter to the well per unit time, the summation is carrier
(6,B,V). In our view no quantum system of comparableout over various primitive periodic orbits in the well reach-
controllability existed previously for the study of the quan- ing the emitter wall and their repetitions, and the amplitude

A :J dyf i E(y.00) 16p% 2 mgy(y —ym)®+ (M~ miy) (y = y,) (Py— Py) —miz(py—py)°
g P mr I miy mi+ 2] h (mf;+mo,+2) ’
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wherep” andy, is the electron momentum and coordinate atthe tunneling formuld1), implies that only the shorter PO’s,
the point of collision,S,, T,, and (nm);; are, respectively, corresponding to~5 or fewer collisions with the barriers,
the action, the period and the monodromy mdtmf the  will give resolvable structure in the experiments we analyze.
periodic orbit, andn* is the effective mass of the electron. In this paper we focus on the the classical mechanics of these
The distribution functiorf{?(y,p,) of the electrons injected short periodic orbits.
into the well, is defined as the Wigner transform of the iso- Although the work of Fromhold and co-workers had iden-
lated emitter wave function, calculated at the plane of thdified several important periodic orbits in the classical me-
barrier. chanics, they had not provided a model of the global phase-
The level-broadening in the well due to optic phononspace structure as the system undergoes the transition to
emission(which is represented by the term expX,/7,,) in  chaos. Shepelyansky and Stbheeveloped such a model by
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reducing the dynamics to a two-dimensional effective maphis system and suggests its value as a computationally trac-
which, in the limit where the emitter state energy is negli-table example of bifurcation theory and the approach to
gible, is equivalent to the Chirikov standard map. This limit Hamiltonian chaos. A further benefit of the stability analysis
amounts to replacing the double-barrier system with a singleis that we are able to explain the anomalously strong scarring
barrier model since the injected electron does not havef wave functions found previoush};these implications are
enough energy to climb the potential hill and collide with the described briefly below, and in detail elsewhé&fte.

emitter barrier. In this limit, for fixedd, the dynamics is First, we briefly discuss qualitatively the origin of classi-
controlled by a single chaos paramefe+2v,B/E where cal chaos in this system, which we shall refer to as the
B,E are the magnetic, electric fields ang=m*v{/2 is the  “tilted well.” At zero tilt angle (§=0) the acceleration
total injection energy of the electron. Since for much of thegiong the electric field&=Ez normal to the barriers and the
experimental parameter rangev~eo, Shepelyansky and yanqverse cyclotron motion decouple and are integrable.
Stone argued that the classical mechanlgs_fhc_)gldzbe appPrO¥yllisions with the barriers reverse the longitudinal compo-
matel_y constant along parabolds- 8ed2r_n B°B”(dis nent of momentumu,— —wv,) and do not transfer energy
the distance between the barrieasid estimated the value of betw the cvelotron and lonaitudinal motion. Once Bhe

B at which global chaos occurs using the Chirikov resonance_e (_een_ y Ag A ' o
overlap criterion? They pointed out that the first appearancefield is filted, so thaBB=Bcosfz+sindy, between collisions

of additional resonance peaksB#5 T,6=11° appeared to the electron executes cyclotron motion around Eheirec-
be due to the bifurcation of the main period-one orbit; how-tion, with a superimposed drift velocity,= (E/B)sinéx, and
ever, they did not analyze these bifurcations further at th%cceleratesalong B due to the componeri - B=Ecos().

time. . oS - .
In this paper we provide a detailed analysis of the classi:rhls motion Is sl mtegral_)Ie. However, now CO"'S'.OnS.W'th
cal mechanics of these bifurcations both within the single-the b?”'ers n ger(;eraicl)(mlﬁ the c;gc(ljotron gnd Ion_gltudmzli)ll
barrier model(SBM) and the more accurate double-barrier N€rgiesec,&. and make the total dynamics nonintegrable.
model (DBM). The essential physics of these bifurcations is(When ##0 longitudinal will mean parallel to the magnetic

the nonlinear(classical resonance between the cyclotron ro- field direction B, and transverse will refer to the plane per-

tation and the longitudinal “bouncing ball” motion in the pendicular toB.) The amount of energy exchanges=¢,

well, which are coupled fop#0. These resonances lead to — ¢ depends sensitively on thEhaseof the cyclotron rota-
bifurcations of the main period-one orbit, which we shalltion at impact. For example, we shall see below that when
refer to as the “traversing orbit(TO), since near resonance he phase is such that the velocity falls precisely in ke
this orbit is not isolated and new orbits can be born withoutp|ane there is no energy exchanges(=0), and periodic
V|0Ia_t|ng the Poincaréndex consgrvatlo'n theoref’ﬂ.‘l’_hese orbits with this property will be of great importance. When
nonlinear resonances have relatively simple analytic proper;

. o degrees of freedom are nonlinearl
ties due to the fact that the cyclotron frequency is indepen- 9 y coupled so that the

dent of the energy, and these basic properties are captured 8mount of energy exchange is determined by a rapidly vary-

the SBM, which describes a standard, smooth KAM transi—'r}/g phase, chaos is the inevitable resfigince the rate of

tion to chaos. Therefore, in our view, the conjecture of Refs/ariation of the phase between collisions.ig=eB/m*, we
18 and 12, relating peak doubling and tripling to period-two€*Pect the degree of chaos to increase with increasing
and period-three bifurcations of the traversing orbit using the>imilarly, since the time between collisions decreases with
SBM, is qualitatively correct. However, we now understandincreasing voltage, the rate of phase variation is a decreasing
that the DBM is not a standard KAM system, since the dis-function of V and we expect chaos to diminish &sin-
continuity in the dynamics between orbits that reach andreases This explains qualitatively the dependence of the
those that do not reach the emitter barrier violates the asshaos paramete3~B/\V found by Shepelyansky and
sumptions of this theory. The DBM then generates some newtone!® To go beyond these qualitative considerations we
physics in the bifurcation theory which is described in detailneed to perform a scaling analysis of the classical double-
in Sec. IV below. Specifically we find that periddlbifurca-  barrier Hamiltonian, which we will describe in the next sec-
tions arise in families related according to certain topologication.
rules. Certain of the bifurcations, which we teousp bifur- This paper is organized as follows. In Sec. Il we introduce
cations violate standard principles of bifurcation theory duethe scaled Hamiltonian, which is effectively two dimen-
to the discontinuity just mentioned. One member of eactsional, and discuss the nonlinear Poincarap it generates,
family participates in the perioti bifurcation of the travers- recovering the limiting behavior discussed by Shepelyansky
ing orbit, but the corresponding orbit is often not the oneand Stone, which is equivalent to the single-barrier model.
responsible for the appearance of multiple peaks in the exWe introduce the crucial notion of nonmixing periodic or-
perimental data. This point has been made eali& but  bits. In Sec. Ill we discuss the periodic orbit structure of the
without recognition of the bifurcation trees connecting all of SBM, deriving analytic expressions for the period and stabil-
these orbit$® ity of all period-one orbits. We consider the bifurcations of
Below we derive an exact analytic expression for the pethe traversing orbits in the SBM, enumerating the relevant
riod and stability of the traversing orbit in both the SBM and period-two and period-three orbits. In Sec. IV we turn to the
DBM, which allows us to locate precisely the bifurcation double-barrier mode{DBM) and derive analytic formulas
points for all values oB,V, §. The existence of such exact for the period-one orbits there. The bifurcations of the TO in
analytic formulas for nontrivial periodic orbits of a Hamil- the DBM are discussed and the families of pertbdrbits
tonian in the mixed regime is to our knowledge unique toare identified. Finally, we summarize the properties of the
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/ / independent length scale in the problemljg=vpw;®,
wherevp=E/B is the drift velocity for perpendicular elec-
Y tric and magnetic fieldgthe actual drift velocity when the
B fields cross at anglé is v4=vpsing). For electron total en-
£ ergiese <eV=eEdthe emitter barrier is energetically inac-
X 9 cessible so the length scaleis irrelevant. Since we wish to
/ / F introduce a dimensionless Hamiltonian related to &y.by
a canonical transformation, the scaling must be independent
of energy and applicable to both the cas€eEd and ¢
>eEd. Hence we must scale all lengths by.
FIG. 1. Schematic of the geometry of the system with our axis In addition, we want to exploit all symmetries of the
conventions. Hamiltonian. The Hamiltoniari3) is independent of the co-
ordinatex and, thereforep, is conserved, so we can see
short periodic orbits and set the stage for their use to calcummediately that the dynamics is two dimensional for each

late the tunneling spectra semiclassically in Ref. 16. value of p,. However, there is an additional symmetry re-
lated to gauge invariance: the invariance tf under all
Il. SCALED DYNAMICS AND POINCARE MAP tr_ansformatmns ofp, andy, which keep the \(alue of Fhe
o difference p,—eBycosf unchanged. This implies that if a
A. Scaled Hamiltonian periodic orbit exists for one value @, then an exact copy

We now define the Hamiltonian we will use for analyzing ©f this orbit exists for allp, translated by the distanaky
the classical mechanics. We neglect the coupling of the elec= A PxCost/eB Combined with the translational invariance in
trons to optic phonons within the well; we will take it into the x direction this means that any periodic orbits can be
account in the semiclassical theory by introducing an appro@rbitrarily translated in the-y plane. This is the classical
priate level broadening. The semiclassical tunneling theor@nalogue of the Landau-level degeneracy that is preserved in
expresses the tunneling current in terms of the emitter wavée Hamiltonian(3). We want to rescale our Hamiltonian to
function, the tunneling rate through each barrier, and th&liminate this classical degeneracy pp as well, so as to
periodic orbits of electrons trapped within the well. There-define a unique dynamics for each value of the total energy.
fore we are 0n|y concerned with the classical mechanica—his can be achieved by the fO”OWing canonical transforma-
within the well and can represent the barriers by infinite hard!on:
walls separated by a distande The z axis will be chosen

normal to the barriergparallel to the electric fielE) and X we Py Y ¢ Py _
with an origin such that the collector barrier isat 0 and £= Io m*lacosd’ n= Io m*l.cos’ ¢=2lp,
the emitter barrier is at=d. The magnetic field is tilted in P P
the (y,z) plane, B=B(cosiz+sinfy)—see Fig. 1. We ool Wl w1
choose a gauge where the vector poterfial[ — Bycos() pgz;px p,=——py, P ‘b
A~ * 7 * y? £ * ral
+Bzsin(6) [x. The Hamiltonian is | | I
_[P—eBycos0) +eBain)]’  p2  pl T ed @
H= om* * om* * om* +ekz which leads to the dimensionless Hamiltonian with two de-
grees of freedom:
+U(=2)+U(z—d)=¢, 3
po+p}
where the functiold (U(z<0)=0,U(z>0)=x) represents Hei= ”2 §+%(ncose—§sin6)2+ +U(=9)

the infinite hard walls az=0.d.

The Hamiltonian(3) involves four variable experimental d
parametersB, E, 6, andd. It is of great convenience to +U( - |—>, 5
rescale the variables in E(B) so as to express the dynamics b
generated by this Hamiltonian in terms of the minimum
number of independent parameters. This will simplify the - (6)
analysis of the periodic orbits and also predict scaling rela- €p
tions relevant to the experimental data. We present a rescal- . : . _
ing below that is most useful for a periodic orbit theory of Where rescaled energy is measured in units of the “drift en-
both the single-barrier and double-barrier models. It is &£79Y" &o=Muvp and may be rewritten as
natural extension of the simpler scaling introduced by Shepe-
lyansky and Ston&® An alternative scaling which applies to € vng B>

the DBM has been introduced by Monteiro and €p - 2E2 8
co-workerst41®

The natural unit of time for the problem isgl, where  Note that both the coordinai& and the momentunp, are
w.=eB/m* is the cyclotron frequency. The barrier spacing absent in the scaled Hamiltonian, which is hence truly two
d gives one length scale, and the only other energydimensional.
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B. DBM vs SBM: y parameter conservatiop If an initial condition is chosen on this plane
then Hamilton’s equations of motion can be used to obtain
the values of ¢,p,), when the trajectory again passes
§hrough the plang=0. This procedure defines a Poincare
map for the tilted well(other choices are possible, e.g., the
gmitter barrier map af=d/lp and may be used belgw

The only dependence on the barrier-spacthgn the
scaled Hamiltonian is through the tero({—d/lp) repre-
senting the emitter barrier. As noted, when the total energ
of the electron is less than the potential dedpd across the
well, the electron cannot reach the emitter barrier, and th
term U(Z—d/lp) can be removed from the equati¢s). In

this case, for fixed), the dynamics is uniquely defined by the T +1= Pg(7n,(Py)n),

value of the scaled energy/ep=/3%/8. This case corre-

sponds to the single-barrier model studied by Shepelyansky (Pnr1=P (70, (P)n)- (8)
and Stoné?® who first showed that the dynamics of the SBM

at fixed 6 depends only on the paramefg+2v,B/E. Since every orbit reaches the collector barrereryperi-

Whene>eEd, the electron can collide with the emitter odic orbit of the Hamiltonian(5) corresponds to either a
barrier and the classical motion of the electron in such a casxed point of the Poincarenap (period-one orbitsor to a
depends essentially dmoth d'l, and 8, leading to a more fixed point of theNth iteration of the Poincarmap (period-
complicated and interesting dynamics. Since the crossovey orbits).
between these two regimes is determined by the condition Note that the coordinates and momentunp,, are pro-
y=e/eEd=1, we reexpress the paramettétp in Eq.(5) in portional to thex andy components of thevelocity of the
terms of the dimensionless parametgry: d/Ip=%/(8y),  electron in the original coordinate system:
so that the dynamics in the DBM is determined by the values
of B,y. This is part|cularly_ convenient because in experi- vy=— | pCOHw, 7,
ments the ratio of the emitter state energy to the applied
voltage is approximately unchanged, gds approximately
constant over thd®-V parameter space. Therefore both the
dynamics of the SBMandthe DBM can be fully analyzed at , . ,
fixed # by varying a single dimensionless paramegerThis This property allows us to relate the Poincanep (8) in
is how we will proceed in the remainder of this work. the coordinates #,p,) to an equivalent Poincarap in

Before making any further analysis of the dynamics wemore familiar coordinatesvi/vq,vy/ve)=(v«,vy), Which
note that there is one completely general prediction that foldescribes the evolution of the velocity components of the
lows from the scaled Hamiltonian of E¢(p) if y is constant.  electron in the plane perpendicular to the collector barrier:
We can write

UyZIchpn- 9

8yeV 8yed B2 (Vs 1= Pul(V)n - (Uy)n),

B , (7)

' mr V (Ty)ne 1=y (Tn.(T )0, (10
which implies that for a giver® the classical mechanics is
constant along parabolic boundaries in the\B plane: V
=(8yed®/m* B2)B2. This is true of the exact dynamics of
the double-barrier model as long asis constant and the
variation of effective mass with injection energy is negli-
gible.

where the relations betwedn, ,®, and®,, P, follow from
Egs.(9) and(8).

Note that we have scaled the velocities by the maximum
allowed velocityv, so that the values of this Poincameap
will be contained within the unit circle, independent of the
energy[this would not be true of the variableg(p,) as the
size of the energetically allowed region of the plane varies
with the scaled energg?/8]. Although the variables#,p,)

In order to analyze the two-dimensional Hamiltonian dy-were most convenient for discussions of scaling, we will use
namics of the canonical coordinates, f,;{,p,) we use the the energy-scaled velocity ma@0) henceforth, since it is
Poincaresurface of sectioiSOS method, which is standard easiest to interpret and compare for varyjgalues.
in nonlinear dynamic&?>2°For fixed values of3 andy the A plot of the Poincarenap (10), which is called SOS, is
classical trajectories in this four-dimensional phase space ligenerated by choosing a grid of initial conditions in the plane
on a three-dimensional surface determined by energy consefwy/vo,vy/vo) corresponding to a particular value gfand
vation. Wheng+# 0 the system is nonintegrable, there is noiterating the map many times for each initial condition.
additional constant of motion other than the energy, andPeriodN stable orbits appear as “chains” ®f “islands;”
there exist chaotic trajectories which cover a finite fraction ofwhereas periodN unstable orbits will be embedded in the
this three-dimensional surface. To define the stability matrixchaotic layers between the islaRfiand are not evident to
for the periodic orbits and also to better visualize the phasethe (untrained eye. In Fig. 2 we show several examples of
space structure we plot the behavior of a set of trajectories otihe collector barrier SOS ag is increased for fixedy
a two-dimensional cross section of this surface. The motior=1.17 (which corresponds to the approximate value in the
of an electron in the tilted well is bounded and all trajectoriesrelevant experimeni%).
collide eventually with the collector barrier §&=0. There- When =0 the squared distance of a point in the SOS
fore it is convenient to choose the cross section to be th&om the origin is proportional to the cyclotron energy,
plane @,,7) when (=0 (p, being then fixed by energy which is conserved, so each trajectory must lie on a circle

C. Poincare map
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1
1
1

wherev andyv are the velocities immediately before and after
collision, respectively. This transformation is equivalent to a
clockwise rotation of the velocity vector byvan the (y'-z’)
plane, followed by a reflection,,— —uv,; hence it leaves
no vector in this plane invariarifor 6+0). Therefore, ge-
nerically thereis exchange of kinetic energy between the

Vy /Yy
-1-05 0 05
-1-05 0 0.5
-1-05 0 05

vy / Vo B 70@ 3 v:'5 1 longitudinal and cyclotron motion at each collision,
FIG. 2. Three Poincarsurfaces of section for experimentally ~m —
relevanty=1.17 at(a) 6=0°, =2, (b) 6=20°, B=3.2, () 6 SeLcc=5 (V2 —v2)"% (13

=20°, B=4.
and the dynamics is nonintegrable.
[see Fig. 2a)]. When 6+0 [Fig. 2(b)] we immediately see Note that it ispossibleto have zero energy exchange upon
the appearance of stable islands and chaotic layers, coexigwollision for 6#0. The condition for this is simply that,
ing with slightly distorted circular curves that represent the=0 at collision, i.e., the cyclotron phase is such that the
unbroken tori according to the standard KAM scen&fibor  instantaneous motion is in thez plane. The reason that no
larger B8 [Fig. 2(c)] no KAM curves survive and the entire energy is exchanged in this case is that the impulse at colli-
SOS is chaotic except for a few surviving stable islandssion is purely in thez direction and reverses this component
which however typically represent the features of most im-of velocity leavingv, andv, unchanged. I, =0 at the time
portance for the experimental tunneling oscillations. of collision thenvz,:vzcose—w_z,:—vzcosﬁ:—vzl and the
We now undertake a more explicit determination of thelongitudinal kinetic energy is conserved. Stable period-one
properties of the Poincamaap for the tilted well. To calcu-  orbits withv,=0 (p,,=0) are visible in both Figs.(®),2(c).
late the functionsP, and ®, of the Poincarenap, one has We refer to these asonmixingorbits since they involve no
first to analyze the motion of the electron between collisionsenergy exchange; they will play a fundamental role in the
This motion is integrable and is most easily represented in deriodic orbit theory developed below.

frame of referenc¢denoted by X',y’,z’)], rotated by the The transformation equations fof due to collisions at

tilt angle ¢ around thex axis, so thatz’ is parallel to the the emitter barrier are identical to E(L.2). As we shall see
direction of the magnetic field: below, it is useful to consider the dynamics in yet a third
, frame of reference that is parallel to the primed frame, but is

X' =X, moving with the drift velocityv 4 in thex’ direction. In this
. moving frame the transverse motion is pure cyclotron rota-

y’'=ycosy—zsind, tion and each iteration of the Poincarep is just a pair of
, ) noncommuting orthogonal transformations of the velocity:

z' =ysing+ zcos. first the continuous cyclotron rotation around the axis,

. . . followed by the instantaneous rotation/reflection around the
,In :[hIS frame of reference. the mqtlon of the ele.c.tron in thex, axis. Since the latter is known explicitigq. (12)], to get
(x".y’) plane _betwgen collisions is a superposition Of_ thean explicit formula for the Poincamap what is needed is an
cyclotrqn rotatlon,wn_h the freque_rlay0527r{ Tc and a uni- expression for the increment in the cyclotron phase between
form drift alongx’ with the velocityvq=Esind/B=vpSing, ¢ qjjisions, However, there is no simple general formula for
while the longitudinal motion is a uniform acceleration: this phase increment fop>1 because after a collision with
the collector barrier an orbit may or may not have enough
longitudinal energy to collide with the emitter barrier before
its next collision with the collector. Since,, changes dis-
continuously in a collision, the cyclotron phase increment
will change discontinuously due to the emitter collision. If
t=0% —lpcodw,r, (1)  one varies the initial conditions of a trajectory so that it
ceases colliding with emitter barrier in the next iteration of

the map, one can show that the phase jump goes to zero as
the impulse at the emitter goes to zére., asv, at collision
goes to zerp but its derivative is discontinuous. Hence, in
general the Poincamaap fory>1 does not have continuous
Herivatives everywhere on the surface of section. As a con-
sequence the stability matrix of periodic orbits for the exact
map fory>1 is not always defined. This has significant and
novel consequences for the behavior of periodic orbits in the
DBM: these can vanish without reaching marginal stability
in a new kind of bifurcation we will refer to as@usp bifur-
_ cation because such a bifurcation generates a cusp in the
vy =SiN(260)v, +cog20)vy, bifurcation diagrant’ We shall return to this in detail below.

. As a result of this discontinuous behavior we can only

Uy =Uyr, (12 present a simple explicit form of the Poincanap in certain

vy (1) =004 ¢+ 7) —vg,
vyr(7)=vcsin(¢°+ 7),

Ecoy

0
UZr:UZ,_e

wherev, is the cyclotron velocitywhich remains constant
between collisionsand ¢° is the initial phase of the cyclo-
tron rotation.

The energies associated with the transveiselotron
and longitudinal motion are separately conserved betwee
collisions. For6+0 the cyclotron and longitudinal motions
get mixed by the collisions with the barrie¥s:

vy =—Cc0g260)v, +SiN20)vy,,
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limiting cases. The simplest of these, previously analyzed byajue ofy, =7 can be expressed precisely in the form of a
ShepelyanSky and StOﬁ%JS when ’y<1(8<€\/), in which local standard maﬂ(icked rotob,19v25

case no orbit reaches the emitter barrier and classically the

problem is equivalent to the motion of an electron in an lnt1=1,tKsing, 1,
infinite triangular well in a tiltedB field. We now briefly
review this limit. bnr1=dnt 14, (19
D. Single-barrier model where
When y=<1, the cyclotron phase increment between col- ln=B0,,
lisions with the collector barrier i&ty, wheret, is the time
it takes the electron launched “upwards” after the collision K=268 /1—(5’)2 (20)

in the effective electric fieldEcos, to fall back down and _ _
hit the collector. The resulting Poincameap takes the form and ¢ is the phase of the cyclotron rotation.
The map is called local because the kick strength varies

Dy (0y,0y) = WUy, 0y, V75 0ct0), with v,, so that the chaos boundary, given by the
condition® K~ 1 varies withv,,. The resulting condition for
(Dy(;xa;y)zvy(;x ,;y 0, 0dto), (14) chaos as an explicit function of all system parametéfs is
where mEs
B%> , (22
32%e6%,

V(0. Uy, 073 7) =00 7) — v, COSISIN(7) + v ,SINGSIn( 7)

—(2IB)sind[1—cog )], wheree.=¢(1—(v')?) is the instantaneous energy of the
cyclotron motion.
Although the estimate Eq. (21) was obtained only in the

W(0x,0y,02;7) = v copsin(7) + UV[COSZ‘QCOS( ™)+ Sinf ¢] limiting casef#<1 andB>1, it does predict the correct be-

+7 ,sindcosf[ 1— cog 7)] _havior_of the exact m_appin@.4) fOf th_e SBM. Qualitative_ly _
it predicts that chaos increases with increasing magnetic field
+(2/B)sinfcos[ sin( 1) — 7], (15 and energy and with decreasing electric field and quantita-

R . _— — tively the condition given by Eq(21) is in good agreement
the scaled velocity v=vivy, [with v, (vs,vy)  with the onset of complete energy exchange between the
= \/1—’17)2(—}}'§>0] and the time intervalto(sx,?fy) be-  cyclotron and longitudinal motion as determined from simu-
tween successive collisions of the electron with the collectotations of the exact maf.
barrier is the first positive root of the equation:

E. Double-barrier model

0=2z(tg)= 00Z(0x 0y Vzi@clo) , (16) Wheny=e&/eV>1, the electron can retain enough longi-

Wc tudinal energy on collision with the collector barrier to reach
the emitter wall, although it need not do so. If we regard the
coordinates ,Uy) in the SOS as initial conditions for the

next segment of the trajectory, we may partition the SOS into

inner and outer regions. Initial conditions (,v,) in the

where the functiorZ(v,vy,v,;7) is defined as

Z(vy,0y,04;7)

= —Exsine[l—cos r)]+5ysinacos9[r— sin(7)] inner region will define all trajectories that collide with the
_ _ . emitter before their next collision with the collector. For
+v [ 7c0 6+ sin fsin(7) ] such initial conditions the equation
2 _ — ~
_ i _ _ Vo2(vy,0y,0,; 0t v
(2IB)| sirfo[1 cos{r)]+co§-02 . 17) 2ty="2 (vx, vy, v, C):dE_Oﬁ, (22
We wc 4y

> i i i . . .
If cT>1, an approximate root is found easily, where the functionZ was defined in Eq(17), must have a

~ positive roott=t', which corresponds to the time interval to
,BUZr .. . . .

T= i (18  the next collision with the emitter barrier.

cosd For initial conditions in the outer region ER2) has no

epositive roots, the electron does not reach the emitter barrier

before the next collision with the collector barrier, and its

trajectory is exactly the same as in the SBM for this iteration

of the map. Hence the Poincareap is still given by the

expression(14).

In this approximation the map when transformed to th
(x',y',z") coordinates becomes identito the kicked-top
map introduced by Haalké&:?°

As is indicated by the numerical analysis of both the
kicked-top map and of the exact mappitty), the KAM e Y . .
transition to chaos takes place whég~1. We therefore The~cr|t|3al boundary” between the two regions is the
take the limit3>1 andg<1. In this case both the kicked- curve (i v{), such that the electron launched from the
top map and the exact m&p4) in the vicinity of a particular ~ collector barrier with the velocitw=vo(vy,vy,v3), wil
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FIG. 3. The critical boundary, separating initial conditions such Yy / Vo
that the electron will reach the emitter barrier before the next col- o, )
lision with the collector wallregion enclosed by the critical bound-  F!G- 4. The Poincareurface of section foy=1.17, andg=2,

ary) from those when the electron returns to the collector wall with-#=30°- The chaotic region near the critical boundéthick solid
out striking the emitter barrietthe region outside the critical IN€) is the “chaotic halo,” created by the nonanalyticity of the
boundary. y=1.17, and(@ #=0° (dashed ling (b) 6=15°, 3  Map

=3 (dotted ling, (c) #=30°, B=5 (dashed-dotted line

Uo ~ o~ o~
reach the emitter wall with the component of the total veloc- d-+ w—Z(vi,Uiavg;wcti)IO- (26)
ity perpendicular to the plane of the barrier equal to zero. For ¢

0=0 the critical boundary is a circle given by the equation _ .
As noted above, an important property of the Poincare

e—eV map(24) is that it has a discontinuous derivative as the initial

(23 conditions §,v,) are varied across the critical boundary.
Therefore the conditions for the global validity of the KAM
In Fig. 3 we show a few examples of the “critical boundary” theorem are not satisfied by this map and the transition to
for different values of3 andy. It is important to realize that chaos can be discontinuous here as in the stadium bififard.
in general trajectories can cross the critical boundary andiowever unlike the stadium billiard not all trajectories are
indeed for large chaos parameter almost all trajectories daffected by the discontinuity of the map for an arbitrarily
However, knowledge of the critical boundary is useful for small chaos parameter. Away from the critical boundary the
formulating the Poincarenap of the DBM. map satisfies all the conditions for the existence of KAM tori
For (u,,vy) outside the critical boundary, the next itera- and, for a small chaos parameter, in the inner and outer re-
tion of the Poincarenap does not involve the collision with gions there will exist an outermost and innermost KAM
the emitter barrier, and the Poincameap is therefore still forus. These two tori will define a set of trajectories that
given by Eq.(14), as in the single-barrier model. either always hit the emitter barrigiie within the outermost
KAM curve of the inner regiohor always miss the barrier
(lie outside the innermost KAM curve of the outer region
Between these two tori the nonanalyticity of the map is felt
by the trajectories and the numerics demonstrates clearly that
there are no remaining KAM curves in an annular region
bounded approximately by the maximum and minimum cy-
Dy(Vy,0y) =WV (05,05, 05 0th), (24)  clotron energies of points on the critical boundary. In this
region the chaos does not appear to be associated with the
whereVe is the scaled velocity immediately after collision separatrices corresponding to the hyperbolic fixed points as it
with the emitter barrier and can be obtained as would be for a small chaos parameter in a KAM system. The
practical consequence is that one observes an anomalously
large “chaotic halo” around the critical boundafgee Fig.
4). In this region the effective map description fails badly
and only analysis of the exact map can be used. In fact, as we

Vit vi=1-1ly=

When (v,,v,) is inside the critical boundary, then the
Poincaremap is given by

(Dx(;x 1;y) = Vx(’{;i 1'65 1’53 ; wctl)y

vr=V(vx, 0y, 0 0.t)),

vg:vx(vx’vy’vz;“’cm’ shall see below, many of the important short periodic orbits
first appeaiat the critical boundary at a finite value gfand
ve=— \/1_ 1/7_(’5)3)2_(’55)2_ (250  emerge from the chaotic halo region with increasfhgWe

will be able to develop an analytic theory of the simplest
t! is defined as the time interval until the next collision with such orbits from the exact map.
the emitter barrier and is given by the first positive root of Although the effective map based on the SBM fails in the
Eqg. (22, and the parametdr represents the time interval “halo” region, for small chaos parameter and smallit
between the collision with the emitter barrier and the nextshould work just as well in the outer region of the SOS as it
collision with the collector map. The value bf can be ob- does in the SBM, since here the trajectories are prevented by
tained from the equation the innermost KAM curve from reaching the emitter and the
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DBM Poincaremap isidenticalto the SBM. Since the local B 1
chaos parameter in the effective map description of the SBM TTO:w_< 1-\/1- —) (DBM). (28
is K=286v1—(v"')? the chaos is weakest at the innermost ¢ 4
KAM curve of the outer regiofisince the cyclotron energy is Unlike all other one-bounce orbits, the TO exists for arbi-
the smallest thejeand this curve is the last in the outer trarily small energy, since its frequency need not be in reso-
region to break. The quantitative prediction for the breakingnance with the cyclotron frequency. Since it has zero cyclo-
of this curve from the local standard map approximafiéq.  tron energy its semiclassical quantization yields the states of
(19] is in a good agreement with the exact behavior. the well with Landau index equal to zero, and hence the TO
One may try to extend similar reasoning to the inner re-determines the subband energy spacings of the triangular
gion of trajectories that always reach the emitter barrier(SBM) or trapezoida(DBM) well by the semiclassical rule
Here the effective map is clearly somewhat different becaustor integrable systemsie =h/Tyq.*2
of the additional energy exchangekick” ) at the emitter Due to the rotational invariance of the system at zero tilt
barrier. Itis possible to obtain an effective area-preservingangle all other periodic orbits in the weih both the SBM
map for small tilt angles, which is similar to a standard mapand DBM) exist in degenerate families related by rotation
with two unequal kicks per period. However, the SOS gen-around thez axis. The union of all trajectories in a family
erated by this approximation has little similarity to the exactdefines a torus in phase space, known as a “resonant” torus
map. This is because when the energy is almost completeiy the nonlinear dynamics literatdfebecause the periodic
longitudinal (as it is in this region of phase spadbée kick  motion of the two degrees of freedom are commensurate:
strength goes to zero at leading order in the tilt angle and the
effective map description fails. Note that it is precisely the No.=koy, (29
periodic orbits in the inner regiotwhich reach the emitter . .
that are measured in the tunneling spectrum. Thus we argheren andk are integergwhich do not have a common
particularly interested in obtaining a good description of this viso andw_is the frequency of the periodic motion in the
region of phase space and must work with the exact ma@)ngnudlnal dII’EC.tIOI’] Since longitudinal anq trgnsver'se mo-
described by Eqg24). ion de_couple;oL is the frequency of the pe_rlodlc motion of
Fortunately, as we show below, it is possible to obtain the _umformly_accelera_ted electron bouncing normal to the
good theoretical understanding of the short periodic orbits i?21ers, and its value is
the entire phase space, including the crucial central region of

the SOS, based on analysis of the exact map. In fact we are o = 2o (SBM) (30)
able to obtain analytic expressions for the period and stabil- L B e '
ity of an infinite class of important periodic orbits for arbi-
trarily large values of the chaos parameter. ~
1 ve <1

Ill. PERIODIC ORBIT THEORY 27Twc 1 -1 (DBM),
(SINGLE-BARRIER MODEL ) B‘/ 1- 1-— ’)’8 =1
YEL
A. Integrable behavior

31
Equation(1) of Sec. | gives a quantitative semiclassical 3D

formula for the tunneling current through the tilted well in wheres, =02 is the scaled longitudinal energy.

terms of the contributions of different periodic orbits that The resonance Conditidﬂg) means that any periodic or-
connect emitter and collector barriers. Clearly these orbitgjt of a family labeled by the integers andk collides with
can be fully described only within the framework of the the collector barrien times while makingk full cyclotron
double-barrier model. Nevertheless, the behavior of the perirotations before retracing itself. Therefore all such orbits in
odic orbits in the DBM as a function of tilt angle arglis  real space trace out rational fractions of a hétience the

exceedingly complex and had not been understood systenferm helical orbits between successive collisions and have
atically previously. In order to develop such a systematicperiods given by
understanding it is very helpful to consider the SBM, which

has a similar but simpler periodic orbit structure. The simi- 2k
larity between the two models is easily seen by considering Tho= o (32
the limit of zero tilt angle. ¢
When 6=0, both systems are integrable and all of thefor both the SBM and DBM.
periodic orbits can be divided into two groups:shgle TO A simplifying feature of these systems is that one of the

bouncing perpendicular to the bar(@rwith zero cyclotron  oscillation periods, the cyclotron period, is independent of

energy and infinite families of helical orbitsiO’s) with pe-  energy and voltage. The longitudinal period varies with both

riods equal to an integer multiple of the cyclotron periodenergy and voltage, going to zero as longitudinal energy
2wl w.. The traversing orbit corresponds to the fixed pointtends to zero. If a family of helical orbit,k} exists at a

of the Poincarenap in the center (0,0) of the surface of the given energy, a family of the same type can be generated at

section—see Fig. 2; its period is given by a lower energy by simply removing cyclotron eneignence
P reducing the cyclotron radidsuntil the radius of the helix
TTOZw_(SBM)a 27) shrinks to zero, at which point this “family” has become

degenerate with the TO and ceases to exist. These degen-
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eracy points occur then, whenever the period of the travers- e S L T ]
ing orbit T1o passes through the valkd . /n, for both the I S
SBM and DBM. 10 V(
When the magnetic field is tilted the rotational symmetry IO
around the field direction that was the origin of continuous I
families of helical orbits in the well is broken arall the 5 - y .
resonant tori are destroyed. According to the Poincare L Sy ]
Birkhoff theorent® each of them is replaced by an integer i o e ]
number of pairs of stable and unstable orlfitsrmally just a bl b
single paiy. The degeneracy points of the untilted system, at 8
which an{n,k} resonant torus collapsed, evolve intefold
bifurcations of the TO. FIG. 5. Periods of one-bounce orbits as functiong3afor the
The reason that the periodic orbit theory of the DBM istilt angle 6=11°. The dashed lines correspond to the periods of
more complicated than that of the SBM stems from twoone-bounce orbits at zero tilt angle. The insets showktaeandy-
facts. (1) In the unperturbed DBM there are two distinct 2 projections of the three existing one-bounce orbitgat10.

families of orbits for each paim,k} (one which reaches the C. One-bounce orbits
emitter and one which does nptvhereas there is only one o
such family in the SBM(2) These families can collapse at 1. Continuity argument

the critical boundary and not just by reaching degeneracy One-bounce orbits are periodic orbits that have retraced
with the TO. However in all the other respects mentionedthemselves between each bounce off the single barrier, i.e.,
above the two models are similar, and in particular, the bithey are fixed points of the first iteration of the Poincare
furcations near the TO, which are crucial for explaining themap. Note that different one-bounce orbits may have widely
experimental data of Muller and co-workéfsare very simi- ifering periods, and may for instance have periods longer
lar in the fwo models. We thus begin with the simpler case othan two- or three-bounce orbits. Fo=0 the existing one-
the SBM: bounce orbits consist of the TO and all HO families with
=1 which are above threshold, i.e., wilth< 8/27. The be-

B. Periodic orbits at #=0 havior of the periods of these orbits is indicated by the
dashed lines in Fig. 5. Since the periddsf the HO families
are fixed to be integer multiples @f. they are independent
of B8 when we plotw,T.

When the magnetic field is infinitesimally tilted, all heli-
cal families (resonant to)i are immediately destroyed and
replaced by pairs of stable and unstable periodic orbits.
2\2m*s B T.hese surviving o'ne-bounce orbits are only in'fini.tesimally
To=——=——=—. (33 distorted from their analogs a=0 and by continuity the

eE @We periods of these orbits are also only infinitesimally altered.

For all HO's the period is finite and an integer multiple of For our system it is clear which orbits from each infinite
T.=2ml w.. Thus a given family of HO’s labeled byn,k} family survive. For each helical family there are exactly two
can only exist above the energy at whicli;o=KkT.. These Orbits that collide with the barrier with, =0, the condition
thresholds are the degeneracy points discussed above. At tf Zero energy exchange according to Eig). It is these

threshold all the energy is longitudinak(=1); together B,voré)ég:r'?]fr?r?; telgﬁh'Iag'];:;ltgﬁttjst?;xgleérlgizrizreasgyess?:na-
with Egs. (29),(30) this yields y Ing grtudi M 9y P

rately conserved between collisions even in the tilted system,
2.k so anyone-bounceeriodic orbit for arbitrary tilt angle must
'g{“'k}:T' (34  also conserve these quantities during the collision. But the
condition for this is just,=0, which is satisfied for the two
one-bounce helical orbits from each family that hit with
= *+yp.. By continuity these two orbits must evolve into the
two surviving isolated fixed points of the map under tilting
_ 2.7k 2 of the field. However, this tilt spoils thg— —y symmetry of
gL(n,k)z(—) , (35)  the system, so these two orbits are no longer symmetry re-
AN lated and their periods differ, one becoming longer thap
wheres: =32 is the scaledlongitudinal energy. The scaled and the_ othe_r be_coming ;horter. As a result each of the hori-
L™ "z ) ) -2, zontal lines in Fig. 5, which there represent the one-bounce
cyclotron energy for this familyresonant torusis justvc  HO families, splits into an upper and lower branch represent-
=1-—¢ . As the value of3 is increased, the existing helical ing these two orbits. Moreover, for infinitesimal tilt angle
orbits gain more cyclotron energy and move away from theone of these branches must be stable and one un<thabele
traversing orbit, allowing for the creation of new families of lower branch is the stable one as we shall see bel&iv
HO near the TO. We will now analyze what happens to thenally, there is no longer a qualitative difference between the
shorter periodic orbits as the magnetic field is tilted, begin-TO and the HO'’s once the field is tilted. F@r 0 the TO is
ning with the one-bounce orbits. required to have nonzero transverse energy in order to satisfy

As just noted, the periodic orbits a0 are of two types:
the (usually) isolated traversing orbit and the families of he-
lical orbits. The TO, with no cyclotron energy, has a period
that is independent of magnetic field and monotonically in-
creasing from zero with increasing energy:

Since 0<e, <1, for values of3> By, iy there always exists
exactly one root of the equation
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the vy,=0 condition and since it was degenerate with the

{1k} family of HO’s at 8=2=k it must be continuously
deformable into one of the HO’s near these points.

To label the single-bounce orbits, it is convenient to in-

troduce the following notation:
( 1) * (k)u

which means that it is a single-bounce periodic ofbit” )
with the periodT such thatk T,.<T<(k+1)T.. To distin-
guish the two orbits, which fdk=1 can satisfy this inequal-
ity, we introduce an additional index, such that the sign
*“+" corresponds to the periodic orbit, which is initially

THEORY OF THE PERIODIC ORBITS OF A CHAOT. ..

9817

(@)

FIG. 6. A single-bounce orbit projected onto the /') plane
(a) and (x”,y") plane of the “drifting” frame of referencéb).

that is periodic in the lab frame will not be so in the drift
frame, instead the initial and the final points of the trajectory
between successive collisions must be separated by the dis-
tancedsx”=v4T (whereT is the period of the orbjtand have

stable(we use this notation in Fig.)5 the same value of”. On the other hand, for one-bounce
The qualitative behavior of the complete set of one-periodic orbits the distancé” can be expressed &see Fig.
bounce orbits of the SBM follows from these continuity ar- 6)
guments and is shown in Fig. 5, where for definiteness we
have plotted the exact analytical results of the next subsec-
tion. Note that for@3+ 27k there is always one orbit with a so that
nearly linear variation of its period with3. This is the
(1)*® orbit andit is the analog of the TO of the untilted
system. However, neg8=2wk the period of each of the
(1)"® orbit saturates t&T, as it becomes primarily helical,
while a new pair of orbits is born at a tangent bifurcation
near B=2wk. One of these, the (1YY, takes over the
role of the TO while the other, the (1§**%, becomes the
unstable partner of the helical orbit generated by the {4) (37)
orbit. Thus, qualitatively speaking, the system repeats itself
every timeg is increased by #. Quantitative scaling rela- Since the motion along the direction of the magnetic field
tions between the behaviors in each interval are discussed #=B is a uniform acceleration under the foreEcosg/m*,
Appendix B. Note finally that the continuity argument sug- at the point of collision
gests that in the tilted system the perio@, is forbidden for
one-bounce orbits since the two surviving HO’s from each
resonant torus are shifted away from this value and the pe-
riod of the TO can no longer cross that of the HO'’s @&as
varies; we shall prove this statement rigorously shortly.

X"=2v .l wSINw T/2),

w:T/2
VSN w T/2)

and at the point of collision, therefore,

UVc=

UX”lZZOZ Ud((,()CT/Z)COt( (UCT/Z),

Uy/r|Z=Q:Ud(CUCT/2).

eEcosd w T
5

(39

UOn——"-
“m* W
Note that at the point of collision,=v,cosf—vsind=0,

o as expected.
2. Quantitative theory Substitutingv” into the equation of energy conservation

We now derive exactly the periods of all one-bounce or-£=m(v"—Vy)?/2 at the barrier, we finally obtain
bits for arbitrary tilt angle. We also prove that there can exist 2 2
no one-bounce orbit not identified by the continuity argu- (B2)"— (wcTI2)
[1— (w.T/2)cot w T/2)]?

ment given above. As just noted, it is trivial to see that all
This is the basic equation determining the peridd, 6)

one-bounce orbits must be nonmixifige., bounce withv,
=0) for any tilt angle. Therefore we can impose this Condi'for all one-bounce orbits. A8— 0 the only solutions which
‘exist requireT—0 also, and it is easily seen by expanding

tion in order to find all one-bounce orbits and their periods
The derivation is most easily performed in the coordinatepe |efi.hand side that there is in fact only one solution for
any value off, and this solution hag=w.T as for the TO

system &”,y",z"), which movesn the direction perpendicu-
lar to B andE with the drift velocityv 4= Esiné/B: in the unperturbed system. For aBythere are no solutions
with . T=27k (as argued aboyalue to the divergence of

=Ssiré(0). (39

n_ !
XT=xFudt, the denominator in the left-hand side at these values. If there
n were solutions with this value of the period, then viewed in
=y the drift frame the orbit would be an integer number of full
Sy (36) circles, which is one can see intuitively is impossible due to

the collision(see. Fig. &
For B>2wk there are many solutions as can be easily
fe,hown graphically by plotting the single-valued function

Bz]’(sina,%c-r),

Projected on the plane(,y”), the trajectory of the elec-
tron between successive collisions is a portion of a circle o
radiusv./w; with an angular sizev.T, wherev. is the cy-
clotron velocity andr is the time interval between collisions
(period of the one-bounce orhitFor T> 27/ w. the trajec-
tory retraces the circle several timgsee Fig. 6. Any orbit

(40)

where
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This is clearly seen in the SOS of FigbyJ, the fixed point
of the stable periodic orbit ()Y is at the center of the
stable island near the origin, whereas its unstable partner is
(less obviously visible as the elongated flow pattern at
slightly larger values o6, andv,=0. The evolution of these
orbits above threshold is precisely as predicted by the conti-
nuity argument above: the (1§ initially has a period close
to that of the TO before saturating 1o~ (k+1)T,; whereas
the (1)~ orbit immediately becomes helical with~kT,.
We must emphasize that E@®9) uniquely identifies all one-
bounce orbits for arbitrary. Thus there are no one-bounce
orbits for anyé that cannot be related to one-bounce orbits of
the untilted systentthis is not the case for period-two and
higher orbitg. Hence we have a qualitative and quantitative
understanding of the periods and topology of all one-bounce
orbits. The next issue to address is their stability properties.

3. Stability

We define the stability of a periodic orbit in the standard
manner>2® The nonlinear Poincareelocity map[Eq. (14)]
is linearized for small deviations of the initial velocity from
the values corresponding to the periodic offikted point of

-1 =05 0O 0.5 1
Vy / Vg

FIG. 7. Poincaresurface of section for the single-barrier model the map. This linear map is represented by &2 mono-

for 9=11° and(a) B=5 {as in the unperturbed system, the single- dro_mymatrlx M, which has dett_armmant one dge to conser-
bounce orbif (1)*(©] is still surrounded by a large stable island, Vation of phase-space volume in the Hamiltonian flow. The
but has a nonzer® component of the total velocity at the collision PO is unstable if one of the eigenvalues\f has a modulus
with the collector barrigr and(b) 8=7.7[the (1)*@ orbitis still  larger than Lthe other being necessarily less thansb that
stable, but moved to the periphery of the surface of section; a tan@n initial deviation along the associated eigenvector grows
gent bifurcation has just produced two new single-bounce orbitsexponentially. The PO is stable if the eigenvalues are
stable (1) @ near the origin, which now takes the role of the TO, €', ¢+ 27, implying that any initial deviation will simply
and unstable (1), which produces an elongated flow pattern rotate around the fixed point. The points of marginal stability

near the stable island of (1§V]. are when the eigenvalues atel; and by the continuity of
the mapM; must pass through marginal stability in order for
Fxy) =2y? T x2(1—ycoty)? (41) the orbit to go unstable. Equivalently,|ifri{ M ]| is less than

2 the orbit is stable, if greater than 2 it is unstable, and when

i o [Tr[M]|=2 it is marginally stable. There are additional
as is done in Fig. 5. general constraints. As already noted, new orbits must ap-

The single solution atp<2wk corresponds to the peqrin stable-unstable pairs in what are catyent bifur-
(1)7(), which is a slightly deformed version of the TO; itis cations (TB's). Exactly at the point of TB the orbits are
visible as the central island in the SOS of Figa)Awith vy, marginally stable with TM,]=2, before the stable one
=0 (as is required, cf. above discussiohut with now some  moves to TfM;]<2 and the unstable one moves to
small value ofv,. As g is increased, this orbit gains cyclo- Tr[M,]>2. Conversely, the other value for marginal stabil-
tron energy, and the corresponding fixed point moves awaijty, Tr[M,]=—2, corresponds to forward or backwards
from the center to the left side of the surface of section. Ageriod-doubling bifurcations of the PO. These will be of
discussed above, fg8>27 the period of the orbit (1)(®)  great interest below as they are closely related to the peak-
approaches asymptotically. as the majority of its energy is doubling transitions seen in the magnetotunneling experi-
fed into transverse motion and it becomes a recognizablments.
deformation of ak=1 helical orbit of the untilted system We can obtain the monodromigtability) matrix for all
[see Figs. 5, (b)]. one-bounce orbits analytically, but again will first extract its

The two new orbits (13 that must arise by continuity qualitative features by continuity arguments. As just noted,
in each interval appear in tangent bifurcations at thresholdfor infinitesimal tilt angle the TO is deformed into the
given by 8= B{, where (1)"® orbit in the interval 2rk< 8<2m(k+1). Therefore
the stability properties of the (19 orbits must be continu-
ous with those of the TO in these intervals. For the case of
the TO of the untilted system the monodromy matrix is
trivial. The TO hasv,=v,=0, therefore, a small increment
and g, is thekth positive root of the equation of velocity in thex-y plane leaves the time interval between

B =F(sing,\) (42
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collisions unchanged to linear order &iv. Thus each itera-
tion of the monodromy matrix is just rotation of this devia-
tion vector by the anglew T, leading to TfM] 0
=2c0s.T). Therefore the TO is stable at all values @f
except such thato,T=mm; m=1,2,3 ... . It follows by
continuity that the orbits (1) will be stable everywherein —
the interval 2rk<B<2w(k+1) except in infinitesimal in- % o
tervals around these values. =
The lowest value at which instability can occur &
=2k, but this is precisely the point of tangent bifurcation
where the (1™ and (1) orbits are born. Since (1f¥ |
must evolve immediately into the analog of ttetable TO
above threshold, it must become the stable member of the Ll Ll
pair immediately after the TB; whereas the (1§ orbit 0 5 10 15 20 25
must then be unstable. This is allowed by continuity since 3
the (1)” ¥ immediately evolves into the analog of the HO's,
which are marginally stable for a# and can hence become  FIG. 8. Trace of the monodromy matrix for single-bounce orbits
unstable under infinitesimal perturbation. (DO, (1), (1)@, (1)*@, (1)~ for 6=16°. The dotted
Near the midway points of the relevant intervas, line represents the gondition for the.:.L:S resonance, the dashed lines
= 2r(k+1/2), the (1) ® orbit can again go unstable, but it ShOW the boundaries of the stability regigifM]|<2. Open
must immediately restabilize by continuity for higher valuescwcIes show th_e locations ?f the dlregt PDB’s, the solid _C'rdes
of 4 in this interval. We find that in fact all (1YY do g0 porcCt cc ohee represent tangen bitucatons. |
unstable by period-doubling bifurcatiofPDB) near this ' '
\é;\ll::\;eargg Eézu:;c;ﬁgﬂﬁ;rgizlﬁlgg.angles they all restabilize Tr(M ;) = 4cod(0)[tart( 6) + (@ T/2)cot w T/2)]
As B increases past the valuergk+1) the (1)"™ orbit X {tarf(0) +sin(w T)/ (o T)}—2. (43
ceases to play the role of the T@hich is taken over by the
(1)*®&+1) orpit] and continuity alone does not determine its This equation descﬁbes precisely the stgbility propgrties
stability. However, from the effective map arguments of secOf the one-bounce orbits sketched above. First, every time a

Il D we know that at3= 1/¢ the system undergoes the KAM N€W pair of roots of Eq(39) appears with increasing,
transition to global chaos, and we therefore expect all exist:rr(Ml) = +2 corresponding to a tangent bifurcation, as dis-

ing periodic orbits to finally go unstable for sufficiently high .CUSSEd' A increases from this threshold one rgdescrib-

values ofg. In other words, for any nonzerdthe continuity |_I|:1thhe (}_);(k)l POl ?ecct)rr:ﬁs iTrc]:reasinthy unstablg. Witth
argument will fail for sufficiently high8~1/6 and new or- "(Myg)— - ' contrast, In€ ofher roo! corresponding 1o

-+ (k) (PR
bits can appear that have no analog in the untilted system. M‘e (.1) orbit |n|t|§1I!y bgcomes stabIETr(M1)<2] and
remains so for a finite interval before going unstable at

fact, this second destabilization of the (1% orbit occurs by Tr(My) = —2 by PDB. For sufficiently smal, Tr(M,) wil
1)~ . ’ 1

a RDB that creates a period-two orbit with no analog in thepass through the value-2 twice more before tending to
untilted system, as we shall see below. _ —, corresponding to the restabilization and subsequent de-
As § becomes of order unity, thé value at which global  giapijization of the (17 predicted by the continuity argu-

chaos sets in becorr(f)s also of order unity and we do NGhants ahove. A® increases for any fixed intervileventu-
expect any of the ()™ orbits to remain stable over a large 4y 5 critical angle is reached at which this restabilization
interval. As already shown above, however, we can provggases. just as predicted. The behavior of theME)( for
from Eq.(39) that a (1) pair is born by tangent bifurca- (1)=® orbits with k=0,1,2 is shown in Fig. 8. Since in-
tion in each interval. Thus the (1§ must be stable over ¢raagingk corresponds to largeg, the critical angle be-

some small interval for arbitrarily largk, but it need not  omeq smaller aks increases. The intervals of restabilization
restabilize after its first PDB(Note that the effective map of the (1)"® orbits are shown in Fig. 9, terminating at the

argument only predicts global chaos in the sense of no resitical anglesaﬁ.

finite value of 8.) To interpolate continuously between the
limits of infinitesimal and larged the second PDB moves
continuously to lowe values until it eliminates the inverse 1. \1 Y4 2= 4R( 9. 0. T)=4co¢( DR (0.0.T)R-( 6. 0. T
PDB and hence eliminates the restabilization of the™(¥) (My) (0:wcT) (R, wcTIRs( ’w°(411’)
PO.

To make all of these features explicit and quantitative wewhere the zeros of the functid®( 6, w.T) give the parameter
have derived the monodromy matrix for all single-bouncevalues for all PDB’s. It is easily seen from E@3) that
orbits. The straightforward but tedious calculation isfactorR; has exactly one root in each intenkalwhereas the
sketched in Appendix A. We find factor R, has either two or zero roots in each interval, cor-
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from the second repetition of the traversing orbit. Thus the
thresholds 8% are given by the condition Bro=(2k
+1)T,., which gives

BY=m(2k+1). (47)

Once emerged, the period-two resonant tori remain in the
phase space of the system for arbitrary large valug3of
simply moving towards the periphery of the surface of sec-
tion asB increases.

Again, as for the helical one-bounce periodic orbits, when
the magnetic field is tilted, the resonant tori of the two-
bounce orbits are destroyed and replaced by an integer num-
ber of pairs of stable and unstable two-bounce periodic or-
bits. By continuity, these orbits must appear in the vicinity of
the (1) ® traversing orbitgwhich are now playing the role
of the TO and near the value8~ w(2k+1) at which the
two-bounce tori appear. Our previous analysis for small tilt
angles has already identified one direct and one inverse
period-doubling bifurcation of the (Y near these values
of B (see Fig. 8 In a direct PDB a stable one-bounce PO
becomes unstable while generating a stable two-bounce PO

FIG. 9. Regions of existendshaded areaof one-bounce or- in its neighborhood; in an inverse PDB an unstable one-
bits (1)@ (a) and (1)"™ (b) in the (4,8) plane. Dark and light bounce PO becomes stable while creating an unstable two-
shading correspond to stable and unstable regions, respectively. bounce PO in its neighborhood. Hence for consistency we

conclude that exactly one pair of two-bounce PQO's is created
responding to the presence or absence of the restabilizatiofrom each two-bounce family for infinitesimal tilt angle. Fur-
The set of transcendental equations which determine ththermore, one of these arises from the direct PDB and is
roots ofR;,R, and hence the bifurcations points and critical therefore stable, whereas the other arises from the inverse
angles are summarized in Appendix B. PDB and is unstabléFor infinitesimal tilt angle the interval

The existence and stability properties of the one-bouncé 8 between these two PDB's is also infinitesimal and they
orbits as predicted by Eq$39),(43) are confirmed by the are created at the same “time” in agreement with the
numerically generated SOS and indeed reveal the underlyinBoincareBirkhoff theorem; for any finite angle they are
pattern to the complex behavior seen in the SOS. The periodeparated by some finite interval )
doubling bifurcations of the one-bounce orbits are of particu- It follows that there must be exactly two orbits from each
lar interest because they are closely related to the pealkelical family that are continuously deformed into the stable
doubling phenomena observed experimentally. We willand unstable two-bounce PO’s created at these two PDB’s. It
elucidate this behavior in the next section on period-two oris easy to identify one of the two in analogy to our earlier
bits. reasoning. There is only one two-bounce PO in each helical

family for which both of its two collisions with the barrier
D. Two-bounce orbits occur withv,=0 (see Fig. 1@ This orbit can be continu-
ously deformed into a nonmixing two-bounce orbit that will
become degenerate with the nonmixing (¥ at the
For =0 all two-bounce periodic orbits occur in helical PDB—see Fig. 1(a). However, unlike the case for one-

1. Qualitative description0<1

families satisfying the resonance condition: bounce HO'’s, there is no second orbit with fixed points at
vy=0, that can evolve into the second two-bounce orbit
(2k+1)w, =20w., k=0,1,2.... (45  which we know must be created. Hence this second orbit at

6+ 0 must be mixing; i.e., it must generate fixed points with
Only odd integers appear in the resonance condition sinCRonzerov,. Thus it must be obtained by a deformation of
even integers yield orbits equivalent to the period-one helicahne of the two-bounce orbits in the helical torus with finite
family. As follows from Egs.(32) and (45), the periods of ygjyes ofv, at collision.
the two-bounce helical orbits are given by To identify which orbit this is we must consider the gen-
eral properties of mixing two-bounce orbits in this system.
T=(2k+1) 2_77 (46) We have noted above that due to time-reversal symmetry the
o SOS has to be symmetric under the transformati
— —vy. Itis obvious that a two-bounce orbit with the same
Therefore, just as for the one-bounce helical orbits, thevalue ofv, at each collision will generate two fixed points in
resonant tori corresponding to the two-bounce orbits caithe SOS that satisfy this reflection symmetry. Note that since
only appear above a threshold value®fat which the lon- vy, such a mixing period-two orbit strikes the barrier at
gitudinal period becomes long enough to satisfy @). At  the same value of in each collision. We will refer to such
this threshold the two-bounce orbits are indistinguishableorbits as self-retracing since they retrace themselvesin
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. ' TABLE I. Period-1 and period-2 orbits in the SBM.

orbit y—2 projection origin initial stability

-
-

0.5

T8 with (1)~ stable

vY/vO
i —
yahu

I (1" TB with (1)* unstable

-1 -0.5 o] 0.5 1

Vy / Vg 2)* PDB of (1)*|  stable

FIG. 10. Torus of two-bounce orbits in the surface of section.
Marked are the only “self-retracing(in they-z plane two-bounce
orbits: (a) the orbit withv,=0 at collisions, which evolves into the
nonmixing two-bounce orbit (2, and(b) the orbit withv,=0 at (2)”
collisions—which becomes the self-retracing mixing orbit {2h-
sets show theg-z projections of these orbits.

IPDB of (1)* unstable

projection. All such self-retracing two-bounce orbits are
mixing. However, there exist non-self-retracing two-bounce 2y
mixing orbits. These must collide with different valuesugf
at each collision, but still satisfy the required reflection sym-
metry of the SOS in a more subtle manner. In such an orbit
the values o, at collision differfor any one sense of tra- zerov,—see Fig. 11b). The only orbit in thed=0 helical
versal but traversing the orbit in the opposite sense generfamily with this property is the one which collides with the
ates two additional fixed points that restore the——vy  parrier withv, =0 at each collisior{see Fig. 19 Hence by
symmetry of the SOS, which has four fixed points for suchcontinuity it is this orbit which must be continuously de-
orbits. Such an orbit is shown in Fig. (£], and analogous formed to give the mixing orbit which must, by the Poincare
orbits exist for higher-bounce PO’s as well. We will discusspgirkhoff theorem, exist for infinitesimal tilt angle. Intu-
their origin later. . _ itively, the PDB of the (17 orbit to the nonmixing two-
However, these non-self-retracing two-boun(_:e_orbns Canpounce orbit corresponds to splitting the (19 at the point
not be created at a PDB of a one-bounce ofpériod-one  f cqjlision, whereas the PDB corresponding to the mixing

fixed poing si_ncezssgch a PDB cannot create more than Wo,ne corresponds to splitting the (1% at the point furthest
new fixed points?33 Therefore the second, mixing orbit we away from the collisionsee Table)l

seek forg# 0 must be a self-retracing orbit, i.e., it must have  gjnce lack of mixing at collision should enhance the sta-

the same value of, at each of its two collisions with non- bility of an orbit for given 8,6, we may expect that the
non-mixing two-bounce orbit is born stable in the direct PDB
and the mixing one is born unstable at the inverse PDB that
occurs at a slightly higher value g8. This conjecture is
confirmed by our analytic calculations below. In accord with
our earlier notation we will label this pair of two-bounce

(a)
orbits, which must exist in each interval by continuity, as
A \/ (2)*K, (49)
(b)
(c)

PDB of (1)* stable

m e | |

where the sign “" corresponds to the orbit that is initially
stable, as before. For simplicity we drop the interval index
below. The same scenario occurs in each interval, just at
smallerf ask is increased.

2. Qualitative description86~1

FIG. 11. Examples of the different types of period-two orbits, ~UP to now we have focused on the limit of smalo
projected onto X,z) and y,z) planes: a nonmixing orbita), a  Where each orbit must by continuity have an analog dor
self-retracing mixing orbitb), and a non-self-retracing mixing orbit = 0. Unlike single-bounce orbits in the tilted well, there will
(o). exist orbits with two or more bounces that have no analogs in
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1

(a)

the integrable case. In fact, we have already shown above
(see Figs. 8,pthat after restabilizing by inverse PDB the
(1)* orbit must eventually go unstable by a third PDB that
must give rise to a stable two-bounce orbit with no analog in
the untilted system. We denote these new orbits a%;(@ne
such orbit must exist for each (1)orbit although for small

tilt angle they will not appear until values @~ 1/6.

Will the (2)* orbits be mixing or nonmixing? One can
also decide this by reference to our stability analysis of the
(1)* orbit (see Fig. 8 aboJye As we showed, for each (1)
orbit, asé is increased to a critical valué', the second and
third PDB’s move closer together and finally merge, after
which no restabilization of the (I') orbit occurs. But the
second PDB is associated with the mixing (29rbit; if it
merges with the (2) orbit when the second and third PDB
coincide, then (2) orbits must also be of the same topology,
i.e., mixing.

What happens to the (2)(2)* orbits for tilt angles
aboved]? On the one hand, abo they cannot be created o
by PDB’s of the (1) orbit, since we have shown that it 3 4 5 6
never restabilizes. On the other hand, these two periodic or- 8
bits cannot cease to exist suddenly, since they exist for an
infinite interval above the threshold for PDB and the orbit far  FIG. 12. Bifurcation diagrams in the coordinatﬁzy) for the
from threshold is negligibly perturbed by a small increase inperiod-two mixing orbits, related to the bifurcations of the single-
tilt angle. The resolution of this apparent paradox is thabounce orbits. The two branches with nonzegocorrespond to the
aboved] the two orbits are created by a tangent bifurcationtwo-bounce mixing orbits (2)( and (2, while the horizontal
in a region of the SOS and at a value@®fvery close to that line represents the single-bounce orbit {{). The nonmixing
at which the PDB's occur below, . The detailed description Period-two orbit (2) ' hasv, =0 at each of the points of collision
of the transition from the PDB scenario to the TB scenario is2hd cannot be seen in this diagram. For a small tilt angle the period-
sketched in Fig. 12 and described in the caption. In contrasf/o orbits are born in period-doubling bifurcations—see paak!
nothing qualitatively new happens to the behavior of the ini-Vhen ¢> 6 the mixing period-two orbits are born in a tangent

tially stable (ZY asd is increased beyondT' its interval of bifurcation—see pandk). The transformation from the two types
stability just shrinks continuously K of behavior cannot happen in a single step. If it were possible, then

.. at the critical angléwo new mixing two-bounce orbits were created
So forall 6 we are able to locate all two-bounce orbits 9 9

o " - at the location of the single-bounce orbit, whicdinnothappen in a
that are related originally to the one-bounce (%) orbit, generic conservative 2D system. The alternative is provided by the

and to describe theilr evolutiqn qual!tatively. Ther_e areé eX+ollowing two-step process. First, at some critical angjec 6} the
actly three such orbits associated with each’(b)bit: the  pehavior of the first to appear mixing orbit (2§ is changed, as is
(2)", which is initially stable and nonmixing, the (2)  shown in the bifurcation diagram at the parfb). When 60< ¢
which is initially unstable and mixing, and the (2)whichis <4, the unstable orbit (2)*) appears in a tangent bifurcation
initially stable and mixing. with a new self-retracing mixing stable period-two orbit, which is
The last point to understand is the evolution of these orsoon to be absorbed by the single-bounce orbit in an backwards
bits with increasingB once they are created. Since theseperiod-doubling bifurcation, while the qualitative behavior of the
orbits exist for allg above threshold a#=0, we expect the stable (2¥® orbit remains unchanged. As the tilt angle is in-
same behavior for nonze#h However, as both the (2)and  creased, the interval of stability of the single-bounce orbit shrinks,
(2)* orbits are initially stable, we expect them both to be-while the interval of existence of the auxiliary mixing orbit in-
come unstable g8— . It turns out that the (2 orbit goes  creases. At the critical tilt angle the backwards and standard period-
unstable as the second stage of an infinite period—doublinSOUb"“g bifurcations merge and annihilate each other, so that at
transition to chaos. The (2) on the other hand, follows a greater yalues of the tilt anglg the mixing periqd-two orbit are no
more complex route to its final unstable form. As the param!onger directly related to the single-bounce orbit—see pégjel
eterg is increased, the orbit (2)goes unstable via a period-
doubling bifurcation, but soon restabilizes and finally goescations. Although it is interesting to note the origin of the
unstable via apitchfork bifurcation. In such bifurcation a non-self-retracing two-bounce orbits, they are of a little im-
new stablemixing) orbit is created with a period identical to portance for the description of the experimental tunneling
that of the orbit that has gone unstable. In this case the neapectra, since generally the pitchfork bifurcations appear at
orbit is precisely of the non-self-retracing type shown in Fig.relatively high values o3, as we will show in the quantita-
11(c) and described above. Thus this one new two-bouncéive description of the two-bounce orbits in the next subsec-
orbit creates four fixed points in the SOS and satisfies thé&on.
required conservation of the Poincarelex. From the ge- In principle, completely new two-bounce orbits can also
neric properties of 2D conservative maps it can be showmrise by tangent bifurcations at sufficiently large tilt angles
that such orbits cannly be created in these pitchfork bifur- and values of3, in fact no visible islands due to such orbits

T
) (0) 3
(4 )+(0) (2)

-

3 4 5 6
L L LA
(b) 2@

(1)*© ( @2

L |
4 5 6

(c) 2
@

(@

v,/ Vo
~-1-0.50 0.5

~J

1

v,/ Vo
~1-0.50 0.5
—

~l

) G

|

(1)+(0)

|

V,/Vo
~1-0.50 0.5 1

~



57 THEORY OF THE PERIODIC ORBITS OF A CHAOT. .. 9823

are seen in the SOS for any tilt angles of interest in the range
of B values that are accessible experimentally. Thus for un- h
derstanding the experimentally observed peak-doubling re- "
gions only the the three two-bounce orbits {202)~,(2)*
for the intervalsk=0,1 are most relevant. Their properties
are summarized in Table I. These orbits, once their generali-
zation to the double-barrier model is understood, will be suf-
ficient to explain the peak-doubling data of Refs. 10 and 12.
We now give an analytical description of the periods and
stability of the two-bounce orbits identified above.

Tr[M]

3. Quantitative theory: Nonmixing two-bounce orbits

The derivation of the periods of the nonmixing two-
bounce orbits can be performed using the same technique
developed in the analysis of the single-bounce orbits. In the FIG. 13. Trace of the monodromy matrix as a functiongofor
drift frame introduced in Sec. Il C 2 the orbit consists of two different nonmixing two-bounce periodic orbits: (2§,
identical and overlapping arcs of a circle of angular size(2)*™,(2)*® for 4=15°.
w:T>7 with their endpoints displaced hyyT/2. Imposing
the nonmixing condition at the two collisions determirles
Conservation of energy is not required to fix the period andp tym bifurcate, producing an infinite series of period-
this leads to the striking result that the period is independer@oub”ng bifurcations of the same type as the period-
of energy(this is the only relevant orbit with this propejty doubling sequence in the quadratic DeVogelaere #ab.
This calculation, the details of which are given in the Appen-yowever, since the periodic orbits of this sequence have
dix D, yields long periods and relatively large cyclotron energy, they are

of a little importance for the description of the tunneling
spectra in the tilted well, and will not be discussed in the

o T o
Z cot% — —tarfe. (49) present paper.

4. Quantitative theory: Mixing period-two orbits

The (k+1)-th positive root of this equation gives the value  Due to nonzero energy exchange at the points of collision
of the period of the (2) orbit. Note that the solution§  the analytical description of a general mixing two-bounce
do not depend op. This is the only orbit with this property. periodic orbit will be very complicated. However, as we

We have also calculated the stability properties of thes@ointed out before, the most important two-bounce mixing
orbits by evaluating the trace of the corresponding monoerbits are self-retracindgin y-z projection leading to the
dromy matrix using the general expressions developed isymmetry property thai, is the same a both collisions. Im-
Appendix C. This straightforward but tedious derivation isposing this condition simplifies the analytical treatment. For
given in Appendix E. In Fig. 13 we plot TK). In agree- each of these orbits, the electron collides with the barrier
ment with our qualitative analysis, TW() is a monotonically twice at the same point with exactly the saafesolute val-
decreasing function of3, so that the initially stable two- uesof the velocity components, v, ,v,. Using this prop-
bounce nonmixing orbit destabilizes by a period-doublingerty, one can showsee Appendix J; that the periodS of
bifurcation and then remains unstable for gll The four- the two-bounce self-retracing orbits must satisfy the follow-
bounce periodic orbit, which is born in this bifurcation, will ing system of coupled transcendental equations:

[ ocT 00T
SiN 2 - nz Sl 2 o
o -t — (508
2 2
o T o T w 0T 2
2 2 co 2 o 2 w:T\? weOT\?
(g) =sirfg| 1- + Z ) +cot20( C4 ) ) (50b)
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where §T<T is the difference of the time intervals between PO : : — — :
successive collision andt, (see Appendix  This system L ( i
of two equations determines the periods of all of the self-
retracing two-bounce orbits as functions gfand the tilt
angle.

Although Egs.(509,(50b) look quite complicated, they
allow a further analysis. Assume at least one solution exists
for some fixed value of and find the corresponding valisg
of the time differencedT from Eq. (508 that depend explic- " "
ity only on T, 6 (but only implicitly on 8). As an equation 3 -
for 6T at fixed T and 6, this relation can have multiple -
solutionséT= 6T, :

) wCT i // |
sin| —

00T =20, —COFQT , OT,<T (51 o 1
[of - 7 4

2 (@) L P P T R T T Ly 1

20
T

10
T
\

where the functiory,(x) was defined in Appendix Bsee

Eq. (B5)] and the maximal value af depends on the values 6

of T and. If T is not a solution of the system for a Eq. FIG. 14. Periods of the self-retracing mixing two-bounce orbits
(8) will have no roots withdT<T. One knows(from the ()= (2)*© (2)=(® and (2D, related to the bifurcations of
calculation of the stability matrix for the single-bounce or- the single-bounce periodic orbits as functiongofThe tilt angle is
bits) the exact values of at which the (2) ®,(2)*® orbits ~ p=15°. The dashed lines show tiigcaled time intervals of two
are born by PDB and inverse PDB of the (1. Hence we repetitions of single-bounce orbitse., twice the period of single-
can find the starting value df for each (2) ®,(2)*® orbit  bounce orbits

and follow it continuously a$3 increases. Each roafT,

when inserted into Eq(50b)_ yields a solution “branch” Once the values of and 8T are known from the Egs.
Bn(T) for a two-bounce orbit. (508,(50b), the components of the velocity at the points of
There does not however need to be exactly one selfeojjisions can be obtained from E€F4), and one can calcu-
retracing two-bounce orbit for each solution bra}fT). If  |ate the monodromy matrix for each such orbit using Egs.
the period of such an orbit is a nonmonotonic functionBof (c4) and(C3). In Fig. 15 we show the behavior of the trace
then the same orbit will give rise to multiple solution f the monodromy matrix for (2) and (2} orbits. As ar-
branches that must merge at the extremd (). One can  gyed above, one finds that the (2)rbits are unstable for all
show that there can be no more than one extremum at f|n|tB' whereas the (2) orbits which are born stab[since they
B for T(B), thus each orbit will be described by either one or grise from a direct PDB of the (1)orbit], and go unstable

two such branches. Conversely, one soluigy{T) can be jn the complicated sequence ending with a pitchfork bifurca-
nonmonotonic inT, hence it must describe two different tjon that we have described above—see Fig. 15.

two-bounce orbits with different periods at the same value of
B. With care,anytwo-bounce self-retracing orbit can be ob-
tained by this approach. This procedure yields the plots of Al
the periods for the (2)@,(2)*(© orbits shown in Fig. 14. ol
Note that unlike the nonmixing (2% orbits, the periods of
the mixing orbits depend opf.

In fact for small tilt angles the period of the (2% orbit
is a monotonically decreasing function gfand there is only
the n=1 solution branch to consider. In this case we can
expand Eqs(7),(8) for B6<1 and obtain an explicit formula
for the periods of these orbits:

Tr[M]

-4 -2 0

0 T=2m(1+2k){1+ 0%+ £ 04[8+ w2(1+2k)2— B?]}
+0(6%. (52

2

Tr[M]
6]

-4 -2

Although the (2F orbits have the same topology as the
(2)” (and at larged they are born together in a tangent Y R
bifurcation), they have no analogs in the untilted system so
their periods cannot be obtained from such an expansion.
The quantitative analysis of Eq$503,(50b) confirms the FIG. 15. Trace of the monodromy matrix as a functiongofor
transition scenario between PDB and TB for the (AR)*  mixing two-bounce orbits@ (2)~® and (2}, (2)~®, and
for large tilt angles described in Fig. 12. (2)*®M. The tilt angle is§=15°.
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scribed. When the magnetic field is not tilted all three-
bounce periodic orbits belong to resonant tori and 0
correspond to the resonances

In Table | we summarize the relevant period-one and 0.2 ¢
period-two orbits. i
0.1 F

E. Three-bounce periodic orbits r

o L

The scenario for the three-bounce periodic orbits is simi- i ol
lar in many ways to that for the two-bounce orbits just de- N N
.. r

ko =30, (53 —0.2
0.2
where the integek is not a multiple of 3. Thus ag in-
creases from zero in the first interval there are two thresholds
for the birth of resonant tori. Wheg=2/3 the family of 0.1
helical orbits that perform 1/3 of a cyclotron rotation per
collision with the barrier appears, and@t 47/3 the family
that makes 2/3 of a rotation per collision appears. As for the
two-bounce orbits, the analogous orbits in the higher inter-
vals behave in exactly the same manner qualitatively, and so 01
we focus here on those in the first interval.
When the magnetic field is tilted, the period-three reso-
nant tori are destroyed and replaced by pairs of stable and -0.2
unstable three-bounce orbits. Here some important differ-
ences from the two-bounce orbits enter. First, we cannot Vy / Vg
have asinglethree-bounce orbit created at some valugBof
since there is no analog of a period-doubling bifurcation for
creating three-bounce orbits. At the threshold for creation o
the three-bounce helical families, when they are degeneraf’eg
with the third repetition of the traversing orbit, the W) a
= —1 and its stability cannot change. Therefore period-three
orbits must always be created in stable-unstable pairs by tan- This conclusion, while correct, must be reconciled with
gent bifurcation. Moreover, there is generically no constrainour earlier statement that the two orbits must appear at a
that such a tangent bifurcation occur at the fixed point cortangent bifurcation. At a TB the two orbits are identical, yet
responding to a period-one orBftin this sense there are no the two orbits we have identified correspond to opposite ori-
trifurcations in a generic system. Wheéx=0 the rotational €ntations of the triangle and would not coincide for any finite
symmetry of the system does constrain the entire family ofize of the triangle defining the three fixed poifsee Fig.
three-bounce orbits to appear degenerate with the third re@6). In order to coincide at the TB the unstable member of
etition of the traversing orbit, but as soon s 0 the pair of  the pair must actually pass through the single-bounce fixed
three-bounce orbits that survive are created away from thgoint at the center of the triangle in what is known as a
period-one fixed point. However, by continuity the tangent"touch-and-go” bifurcation’* At this point the unstable
bifurcation (TB) that creates this pair must occur near thisthree-bounce orbit coincides with the third repetition of the
fixed point and at approximately the same valueBofwe  (1)* orbit, which is no longer isolated and T™@)=2 [or
infer that for small tilt angles there are at least two TB’s inequivalently Tr(M ;)= —1]. So asB is reduced to the thresh-
the first interval, each of that creates a stable-unstable pair @fid for the TB, first the unstable three-bounce orbit shrinks to
three-bounce orbits, a&,~2m/3,8,~4m/3. Extending our @ point coinciding with the period-one fixed point, and then
earlier notation, we will denote these four orbits by at even lowerB reappears on the other side with the appro-
(3)1.,(3); . priate symmetry to disappear by TB with the stable member
Which orbits of the resonant tori survive? In this caseOf the pair. In Fig. 16 we show the surfaces of section just
there is no orbit in the helical family that has all of its col- before(a) and soon aftetb) the touch-and-go bifurcation of
lisions with v, =0 therefore by continuity there can be no the orbits (3] and (1)"(?. This “touch-and-go” (TAG)
three-bounce nonmixing orbits for small tilt angi@nd one bifurcation of the three-bounce orbits occurs over such a
can easily show that this result holds for afy However, small g interval for small tilt angles that it is hard to distin-
there are two orbits in each torus that collide with X, guish from a trifurcation of the (1) orbit without careful
=0,(vy)2=—(vy)3 corresponding to two possible orienta- magnification of the transition, but it is required by continu-
tions of the appropriate equilateral triangle alongahexis. ity and the generic principles of 2D conservative maps. In
These two orbits satisfy the required symmetry of the SOSig. 17 we plot the periods of these four three-bounce orbits,
upon tilting, while no others in the torus do. Therefore it is(3); ,(3); , that are related to the resonant tori of the un-
these orbits which survivéslightly distorted due to the tilt, tilted system.
of course. As in the case of the two-bounce orbits, our knowledge of

\/Y/VO
o

FIG. 16. Surface of section near the one-bounce periodic orbit
1) close to its 1:3 resonance and the corresponding touch-
d-go bifurcation of the orbits (3): (a) just before andb) soon
er the touch-and-go bifurcation.
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FIG. 17. The periods of the three-bounce orbits j(3)and
(3)2iO vs B for tilt angle for #=15° (solid lineg. The dashed line

represents the period of single-bounce orbit (), multiplied by
3.

the behavior of the (1)) orbit allows us to predict that in the FIG. 18._Th_e bifurcatipn diagrams of the self-retracing three-

first interval their must exist a furthépair) of three-bounce Pounce orbits in three different regim¢see text, 6=15°. The

orbits that have no analog in the untilted system. The reasofftical axis represents the component of the scaled velocity of

is the following. From Fig. 8, for small tilt angle, we know the electron at the point of collision with,=0. The dotted line

that the Tr(M,) for the (1)* O’rbit passes througlaé 1 three represents the single-bounce orbit. Note the exchange of partners
1 . .

times before the (1) orbit becomes permanently unstable. bifurcation betweerib) and (©).

Each time TrM ) = —1 there must be a TAG bifurcation, so - .
there must be three such bifurcations. Two of them are ass¢"/ce" collisions. These quantities are all we need to use the
. . , . i . e neral formalism for the monodromy matrix devel in

ciated with the (3) ,(3), orbits we have already identified g\%peer?dixoc alism for the monodromy matrix developed
and occur neapB=2m/3,4w/3; the third TAG bifurcation In Fig. 19 we show the behavior of the trace of the mono-

must be associated with a third pair of orbits born by TB atdromy matrix for three-bounce orbits (113()0) (3)5(0) and

large 5~ 1/¢. This pair plays a similar role for the three- 3)=(0) e stapility properties of the three-bounce orbits

. . *
b_our_lce orb|t§ as does the (2prbit for the two-bounce or- show a clear analogy with the behavior of two-bounce orbits.
bits in each interval, hence we denote them by, (3)

v’ : / , The (3);,(3), orbits related to the resonant tori, are either
As 0 is increased to order unity, the TAG bifurcation of 5yavs nstable, or go unstable via period-doubling bifurca-
the (3), orbit moves to lowers till it eventually coincides  tions and never regain stability. Whereas the behavior of the
with the TAG bifurcation of the (3) orbit and the two bi-  new (3), is different. As follows from Fig. 19, the initially
furcations “annihilate.” We know this must occur since unstable (3) restabilizes via a pitchfork bifurcation after its
Tr(M,) ceases passing throughl the second and third TAG bifurcation with the (1) orbit, before eventually go-
times(see Fig. 8 The TAG resonances relating the orbits to ing unstable in a period-doubling bifurcation at higher value
the resonances of the (L)orbit no longer exist for highef  of B. The initially stable (3) orbit has a monotonically
(just as the PDB’s of the 2,2* no longer exist above some decreasing trace of the monodromy matrix and goes unstable
critical angle, but the orbits do not disappear. Instead, theyvia a period-doubling bifurcation. All of these orbits are self-
demonstrate an “exchange of partners” bifurcation, whichretracing in the sense defined above. At the pitchfork bifur-
for higher tilt angles allows them to exist without ever evolv-
ing into TAG resonances of the (1)}-see Fig. 18. Again,
just like for the two-bounce orbits, the transformation from
the small tilt angle to large tilt angle behavior requires the
appearance of auxiliary three-bounce orbits in additional tan-
gent bifurcations to provide a smooth evolution. This sce-
nario is illustrated by the bifurcation diagrams in Fig. 18.

In principle, an analytic theory of the periods and stability
of these three-bounce orbits is possible, but the system of
three coupled transcendental equations which define the pe-
riod is not easily analyzed. Since we already know the quali-
tative scenario, we have simply used the symmetry proper- FIG. 19. Trace of the monodromy matrix as a functiongofor
ties of these three-bounce orbits to locate numerically the&elf-retracing three-bounce orbits. The inset shows the behavior of
fixed points and hence find the period and time interval beTr[M] near the touch-and-go bifurcation.
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cation of the (3) orbit just described, a new three-bounce tervals of existence and stability. This we attempt to do be-
orbit appears that is non-self-retracing. Thus, as for the twolow.
bounce orbits, orbits of this type only appear after the cre- As previously noted, the theory of periodic orbits in the
ation of the self-retracing orbits and hence arise at relativeDBM is in many respects similar to that of the SBM, but
high 8 values. Hence they have little effect on the experi-there are three significant differences. First, orbits can be
mental observations and will be disregarded below. born or disappear in a manner that violates the generic bifur-
cation principles for conservative systems since the Poincare
map for the DBM is nonanalytic on the critical boundary of
F. Many-bounce orbits the SOS(the curve separating initial conditions that will

The analysis of period# (N>3) orbits can be conducted reach the emitter barrier from those that will not, cf. Sec.
in a similar framework. First, one can identify the periodic ! E)- The bifurcations that resultvhich we call cusp bifur-

orbits, which survived from the resonant tori of the untilted capons play_ a crucial role in the behavior of the shart pen-
system, and then relate these orbits to the fesonances of odic orbits in the .system. Second, the unperturb_ed syste_m
the single-bounce orbits (1) Since for small tilt angles has a more complicated structure as there can exist two dis-

Tr(M,) is nonmonotonic with3 and crosses the stability tinct resonant tori corresponding to the same resonance con-

region three times, the third crossing will always give rise todition nwc=Ka, , one corresponding to helical orbits that do
new orbits that are born @~ 1/6 and that have no analogs reach the emitter, and the other corresponding to helical or-

in the untilted system. A® is increased these resonancesbits that do not. Third, once the field is tilted, orbits which
will move to lower 8 and annihilate with earlier resonances are periodic afteN bounces with the collecior may collide

leading to new tangent bifurcations and the “exchange o ith Fhe emitter any n_umber of times fro_m zerol\b_ A.‘S a
partners” already understood and observed for the twofunctlorj of § such o_rblts can change their connectivity with
he emitter. In fact, it can be shown that any orbit that does

bounce and three-bounce orbits.. Additional new orbits caf . . L
be formed both by pitchfork bifurcations of self-retracing re_ach the emitter can o_nly exist for a f|n|_te interv alpiwe
orbits and by completely new tangent bifurcations, howeve!V!ll NOW explain these important points in detail.

such orbits appear to play no role in the first and second

interval for e_xperimenta_lly relevan.t values gf Mor_e gen- A. Periodic orbits at 8=0

erally, there is no experimental evidence that periodic orbits )

with N>5 play a role, presumably because either their peri- First let us assume there exists{ank} resonant torus of
ods are too long and they are damped out by phonon effect)e unperturbed system that does not make any collisions
or they have too much cyclotron energy to reach the emitteWith the emitter barrier for a given value @. At =0
in the experimental parameter range. As they introduce néPhgitudinal and cyclotron energy decouple and, as the emit-

essentially new physics we will not present a detailed treatfer barrier plays no role, the frequency of the longitudinal
ment of these orbits. motion must be given by E|q30) for the SBM. Using this

formula for ,_, the resonance conditionw.=kw, leads to
a condition ong:

IV. PERIODIC ORBITS IN THE DBM

We now analyze the periodic orbit structure of the _ E —
double-barrier modelDBM). This model will provide a de- p=2m 2oleL.
scription of periodic orbits relevant to the experiments of
Refs. 10 and 12. A crucial point discussed in Sec. Il A and _ -
Il B above is that in general for a fixed tilt angle the classical Exactly as for the SBM, if such an orbit exists for one
dynamics of the DBM depends on two dimensionless paramvalue of the longitudinal energy; , another such family will
eters: the parametgs=2v,B/E already used in analyzing €Xist at the same total energy but with smaller longitudinal
the SBM, and the parameter= €y/eV measuring the ratio energy, since adding to the cyclotron energy does not change
of the injection energy to the voltage drop. Fortunately, inwc. From Eq.(54) the new family with smallee, will exist
the experiments this second parameter is roughl@t higherg as the magnetic field will have to be increased to
constant?!® y~1.15-1.17. Therefore the theory of the pe- keep it in resonance. Ag increases for such families the
riodic orbits (and ultimately the semiclassical tunneling orbits will just move further away from the emitter but will
theory need only be done varying with y fixed to the always exist above the threshold value defined by the maxi-
experimental value. We will focus on this case henceforth. Irmum value ofg, . Unlike the SBM, however, the maximum
interpreting the results of this section however, it must beallowed value is nok,, since before all the energy is put into
borne in mind tha3 no longer is the product of three inde- longitudinal motion the orbit begins to hit the emitter barrier;
pendent variables), andE are related by the condition of this happens of course when =eV=g,/y. We will call
constanty. The magnetic field, however, is still an indepen- orbits that do not reach the emitter “collector” orbits and
dent variable and thus it is easiest to think of increagrgs ~ those which do “emitter” orbits. Our argument implies that
increasing the magnetic field. there exist families ofn,k} helical collector orbits for al3
Many of the periodic orbits we will discuss below have abovethe threshold3.=2w(k/n) V. These orbits are iden-
been previously identified by Fromhold and co-work®re tical to those in the SBM and the only change introduced by
Monteiro and Dandd? What has not been done is to system-the emitter barrier is that the threshold for their creation has
atize all the experimentally relevant orbits and find their in-been raised by a factafy=so/eV.

(54)
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FIG. 20. The scaled cyclotron velocity for the resonant tori as

function of 8 at zero tilt angle;y=1.2,n=1, number of cyclotron

rotations per perio#t=1. The horizontal line& ;=0 corresponds to
the traversing orbit. Inset shows tligcaled period of the corre-
sponding orbits.

Now assume there exists gm,k} family for a given
value of 8 that doesreach the emitter barrier. The longitu-
dinal frequency of any such orbit is easily calculated to be

27wc o 1 /1 ev| ! -
WL = B €L L . (55

Note the crucial difference here from E@®O): for the emit-
ter orbitsw, is anincreasingfunction of & . Imposing the
resonance condition then leads to the relation

etz
p=2moN - Vi- ) (56)

which implies thatg is also an increasing function ef in
the interval of interest. For emitter orbits tkenallestvalue

emitter, and for this valug= g3.. Therefore, like the collec-

tor families, the emittefn,k} families also do not exist be- resonant tori with the increase gfat constanty.

low B;. They are born wheiB increases throug|8. at the

Ve / Vg

(a) :

9 =20

T T T
collector torus

(b) :

Vy /Yy

g # 0, 0 <<

Vy / Vg

critical

boundary

tori

TO

(1 1 >+(O)
(1 A )+(1)
(*‘ ’*‘ )_(O)
(Oﬂ)Jr(O)

(0,1 >—(W)

FIG. 21. A schematic representation(af the two resonant tori

thate,_ can take iV, otherwise they will cease to reach the of the period-one orbits a#=0° and(b) the surviving orbits a®
<1. The arrows ina) indicate the direction of the evolution of the

critical boundary simultaneously with the collector family interval given approximately by this inequality for small tilt
angle. To our knowledge this property of the system has not

When created, the emitter families have nonzero cycloheen demonstrated in the previous literature. As only the
tron energy(see Fig. 2pand can be continuously deformed epitter orbits will play a major role in the semiclassical

by transferring cyclotron energy to longitudinal energy, heqry of the tunneling spectrugeollector orbits make ex-
ponentially small contributionsthe point is of some signifi-

corresponding to the same values{ofk} (see Fig. 2

moving the family to higher values @8 for fixed total en-
ergy. This can only continue untd, =&, and all of the
energy is longitudinal, yielding now anaximumallowed
value of B,

Bro=Bd\Ny+y—11. (57)

We denote this value bgrg because at this value tha,k}
(which exists and always reaches the emitterforl). Thus

critical boundary each timg8 increases througtB.(n,k).

the SOS and annihilates with the TO @f(n,k) (see Fig.
only a finite interval, 3. <B8<B1o. By continuity all the

(in a manner similar to the SBMwill also live in a finite

cance.

It follows from this argument that g8 increases the col-
lector families evolve by transferring longitudinal energy to
cyclotron energy in the manner familiar from the SBM,
whereas ag@ increases the new emitter orbgs/e upcyclo-
tron energy to remain in resonance. To understand this less
helical emitter family has collapsed to the traversing orbitfamiliar behavior recall that increasiggymay be regarded as
increasingB with all other parameters fixed. A increases
the scenario af#=0 is that two{n,k} families are born at the the cyclotron frequency increases and the longitudinal fre-
quency will need to increase to maintain the resonance con-
The collector family moves outwards in the SOS and existglition. As noted already, unlike the collector orbits, for emit-
for all B> B., whereas the emitter family moves inwards in ter orbits the longitudinal frequency increases with The
reason for this is that as, increases the electron traverses
21). The consequence is that each emitter family lives forthe fixed distance to the emitter faster and is more rapidly
returned to the collector. We will see below that the conse-
emitter periodic orbits which evolve from these emitter tori quence of this reversal of the dependencespmmeans that
all bifurcations of emitter orbits in the DBM happen in the
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reverse directioifas a function of3) from the bifurcations of twice in each period and so it is less obvious that they must

the corresponding orbits in the SBM. be nonmixing in their collision with the collector barrier;
however, it can be rigorously proved that this must be the
B. Period-one orbits in the DBM case. Therefore, again our continuity argument implies that

only the two emitter orbits witl,=0,v,= * v will survive.

_ The one with period shifted slightly down frof. will be
We now analyze the period-one PO's of the DBM #r denoted (1,1)(; the one with period shifted up will be

#0. Here we mean period-one orbits with respect to iteratioyencted (1,15.

of the Poincarenap defined at the collector of the DBM, i-e.,  apove g, in the first interval there now exist three period-

the orbits must collide with the collector only once before ;o ¢ pis the (0,1)() orbit that does not reach the emitter

retracing. For zero tilt angle these orbits will be of three,[he (1,1) © “helical” emitter orbit, and the (1,1 © “tra-

quzs +(@) :22022:16(:(23\/&:?:; dCOOLrStS Eglﬂgglsviiz tt::c e%ﬁl?tter'versmg orbit,” which has the shortest period of the three. As
@) the emitter orbits éorresponding to the L k=12 "in the SBM, for 6§+ 0 there is no qualitative difference be-

resonances which do reach the emittéd] the traversing tween traversing orbits and helica}l orbits, since both must
orbit, which has zero cyclotron energy and which hence mugf@ve nonzero cyclotron energy. Asincreases te= Bro [see

1. Continuity argument

(as would the corresponding orbits @t 0 discussed aboye
B [ 1 whereas the (1,19 orbit gains cyclotron energy. Eventu-
TTO_w_C 1I-yi1-7). (58) ally the two orbits become degenerate and annihilate in a

backwards tangent bifurcation, the analog of the annihilation
of then=1k=1 emitter family atd=0 (see Fig. 22

At B larger than the value for this TB the (11§ orbit
does not exist, and this is apparently in contradiction with the
behavior of the TO atd=0 which survives unscathed
We must now classify periodic orbits not only by the through the annihilation of the helical family. Moreover, by

number of bounces with the collector, but also by the numbefOntinuity, for an infinitesimal tilt angle the analog of the
of bounces with the emitter. We introduce the generalizatiotnormally isolated TO must survive at all but a discrete set

As in the SBM, the helical families of orbits will generate
pairs of PO’s wherd#0 and by continuity, for infinitesimal
tilt angle, the orbits arising from emitter families will be
emitter orbits and those arising from collector families will
be collector orbits.

of our earlier notation: of values of 8. The resolution of this apparent paradox is
that, just as in the SBM, an orbit in the next interval, the
(1,2)*® for the emitter orbits, (1,1)" @, which is the partner of the (1,1§¥), takes over
the role of the TO at this value @#; see Fig. 22. The same
(0,9 for the collector orbits, scenario repeats then in the=1 and higher intervals. Note

where the first number in the parentheses denotes the numig#@t in this scenario all period-one emitter orbits only survive
of collisions with the emitter barrier and the second the numfor a finite interval, being born at some threshold valuggof
ber with the collector barrier per period. is the integer by cusp bifurcation and disappearing at higiteby back-
defining the interval as in the SBM; the period of the corre-wards tangent bifurcation.
sponding orbit is betweek T, and k+1)T.. This notation The behavior of the period-one orbits for larger tilt angle
is used in Fig. 22. differs in one important respect. It becomes more and more
For infinitesimal tilt angle angg< 8.= 2= there will ex-  difficult for the (1,1) orbits to reach the emitter barrier and as
ist only one period-one orbit, the analog of the TO, which wea result their intervals of existence @ (which initially fill
denote as (1,1)(%9). This orbit differs only infinitesimally the entireg axis) shrink monotonically until they go to zero
from a straight line wherB—0, but gains more cyclotron at a critical angle that differs for each inter(ake Fig. 23
energy as3 is increased, just as in the SBM. The only exception is in the first interval where for suffi-
As g is increased te~ 3, four new period-one orbits arise ciently small 8 it is always possible to have a (11§
in an infinitesimal interval; these are the two nonmixing or-analogous to the TO of the untilted system. The reason the
bits from each of the collector and emitter=1k=1 fami-  (1,1)"( orbit always exists is that we may regards the limit
lies. Due to the breaking of the symmetry between these twg— 0 as the limit of vanishing magnetic field, so its tilt can
orbits in each family, they are created pairwise at slightlyhave no effect on the orbit, which does have enough energy
different 8 values and with slightly different periods. How- to reach the emittery>1). However, since all other period-
ever the corresponding collector and emitter orbits are stilbne orbits require finiteg, tilting the field sufficiently for
born at the sames value in a cusp bifurcation. The two fixed y can prevent the electron from reaching the emitter.
orbits that survive from the period-one collector orbit fami- As these intervals shrink the scenario also changes. Instead
lies are identical to those already discussed in the SBM, thegf the (1,1)" ¥ orbit being created directly by a cusp bifur-
are denoted by (0,1 and (0,1 ), because they are cation, it is created in a tangent bifurcation as a (0(%)
born in different intervalsee Fig. 22 of the period[the  orbit and then evolves at highg into (1,1)" ™ orbit. This
period of the orbit (0,13(?) is greater tharl,, while the s the first example of an orbit continuously changing its
period of (0,1) (M) is less tharT.]. The period-one collector connectivity with the emitter as a function gf these events
orbits must be nonmixing by the simple argument given inalso play a role in the theory of the period-two or period-
discussing the SBM. The period-one emitter orbits collidethree orbits, as discussed below.
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FIG. 22. The scaled period.T as function of3 and the corresponding bifurcation diagrams for the period-one orbits in the double-
barrier model at zero tilt angle. The tilt angla) 6=0.64°, (b) 14°, and(c) 25°. y=1.17. The vertical axis in the bifurcation diagrams
represents th& component of the scaled velocity of the electron at the point of collision with the collector barrier.

Now we discuss the stability of the period-one orbits.traversing orbit is stable for ang and y except when its
Clearly, the collector (0,) orbits have identical stability period is either an integer or a half-integer multiple of the
properties as their SBM counterparts. As for the emitter orcyclotron periodT., when it is marginally stable. When the
bits, their stability can also be understood using qualitativeperiod takes the values=kT, the corresponding value ¢f
arguments similar to the ones we applied in our SBM analyis 8= B1o(1Kk); when T=(k+3)T. the correspondingd
sis. Just as in the SBM, in the DBM for zero tilt angle the values are8= B,{(K)=[1+ (1/2k)]B1o(1.k). Therefore, for
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. FIG. 24. The bifurcation diagram for the period-one orbits
(1,1)7 and (0,1) ( near the cusp bifurcations. The schematic at
the top represents the real space projections of the “cusp” orbit
exactly at the bifurcatioridotted lineg and the orbits produced by
the bifurcation(solid lines.

| bility of the new orbits cannot be uniquely defined at the
0 10 50 20 cusp bifurcation. We will show that, therefore, the two orbits
9 need not be born as unstable-stable pairs as in tangent bifur-
cations[this is why we have introduced the new term cusp
FIG. 23. The intervals of existence of the period-one “emitter” bifurcatiorf’ (CB)]. Moreover, one can show that of the two
orbits shown as shaded areas in tiied) plane for(a) (1,1)7(© orbits born in a CB, the one with the greater number of
and(b) (1,1)*™. Dark and light shading represents existing stablecollisions with the emitter barrier is necessarily unstable. It
and unstable periodic orbits, respectively. follows that the orbit (1,1)(?) is unstable immediately after
it is born, and turns out to be unstable over its entire interval
of existence until it vanishes in the TB with (1;1§.
a' These principles allow us to understand the behavior in

a small tilt angle the single-bounce orbit which evolved from
the TO of the untilted system, can become unstable only ne

i (0) it i . . . .
Bro and Brs. In particular, the (1,1)® orbit is stable for e oyt interval as well. The emitter orbit (1113 is also

small B, but goes unstable_ and soon re_ste_xb|l|ze:_s_ "3hom in a cusp bifurcation with the (0,14 collector orbit
Bmd0)=m/(1—y1—1/y). As in the SBM, this instability 504 hence is born unstable. Initially it plays the role of the
for period ~T./2 locates the bifurcations involving the im-
portant period-two orbits. .
Whereas in the SBM the (1§ orbit simply evolves into -
a helical orbit wherng> 2, its analog, the (1,1)%) annihi- -7
lates with the (1,1)(?) orbit nearB1o. Due to the general
properties of tangent bifurcations, one of these orbits must be O
stable, while the other must be unstable. Since the {19)
orbit is a deformation of the stable TO it is the stable one just
before the TB, while the orbit (1,1f% is unstable. Thisis  —
illustrated by the plot of the monodromy matrix for these % o
orbits (Fig. 24). =
This (1,1) © is worth further consideration because it (1,1)*0 (0,1)*® L0
appears at the critical boundary ne## 8. in a cusp bifur- > S
cation together with the collector orbit (0,2). By defini-
tion of the critical boundary a periodic orbit appearing there
has precisely the energy to reach the emitter barrier with zero
normal velocity ¢,=0). If B is increased infinitesimally
above 8., this periodic orbit “breaks up” into two PO’s,
one of which reaches the emitter near the previous point of
contact, the other of which does neee schematic, Fig. 25
The bifurcation diagram for this pair of orbits as a function  F|G. 25. Trace of monodromy matrix of the period-one orbits of
of B will exhibit a cusp at3.. A detailed analysis of cusp the first two intervals ap=11°, y=1.17. The tangent bifurcations,
bifurcations is given in Sec. IV B 3 below. Here we simply cusp bifurcations and connectivity transitions are labeled by open
note that due to the singularity in the Poincamap at the circles, open squares, and open triangles, respectively. Shaded area
critical boundary the monodromy matrices defining the stacorresponds to the stable region.

-5
/

—-10
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“other” emitter helical orbit. However, neaB=B1o the riod. When period-one emitter orbits exist in an interval, we
orbit (1,1)* 1) loses almost all its cyclotron energgee Fig. can calculate their interval of existence [ from Egs.

22) and becomes a recognizable deformation of the TO of58),(G11). The results for the (1,1f® and (1,1 ™ orbits

the untilted system. By continuity, since away frg@ng the ~ @ré shown in Fig. 23. N _

TO was stable, the (1,1f periodic orbit must restabilize _ ©On€ can also calculate the stability properties of the (1,1)
nearBto. Its further evolution is similar to that of the first orbits as outlined in Appendu H. The result; for the trace .Of
interval orbit (1,1) () just discussed. It will bifurcate and th_e monodromy matrix for d|ffe_ren_t (1.1) _orb|ts are shown in
then restabilize neaB, (1) and later annihilate with the Fig. 24. The qualitative behaw_or is as d|3(_:ussed above_. The
unstable orbit (1,1)@ in a tangent bifurcation—see Fig. 24. key new feature that emerges is an analytic understanding of

This scenario is repeated in higher intervals although the firsgqrgitcsus’p bifurcations at the birth of the (1,1and (0,1)
interval of stability[below B,,{1)] may disappear. We note '
however, that as long as a (174§ orbit exists in each in- 3. Cusp bifurcations and connectivity transitions
terval, it must have a region of stability just before it anni- . . . .
9 Y] First, we note again thatll relevant emitter orbits are

hilates with the (1,1)® orbit (which is always unstable . , \ ; o
although these intervals will shrink with increasing tilt angle born In cusp blfurca.tlons at the; log side of their eXIstence.
interval. As shown in Appendix H, the monodromy matrix
andk. ; . : . .
for the emitter orbit born in a CB involves terms proportional

to the inverse of the velocity at the emitter barrier. Since at
o _ _ ~ the cusp bifurcation the emitter velocity goes to zero, the

The derivation of the periods of the period-one emitterirace of the monodromy matrix of the corresponding orbit
orbits in the DBM can be performed using a technique simiil| diverge (see Fig. 24 Thereforeall emitter orbits are
lar to the one employed for the description of period-twoextremely unstable just after their appearance in & @fess
nonmixing orbits in the SBM, since both the emitter andpoth orbits born in a cusp bifurcation are emitter orbits, in
collector bounces are nonmixing. The calculation is given inyhich case the one with greater number of collision with the

2. Exact analysis

Appendix G and yields the following equation: emitter barrier will be extremely unstableOn the other
) hand, their companion collector orbits, fBrjust above the

, [ocT\? B 1-f(w:T) CB no longer “feel” the emitter barrier and must have sta-

|l 2 Y(.T)? 1—coff (w.T) bility properties as in the SBM, where there is no such di-

vergence for any values @f. Therefore the monodromy ma-
+4sirt 0f%(w,T) trix for this orbit asg is reduced to the CB value does not
X tend to infinity but tends toward a finite valisee Fig. 24
B 1
o

2
b Whether this value is in the stable region or not depends on
16y f(w T)[1-coS6f(w,T)]

. (59

the value of the tilt angle and of. For large tilt angle the
companion collector orbit is typically unstable just above the
where CB andtwo unstable orbits are born at the CB, in contrast to
the generic behavior at tangent bifurcations.
X There is an interesting and important variant on the con-
fx)=1- ZCOt( Z) : (600 cept of cusp bifurcation. It is possible that orbits may be born
as collector orbits in a TB, and lose cyclotron energy with

This is a quadratic equation f@? for a givenT; it should ~ increasingB until at some higheg they reach the emitter
be solved along with conditiofG11), thatv, just before the ~and evolve into emitter orbits. We will refer to these events
collision with the emitter is positive, to determine the physi- 8sconnectivity transitionsince the orbit changes its connec-
cally meaningful roots. Solving E(58) together with the tivity to the emitter. However, in this case no new orbit is
Condition(Gll), one can obtain the dependermér), which created at the value (ﬂ at which the emitter is reached, so
was plotted in Fig. 22 and used to obtain the correspondin%1iS is not a bifurcation point in any sense. Nonetheless, the
bifurcation diagrams. Equatiof25) and the conditiofG11) ehavior of the monodromy matrix of this one orbit in the
imply that B(T) is not monotonic in each intervgl(k  neighborhood of the connectivity transition is similar to that
—1)T.<T<kT,, but always has a single maximum. There-near a CB. The TM] tends to a finite value on the low
fore it describeswo different (1,1) orbits, which we already Side, whereas it diverges at the highside. For a not too
identified as the (1,) orbits. small tilt angle this behavior occurs for the (071) and

Using Egs.(59) and(G11), one can show, that, as for the (1,1)"*) orbits (see Fig. 24 Interestingly enough, the dy-
period-one orbits in the SBM, for a nonzero tilt angle thenamics does not seem to favor these connectivity changes
period of the (1,1) orbits cannot be equal to integer multipleglthough they are allowed. For tilt angles larger than a few
of the cyclotron periockT,. Moreover, the period also can degrees they are typically replaced by a tangent bifurcation
not take values too close dT,. The width of each of these and a new cusp bifurcation that ultimately results in the ap-
“forbidden” regions in each interval increaséfsom zero at ~ Pearance of an orbit with higher connectivity and the disap-
6=0) with the increase of tilt angle, so that at some criticalPearance of one with lower connectivity.
angle(which depends on the interval numbgrthe “forbid-
den” regions originating fromT=(k—1)T, and T=KkT,
merge and as already noted, it becomes impossible for the As in the SBM, the most important set of period-two or-
period-one orbits to reach the emitter in this interval of pe-bits, for small tilt angles, are those associated with the

C. Period-two orbits
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emitter wall emitter wall As a result of the mixing collision with the emitter barrier

(@) (b) this emitter orbit acquires a cusp at the emitwe Fig. 27.
Although this (2,2) orbit is mixing in a strict sense, it re-
mains nonmixing at the “collector” barrier. Since the mag-
nitude of the velocity is very low at the emitter collision the
mixing for this orbit remains very weak.

Whereas the (0,2) orbit moves away from the emitter
with increasings in the usual manner, the (2,2)orbit trans-
collector wall collector wall fers more and more energy to longitudinal motion until its
“two legs” come together and it becomes degenerate with
emitter wall emitter wall the (1,1)*.traversin.g orb_it. It i§ then apsorbed in a pack—

wards period-doubling bifurcation, causing a change in the

(c) (d) stability of the (1,1) orbit.
We have already shown by continuity that the (1,Dy-
bit must destabilize and restabilize in a short interval when
its period is=~T./2. And we have argued that all its bifurca-
tions must be backwards, since in the DBM orbits are born at
lower B in cusp bifurcations. Therefore this backwards PDB

collector wall collector wall of the emitter (2,2} orbit corresponds to one of these sta-
bility changes. To decide which one, we note that although
the (2,2)" orbit must be born unstable because it is the more
connected partner in a cusp bifurcation, it should typically be
more stable than other period-two orbits which are mixing at
the collector, when the velocity is large. Thus, we expect it
to restabilize at highepB and, therefore, to restabilize the
period-doubling bifurcations of th@eformed traversing or-  (1,1)" orbit when the (2,2) orbit is absorbed as a stable
bit (1,1)"(® which occurs neaf ~T./2 (so that the relevant period-two orbit in the backwards PD&ee Fig. 28 The
period-two orbits havél~T.). The scenario for their cre- exact calculation of the monodromy matfsee Appendix H
ation and evolution is in many respects similar to the behavfor the detail$ confirms this scenario—see Fig. 29. Further-
ior of the helical period-one orbits just described. Ber0 a  more, increasing the tilt angle does not change the scenario
pair of emitter and collector families are created at the criti-for the (2,2)" orbit, it only reduces its interval of existence.
cal boundary at the threshold.(n=2k=1)=x\y. The This orbit is relevant in the first peak-doubling region ob-
emitter family loses cyclotron energy with increasifgy ~ served at small tilt angles in the data of Muller and
moves inward in the SOS and annihilates with the TO agco-workers:?

FIG. 26. Examples of the different types of period-two orbits in
the DBM, projected ontox,z) and (y,z) planes:(a) (2,2)" orbit,
(b) (2,2)" orbit, (c) self-retracing (1,2) orbit, andd) non-self-
retracing (1,2) orbit.

Bro(2,1)=m(y+ _\/yz_—'y). 'I_'he collector family gains cy- 2. (1,2) and (2,2) orbits
clotron energy with increasing, moves outward, and exists
for all B. As just noted above, a collector orbit identical to the mix-

When 60 two orbits survive from each of the collector ing (2)~ orbit of the SBM[the (0,2) orbit] is also created
and emitter families. These four orbits are born pairwise inh a cusp bifurcation with an emitter orbit which must have
two cusp bifurcations involving degenerate collector andsimilar morphology. The simplest scenario would have this
emitter orbits, which occur at slightly different values @f  emitter orbit evolving exactly as did the (2,2)prbit, losing
The two collector orbits involved are identical to the non-cyclotron energy until it is absorbed by the (Ij1)n the
mixing (2)" orbit of the SBM and the mixing (2) orbit. other backwards PDB. However, we can immediately see
According to our notation, these collector orbits are denotedhat this simplest scenario is impossible. The mixing collec-
as (0,2). The emitter orbit created in a CB with the non- tor orbit (0,2)" with zero emitter collisions per period and an
mixing orbit (0,2)", which will be referred to as the (2,2) emitter orbit (2,2) with two emitter collisions per period
orbit (see Fig. 2§ has the simplest qualitative behavior and can never be created insingle cusp bifurcation.
we will discuss it first. If it were possible, then at the cusp bifurcation these two
orbits would have zera and ycomponents of the velocity at
1. (2.2) orbits two different points of collision with the emitter barrief.

T Since the total kinetic energy of the electron must be the

The period-two emitter orbit, which appears together withsame at any collision with the emitter barrier, this means that
the (0,2)" orbit, at the cusp bifurcation is degenerate withthe velocities at each of the collisions with the emitter wall
(0,2)* and has, therefore, the same shape. However, as tivéll differ only by the sign ofv,. That is possible only for a
parameterB is increased, it begins striking the emitter wall zero tilt angle, when the system possesses reflection symme-
with a nonzero velocity. Since at the point of this collision try.
the angle in the \(,z) plane between the electron velocity = What must happen instead is that the (0,23 born in a
and the normal to the barrier it 90°, it is amixing colli-  cusp bifurcation with an orbit of the type (1,2)(see Fig.
sion In fact, it can be shown that any orbit in either the SBM 26), which infinitesimally above the CB is connected to the
or DBM with more than two total collisions must be partially emitter at one point and not two. For small tilt angle the
mixing. reflection symmetry is only weakly broken and the other leg
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FIG. 27. Surfaces of section, showing the fixed points of (2,2p,2)", (2,2)", and (1,2) orbits fog=4.5, y=1.17 and the tilt angle
6= (a) 11°,(b) =28°. The top and bottom panels correspond to the surfaces of section at the collector and the emitter barriers, respectively.
(a) One can clearly see one big stable island of the period-one orbit™(latd stable islands of the (2,2)and (0,2) orbits. The stable
islands of the (0,2) orbit lie at thev ,=v, /v, axis at the periphery of the collector surface of section, they are absent at the emitter SOS.
The (2,2)" orbit produces two islands centered on theaxis at the collector barrier and two islands at the emitter barrier. To show the
(0,2)* and (2,2) orbits in a single bifurcation diagram it is therefore natural to represent these orbits by their valuex @bthponent
of the scaled velocity at the collector barrier. The fixed points of the generally unstable orbit é2&2hot so easy to see by amtrained
eye and are pointed out by the arrows. Both fixed points of (2t@ve zercﬂy at the emitter barrier and nonzévfg at the collector barrier.
Note, that at the collector barrier the (2;29rbit has the same values of tkeomponent of the scaled velocityincev .~y and the (2,2)
orbit strikes the collector wall at the same pdirftherefore, this value is a convenient representation for the {2&)its in the bifurcation
diagrams(b) One can see a relatively large stable island of the (1drpit, two islands of the (0,2) orbit (in collector barrier SOS onjy
and stable islands of the (1,2) orlifivo islands at the collector barrier surface of section and one island at the emitter barried8@%s
for the (2,2)" orbit, the fixed points of the (1,2) orbits at the collector SOS have exactly the same vatugswifich can therefore be used
as their representation in the bifurcation diagrams.

of this orbit will be quite close to the emitter, but it may not Regime ong < {91)_ This regime is described completely
touch. Eventually, the creation of this orbit leads to the crehy continuity arguments once it is understood that the mixing
ation of a (2,2) orbit (see Fig. 25 which is absorbed by the (0,2)” collector orbit must pair with a (1,2) orbit. As 8
(1,1)* in a backwards inverse PDB. However the qualitativeincreases above the threshqiid~ w\/§(1+2k) (where k
scenario changes several times with increasing tilt angle ang 0,1, . . . is theinterval numberthe (0,2)” and (1,2) or-
may be quite subtle, with no less than four regimes which aréit are created in a CB. In a very small interval gfthis
relevant to the recent experiments. Since the orbits involved1,2)" orbit attaches its other leg to the emitter and becomes
control much of the peak-doubling behavior at larger tilta (2,2)" orbit in a connectivity transition of the type de-
angles, we will describe these scenarios in some detail herscribed in Sec. IV B 3 above. The (1;2)orbit must have
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FIG. 28. The bifurcation diagram of the (2,2and (0,2) or-
bits in the DBM. The vertical axis representscomponent of the
scaled velocity of the electron at the point of collision with the
collector barrier{see also Fig. 23)] . The tilt angled=15°, and
vy=1.17. The tangent bifurcations, cusp bifurcations, and period- >
doubling bifurcation are labeled by open circles, open squares, and

an open star, respectively.
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FIG. 29. The trace of monodromy matrix for different period-
two orbits of the first interval ata) 6=17° and(b) §=28°.
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FIG. 30. The bifurcation diagram of the (2;2) (1,2), and
(0,2)" orbits in the DBM in “regime one.” The vertical axis rep-
resentsy (top panel and x (bottom panels components of the
scaled velocity of the electron at the point of collision with the
collector barriefsee Fig. 2f)]; y=1.17; the tilt angled=5°.

been born unstable at the CB and since the (0,@)bit it
creates is mixing at the collector we expect it to remain un-
stable as it loses cyclotron energy until it is absorbed in a
backwards inverse PDB with the (1,1)orbit. The (1,1)

then becomes unstable and is shortly after restabilized by its
backwards PDB with the (2,2) orbit. All steps are consis-
tent with the continuity argument from= 0. The bifurcation
diagram in Figs. 30 illustrates the behavior in this regime.

The (1,1)" continues its evolution until it vanishes in the
backwards tangent bifurcation described above and neither
creates nor destroys any further period-two emitter orbits.
However, there is a new period-two orbit created by the
(0,1)" collector orbit. It behaves just as in the SBM and goes
unstable creating a (0,2)orbit that is the exact analog of the
(2)* orbit of the SBM. However, this only occurs at large
values and the orbit never reaches the emitter once it is cre-
ated, so it is not relevant to the experiments at small tilt
angle. We mention it because it will become very relevant at
large tilt angles.

Regime twq(8;< < 6,). The behavior in this regime is
as follows. AspB increases, as before, the first event is the
creation of the (0,2) collector orbit and the (1,2) orbit via
CB. This (1,2)" orbit evolves for some interval ig without
becoming a (2,2) and in this interval a second CB occurs in
which a distinct orbit (1,2) and a (2,2) are created—see
Fig. 31(a) (this can happen because their connectivity only
differs by ong. At slightly higher g8 still the two orbits
(1,2)", (1,2)” annihilate in a backwards TB and a yet higher
B the (2,2) orbit is absorbed by the traversing orbit in the
now-familiar PDB. The net effect of the creation of this sec-
ond orbit (1,2) is to eliminate the connectivity transition
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(c)

FIG. 31. The bifurcation diagrams of the (2,2)(1,2), and (0,2) orbits in the DBM in (8,v,/v,) coordinategsee Fig. 2¢b)] in
regimes(a) two, [(b),(c)] three, andd) four; y=1.17; the tilt angled= (a) 20°, (b) 27°, (c) 29°, and(d) 30°.

directly from (1,2)" to (2,2) . The dynamics seems to rap- destabilizing PDB of the (1,1) traversing orbit. Therefore,
idly eliminate these transitions even though they are notlthough the scenario is substantially more complicated than
strictly forbidden; preferring to replace one connectivity in the SBM, the bifurcations of the period-one orbits in the
transition with a CB and TB which results in the same finalfirst interval determine all the relevant period-two orbits.
state. The total number of (1,2) orbits is increased to two by For most of this interval the two (1,2) orbits exist at
this change. i lower B than the two (1,2§ orbits. However, as the next
Regime threg #,< < 63). As already mentioned, a fur- critical angle®; is approached the intervals of existence of
ther period-two orbit, (0,2) is created by the PDB of the these pairs of orbits begin to overlap and their associated
(0,1)+ collector orbit, exaCtIy as the (Z)Orblt is created in fixed point move togethe[rsee F|g 3“_(_;)] The final act is
the SBM. As tilt angle is increased this PDB moves to lowerahout to take place.
and lower until at the valuedy, it coincides with the cusp  Regime foux 6> 7). Recall that in the SBM the different
bifurcation that creates the (1,1)and (0,1)" orbits. For  pranches of the (2) and (2) orbits linked up above the
larger 6 a period-two emitter orbit of type (1,2) is created at critical angle6. In that case the link was established by the
this CB. Thus in a somewhat mysterious manner this CB is @nerging of the PDB’s at which these orbits were created
“point of accumulation” for the creation of higher period from the traversing orbit. In the DBM a similar connection
orbits (a similar thing happens for period-three here aswell now occurs for the (1,2) and (1,2) orbits via an “ex-
We may call this orbit (1,2) since it is similar in many change of partners” bifurcatiofnote, that we already en-
ways to the (2] orbit of the SBM. For example it has no countered this bifurcation in the SBM—see the description
analog in the untilted system. Just above the critical afigle of three-bounce orbits The (1,2)" and (1,2) orbits are
this (1,2); orbit is barely reaching the emitter and it rapidly both created at cusp bifurcations with collector orbithich
detaches for higheg8 and becomes a collector orbit. Asis  are identical to the (2),(2)* orbits of the SBM and are
increased, very quickly this connectivity transition is againannihilated at tangent bifurcations with their partners
replaced by a combination of CB and TB, where in this casg1,2)",(1,2); . At a critical anglef93 the (1,2)" and (1,2}
the CB involves the (0,2) collector orbit and a second orhits exchange partners. Above this angle, the (1 @pit
(1,2), orbit, (1,2), . The orbits (1,2f ,(1,2), then annihi-  horm in CB with the (0,2) annihilates in a TB with the
late at higheis in tangent bifurcation —see Figs. ®1c). S0 (1,2). orbit born in a CB with the (0,2); whereas the
except for very near the critical angle, there are now a (1,2)” orbit born in a CB with the(one and only (2,2)"
total of four (1,2) orbits associated with the first interval. orbit now annihilates with the (1,2)orbit born at the CB of
These are the two (1,2)orbits just mentioned, which are the period-one orbits—see Fig. (&L
connected with the cusp bifurcation of the (0,1(1,1)” or- In the experiments of Ref. 12 one of the most puzzling
bits, and the two (1,2) orbits that can be associated with the features of the observed peak doubling is that a large region
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of peak-doubling is seéfto separate around>30°. It is  derstanding of these orbits based on the principles used in
now clear that this reseparation is initiated by the “exchangealiscussing the period-one and two orbits, we will briefly
of partners” bifurcation described above. This will be dem-summarize their properties.
onstrated quantitatively using the semiclassical tunneling As for the period-two orbits, for small tilt angles the main
formula (1).16 period-three orbits are those related to the resonances of the
After the “exchange of partners” transition the (172) traversing orbit. When the tilt angle is exactly zero, the tra-
orbit exists for a very large interval g8 and has relatively ~Versing orbit haswo 1:3, resonances in each interval, when
low cyclotron energy. Thus it plays a dominant role in theits period is equal to (B+1)T./3 and 2(X+1)T./3, re-
tunneling spectrum in this interval g8. The importance of SPectively. The behavior near each of these resonances is

this orbit has been emphasized in work of EromHld. essentially the same for small tilt angles, so we just consider
In contrast, the other pair of orbits, (1,2Y1,2); , de- the first one. First, an emitter and collector family is created
: P AR T @ the critical boundary ap,<p;. The emitter family

crease their interval of existence because the PDB and CB . .
which they are connected move together. moves inwards in the SOS and collapses to the TO at reso-

In Fig. 29 we show the behavior of the trace of the mono nance. When the field is tilted only two period-three orbits
s ) . . “survive from each emitter family and they are n i
dromy matrix for different period-two orbits. Note that the y y ow created in

: - ) : oo cusp bifurcations with the corresponding collector families at
orbit (1,2)" remains near marginal stability in the whole slightly different values of3
interval of its existence. This is an unusual dynamical prop- “aq with the period-two orbits in the DBM, these emitter

erty, not shared by the other period-two orbits in its family, ohits will move inwards in the SOS until they annihilate.
nor by typical unstable orbits, e.g., in chaotic billiards. It is The one difference in their behavior has already been noted
now well known that unstable periOdiC orbits that are ClOSQn the discussion of of the SB'\(Bee Sec. |l E Because
to stability are most likely to generate nonergodic quantunperiod-three orbits generically are not born or absorbed in
states concentrated in real and phase space along these orlpjigrcations with a period-one orbit, these two orbits cannot
(“scarred wave functions).*’~* Therefore orbits such as disappear precisely on resonance with the TO. Instead one of
the (1,2)°, which are “pinned” near marginal stability them /the unstable onepasses through the fixed point asso-
while the classical parametel’s of the SyStem are Varied, Cqﬂated with the (1'1')'(k) traversing orbit in a touch_and-go
generate many scars of the same orbit. We have argugglfyrcation and then annihilates with the other in a backward
elsewher&' that this special dynamical property of the tilted tangent bifurcation. For all tilt angles the interval between
well gxplains the existence of the ang sequence C_Jf Wavehe TAG bifurcation and the TB is negligibly small, and so
functions scarred by the same orbit found numericdllly. practically speaking it is as if these two orbits vanish in a
Only certain orbits in each family can participate in this «packwards trifurcation.”
anomalous scarring; we will point out examples for the Again, as with the period-two orbits, for finite tilt angle
period-three and period-five orbits below. . the emitter orbits cannot be created as (3,3) orbits at the
To summarize the complicated story of the period-twojnitial cusp bifurcation. Therefore the two emitter orbits just
orbits: For small tilt angles the important orbits are the (2,2)described are created in the form of a (1,3) and a (2,3) orbit.
orbits we have denoted as (2,2)prbits. As tilt angle in-  These orbits are the analogs of the period-two (1,2) orbits,
creases the importance of (1,2) orbits increases and eventyyt now there are two different types of orbits with less than
ally they become the dominant period-two orbits in the firstihe maximum (3,3) connectivity to the emitter. yaz pro-
@nterval. Since higher intervals corre_sponq to greater ChaOti%ction the (3,3) orbits each have a mixing collision point
ity, they become important more quickly in the second inter-where two collisions occiirand a nonmixing collision point
val. These (1,2) orbits are created in a complicated blfurca(Where only one collision occurs, see Fig. 3Zhe (1,3)
tion tree that connects to a period-doubling bifurcation of theg pits correspond to detaching the orbit at the mixing colli-
period-one traversing orbit, as well as cusp bifurcations withgjgp, point, the (2,3) orbits correspond to detaching it at the
various period-one and period-two collector orbits. It is VerYnonmixing collision point. As noted, both occur for each
difficult to discern these relationships from simple observayesgonance.
tions of the SOS as many of these orbits are born highly For small tilt angles the (1,3) and (2,3) orbits created at
unstable in cusp bifurcations and certain of the transitionghese cusp bifurcations evolve by connectivity transitions
described occur over very small angular intervals. into the stable and unstable (3,3) orbits which participate in
the TAG/TB behavior already described. At higher tilt
angles, as for the period-two orbits, the connectivity transi-
tions are replaced by the appearance of a new (1,3) and (2,3)
All of the qualitative differences between the periodic or- orbit that through a combination of CB and TB leads to the
bit theory of the SBM and that of the DBM already have same final state. In the regime of small tilt angle there are six
entered into the description of the period-one and two orbitsperiod-three orbits created in the neighborhood of each reso-
However, peak-tripling regions have been clearly observedance: two collector orbits, a (1,3), a (2,3), and two (3,3)
in experimental tunneling spectra, indicating that the behaverbits. For large tilt angles there aggght period-three orbits
ior of period-three orbits is relevant to these experimentsdue to the new (1,3) and (2,3) orbits that arise to replace the
Moreover, there has been a recent Comment questioning tlennectivity transitiongsee Fig. 33 The bifurcation dia-
interpretation proposed for these peak-tripling regtéAsin ~ grams of Fig. 33 summarize the behavior of the family of
Ref. 12, where they were attributed to trifurcations of theperiod-three orbits related to the first resonance; qualitatively
traversing orbit. Since we are able to reach a complete urthe same behavior is observed at the second resonance as

D. Period-three orbits
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FIG. 32. Examples of the different types of period-three orbits >O
in the DBM, projected ontoy(,z) planes:(a) (3,3) orbit, (b) (2,3) ~
orbit, (c) (1,3) orbit. <
>

well. In Fig. 34 we show the behavior of the trace of the
monodromy matrix for these orbits. Note, that as for the
period-two orbits, there is one orbit which, although exists in
a substantial interval, does not become too unstab&eorbit
(1,3)"] and is therefore expected to produce strong scars. |
The (1,3) and (2,3) orbits in each family appear at lower
magnetic field than the resonance value, and evolve either I
directly or indirectly into the (3,3) orbits. One of these orbits . o ) o
has been identified previously by Fromhold and FIG. 33. The bifurcation diagrams of the period-three orbits in
co-worker&-?2 in connection with peak tripling. We have 1€ DBM.aty=1.17,6= (a) 11°, (b) 38°.
recently shown that this Qrblt satisfies the same crltgrla fogi re t0o long for them to be resolved as resonance peaks in
generating strong scars in the quantum wave functions Y

. o ) e experimental data of Ref. 12.
does the period-two orbit discussed ab&t@/e will analyze Higher period orbits also appear in families in connected

the relation of the entire family to the experimental observay,isrcation sequences which begin with collector orbits and
tions elsewhere. We simply point out here that each familyag with fully connected emitter orbits which are annihilated
of eight period-three orbits is connected to a period-thregy resonances with the TO. The principles and analytic rela-
resonance through bifurcation processes, and in the schemigns e have derived can be used to develop a quantitative
presented in this paper they arise as a natural consequencetﬂgory of such orbits. We have done this elsewitiar the
that resonance. _ case of a period-five orbit of the (1,5) topology, which is
As noted, for small tilt angles both resonances betweeRypacied to cause anomalously strong scarring. Here we re-
the period-three and period-one orbits in the first interval argict ourselves to the relevant orbits of the DBM with peri-

similar, with the creation of six or eight period-three orbits, oys |ess than four, their properties are summarized in Table
four of which are related by continuity to tori of the unper- ||

turbed system. As with the period-two orbits, there is another
resonance corresponding 1o6=3T, that occurs in the first
interval, but initially for very highB. This resonances will
give rise to (1,3) and (2,3) orbits analogous to the (1,2)  We have developed a complete qualitative and quantita-
period-two orbits. For small tilt angles they are created neative theory of the periodic orbits relevant to the magnetotun-
the (0,1) collector orbit and do not reach the emitter, ameling spectra of quantum wells in tilted magnetic field.
happened also for the (1;2) Just as for that case, as tilt  First we introduced two model Hamiltonians and showed
angle is increased the resonance moves “down” to thenow to scale the variables so that only one or two dimen-
period-one cusp bifurcation and now gives rise to emittersionless paramete; (3, y) describe the classical dynamics
orbits. These emitter orbits then evolve similarly to theat fixedd. As y=ey/eV is approximately constant in experi-
(1,2)* orbits with exchange of partner bifurcations, etc. ments, the dependences on magnetic field, voltage and injec-
However, the periods of these orbit$¢2T_.) apparently tion energy are all summarized by the behavior of the Poin-

—-0.5 0
A T T T I T T E T T S AU SO N

N
[@X
IN
(@)

V. SUMMARY AND CONCLUSIONS
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TABLE Il. Relevant periodic orbits in the DBM

orbit y—2z projection "birth' «— "deoth"
(1,n* CB «-> TB
(2,2)* CB «- PDB
(2.2)” CB «- PDB

(1,2)*

/@ (3,3)* \/\ CB «~ TB

CB «- TB

FIG. 34. The trace of monodromy matrix for different period-
three orbits related to the first 1:3 resonance of the traversing orbit
(1,1)"©@ at g=17°. (1.3)*

CB «- 1B

, . . . (2,3)* CB «- TB
carevelocity map as a function of the variablgs6.

The theory of the periodic orbits was first developed for
the single-barrier model, which elucidates many of the quali-
tative features of the system. In particular, the SBM dexiod) there will exist orbits with 0,1. . . N emitter collisions,
scribes a standard KAM transition to chaos as a function oonnected together by one or more bifurcation “trees.”
tilt angle. The period-one orbit with the smallest cyclotron Typically, several orbits in a given family will be relevant
energy(the traversing orbjtplays a fundamental role in the for ynderstanding the magnetotunneling spectra, with their
transition, with the relevant periodic orbits appearingrelative importance changing as a function of tilt angle.
through the bifurcations of this orbit. These bifurcations fol- Having determined the periods and Stab”'ty of all the or-
low the known bifurcation rules for gener{@D) conserva-  pjts that are short enough to resolve in the experimental tun-
tive maps. However, the detailed scenario for the bifurcaneling spectra, we can now calculate the tunnel current semi-
tions evolves with tilt angle in a complicated manner, whichc|assically using Eq(1) from Ref. 16 above and compare to
nonetheless can be understood using continuity argumenigxperiment. We have reported initial results of this semiclas-
Exact analytic expressions for the period and stability ofsjcal theory in comparison to the experiments of Muteal.
most of the relevant orbits were obtained for all parameteg|sewheré® Many features of the complicated evolution of
values, something that has not been possible for other expetthe observed spectra with increasing tilt angle find a natural
mentally studied chaotic quantum systems. We note agaigxplanation in this approach. The ability to develop a semi-
that the SBM could be realized in a practical double-barrierc|assical theory in essentially analytic form makes this sys-
structure in which the band profiles were chosen to reducgsm unique among the few quantum systems which have

the emitter energy appropriately. _ been studied experimentally in the transition regime to
In generalizing the theory to the double-barrier model thaghzos.

is relevant to the present generation of experiments we un-
covered several new features of the dynamics. Perhaps most
interesting was the discovery thall relevant orbitsexcept

the traversing orbjtare created in a new kind of bifurcation,
called a cusp bifurcation, which can violate generic bifurca- The authors wish to thank G. Boebinger, T. M. Fromhold,
tion rules due to the discontinuity in the Poincanap onthe H. Mathur, T. Monteiro, and D. Shepelyansky for helpful
curve separating initial conditions that reach the emitter frondiscussions. We particularly thank T. Monteiro for pointing
those that do not. These orbits are created in families belowut to us the importance of the (1,2) orbits even at tilt angles
the value ofB at which resonances with the traversing orbitas small as 11°, and for making us aware that the period-
occur. They only exist for a finite interval ¢f (or magnetic  three bifurcations follow the touch-and-go scenario. The
field) and then annihilate in backwards bifurcations with thework was partially supported by NSF Grant No. DMR-
traversing orbit or in tangent bifurcations. In a given family 9215065. We also acknowledge the hospitality of the Aspen
of periodN orbits (N collisions with the collector per pe- Center for Physics where some of this work was done.
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APPENDIX A: THE MONODROMY MATRIX
FOR THE SINGLE-BOUNCE PERIODIC ORBITS

In this appendix we derive the expressions for the components and the trace of the monodromy matrix for the period-one

orbits in the single-barrier model. By definition, the monodromy mattix (m;;) of a period-one orbit is the matrix, which

represents the linearized Poincanap, calculated at the position of the single-bounce periodic cifljil;i?j) in the Poincare
surface of section:

D (VE+60,,05+80,)=0F + M0+ M80,+O0((60,)2,(80,)2,(80,)(8vy)),
Dy (VX + 00y, V5 +80,) =0 +My1d0 + Myadv ,+O((80,02,(8v )%, (80 (80 ). (A1)

The monodromy matrixn; therefore relates to each other the deviatfnfrom the location of the periodic orbit after one
iteration of the Poincarenap to the initial deviationsv, in the limit |v]—0:

sv My M\ [ (6vy) ~
( ~x>:< 11 12)( ~x0 +O(5Uo). (A2)
dvy Ma1 M22) \ (bvy)g
Expanding the Poincanmap (14) in sv, we obtain
- _ ~ - o~ sinfw T* ~.  2sing\ ~
O (vi+ vy, v +dvy)=vE+6T TCOE{(»CT*)— vy + 3 Si(wcT*) |+ (Svy)o| COLw T)
singBv ¥ . ~ _ . Yy~ o~
—?Sm(wcT ) | = (6vy)ocosSin(w T*) +O((6v4)5,(6vy)5,(6vx)o(dvy)o), (A3)
We

~ 2si = 2si
(v§+ SI;na)cos{wcT*)+sin0\/1—(v§)zsin(wcT*)— Sﬁlgna

Dy (V5 + vy, V5 +00,) =0} + 0w 5Tcosh

~%

+(5’Jx)ocosa< sin(w T*) — %[1%0@(;*)]) +(8v,)o[ COF IO w T*) +sirP 4]
— (3

+O((8v,03,(80,)3,(80,)0( 80 )0, (A4)

where the parametesT is the difference between the time interval to the next collision of the electron with the barrier
T(B,6;v) and the period of the single-bounce periodic offit

T(B,6;0 )=T*(B,6)+ 5T. (A5)

To obtain the linearization of the Poincaneap in terms of the velocity deviations, we therefore need to calculate the
expansion ofST in (8v,)o and (5'5y)0 up to linear order. This result can be obtained from @), which relates the scaled

in-plane components of the velocity of the electran, (Ey) at the point of collision with the barrier to the time interviato
the next collision. Substituting the expressi@®b) into Eq. (16), we obtain

sing[ 1—cog w T*)]+ Bv ¥ | cogo+sirtd %_lc_;r))
¢ —~
(l)C(ST: - a)CT* - - - — ZSiI’IH (50 X)O
3 [cog0—sinf0cog w T*)] +S|n65|n(wCT*)( vE+ 3 )

wcT* —sin(wT)

+singcosy 0 T Zsina)

B B
X (80 )0+ O((8v,)3,(80,)5,(80)0( 80 )0). (AB)

[cog0—sirfhcod w T*) ]+ singsin(w T*) ( vi+
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Substituting Eq(A6) into Eqgs.(A3),(Ad4) and using Eq(37), the monodromy matrix, we obtain

W T* Sin(w T*
My, =Ssirf 6+ cos?acos{wcT*)—Zsir?eco§0( 1-—— ) 1- M) ,
tan(w T*) wcT*
My,= — COSA[ SINFHw T* + coFOsSin w T*)],
wcT*
oSy . T* 14 4sirf fcosd L 2
My = COSiN(w T™) 0 T t w.T*
2
W T*
2 sin(w T*
x| 1-coqw T*)—| 1- ———— (cosza+sin29M :
ta T wcT*
2
Myp=Myy, (A7)
and the trace of the monodromy matrix is therefore
Tr(M)=2m,;. (A8)

For the analysis of the stability of the single-bounce peri-two-bounce periodic orbit with the period exactly twice the
odic orbits it is convenient to represent the expression foperiod of (1)"™ is born in the neighborhood.

Tr(M) as a sum of—2 (which is the critical value of the However, althouglall one-bounce periodic orbits (1§
trace of the monodromy matrix, when the periodic orbit bi-(k=0, ... ») show the period-doubling bifurcation &8
furcates and loses stabilityand an additional term. A trivial = ,3§Jkl) the further evolution of the (1Y% periodic orbits
rearrangement of terms yields depends org andk and is qualitatively different fog< 6
do=6!, wh
Tr(M) = — 2+ 4cod(0)tarf(6) + (w T* I2co o T*/2)) o0 0= Ok Where

X [tar?( 0) + sin( w T )/ (0 T*)], (A9) Ok =arctart\/—sin( &)/ &) (B3)

which is exactly Eq(43). and &, is the (+1)th positive root of the equation taf)(

’ . .y T . . _

APPENDIX B: PERIOD-DOUBLING BIFURCATIONS Note, :(hat tgmcek(?nucafll andglekl 1S afmontﬁton'cfgytse
OF SINGLE-BOUNCE ORBITS AND THE SCALING creasing function ok for a fixed varue ot the tilt angie, the
OF THE POINCARE MAP inequality 6< 6, is equivalent to the conditiokR<<k,.(6),

where the integek,,(6) is the smallest integer value &f

In this appendix we consider the evolution of the single-for which the inequalityd] < ¢ still holds. knys(6) is a de-

bounce orbits (1), which appear in tangent bifurcations creasing function o®, it diverges as integer(8) at —0,
together with the unstable orbits (1(j<). As follows from andk,i,(8) =0 for 8> 6,. The regimed< gl corresponds to
Egs.(43) and Eq.(39), immediately after the tangent bifur- <k . (), and 6> 6} holds fork=kp,(6) (hence an for
cation all (1)"® orbits are stabld —2<Tr(M)<2—see arhitrary 6 at sufficiently high3 the system is in the regime

At B=B¥ , where ; ; _ C .
bl First, we consider the cade<k,,, (which is nongeneric
" ) in a sense that it corresponds tdiaite part of aninfinite
By =F(sing, u(—tarf0)); (Bl)  sequenc&k=0, ... ). At =%, where

the function ¥ is defined in Eq.(41) and ¢(a) is the kth K — (i _
positive root of the equation bo = F(sind p(—tarr o)) (B4)

andg,(a) is thenth positive root of the equation
[4

—=a, (B2

tan sinp

a; (B5)
the trace of the corresponding monodromy matrix reaches v
the value—2, and the orbit (15X goes unstable via a the trace of the monodromy matrix of the one-bounce peri-

period-doubling bifurcation. At that moment a new stableodic orbit (1)"™ again passes through the value (see
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Fig. 8. At this point, the orbit (1 restabilizes via a
period-doubling bifurcation. In this bifurcation, the period-
one orbit (1)"® can either “emit” an unstable two-bounce

orbit or absorb a stable two-bounce orbit. A detailed descrip- ~

tion of this behavior is given in Sec. Ill D, where we analyze
the properties of the two-bounce orbits.

As follows from the Eqs(42) and (B1), for a fixed tilt
angle @ the intervals of stability of the single-bounce orbits
(1)*® at largek scale as K. If we introduce an effective
“local” parameter 8, such that

B, =K B—m(2k+1)],

then in the limitk>1 the values of this local parameter

(B6)

corresponding to the bifurcations of the single-bounce orbits i “

do not depend ork. This property gives a hint about the

existence of a universal limiting behavior of the Poincare

map in the regimé>1. Also, using Eqs(B1),(B4) together
with Eg. (39), one can show that fdt>1 the “nontrivial”
part of the evolution of the single-bounce orbit {1 takes
place in the vicinity of the origin of the surface of section, so
that the “universality” of the behavior of the Poincaneap

is expected to show up far<1.
Introducing the rescaled velocity

5%

and substituting the expressions @fand Vv in terms of the
local variables3, andv, into the exact Poincarmap (14),
in the leading order in X/we obtain the following mapping:

Uy Uy
k "k2

(B7)

(V)ne1=@A(V)n: B)), (B8)

where

(D)= 00+ A10(V )x+B10(V )x+ BagV )5+ ao1(v )y
9
(®,)y=boo+b1g(v,)x+b1o(v )xtbao(v )+ bso(v )3

+0 K
+bao(v )+ boa(v )y + boz(v/)§+ b1a(v )x(v )y

+boy(v,)3(v,)y+O %) 89)
and
agy=—Ccogdsing| B, + % ,
a;0= — C0g26),
a,0= mCOS fsind,
ag;= — 27Sirf fcos,
byg= sin26 1-cod'd sin26cos'd 2 2sin29cos 6

2

2 T

4 ’
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FIG. 35. Comparison of the SOS for the limiting mappiii&sg)
(b,d) with the ones of the exact Poincameap (a,9. The tilt angle
0=15°, Bioca=0.2(a,b and 0.5(c,d). The SOS of the exact map is
obtained fork=20.

2
b1o= ;cosﬁsin2 6(3—2sirf9) — B,€0s20c0s 6,

b,o=sin26(cos o—sir6+3),
bao= mCOS Hcos2d,

m?cod 9sin26

40~ 4 ’

v
—Ccos20— ﬂsinZZ Aco<0,

bOl: 2

2
v
b02: - TSIFFZ (9,

7T .
— —sind46co9Y,

b= 2

77_2
by= 7sin22 6cog 6.

In Fig. 35 we compare the Poincasarfaces of section of
the mapping(B8) with Poincaresurfaces of section of the
exact map(14), and an excellent agreement is found.

APPENDIX C: THE MONODROMY MATRIX
FOR A MANY-BOUNCE ORBIT IN SBM

To obtain the monodromy matrix for the period-one or-
bits, we used the nonmixing property of the single-bounce
periodic orbits. Therefore, it may seem that an analytical
expression for the trace of the monodromy matrix may be
obtained only for the simplest nonmixing orbits. However, it
is not the case. The nonmixing property substantially simpli-
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fies the calculation of the monodromy matrix, but is not nec-

essary for an analytical description of the stability, as shown k1= —| Sinf[ 1—coq wty) ]

in the present appendix.
Consider a generdmixing) periodic orbit withn colli-

sions with the barrier per period. Let v

=[(v, )k, (v,)k,(v )] andt, be, respectively, the scaled
velocity immediatelyafter the kth collision and the time in-

terval fromkth to (k+ 1) th collision. Once the values of;
andt, are known, one can linearize the Poincarap near

the point((v )k, (vy)W):
(80 k1= (M) 12(80 )+ (M) 14 50 )i,

(80 k1= (M) 21( 80 )i+ (M) 5 80 )i,

wheresv, and v, ; are the deviations of the velocity from

Vv, and fromv, . ;, respectively, and the matrM, is defined
as follows:

€y

ID,(vy,vy)

&vy ~ ~

ID,(vy,vy)

avx J=3

My - - - -
dDy(vy,vy) dDy(vy,vy)

vy o o

vy |zt
(C2
Using the definition of the function®, ,®, [Eq. (14)],

-1
gk 1

. (V)i 0t COLH+ sinzasin(wctk)]>

(;z)k
Kip= ( sindcosf[ t,—sin(wety) ]

-1
§k ’

(v cogo+ sinzasin(wctk)])

(;z)k

Zsine)

B
wct [ coS O—sinffcog wcty) ]

+ 3 :

The matrixM, relates the deviations of the velocity from
the periodic orbit after two successive iterations of the Poin-
caremap, and is, therefore, directly connected to the mono-
dromy matrix. The monodromy matrix of a perioderbit
relates the velocity deviation after the first collision to the
velocity deviation after theath collision, and therefore can
be obtained as

S =Ssingsin( wctk)( (Ex)k+

M:HE=1MK' (C4)

we obtain the following expressions for the components of

the matrixM,:

(0 )sindsin(w ty)

(;z)k

(My)11=coq wcty) — K1tKt1

(vy)isindsin( wty)

(’Jz)k

(My) 1= — cossin(wty) — + K1tKe2,
(vy)sinfgcost[ 1 - cod wty) ]

(My)21=cosin(wcty) — =
(v )k

+ KotKi2,
(M) o= o 6cog wgty) + Sirt 4

(;y) kSindcosd[ 1 —coq wty) ]

(;z)k

KotKt2,
(C3
where

2singsin( wty)

B — (v, )xsiN(wcty)

k1= (0 ,),SiNACOg wety) —

— (v ) cosIcoq wty),

2singcosd[ 1— cog wty)]
B

+(0,)kc0sACOg wty) — (v ) COF OSIN wcty),

Kot = (0 ), SINGCOSIN Wt ) —

The analytical expressions for the components of the mono-
dromy matrix(C4) and (C3) are the final results of this ap-
pendix.

APPENDIX D: PERIODS OF NONMIXING
TWO-BOUNCE ORBITS

As in the case of single-bounce orbits, the derivation of
the periods of the two-bounce periodic orbits is most easily
performed in the “drifting” coordinate systemx{(,y",z"),
which was defined in Eq36). In this coordinate system, the
electron moves under the action of electric and magnetic

fields, which areboth parallel to thez” axis: E=EcosZ’,
B=BZ". An immediate consequence of this fact is that in this

coordinate system the kinetic energy of the electron at the
point of collision depends on the corresponding value'of

m*UZ *UZ

2

m
" 2

=

—eEcos9(z] - z3). (D1

Projected onto the plane(,y”), a two-bounce periodic
orbit forms a repeating pattern of two arcs of two different
circles, as shown in Fig. 36. Each “kink” in the projection
of the trajectory corresponds to a collision with the barrier,
when the direction of the electron velocity abruptly changes.
The radius of each circle is related to the value of the cyclo-
tron velocity:R.=v ./ w. . If the periodic orbit is nonmixing,
then the cyclotron velocity remains unchanged and the
circles have equal radii—see Fig.(Bk

Another consequence of the nonmixing property is that all
the successive collisions of the electron with the barrier are
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RS v,y =0cCo8 a+ weT/2) (D7)
2
!\ /l /\
el and
<O> + .
Uy//:UCS|na,
FIG. 36. A nonmixing two-bounce orbit, projected onto the 1
(x',y") plane of the laboratory system of coordinatesand onto + _
(x",y") plane of the “drifting” frame of reference. V=" vSIN(at w T/2). (D8)

2

separated by equal time intervals, so that the trajectory of th8ubstituting Eq(D8) into (D2), we obtain
electron is symmetric under mirror reflection around any

axis, parallel to the/” and passing through any of the colli-
sion points. If it were not true, then the collisions would
necessarily have to change thiesolute valuef they” com- v =vSiN(a+ w T/2)cots. (D9)
ponent of the velocity. Since the component of the veloc- 2
ity of the electron remains intact at collisions, this would 1 distancezj—z, can be obtained as
introduce a nonzero energy exchange between cyclotron and
longitudinal motion, which contradicts the nonmixing prop- Z— 7= (y5—y})tans, (D10)
erty of the periodic orbit.

At the point of a “nonmixing” collision the electron has where
zeroy component of the velocity. In the drifting coordinate
system this condition is equivalent to the following relation:

+ .
UZ,1,= —vSinacotd,

(D11)

o T o T
4 4

v
yg—y’l’=2w—°sin—sin at+—|.
Uy//: - sz/tanb’. (DZ) . ) ¢ ) )
Substituting Egqs(D9)—(D11) into Eq. (D6), we finally ob-
Equation(D2) implies that the collision only reverssggn of tain
the velocity in the ¢”,Z") plane, leaving the” component

unchanged: 0T . T
g ° _cot— = —tarfé. (D12)
L 4 4
UX/I_UXN!

The (k+ 1)th positive root of this equation gives the value of
+_ - the period of the (2)® orbit.

APPENDIX E: THE MONODROMY MATRIX

(D3) FOR A TWO-BOUNCE NONMIXING ORBIT

+
v.,=

P v

7"

wherev™ andv™ are the velocities of the electron immedi- The trace of the corresponding monodromy matrix for a
ately before and immediately after the collision, rESpECt'Vely(nonmixing) two-bounce orbit can be obtained using the gen-

. Letvy andv, be the velocities of the electron, correspond-g g expressions developed in Appendix C. For the period-
ing to two successfulnonmixing collisions with the barrier .5 orbits the monodromy matrix can be represented as
[Fig. 36b)]. As follows from Eqgs.(D3) and (11),

M=M;M,, (ED

(D4)  where the matrisM (k=1,2) relates the velocity deviations
from the periodic orbit at two successive collisions and can
be calculated using the relatiof83). As the input informa-

dion for this machinery one needs the values of the velocity
of the electron immediately after each collision with the bar-

rier (v, andV,) and the time intervals between successive

n ( n eEcosHT)
U_n=— UZH_— y
1 2m*
whereT is the period of the orbit, equal to twice the time

interval between successful collisions. Due to the conserv
tion of the cyclotron energy EqD1) reduces to

v2 +p 2eEcos collisions qndtz). o _ _
Vy —Up = (25— 77). (D5) For the period-two nonmixing orbits, as we have shown in
2 ! m Appendix D, all the collisions are separated by equal time

Using Eq.(D4), we can rewrite Eq(D5) as intervals, so that

t1:t2: (EZ)

+ + 4 " ” ;-
To obtain the velocity at the point of collision, we can use

If « is the phase of the cyclotron rotation immediately afterthe energy conservation condition

the first collision, then
+ m* 2, 2

U, =00, e=——[(vytvy)?+vi,+vs]. (EJ
1 2 y z
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Substituting the expressions for the velocity components at , " |
the point of collision[Egs. (D7), (D8), and (D9)] into Eq. R
(E3) and using Eq(D4), we obtain N !

(a) (b)

,800520)2_ T

1+ sirftar? (1+sirf6tart ),

C
2sind 4

FIG. 37. A mixing self-retracing two-bounce orbit, projected
(E4) onto the &',y’) plane of the laboratory system of coordinates

where we introduced a new angle defined asp=7— and onto «”,y”) plane of the “drifting” frame of reference.

—w:T/4.
aL)Jcsing Eq.(E4), we obtain Since thex” component of the velocity is unchanged at
’ collisions, we obtain
2 2
(E _(w_CT) _tar?ﬁ wcty wcts
1 2 4 cogo vclcO _2 :U02C0 5 | (Fl)
tanng= _7 , (E5)
tarro 1+ sir? gtar? Z ) wherev . andt are the cyclotron velocity and the time inter-

val between collisions, respectively.

where the two different solutions correspond to the values of '€ periodicity of the orbit requires, that the distance
tang at the two nonequivalent points of collision. traveled by the electron in the drifting frame of reference

As follows from Eq.(E5), a particular period-two non- &fter two successive collisions,
mixing orbit (2)" (¥ exists only above the critical value @f

i 2v, wct 2v, wct
given by o= 1sin( cl1| | 23in< cl2 ’
[OR 2 [OR 2
w,T\? [tang)? _ _ . .
,802= 5 oD (EB) is equal to the displacement of this coordinate system,
which isexactlyequal to the value gB= By, corresponding Xg=v4(t1+1a),

to the first period-doubling bifurcation of the single-bounce
orbit (1)*®, as expected.
For the velocity components at the points of collision in
: et " : [ octy
the nontilted “stationary” system of coordinates,y,z) we Ve sm(—
therefore obtain ' 2

which yields

2

.t
+vczsin($) =vqwltit+ty). (F2)

Using Eq.(F1) together with Eq(F2), we obtain

~ 2sing 1 o T T
(V)12=——F%— * 2
B | coge 2 wcty
Ve, =Ud oT co§ —— |
sin( 5 )
(3)2 (wCT 2 [tarw\?
2 4 C;JSH , w.T
w
1+ sirfotar?| — ) B 2 |od
4 Uc,= Vg o T co 2 | (F3)
_ sin( ; )
(vy)12=0. (E7)

) _ whereT=t,+t, is the period of the orbit. The “in-plane”
The relations(E7) and (49) together with Eqs(E1) and  components of the electron velocity, v, and v, =v,:
(C2) provide the complete information we need for the sta-gre therefore given by

bility analysis. Substituting Eq$E7) and(49) into Eq.(C2),
we obtain the matrices!,; andM,, which together with Eq. wT
(E1) yield the monodromy matri . e S(w t1> S(w t2>
Cc Cc
)co ,

APPENDIX F: PERIODS OF THE TYPE-1 MIXING
TWO-BOUNCE ORBITS

Projected onto the planed(,y”) of the drifting frame of w.T
reference, a self-retracing mixing period-two orbit forms a
repeating pattern of two portions of circlesdifferentradii, ve=vg| —1+
with “kinks” at the points of collision with exactly same
values ofy”"—see Fig. 3).
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T electron at the point of collision depends on the correspond-
_ _ 2 . wela| . [wetis ing value ofz”, so that[cf. (D1)]
Uy~ Uy'ip Udsin( wcT)b 2 2 m*vs m*v? d y
2 > T3 = —eEcoy @+(Y2_Y1 . (G)

(F4)

Since they” coordinate is the same at each bounce, the lon- As for the nonmixing two-bounce orbits (2)in the

gitudinal energy immediately after one collision is equal tosingle-barrier model, the successive collisions of the (1,1)

the longitudinal energy immediately before the next colli-with different barriers are are separated by equal time inter-

sion, and the longitudinal velocitiezs;,zv;,, immediately vals, so that the trajectory of the electron is symmetric under
1 2

_ o ; ; mirror reflection around any verticéle., parallel to they”)

between successive collisions must satisfy the relations At the point of a nonmixing collision with both the emit-
ter and the collector barriers the electron has zeommpo-
(F5) nent of the velocity, therefore at each collision of the (1,1)
2 2m* orbits the corresponding” andz” components of the elec-
- . . tron velocity are related to each other by EQ2), while the
Substltutmg Ec}s(hF4) an;j (FS) into Eq. (12) and using the velocity immediately before the collisiori and the velocity
conservation of the total energy, immediately after the collision™ satisfy the relationgD3).

eEcost; ,
v z =—.

m* Letv; andv, be the velocities of the electron, correspond-
e= 7(1;)2(, +v§, +v§,), ing to two successfulnonmixing collisions with the collec-
tor and emitter barrier, respectively. As follows from Eg.
we obtain (11),
sin( wCT) s|n( wCéT) _ + €eEcosT @2
O n=0U_n— ",
2l iarte 2 2o 2mt
LOCT wcaT ’ . . . . .
> > whereT is the period of the orbit, equal to twice the time
interval between successful collisions. Substituting E&g)
o.T o.T 0. 5T 2 into Eqg. (G1) and using the conservation of the cyclotron
) ; cos( ; )+cos( CZ ” velocity, we obtain
(2> ke 2sirf 22! ¢ o=l L (i ytang G3
Sl 2 szlf UZZ_ T\ cow (y2—yy)tand|. (G3
¢ g a is the phase of the cyclotron rotation immediately after
T\? 8T\? If «is the ph f th I ion i diately af
4 £o 4 | (F&)  the collision with the collector wall, then
where §T=|t,—t;|. This system of two equations defines v:,,vaCOSa,

the periods of all of the self-retracing mixing period-two or-
bits as functions of3 and the tilt angle. N
Uyrr:UCSina,
1
APPENDIX G: DOUBLE-BARRIER MODEL:

PERIODS OF (1,1) ORBITS vX_HZUCCOE{a-FwCT/Z),
2

In this appendix we derive E¢58). We perform the deri-
vation in the drifting coordinate systenx’(,y”,z"), which -
was defined in Eq(36). In this coordinate system, the elec- Yy vesin(at wcTl2), G4
trorl moves under the action of e_lectrlc and rAnagnetlci f'eldsand[see Eq/(D2)] we obtain
which areboth parallel to thez” axis: E=Ecos§Z’, B=BZ'.
Since the (1,1) orbit is nonmixing, the cyclotron veloaity
is conserved and the cyclotron radRs=v ./ w. is the same
for each part of the trajectory. Therefore, thé,§") projec-
tion of the (1,1) orbit produces a pattern of two arcs of two Uz_": —vSin(a+ w:T/2)cot. (GH
different circles withequalradii and it looks exactly like the 2

(x",y") projection of a two-bounce nonmixing orbit (2)n  The distance/,—y" can be obtained d&f. Eq. (D11]
the single-barrier moddkee Fig. 3% However, the “kink”
at (x5,y,) is due to collision at theemitter barrier [Fig. N w.T
36(b)], so that the periods of the (1,1) orbits are different Y2_Y1=2w—5'”TS'”(a+ T) (G6)
from the ones of (2}. ¢
In the drifting coordinate system the kinetic energy of theSubstituting Eqs(G5) and (G6) into Eq.(G3), we obtain

+ .
vz,l,= —vSinacotd,



. o T wcT
v SIN a+T (610) 4
o T
_ dogtan oz .
- 2co¥ T @7

tarf 6+ Tcot(wcT/4)
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+4sirf 0f2(w,T)
2 1 2
1+ o~ ]
16y f(w T)[1—coSbf(w.T)]
(G10

which is exactly the Eq(59). To obtain the period of the
period-one orbits from this equation, one has to solve it to-

The periodicity of the orbit requires, that the distance trav-9ether with the condition
eled by the electron in the drift frame of reference between

"

two successive collisions with the collector barngr-x] is
equal to the displacement of this coordinate sysie,
which yields

o T\ | [T o T
v.CO a+T SIn 2 :UdT' (G8)
Using Eqs.(G7) and(G8), one can easily obtain
f=v.sin
vyi—vC le’
T
w:.T  dogtand o2
= Vg — ,
4 2coy wcT wcT
+
tarf 9 4 cot( 4 )
w.T w:T
v:iZ—vd-f—vCCOSzx:—vd 1- Z cot( Z ”
dwtand 1 a9
2coy oI [T\ 9
tarf 9+ 7ot —

Substituting Eq(G9) into the equation for energy conserva-
tion,

2 2 2_ 2
UX,+Uy;+UZ;—UO,

and using Eq(D2), we finally obtain

B 1-f(w.T)
Yw:.T)? 1—cogbf (w,T)

2c09 w. T Becos 1—f(w.T)
B 4  2ywT 1-cobf(w,T)

Ve)z =

(G1y

which ensures that, just before the collision with the emit-
ter is positive and allows to select the physically meaningful
roots.

APPENDIX H: THE MONODROMY MATRIX
FOR A GENERAL PERIODIC ORBIT IN THE DBM

In this appendix we consider the monodrorisgability)
matrix for a general orbit in the double-barrier model. As in
our stability analysis for the periodic orbits in the SBM, the
velocity at each collision with the barriers and the time in-
terval between successive collisions for the periodic orbit are
considered already known.

By definition, the monodromy matrix is the linearization
of the Poincarenap around the periodic orbits. It is straight-
forward to show that, since the evolution of the electron
velocity betweersuccessive collisions is exactly the same in
both SBM and DBM, and any collision only reverses the
sign of z component of the velocity, the monodromy matrix
will still be given by Egs.(C4) and(C3), where the index
now labels all successive collisions of the electfaith both
emitter and collector barriexs

Note that the components of the matrickl, contain

terms proportional to 1/,. Therefore, if at any of the colli-
sions with the emitter barrier thecomponent of the velocity
goes to zerdas it happens in a cusp bifurcatjprthe com-
ponents of the matrit, diverge, which leads to the diver-
gence of the trace of the monodromy matrix. An immediate
consequence of this behavior is that by continuity any orbit
with sufficiently smallv, at one of the collisions of the emit-
ter barrier per period is unstable.
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