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Theory of the periodic orbits of a chaotic quantum well

E. E. Narimanov and A. Douglas Stone
Applied Physics, Yale University, P.O. Box 208284, New Haven, Connecticut 06520-8284

~Received 14 April 1997!

A theory is developed for the periodic orbits of an electron trapped in a rectangular potential well under the
influence of an electric field normal to the barriers and a magnetic field. When the magnetic field is parallel to
the electric field the dynamics of an electron in the well is integrable; however, when it is tilted by an angleu
the system undergoes a transition to chaos. Motivated by recent experimental and theoretical studies of mag-
netotunneling in quantum wells that emphasize the role of periodic orbits, we present here a unified theory of
all the periodic orbits within the well that are of relevance to experiments. We define the appropriate scaled
variables for the problem, which we divide into two qualitatively different cases, the single-barrier model
~depending on two parameters! and the double-barrier model~depending on three parameters!. We show that
in both cases all relevant orbits are related to bifurcations of period-one traversing orbits. A full analytic theory
is derived for the period and stability of these traversing orbits; and analytic and numerical results are obtained
for the important period-two and period-three orbits. An unusual feature of the classical mechanics of the
double-barrier is a discontinuity in the classical Poincare´ map, which leads to a new type of bifurcation that we
term a cusp bifurcation. We show that all the periodic orbits that traverse the well exist only in finite intervals
of voltage and magnetic field, appearing and disappearing in bifurcations. These intervals are shown to corre-
spond to the appearance of new resonance peaks in the experimental data, laying the foundation for a quan-
titative semiclassical treatment of the system.@S0163-1829~98!05107-8#
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I. INTRODUCTION

Most of our intuition about the properties of quantum sy
tems comes from the consideration of Hamiltonians w
high symmetry, for which the classical motion is integrab
and hence the Schro¨dinger equation is separable. Symmetr
breaking terms are typically treated by perturbation the
and the physics is described in terms of transitions indu
between stationary states of the symmetric problem. T
approach fails when the symmetry-breaking terms beco
too large and many levels of the unperturbed system
strongly mixed. In this situation one approach is direct n
merical solution of the nonseparable Schro¨dinger equation
using a large basis set and calculation of the expecta
values of interest from the numerically determined eig
states. For most problems of interest the computational e
involved is substantial, particularly if one wishes to explor
large parameter space of Hamiltonians and not just a si
fixed set of parameters. Moreover, an exclusively numer
approach makes it very difficult to understand qualitativ
the dependence of physical properties on the paramete
the problem and thus to generalize the results to other rel
systems.

An alternative approach that can give greater physical
sight is to use the semiclassical methods developed for n
integrable systems during the past two decades by rese
ers studying ‘‘quantum chaos,’’ i.e., the quantu
manifestations of chaotic classical dynamics. This appro
has been used successfully in atomic physics during the
decade. Of particular note is the theory of the spectra
Rydberg states in a high magnetic field~diamagnetic Kepler
problem!,1,2 where a qualitativeandquantitative understand
ing has been obtained semiclassically in excellent agreem
with experiments. In that case the essential idea underly
570163-1829/98/57~16!/9807~42!/$15.00
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the theory is a relationship between the quantum density
states~DOS! and a sum over isolated unstable periodic cl
sical orbits first derived by Gutzwiller~the ‘‘Gutzwiller
Trace Formula’’!.3 However this semiclassical formulatio
had to be extended to account quantitatively for experime
spectra, since these depend on other factors in addition to
density of states.4

Until recently there were no comparable applications
semiclassical theory to condensed-matter systems. Wi
the past few years, however, several such systems have
identified: ballistic microcavities,5,6 two-dimensional antidot
arrays,7–9 and the system that is the subject of this pap
resonant tunneling diode in a magnetic field tilted by
angleu with respect to the tunneling direction. It has becom
clear that of the three, the latter system allows the most
tailed comparison between theory and experiment, beca
the microscopic Hamiltonian is known so accurately and
cause several continuous experimental control parame
may be tunedin situ to map out a large parameter space.

This system was first identified and studied by Fromh
and co-workers,10 who immediately understood the clos
analogy to the Garton-Tomkins1 spectral oscillations in the
diamagnetic Kepler problem. When the tilt angleu is zero
the experiment corresponds to a conventional resonant m
netotunneling geometry; there is resonant structure in theI -V
characteristic~causing peaks ind2I /dV2) with each peak
corresponding to the subband thresholds in the quan
well. The experiments were done at fixed magnetic fieldB
511 T, for which the emitter state of the resonant tunnel
device is primarily then50 Landau level, so that the ob
served peaks were only due to quantum-well states with s
band quantum numberp and Landau indexn50, as selec-
tion rules prohibit tunneling to other Landau level
Typically of order 20, such resonance peaks~subbands!
9807 © 1998 The American Physical Society
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9808 57E. E. NARIMANOV AND A. DOUGLAS STONE
were observed over the interval zero to one volt. Howev
when the magnetic field was tilted by a substantial amo
(u.20°), Fromhold and co-workers10 found that in certain
voltage intervals the number of tunneling resonances wo
abruptly increase, indicating the presence of tunneling p
cesses that could not be explained by the subband stru
of the well at u50. They interpreted these new peaks
terms of density-of-states oscillations associated semicla
cally with the short periodic orbits of the well, specifical
those that collide with both the emitter and collector barrie
Numerical integration of the classical equations of mot
revealed a number of relevant periodic orbits and that
most of the voltage range atB511 T these orbits were un
stable fixed points of the classical Poincare´ map in an almost
completely chaotic phase space. It was found that the s
ing of the new resonances in voltage was consistent with
period of the orbits identified, as was their appearance
particular values of the magnetic field. In more recent wo
those authors11 have emphasized that in many cases th
oscillations should be interpreted as arising from individ
electron eigenstates in the well that concentrate on the
evant classical periodic orbit~the ‘‘scarred’’ wave func-
tions!, and not by the level clustering normally associat
with the DOS oscillations given by Gutzwiller’s trace fo
mula. Most of this work was done at high magnetic field a
large tilt angles such that the classical dynamics is alm
completely chaotic.

Another important series of experiments12 looked at theI -
V peaks in the entire~plane! parameter space of magnet
field and voltage, varying the tilt fromu50 to u545° in
small increments so that the resonance structure could
carefully analyzed in the transition regime between ch
and integrability. They found a complicated pattern of pe
doubling and peak tripling in various regions of theB-V
plane, which extended to much lower magnetic field th
previously reported. Such experiments are particularly in
esting from the theoretical point of view because, as d
cussed below, classically the system is undergoing a tra
tion to chaos as a function of continuous paramet
(u,B,V). In our view no quantum system of comparab
controllability existed previously for the study of the qua
a

n.

o
th

on
r,
t

ld
-
re

si-

.

n

c-
e

at
k
e
l
l-

d

d
st

be
s
k

n
r-
-

si-
s

tum manifestations of thetransition to chaos with its associ
ated KAM ~Kolmogorov-Arnold-Moser! behavior in phase
space.13

In this paper we will lay the groundwork for a detaile
semiclassical theory of these experiments by developin
systematic theory of the relevant classical periodic orb
The complete basis of such a semiclassical theory did
exist until recently, since no semiclassical formula for t
resonant tunneling current was known. Specifically, althou
the previous work on scars11 and on scaled spectra14,15 indi-
cated the crucial role of periodic orbits within the well,
was unclear how to derive a formula in which the contrib
tion of the well wave functions was expressed entirely
terms of periodic orbit properties in the well. We have r
cently derived such a formula,16 and using the results of thi
work, have shown that it can explain qualitatively and qua
titatively many aspects of the experimental data of Ref. 1

A key property of the experimental system that is e
ploited in our derivation is that the tunneling is sequenti
An electron tunnels into the well from the emitter, gai
kinetic energy under the high voltage across the well, a
collides with the collector barrier. After several such col
sions in the well, the electron begins to lose this energy
optic phonon emission, and only tunnels out after of ord
one hundred collisions. Therefore the tunneling resonan
are substantially broadened and only are sensitive to st
ture in the DOS on energy scales.\/topt;5 meV. Under
such circumstances the system may be treated by
Bardeen tunneling Hamiltonian formalism,17 which ex-
presses the tunneling current in terms of wave functions
the isolated well, which may then be reexpressed in term
the semiclassical Green function, and ultimately16 in terms of
periodic orbit ~PO! properties. We find for the oscillatory
part of the tunneling current:

wosc5Re(
m

Amexp~2Tm /topt!expS i
Sm

\
2

pnm

2 D , ~1!

wherewosc is the oscillatory part of the tunneling rate from
the emitter to the well per unit time, the summation is carr
out over various primitive periodic orbits in the well reac
ing the emitter wall and their repetitions, and the amplitu
Am5E dyE dpyf W
~e!~y,py!

16pz
m

m*Aum11
m 1m22

m 12u
expS 2i

\

m21
m ~y2ymu!21~m22

m 2m11
m !~y2ym!~py2py

m!2m12
m ~py2py

m!2

~m11
m 1m22

m 12!
D ,

~2!
,
,
ze.
ese

n-
e-
se-
n to
y

wherepm andym is the electron momentum and coordinate
the point of collision,Sm , Tm , and (m) i j are, respectively,
the action, the period and the monodromy matrix3 of the
periodic orbit, andm* is the effective mass of the electro
The distribution functionf W

(e)(y,py) of the electrons injected
into the well, is defined as the Wigner transform of the is
lated emitter wave function, calculated at the plane of
barrier.

The level-broadening in the well due to optic phon
emission~which is represented by the term exp(2Tm /topt) in
t

-
e

the tunneling formula~1!, implies that only the shorter PO’s
corresponding to;5 or fewer collisions with the barriers
will give resolvable structure in the experiments we analy
In this paper we focus on the the classical mechanics of th
short periodic orbits.

Although the work of Fromhold and co-workers had ide
tified several important periodic orbits in the classical m
chanics, they had not provided a model of the global pha
space structure as the system undergoes the transitio
chaos. Shepelyansky and Stone18 developed such a model b
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57 9809THEORY OF THE PERIODIC ORBITS OF A CHAOTIC . . .
reducing the dynamics to a two-dimensional effective m
which, in the limit where the emitter state energy is neg
gible, is equivalent to the Chirikov standard map. This lim
amounts to replacing the double-barrier system with a sin
barrier model since the injected electron does not h
enough energy to climb the potential hill and collide with t
emitter barrier. In this limit, for fixedu, the dynamics is
controlled by a single chaos parameterb52v0B/E where
B,E are the magnetic, electric fields and«05m* v0

2/2 is the
total injection energy of the electron. Since for much of t
experimental parameter rangeeV'«0, Shepelyansky and
Stone argued that the classical mechanics should be app
mately constant along parabolasV58ed2m* 21b22B2 (d is
the distance between the barriers! and estimated the value o
b at which global chaos occurs using the Chirikov resona
overlap criterion.19 They pointed out that the first appearan
of additional resonance peaks atB'5 T,u511° appeared to
be due to the bifurcation of the main period-one orbit; ho
ever, they did not analyze these bifurcations further at
time.

In this paper we provide a detailed analysis of the cla
cal mechanics of these bifurcations both within the sing
barrier model~SBM! and the more accurate double-barr
model~DBM!. The essential physics of these bifurcations
the nonlinear~classical! resonance between the cyclotron r
tation and the longitudinal ‘‘bouncing ball’’ motion in th
well, which are coupled foruÞ0. These resonances lead
bifurcations of the main period-one orbit, which we sh
refer to as the ‘‘traversing orbit’’~TO!, since near resonanc
this orbit is not isolated and new orbits can be born with
violating the Poincare´ index conservation theorem.20 These
nonlinear resonances have relatively simple analytic pro
ties due to the fact that the cyclotron frequency is indep
dent of the energy, and these basic properties are capture
the SBM, which describes a standard, smooth KAM tran
tion to chaos. Therefore, in our view, the conjecture of Re
18 and 12, relating peak doubling and tripling to period-tw
and period-three bifurcations of the traversing orbit using
SBM, is qualitatively correct. However, we now understa
that the DBM is not a standard KAM system, since the d
continuity in the dynamics between orbits that reach a
those that do not reach the emitter barrier violates the
sumptions of this theory. The DBM then generates some n
physics in the bifurcation theory which is described in de
in Sec. IV below. Specifically we find that period-N bifurca-
tions arise in families related according to certain topologi
rules. Certain of the bifurcations, which we termcusp bifur-
cations, violate standard principles of bifurcation theory d
to the discontinuity just mentioned. One member of ea
family participates in the period-N bifurcation of the travers-
ing orbit, but the corresponding orbit is often not the o
responsible for the appearance of multiple peaks in the
perimental data. This point has been made earlier,21,22 but
without recognition of the bifurcation trees connecting all
these orbits.23

Below we derive an exact analytic expression for the
riod and stability of the traversing orbit in both the SBM a
DBM, which allows us to locate precisely the bifurcatio
points for all values ofB,V,u. The existence of such exac
analytic formulas for nontrivial periodic orbits of a Hami
tonian in the mixed regime is to our knowledge unique
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this system and suggests its value as a computationally
table example of bifurcation theory and the approach
Hamiltonian chaos. A further benefit of the stability analys
is that we are able to explain the anomalously strong scar
of wave functions found previously;11 these implications are
described briefly below, and in detail elsewhere.24

First, we briefly discuss qualitatively the origin of class
cal chaos in this system, which we shall refer to as
‘‘tilted well.’’ At zero tilt angle (u50) the acceleration

along the electric fieldE5Eẑ normal to the barriers and th
transverse cyclotron motion decouple and are integra
Collisions with the barriers reverse the longitudinal comp
nent of momentum (vz→2vz) and do not transfer energ
between the cyclotron and longitudinal motion. Once theB

field is tilted, so thatB5Bcosuẑ1sinuŷ, between collisions

the electron executes cyclotron motion around theB̂ direc-

tion, with a superimposed drift velocityvd5(E/B)sinux̂, and

acceleratesalong B̂ due to the componentE•B̂5Ecos(u).
This motion is still integrable. However, now collisions wit
the barriers in generaldo mix the cyclotron and longitudina
energies«c ,«L and make the total dynamics nonintegrab
~WhenuÞ0 longitudinal will mean parallel to the magnet

field directionB̂, and transverse will refer to the plane pe

pendicular toB̂.! The amount of energy exchangeD«5«L

2«c depends sensitively on thephaseof the cyclotron rota-
tion at impact. For example, we shall see below that wh
the phase is such that the velocity falls precisely in thex-z
plane there is no energy exchange (D«50), and periodic
orbits with this property will be of great importance. Whe
degrees of freedom are nonlinearly coupled so that
amount of energy exchange is determined by a rapidly va
ing phase, chaos is the inevitable result.18 Since the rate of
variation of the phase between collisions isvc5eB/m* , we
expect the degree of chaos to increase with increasingB.
Similarly, since the time between collisions decreases w
increasing voltage, the rate of phase variation is a decrea
function of V and we expect chaos to diminish asV in-
creases. This explains qualitatively the dependence of t
chaos parameterb;B/AV found by Shepelyansky an
Stone.18 To go beyond these qualitative considerations
need to perform a scaling analysis of the classical dou
barrier Hamiltonian, which we will describe in the next se
tion.

This paper is organized as follows. In Sec. II we introdu
the scaled Hamiltonian, which is effectively two dime
sional, and discuss the nonlinear Poincare´ map it generates
recovering the limiting behavior discussed by Shepelyan
and Stone, which is equivalent to the single-barrier mod
We introduce the crucial notion of nonmixing periodic o
bits. In Sec. III we discuss the periodic orbit structure of t
SBM, deriving analytic expressions for the period and sta
ity of all period-one orbits. We consider the bifurcations
the traversing orbits in the SBM, enumerating the relev
period-two and period-three orbits. In Sec. IV we turn to t
double-barrier model~DBM! and derive analytic formulas
for the period-one orbits there. The bifurcations of the TO
the DBM are discussed and the families of period-N orbits
are identified. Finally, we summarize the properties of
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9810 57E. E. NARIMANOV AND A. DOUGLAS STONE
short periodic orbits and set the stage for their use to ca
late the tunneling spectra semiclassically in Ref. 16.

II. SCALED DYNAMICS AND POINCARE´ MAP

A. Scaled Hamiltonian

We now define the Hamiltonian we will use for analyzin
the classical mechanics. We neglect the coupling of the e
trons to optic phonons within the well; we will take it int
account in the semiclassical theory by introducing an app
priate level broadening. The semiclassical tunneling the
expresses the tunneling current in terms of the emitter w
function, the tunneling rate through each barrier, and
periodic orbits of electrons trapped within the well. Ther
fore we are only concerned with the classical mechan
within the well and can represent the barriers by infinite h
walls separated by a distanced. The z axis will be chosen
normal to the barriers~parallel to the electric fieldE) and
with an origin such that the collector barrier is atz50 and
the emitter barrier is atz5d. The magnetic field is tilted in
the (y,z) plane, B5B(cosuẑ1sinuŷ)—see Fig. 1. We
choose a gauge where the vector potentialA5@2Bycos(u)
1Bzsin(u)#x̂. The Hamiltonian is

H5
@px2eBycos~u!1eBzsin~u!#2

2m*
1

py
2

2m*
1

pz
2

2m*
1eEz

1U~2z!1U~z2d!5«, ~3!

where the functionU „U(z,0)50,U(z.0)5`… represents
the infinite hard walls atz50,d.

The Hamiltonian~3! involves four variable experimenta
parameters:B, E, u, and d. It is of great convenience to
rescale the variables in Eq.~3! so as to express the dynami
generated by this Hamiltonian in terms of the minimu
number of independent parameters. This will simplify t
analysis of the periodic orbits and also predict scaling re
tions relevant to the experimental data. We present a res
ing below that is most useful for a periodic orbit theory
both the single-barrier and double-barrier models. It is
natural extension of the simpler scaling introduced by She
lyansky and Stone.18 An alternative scaling which applies t
the DBM has been introduced by Monteiro an
co-workers.14,15

The natural unit of time for the problem isvc
21 , where

vc5eB/m* is the cyclotron frequency. The barrier spaci
d gives one length scale, and the only other ener

FIG. 1. Schematic of the geometry of the system with our a
conventions.
u-

c-

-
ry
e
e
-
s
d

-
al-

a
e-

-

independent length scale in the problem isl D5vDvc
21 ,

wherevD5E/B is the drift velocity for perpendicular elec
tric and magnetic fields~the actual drift velocity when the
fields cross at angleu is vd[vDsinu). For electron total en-
ergies«,eV5eEd the emitter barrier is energetically inac
cessible so the length scaled is irrelevant. Since we wish to
introduce a dimensionless Hamiltonian related to Eq.~3! by
a canonical transformation, the scaling must be independ
of energy and applicable to both the case«,eEd and «
.eEd. Hence we must scale all lengths byl D .

In addition, we want to exploit all symmetries of th
Hamiltonian. The Hamiltonian~3! is independent of the co
ordinatex and, therefore,px is conserved, so we can se
immediately that the dynamics is two dimensional for ea
value of px . However, there is an additional symmetry r
lated to gauge invariance: the invariance ofH under all
transformations ofpx and y, which keep the value of the
difference px2eBycosu unchanged. This implies that if a
periodic orbit exists for one value ofpx , then an exact copy
of this orbit exists for allpx translated by the distanceDy
5Dpxcosu/eB. Combined with the translational invariance
the x direction this means that any periodic orbits can
arbitrarily translated in thex-y plane. This is the classica
analogue of the Landau-level degeneracy that is preserve
the Hamiltonian~3!. We want to rescale our Hamiltonian t
eliminate this classical degeneracy inpx as well, so as to
define a unique dynamics for each value of the total ene
This can be achieved by the following canonical transform
tion:

j5
x

l D
2

vc
21py

m* l Dcosu
, h5

y

l D
2

vc
21px

m* l Dcosu
, z5z/ l D ,

pj5
vc

21

m* l D

px , ph5
vc

21

m* l D

py , pz5
vc

21

m* l D

pz ,

t5vct, ~4!

which leads to the dimensionless Hamiltonian with two d
grees of freedom:

Heff5
ph

21pz
2

2
1 1

2 ~hcosu2zsinu!21z1U~2z!

1US z2
d

l D
D , ~5!

5
«

«D
~6!

where rescaled energy is measured in units of the ‘‘drift
ergy’’ «D5mvD

2 and may be rewritten as

«

«D
5

v0
2B2

2E2
[

b2

8
.

Note that both the coordinatej and the momentumpj are
absent in the scaled Hamiltonian, which is hence truly t
dimensional.

s
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B. DBM vs SBM: g parameter

The only dependence on the barrier-spacingd in the
scaled Hamiltonian is through the termU(z2d/ l D) repre-
senting the emitter barrier. As noted, when the total ene
of the electron is less than the potential dropeEd across the
well, the electron cannot reach the emitter barrier, and
term U(z2d/ l D) can be removed from the equation~5!. In
this case, for fixedu, the dynamics is uniquely defined by th
value of the scaled energy,«/«D[b2/8. This case corre-
sponds to the single-barrier model studied by Shepelyan
and Stone,18 who first showed that the dynamics of the SB
at fixedu depends only on the parameterb[2v0B/E.

When «.eEd, the electron can collide with the emitte
barrier and the classical motion of the electron in such a c
depends essentially onboth d/ l D and b, leading to a more
complicated and interesting dynamics. Since the crosso
between these two regimes is determined by the condi
g[«/eEd51, we reexpress the parameterd/ l D in Eq. ~5! in
terms of the dimensionless parametersb,g: d/ l D5b2/(8g),
so that the dynamics in the DBM is determined by the val
of b,g. This is particularly convenient because in expe
ments the ratio of the emitter state energy to the app
voltage is approximately unchanged, sog is approximately
constant over theB-V parameter space. Therefore both t
dynamics of the SBMand the DBM can be fully analyzed a
fixed u by varying a single dimensionless parameterb. This
is how we will proceed in the remainder of this work.

Before making any further analysis of the dynamics
note that there is one completely general prediction that
lows from the scaled Hamiltonian of Eq.~5! if g is constant.
We can write

b25
8geV

«D
5

8ged2

m*

B2

V
, ~7!

which implies that for a givenu the classical mechanics i
constant along parabolic boundaries in the B-V plane: V
5(8ged2/m* b2)B2. This is true of the exact dynamics o
the double-barrier model as long asg is constant and the
variation of effective mass with injection energy is neg
gible.

C. Poincarémap

In order to analyze the two-dimensional Hamiltonian d
namics of the canonical coordinates (h,ph ;z,pz) we use the
Poincare´ surface of section~SOS! method, which is standard
in nonlinear dynamics.3,25,26For fixed values ofb andg the
classical trajectories in this four-dimensional phase space
on a three-dimensional surface determined by energy con
vation. WhenuÞ0 the system is nonintegrable, there is
additional constant of motion other than the energy, a
there exist chaotic trajectories which cover a finite fraction
this three-dimensional surface. To define the stability ma
for the periodic orbits and also to better visualize the pha
space structure we plot the behavior of a set of trajectorie
a two-dimensional cross section of this surface. The mo
of an electron in the tilted well is bounded and all trajector
collide eventually with the collector barrier atz50. There-
fore it is convenient to choose the cross section to be
plane (ph ,h) when z50 (pz being then fixed by energy
y

e

ky

se

er
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-

lie
er-

d
f
x
e-
n
n
s

e

conservation!. If an initial condition is chosen on this plan
then Hamilton’s equations of motion can be used to obt
the values of (h,ph), when the trajectory again passe
through the planez50. This procedure defines a Poinca´
map for the tilted well~other choices are possible, e.g., t
emitter barrier map atz5d/ l D and may be used below!.

hn115Fq„hn ,~ph!n…,

~ph!n115Fp„hn ,~ph!n…. ~8!

Since every orbit reaches the collector barrier,everyperi-
odic orbit of the Hamiltonian~5! corresponds to either a
fixed point of the Poincare´ map ~period-one orbits! or to a
fixed point of theNth iteration of the Poincare´ map~period-
N orbits!.

Note that the coordinatesh and momentumph are pro-
portional to thex and y components of thevelocity of the
electron in the original coordinate system:

vx52 l Dcosuvch,

vy5 l Dvc ph . ~9!

This property allows us to relate the Poincare´ map ~8! in
the coordinates (h,ph) to an equivalent Poincare´ map in
more familiar coordinates (vx /v0 ,vy /v0)[( ṽ x , ṽ y), which
describes the evolution of the velocity components of
electron in the plane perpendicular to the collector barrie

~ ṽ x!n115Fx„~ ṽ x!n ,~ ṽ y!n…,

~ ṽ y!n115Fy„~ ṽ x!n ,~ ṽ y!n…, ~10!

where the relations betweenFx ,Fy andFq ,Fp follow from
Eqs.~9! and ~8!.

Note that we have scaled the velocities by the maxim
allowed velocityv0 so that the values of this Poincare´ map
will be contained within the unit circle, independent of th
energy@this would not be true of the variables (h,ph) as the
size of the energetically allowed region of the plane var
with the scaled energyb2/8#. Although the variables (h,ph)
were most convenient for discussions of scaling, we will u
the energy-scaled velocity map~10! henceforth, since it is
easiest to interpret and compare for varyingb values.

A plot of the Poincare´ map ~10!, which is called SOS, is
generated by choosing a grid of initial conditions in the pla
(vx /v0 ,vy /v0) corresponding to a particular value ofb and
iterating the map many times for each initial conditio
Period-N stable orbits appear as ‘‘chains’’ ofN ‘‘islands;’’
whereas period-N unstable orbits will be embedded in th
chaotic layers between the islands26 and are not evident to
the ~untrained! eye. In Fig. 2 we show several examples
the collector barrier SOS asb is increased for fixedg
51.17 ~which corresponds to the approximate value in t
relevant experiments12!.

When u50 the squared distance of a point in the SO
from the origin is proportional to the cyclotron energ
which is conserved, so each trajectory must lie on a cir
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9812 57E. E. NARIMANOV AND A. DOUGLAS STONE
@see Fig. 2~a!#. WhenuÞ0 @Fig. 2~b!# we immediately see
the appearance of stable islands and chaotic layers, coe
ing with slightly distorted circular curves that represent t
unbroken tori according to the standard KAM scenario.25 For
larger b @Fig. 2~c!# no KAM curves survive and the entir
SOS is chaotic except for a few surviving stable islan
which however typically represent the features of most
portance for the experimental tunneling oscillations.

We now undertake a more explicit determination of t
properties of the Poincare´ map for the tilted well. To calcu-
late the functionsFp andFq of the Poincare´ map, one has
first to analyze the motion of the electron between collisio
This motion is integrable and is most easily represented
frame of reference@denoted by (x8,y8,z8)#, rotated by the
tilt angle u around thex axis, so thatz8 is parallel to the
direction of the magnetic field:

x85x,

y85ycosu2zsinu,

z85ysinu1zcosu.

In this frame of reference the motion of the electron in t
(x8,y8) plane between collisions is a superposition of t
cyclotron rotation with the frequencyvc[2p/Tc and a uni-
form drift along x8 with the velocityvd5Esinu/B[vDsinu,
while the longitudinal motion is a uniform acceleration:

vx8~t!5vccos~f01t!2vd ,

vy8~t!5vcsin~f01t!,

vz85vz8
0

2e
Ecosu

m
t5vz8

0
2 l Dcosuvct, ~11!

wherevc is the cyclotron velocity~which remains constan
between collisions! andf0 is the initial phase of the cyclo
tron rotation.

The energies associated with the transverse~cyclotron!
and longitudinal motion are separately conserved betw
collisions. ForuÞ0 the cyclotron and longitudinal motion
get mixed by the collisions with the barriers:18

v̄z852cos~2u!vz81sin~2u!vy8,

v̄y85sin~2u!vz81cos~2u!vy8,

v̄x85vx8, ~12!

FIG. 2. Three Poincare´ surfaces of section for experimental
relevantg51.17 at ~a! u50°, b52, ~b! u520°, b53.2, ~c! u
520°, b54.
ist-

,
-

.
a

n

wherev andv̄ are the velocities immediately before and aft
collision, respectively. This transformation is equivalent to
clockwise rotation of the velocity vector by 2u in the (y8-z8)
plane, followed by a reflectionvz8→2vz8; hence it leaves
no vector in this plane invariant~for uÞ0). Therefore, ge-
nerically thereis exchange of kinetic energy between th
longitudinal and cyclotron motion at each collision,

d«L↔c5
m

2
~vz82 v̄z8!

2, ~13!

and the dynamics is nonintegrable.
Note that it ispossibleto have zero energy exchange up

collision for uÞ0. The condition for this is simply thatvy
50 at collision, i.e., the cyclotron phase is such that
instantaneous motion is in thex-z plane. The reason that n
energy is exchanged in this case is that the impulse at c
sion is purely in thez direction and reverses this compone
of velocity leavingvx andvy unchanged. Ifvy50 at the time
of collision thenvz85vzcosu→v̄z852vzcosu52vz8 and the
longitudinal kinetic energy is conserved. Stable period-o
orbits withvy50 (ph50) are visible in both Figs. 2~b!,2~c!.
We refer to these asnonmixingorbits since they involve no
energy exchange; they will play a fundamental role in t
periodic orbit theory developed below.

The transformation equations forv8 due to collisions at
the emitter barrier are identical to Eq.~12!. As we shall see
below, it is useful to consider the dynamics in yet a th
frame of reference that is parallel to the primed frame, bu
moving with the drift velocityvd in the x8 direction. In this
moving frame the transverse motion is pure cyclotron ro
tion and each iteration of the Poincare´ map is just a pair of
noncommuting orthogonal transformations of the veloci
first the continuous cyclotron rotation around thez8 axis,
followed by the instantaneous rotation/reflection around
x8 axis. Since the latter is known explicitly@Eq. ~12!#, to get
an explicit formula for the Poincare´ map what is needed is a
expression for the increment in the cyclotron phase betw
collisions. However, there is no simple general formula
this phase increment forg.1 because after a collision with
the collector barrier an orbit may or may not have enou
longitudinal energy to collide with the emitter barrier befo
its next collision with the collector. Sincevy8 changes dis-
continuously in a collision, the cyclotron phase increme
will change discontinuously due to the emitter collision.
one varies the initial conditions of a trajectory so that
ceases colliding with emitter barrier in the next iteration
the map, one can show that the phase jump goes to zer
the impulse at the emitter goes to zero~i.e., asvz at collision
goes to zero!, but its derivative is discontinuous. Hence,
general the Poincare´ map forg.1 does not have continuou
derivatives everywhere on the surface of section. As a c
sequence the stability matrix of periodic orbits for the ex
map forg.1 is not always defined. This has significant a
novel consequences for the behavior of periodic orbits in
DBM: these can vanish without reaching marginal stabil
in a new kind of bifurcation we will refer to as acusp bifur-
cation because such a bifurcation generates a cusp in
bifurcation diagram.27 We shall return to this in detail below

As a result of this discontinuous behavior we can on
present a simple explicit form of the Poincare´ map in certain
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limiting cases. The simplest of these, previously analyzed
Shepelyansky and Stone,18 is wheng,1(«,eV), in which
case no orbit reaches the emitter barrier and classically
problem is equivalent to the motion of an electron in
infinite triangular well in a tiltedB field. We now briefly
review this limit.

D. Single-barrier model

Wheng<1, the cyclotron phase increment between c
lisions with the collector barrier isvct0, wheret0 is the time
it takes the electron launched ‘‘upwards’’ after the collisi
in the effective electric field,Ecosu, to fall back down and
hit the collector. The resulting Poincare´ map takes the form

Fx~ ṽ x , ṽ y!5Vx~ ṽ x , ṽ y , ṽ z ;vct0!,

Fy~ ṽ x , ṽ y!5Vy~ ṽ x , ṽ y , ṽ z ;vct0!, ~14!

where

Vx~ ṽ x , ṽ y , ṽ z ;t!5 ṽ xcos~t!2 ṽ ycosusin~t!1 ṽ zsinusin~t!

2~2/b!sinu@12cos~t!#,

Vy~ ṽ x , ṽ y , ṽ z ;t!5 ṽ xcosusin~t!1 ṽ y@cos2ucos~t!1sin2u#

1 ṽ zsinucosu@12cos~t!#

1~2/b!sinucosu@sin~t!2t#, ~15!

the scaled velocity ṽ[v/v0 @with ṽ z( ṽ x , ṽ y)

[A12 ṽ x
22 ṽ y

2.0# and the time intervalt0( ṽ x , ṽ y) be-
tween successive collisions of the electron with the collec
barrier is the first positive root of the equation:

05z~ t0![
v0Z~ ṽ x , ṽ y , ṽ z ;vct0!

vc
, ~16!

where the functionZ( ṽ x , ṽ y , ṽ z ;t) is defined as

Z~ ṽ x , ṽ y , ṽ z ;t!

52 ṽ xsinu@12cos~t!#1 ṽ ysinucosu@t2sin~t!#

1 ṽ z@tcos2u1sin2usin~t!#

2~2/b!S sin2u@12cos~t!#1cos2u
t2

2 D . ~17!

If vcT@1, an approximate root is found easily,

T5
b ṽ z8
cosu

. ~18!

In this approximation the map when transformed to
(x8,y8,z8) coordinates becomes identical18 to the kicked-top
map introduced by Haake.28,29

As is indicated by the numerical analysis of both t
kicked-top map and of the exact mapping~14!, the KAM
transition to chaos takes place whenub;1. We therefore
take the limitb@1 andu!1. In this case both the kicked
top map and the exact map~14! in the vicinity of a particular
y

he

-

r

e

value of ṽ z85 ṽ 8 can be expressed precisely in the form o
local standard map~kicked rotor!,19,25

I n115I n1Ksinfn11 ,

fn115fn1I n , ~19!

where

I n5b ṽ z8,

K52ubA12~ ṽ 8!2, ~20!

andf is the phase of the cyclotron rotation.
The map is called local because the kick strength va

with vz8, so that the chaos boundary, given by t
condition19 K'1 varies withvz8. The resulting condition for
chaos as an explicit function of all system parameters is18

B2.
mE«

32eu2«c

, ~21!

where «c[«„12( ṽ 8)2
… is the instantaneous energy of th

cyclotron motion.
Although the estimate Eq. (21) was obtained only in t

limiting caseu!1 andb@1, it does predict the correct be
havior of the exact mapping~14! for the SBM. Qualitatively
it predicts that chaos increases with increasing magnetic fi
and energy and with decreasing electric field and quan
tively the condition given by Eq.~21! is in good agreemen
with the onset of complete energy exchange between
cyclotron and longitudinal motion as determined from sim
lations of the exact map.18

E. Double-barrier model

Wheng5«/eV.1, the electron can retain enough long
tudinal energy on collision with the collector barrier to rea
the emitter wall, although it need not do so. If we regard
coordinates (ṽ x , ṽ y) in the SOS as initial conditions for th
next segment of the trajectory, we may partition the SOS i
inner and outer regions. Initial conditions (ṽ x , ṽ y) in the
inner region will define all trajectories that collide with th
emitter before their next collision with the collector. Fo
such initial conditions the equation

z~ t ![
v0Z~ ṽ x , ṽ y , ṽ z ;vct !

vc
5d[

v0

vc

b

4g
, ~22!

where the functionZ was defined in Eq.~17!, must have a
positive roott5t↑, which corresponds to the time interval t
the next collision with the emitter barrier.

For initial conditions in the outer region Eq.~22! has no
positive roots, the electron does not reach the emitter ba
before the next collision with the collector barrier, and
trajectory is exactly the same as in the SBM for this iterat
of the map. Hence the Poincare´ map is still given by the
expression~14!.

The ‘‘critical boundary’’ between the two regions is th
curve (ṽ x

(c) , ṽ y
(c)), such that the electron launched from th

collector barrier with the velocityv5v0( ṽ x
c , ṽ y

c , ṽ z
c), will
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9814 57E. E. NARIMANOV AND A. DOUGLAS STONE
reach the emitter wall with the component of the total velo
ity perpendicular to the plane of the barrier equal to zero.
u50 the critical boundary is a circle given by the equatio

ṽ x
21 ṽ y

25121/g[
«2eV

«
. ~23!

In Fig. 3 we show a few examples of the ‘‘critical boundary
for different values ofb andg. It is important to realize tha
in general trajectories can cross the critical boundary
indeed for large chaos parameter almost all trajectories
However, knowledge of the critical boundary is useful f
formulating the Poincare´ map of the DBM.

For (ṽ x , ṽ y) outside the critical boundary, the next iter
tion of the Poincare´ map does not involve the collision wit
the emitter barrier, and the Poincare´ map is therefore still
given by Eq.~14!, as in the single-barrier model.

When (ṽ x , ṽ y) is inside the critical boundary, then th
Poincare´ map is given by

Fx~ ṽ x , ṽ y!5Vx~ ṽ x
e , ṽ y

e , ṽ z
e ;vct

↓!,

Fy~ ṽ x , ṽ y!5Vy~ ṽ x
e , ṽ y

e , ṽ z
e ;vct

↓!, ~24!

where ṽe is the scaled velocity immediately after collisio
with the emitter barrier and can be obtained as

ṽ x
e5Vx~ ṽ x , ṽ y , ṽ z ;vct

↑!,

ṽ y
e5Vx~ ṽ x , ṽ y , ṽ z ;vct

↑!,

ṽ z
e52A121/g2~ ṽ x

e!22~ ṽ y
e!2. ~25!

t↑ is defined as the time interval until the next collision wi
the emitter barrier and is given by the first positive root
Eq. ~22!, and the parametert↓ represents the time interva
between the collision with the emitter barrier and the n
collision with the collector map. The value oft↓ can be ob-
tained from the equation

FIG. 3. The critical boundary, separating initial conditions su
that the electron will reach the emitter barrier before the next c
lision with the collector wall~region enclosed by the critical bound
ary! from those when the electron returns to the collector wall wi
out striking the emitter barrier~the region outside the critica
boundary!. g51.17, and~a! u50° ~dashed line!, ~b! u515°, b
53 ~dotted line!, ~c! u530°, b55 ~dashed-dotted line!.
-
r

d
o.

f

t

d1
v0

vc
Z~ ṽ x

e , ṽ y
e , ṽ z

e ;vct
↓!50. ~26!

As noted above, an important property of the Poinc´
map~24! is that it has a discontinuous derivative as the init
conditions (ṽ x , ṽ y) are varied across the critical boundar
Therefore the conditions for the global validity of the KAM
theorem are not satisfied by this map and the transition
chaos can be discontinuous here as in the stadium billiar30

However unlike the stadium billiard not all trajectories a
affected by the discontinuity of the map for an arbitrar
small chaos parameter. Away from the critical boundary
map satisfies all the conditions for the existence of KAM t
and, for a small chaos parameter, in the inner and outer
gions there will exist an outermost and innermost KA
torus. These two tori will define a set of trajectories th
either always hit the emitter barrier~lie within the outermost
KAM curve of the inner region! or always miss the barrie
~lie outside the innermost KAM curve of the outer region!.
Between these two tori the nonanalyticity of the map is f
by the trajectories and the numerics demonstrates clearly
there are no remaining KAM curves in an annular regi
bounded approximately by the maximum and minimum c
clotron energies of points on the critical boundary. In th
region the chaos does not appear to be associated with
separatrices corresponding to the hyperbolic fixed points a
would be for a small chaos parameter in a KAM system. T
practical consequence is that one observes an anomalo
large ‘‘chaotic halo’’ around the critical boundary~see Fig.
4!. In this region the effective map description fails bad
and only analysis of the exact map can be used. In fact, as
shall see below, many of the important short periodic orb
first appearat the critical boundary at a finite value ofb and
emerge from the chaotic halo region with increasingb. We
will be able to develop an analytic theory of the simple
such orbits from the exact map.

Although the effective map based on the SBM fails in t
‘‘halo’’ region, for small chaos parameter and smallu it
should work just as well in the outer region of the SOS a
does in the SBM, since here the trajectories are prevente
the innermost KAM curve from reaching the emitter and t

l-

-

FIG. 4. The Poincare´ surface of section forg51.17, andb52,
u530°. The chaotic region near the critical boundary~thick solid
line! is the ‘‘chaotic halo,’’ created by the nonanalyticity of th
map.
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DBM Poincarémap isidentical to the SBM. Since the loca
chaos parameter in the effective map description of the S

is K52buA12( ṽ 8)2 the chaos is weakest at the innermo
KAM curve of the outer region~since the cyclotron energy i
the smallest there! and this curve is the last in the oute
region to break. The quantitative prediction for the break
of this curve from the local standard map approximation@Eq.
~19!# is in a good agreement with the exact behavior.

One may try to extend similar reasoning to the inner
gion of trajectories that always reach the emitter barr
Here the effective map is clearly somewhat different beca
of the additional energy exchange~‘‘kick’’ ! at the emitter
barrier. It is possible to obtain an effective area-preserv
map for small tilt angles, which is similar to a standard m
with two unequal kicks per period. However, the SOS g
erated by this approximation has little similarity to the exa
map. This is because when the energy is almost comple
longitudinal ~as it is in this region of phase space! the kick
strength goes to zero at leading order in the tilt angle and
effective map description fails. Note that it is precisely t
periodic orbits in the inner region~which reach the emitter!
that are measured in the tunneling spectrum. Thus we
particularly interested in obtaining a good description of t
region of phase space and must work with the exact m
described by Eqs.~24!.

Fortunately, as we show below, it is possible to obtain
good theoretical understanding of the short periodic orbit
the entire phase space, including the crucial central regio
the SOS, based on analysis of the exact map. In fact we
able to obtain analytic expressions for the period and sta
ity of an infinite class of important periodic orbits for arb
trarily large values of the chaos parameter.

III. PERIODIC ORBIT THEORY
„SINGLE-BARRIER MODEL …

A. Integrable behavior

Equation~1! of Sec. I gives a quantitative semiclassic
formula for the tunneling current through the tilted well
terms of the contributions of different periodic orbits th
connect emitter and collector barriers. Clearly these or
can be fully described only within the framework of th
double-barrier model. Nevertheless, the behavior of the p
odic orbits in the DBM as a function of tilt angle andb is
exceedingly complex and had not been understood sys
atically previously. In order to develop such a systema
understanding it is very helpful to consider the SBM, whi
has a similar but simpler periodic orbit structure. The sim
larity between the two models is easily seen by conside
the limit of zero tilt angle.

When u50, both systems are integrable and all of t
periodic orbits can be divided into two groups: AsingleTO
bouncing perpendicular to the barrier~s! with zero cyclotron
energy and infinite families of helical orbits~HO’s! with pe-
riods equal to an integer multiple of the cyclotron peri
2p/vc . The traversing orbit corresponds to the fixed po
of the Poincare´ map in the center (0,0) of the surface of th
section—see Fig. 2; its period is given by

TTO5
b

vc
~SBM!, ~27!
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TTO5
b

vc
S 12A12

1

g D ~DBM!. ~28!

Unlike all other one-bounce orbits, the TO exists for ar
trarily small energy, since its frequency need not be in re
nance with the cyclotron frequency. Since it has zero cyc
tron energy its semiclassical quantization yields the state
the well with Landau index equal to zero, and hence the
determines the subband energy spacings of the triang
~SBM! or trapezoidal~DBM! well by the semiclassical rule
for integrable systems:D«5h/TTO.12

Due to the rotational invariance of the system at zero
angle all other periodic orbits in the well~in both the SBM
and DBM! exist in degenerate families related by rotati
around thez axis. The union of all trajectories in a famil
defines a torus in phase space, known as a ‘‘resonant’’ to
in the nonlinear dynamics literature26 because the periodic
motion of the two degrees of freedom are commensurate

nvc5kvL , ~29!

wheren and k are integers~which do not have a common
divisor! andvL is the frequency of the periodic motion in th
longitudinal direction. Since longitudinal and transverse m
tion decouple,vL is the frequency of the periodic motion o
the uniformly accelerated electron bouncing normal to
barriers, and its value is

vL5
2pvc

bA«̃ L

~SBM!, ~30!

vL5
2pvc

bA«̃ L

3H 1 g «̃ L,1

S 12A12
1

g «̃ L
D 21

g «̃ L>1~DBM!,

~31!

where «̃ L[ ṽ z
2 is the scaled longitudinal energy.

The resonance condition~29! means that any periodic or
bit of a family labeled by the integersn andk collides with
the collector barriern times while makingk full cyclotron
rotations before retracing itself. Therefore all such orbits
real space trace out rational fractions of a helix~hence the
term helical orbits! between successive collisions and ha
periods given by

THO5
2pk

vc
~32!

for both the SBM and DBM.
A simplifying feature of these systems is that one of t

oscillation periods, the cyclotron period, is independent
energy and voltage. The longitudinal period varies with bo
energy and voltage, going to zero as longitudinal ene
tends to zero. If a family of helical orbits$n,k% exists at a
given energy, a family of the same type can be generate
a lower energy by simply removing cyclotron energy~hence
reducing the cyclotron radius! until the radius of the helix
shrinks to zero, at which point this ‘‘family’’ has becom
degenerate with the TO and ceases to exist. These de
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9816 57E. E. NARIMANOV AND A. DOUGLAS STONE
eracy points occur then, whenever the period of the trav
ing orbit TTO passes through the valuekTc /n, for both the
SBM and DBM.

When the magnetic field is tilted the rotational symme
around the field direction that was the origin of continuo
families of helical orbits in the well is broken andall the
resonant tori are destroyed. According to the Poinca´-
Birkhoff theorem25 each of them is replaced by an integ
number of pairs of stable and unstable orbits~normally just a
single pair!. The degeneracy points of the untilted system
which an$n,k% resonant torus collapsed, evolve inton-fold
bifurcations of the TO.

The reason that the periodic orbit theory of the DBM
more complicated than that of the SBM stems from t
facts. ~1! In the unperturbed DBM there are two distin
families of orbits for each pair$n,k% ~one which reaches th
emitter and one which does not!, whereas there is only on
such family in the SBM.~2! These families can collapse a
the critical boundary and not just by reaching degener
with the TO. However in all the other respects mention
above the two models are similar, and in particular, the
furcations near the TO, which are crucial for explaining t
experimental data of Muller and co-workers,12 are very simi-
lar in the two models. We thus begin with the simpler case
the SBM.31

B. Periodic orbits at u50

As just noted, the periodic orbits atu50 are of two types:
the ~usually! isolated traversing orbit and the families of h
lical orbits. The TO, with no cyclotron energy, has a peri
that is independent of magnetic field and monotonically
creasing from zero with increasing energy:

TTO5
2A2m* «

eE
[

b

vc
. ~33!

For all HO’s the period is finite and an integer multiple
Tc52p/vc . Thus a given family of HO’s labeled by$n,k%
can only exist above the energy at whichnTTO5kTc . These
thresholds are the degeneracy points discussed above. A
threshold all the energy is longitudinal («̃ L51); together
with Eqs.~29!,~30! this yields

b$n,k%5
2pk

n
. ~34!

Since 0< «̃ L<1, for values ofb.b$n,k% there always exists
exactly one root of the equation

«̃ L~n,k!5S 2pk

bn D 2

, ~35!

where «̃ L5 ṽ z
2 is thescaledlongitudinal energy. The scale

cyclotron energy for this family~resonant torus! is just ṽ c
2

512 «̃ L . As the value ofb is increased, the existing helica
orbits gain more cyclotron energy and move away from
traversing orbit, allowing for the creation of new families
HO near the TO. We will now analyze what happens to
shorter periodic orbits as the magnetic field is tilted, beg
ning with the one-bounce orbits.
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C. One-bounce orbits

1. Continuity argument

One-bounce orbits are periodic orbits that have retra
themselves between each bounce off the single barrier,
they are fixed points of the first iteration of the Poinca´
map. Note that different one-bounce orbits may have wid
differing periods, and may for instance have periods lon
than two- or three-bounce orbits. Foru50 the existing one-
bounce orbits consist of the TO and all HO families withn
51 which are above threshold, i.e., withk,b/2p. The be-
havior of the periods of these orbits is indicated by t
dashed lines in Fig. 5. Since the periodsT of the HO families
are fixed to be integer multiples ofTc they are independen
of b when we plotvcT.

When the magnetic field is infinitesimally tilted, all hel
cal families ~resonant tori! are immediately destroyed an
replaced by pairs of stable and unstable periodic orb
These surviving one-bounce orbits are only infinitesima
distorted from their analogs atu50 and by continuity the
periods of these orbits are also only infinitesimally altere
For our system it is clear which orbits from each infini
family survive. For each helical family there are exactly tw
orbits that collide with the barrier withvy50, the condition
for zero energy exchange according to Eq.~13!. It is these
two orbits from each family that survive. This is easily se
by recalling that longitudinal and transverse energy are se
rately conserved between collisions even in the tilted syst
so anyone-bounceperiodic orbit for arbitrary tilt angle mus
also conserve these quantities during the collision. But
condition for this is justvy50, which is satisfied for the two
one-bounce helical orbits from each family that hit withvx
56vc . By continuity these two orbits must evolve into th
two surviving isolated fixed points of the map under tiltin
of the field. However, this tilt spoils they→2y symmetry of
the system, so these two orbits are no longer symmetry
lated and their periods differ, one becoming longer thankTc
and the other becoming shorter. As a result each of the h
zontal lines in Fig. 5, which there represent the one-bou
HO families, splits into an upper and lower branch represe
ing these two orbits. Moreover, for infinitesimal tilt ang
one of these branches must be stable and one unstable~the
lower branch is the stable one as we shall see below!. Fi-
nally, there is no longer a qualitative difference between
TO and the HO’s once the field is tilted. ForuÞ0 the TO is
required to have nonzero transverse energy in order to sa

FIG. 5. Periods of one-bounce orbits as functions ofb for the
tilt angle u511°. The dashed lines correspond to the periods
one-bounce orbits at zero tilt angle. The insets show thex-z andy-
z projections of the three existing one-bounce orbits atb510.
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57 9817THEORY OF THE PERIODIC ORBITS OF A CHAOTIC . . .
the vy50 condition and since it was degenerate with t
$1,k% family of HO’s at b52pk it must be continuously
deformable into one of the HO’s near these points.

To label the single-bounce orbits, it is convenient to
troduce the following notation:

~1!6~k!,

which means that it is a single-bounce periodic orbit~‘‘1’’ !
with the periodT such thatkTc,T,(k11)Tc . To distin-
guish the two orbits, which fork>1 can satisfy this inequal
ity, we introduce an additional index6, such that the sign
‘‘ 1 ’’ corresponds to the periodic orbit, which is initiall
stable~we use this notation in Fig. 5!.

The qualitative behavior of the complete set of on
bounce orbits of the SBM follows from these continuity a
guments and is shown in Fig. 5, where for definiteness
have plotted the exact analytical results of the next sub
tion. Note that forbÞ2pk there is always one orbit with a
nearly linear variation of its period withb. This is the
(1)1(k) orbit and it is the analog of the TO of the untilte
system. However, nearb52pk the period of each of the
(1)1(k) orbit saturates tokTc as it becomes primarily helical
while a new pair of orbits is born at a tangent bifurcati
near b52pk. One of these, the (1)1(k11), takes over the
role of the TO while the other, the (1)2(k11), becomes the
unstable partner of the helical orbit generated by the (1)1(k)

orbit. Thus, qualitatively speaking, the system repeats it
every timeb is increased by 2p. Quantitative scaling rela
tions between the behaviors in each interval are discusse
Appendix B. Note finally that the continuity argument su
gests that in the tilted system the periodkTc is forbidden for
one-bounce orbits since the two surviving HO’s from ea
resonant torus are shifted away from this value and the
riod of the TO can no longer cross that of the HO’s asb
varies; we shall prove this statement rigorously shortly.

2. Quantitative theory

We now derive exactly the periods of all one-bounce
bits for arbitrary tilt angle. We also prove that there can ex
no one-bounce orbit not identified by the continuity arg
ment given above. As just noted, it is trivial to see that
one-bounce orbits must be nonmixing~i.e., bounce withvy
50) for any tilt angle. Therefore we can impose this con
tion in order to find all one-bounce orbits and their perio
The derivation is most easily performed in the coordin
system (x9,y9,z9), which movesin the direction perpendicu
lar to B andE with the drift velocityvd5Esinu/B:

x95x81vdt,

y95y8,

z95z8. ~36!

Projected on the plane (x9,y9), the trajectory of the elec
tron between successive collisions is a portion of a circle
radiusvc /vc with an angular sizevcT, wherevc is the cy-
clotron velocity andT is the time interval between collision
~period of the one-bounce orbit!. For T.2p/vc the trajec-
tory retraces the circle several times~see Fig. 6!. Any orbit
-
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that is periodic in the lab frame will not be so in the dr
frame, instead the initial and the final points of the trajecto
between successive collisions must be separated by the
tancedx95vdT ~whereT is the period of the orbit! and have
the same value ofy9. On the other hand, for one-bounc
periodic orbits the distancedx9 can be expressed as~see Fig.
6!

dx952vc /vcsin~vcT/2!,

so that

vc5vd

vcT/2

sin~vcT/2!

and at the point of collision, therefore,

vx9uz505vd~vcT/2!cot~vcT/2!,

vy9uz505vd~vcT/2!. ~37!

Since the motion along the direction of the magnetic fie
ẑ95B̂ is a uniform acceleration under the forceeEcosu/m* ,
at the point of collision

vz95
eEcosu

m* vc

vcT

2
. ~38!

Note that at the point of collisionvy5vy9cosu2vz9sinu50,
as expected.

Substitutingv9 into the equation of energy conservatio
«5m(v92vd)2/2 at the barrier, we finally obtain

~b/2!22~vcT/2!2

@12~vcT/2!cot~vcT/2!#2 5sin2~u!. ~39!

This is the basic equation determining the periodsT(b,u)
for all one-bounce orbits. Asb→0 the only solutions which
exist requireT→0 also, and it is easily seen by expandin
the left-hand side that there is in fact only one solution
any value ofu, and this solution hasb5vcT as for the TO
in the unperturbed system. For anyb there are no solutions
with vcT52pk ~as argued above! due to the divergence o
the denominator in the left-hand side at these values. If th
were solutions with this value of the period, then viewed
the drift frame the orbit would be an integer number of fu
circles, which is one can see intuitively is impossible due
the collision~see. Fig. 6!.

For b@2pk there are many solutions as can be eas
shown graphically by plotting the single-valued function

b5FS sinu,
vcT

2 D , ~40!

where

FIG. 6. A single-bounce orbit projected onto the (x8,y8) plane
~a! and (x9,y9) plane of the ‘‘drifting’’ frame of reference~b!.
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9818 57E. E. NARIMANOV AND A. DOUGLAS STONE
F~x,y!52Ay21x2~12ycoty!2 ~41!

as is done in Fig. 5.
The single solution atb,2pk corresponds to the

(1)1(0), which is a slightly deformed version of the TO; it
visible as the central island in the SOS of Fig. 7~a! with vy
50 ~as is required, cf. above discussion!, but with now some
small value ofṽ x . As b is increased, this orbit gains cyclo
tron energy, and the corresponding fixed point moves aw
from the center to the left side of the surface of section.
discussed above, forb.2p the period of the orbit (1)1(0)

approaches asymptoticallyTc as the majority of its energy is
fed into transverse motion and it becomes a recogniza
deformation of ak51 helical orbit of the untilted system
@see Figs. 5, 7~b!#.

The two new orbits (1)6(k) that must arise by continuity
in each interval appear in tangent bifurcations at thresho
given byb5b tb

(k) , where

b tb
~k!5F~sinu,%k! ~42!

and%k is thekth positive root of the equation

FIG. 7. Poincare´ surface of section for the single-barrier mod
for u511° and~a! b55 $as in the unperturbed system, the sing
bounce orbit@(1)1(0)# is still surrounded by a large stable islan
but has a nonzerox component of the total velocity at the collisio
with the collector barrier%, and~b! b57.7 @the (1)1(0) orbit is still
stable, but moved to the periphery of the surface of section; a
gent bifurcation has just produced two new single-bounce orb
stable (1)1(1) near the origin, which now takes the role of the T
and unstable (1)2(1), which produces an elongated flow patte
near the stable island of (1)1(1)#.
y
s

le

s

%tan%

~12%cot% !~122%cscz% !
5sin2u.

This is clearly seen in the SOS of Fig. 7~b!, the fixed point
of the stable periodic orbit (1)1(1) is at the center of the
stable island near the origin, whereas its unstable partne
~less obviously! visible as the elongated flow pattern
slightly larger values ofvx andvy50. The evolution of these
orbits above threshold is precisely as predicted by the co
nuity argument above: the (1)1(k) initially has a period close
to that of the TO before saturating toT'(k11)Tc ; whereas
the (1)2(k) orbit immediately becomes helical withT 'kTc .
We must emphasize that Eq.~39! uniquely identifies all one-
bounce orbits for arbitraryu. Thus there are no one-bounc
orbits for anyu that cannot be related to one-bounce orbits
the untilted system~this is not the case for period-two an
higher orbits!. Hence we have a qualitative and quantitati
understanding of the periods and topology of all one-bou
orbits. The next issue to address is their stability propert

3. Stability

We define the stability of a periodic orbit in the standa
manner.25,26 The nonlinear Poincare´ velocity map@Eq. ~14!#
is linearized for small deviations of the initial velocity from
the values corresponding to the periodic orbit~fixed point of
the map!. This linear map is represented by a 232 mono-
dromymatrix M1 which has determinant one due to cons
vation of phase-space volume in the Hamiltonian flow. T
PO is unstable if one of the eigenvalues ofM1 has a modulus
larger than 1~the other being necessarily less than 1!, so that
an initial deviation along the associated eigenvector gro
exponentially. The PO is stable if the eigenvalues
eif,fÞp,2p, implying that any initial deviation will simply
rotate around the fixed point. The points of marginal stabi
are when the eigenvalues are61; and by the continuity of
the mapM1 must pass through marginal stability in order f
the orbit to go unstable. Equivalently, ifuTr@M1#u is less than
2 the orbit is stable, if greater than 2 it is unstable, and wh
uTr@M1#u52 it is marginally stable. There are addition
general constraints. As already noted, new orbits must
pear in stable-unstable pairs in what are calledtangent bifur-
cations ~TB’s!. Exactly at the point of TB the orbits ar
marginally stable with Tr@M1#52, before the stable one
moves to Tr@M1#,2 and the unstable one moves
Tr@M1#.2. Conversely, the other value for marginal stab
ity, Tr@M1#522, corresponds to forward or backward
period-doubling bifurcations of the PO. These will be
great interest below as they are closely related to the pe
doubling transitions seen in the magnetotunneling exp
ments.

We can obtain the monodromy~stability! matrix for all
one-bounce orbits analytically, but again will first extract
qualitative features by continuity arguments. As just not
for infinitesimal tilt angle the TO is deformed into th
(1)1(k) orbit in the interval 2pk,b,2p(k11). Therefore
the stability properties of the (1)1(k) orbits must be continu-
ous with those of the TO in these intervals. For the case
the TO of the untilted system the monodromy matrix
trivial. The TO hasvx5vy50, therefore, a small incremen
of velocity in thex-y plane leaves the time interval betwee

n-
s:
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57 9819THEORY OF THE PERIODIC ORBITS OF A CHAOTIC . . .
collisions unchanged to linear order indv. Thus each itera-
tion of the monodromy matrix is just rotation of this devi
tion vector by the anglevcT, leading to Tr@M1#
52cos(vcT). Therefore the TO is stable at all values ofb
except such thatvcT5mp; m51,2,3, . . . . It follows by
continuity that the orbits (1)1(k) will be stable everywhere in
the interval 2pk,b,2p(k11) except in infinitesimal in-
tervals around these values.

The lowest value at which instability can occur isb
52pk, but this is precisely the point of tangent bifurcatio
where the (1)1(k) and (1)2(k) orbits are born. Since (1)1(k)

must evolve immediately into the analog of the~stable! TO
above threshold, it must become the stable member of
pair immediately after the TB; whereas the (1)2(k) orbit
must then be unstable. This is allowed by continuity sin
the (1)2(k) immediately evolves into the analog of the HO’
which are marginally stable for allb and can hence becom
unstable under infinitesimal perturbation.

Near the midway points of the relevant interval,b
52p(k11/2), the (1)1(k) orbit can again go unstable, but
must immediately restabilize by continuity for higher valu
of b in this interval. We find that in fact all (1)1(k) do go
unstable by period-doubling bifurcation~PDB! near this
value, and for sufficiently small tilt angles they all restabili
by inverse PDB at slightly higherb.

As b increases past the value 2p(k11) the (1)1(k) orbit
ceases to play the role of the TO@which is taken over by the
(1)1(k11) orbit# and continuity alone does not determine
stability. However, from the effective map arguments of S
II D we know that atb>1/u the system undergoes the KAM
transition to global chaos, and we therefore expect all ex
ing periodic orbits to finally go unstable for sufficiently hig
values ofb. In other words, for any nonzerou the continuity
argument will fail for sufficiently highb;1/u and new or-
bits can appear that have no analog in the untilted system
fact, this second destabilization of the (1)1(k) orbit occurs by
a PDB that creates a period-two orbit with no analog in
untilted system, as we shall see below.

As u becomes of order unity, theb value at which global
chaos sets in becomes also of order unity and we do
expect any of the (1)1(k) orbits to remain stable over a larg
interval. As already shown above, however, we can pr
from Eq. ~39! that a (1)6(k) pair is born by tangent bifurca
tion in each interval. Thus the (1)1(k) must be stable ove
some small interval for arbitrarily largek, but it need not
restabilize after its first PDB.~Note that the effective map
argument only predicts global chaos in the sense of no
maining KAM tori for large b; it does not prove that no
stable periodic orbits can exist, and indeed we have pro
the converse: stable one-bounce orbits do exist above
finite value ofb.! To interpolate continuously between th
limits of infinitesimal and largeu the second PDB move
continuously to lowerb values until it eliminates the invers
PDB and hence eliminates the restabilization of the (1)1(k)

PO.
To make all of these features explicit and quantitative

have derived the monodromy matrix for all single-boun
orbits. The straightforward but tedious calculation
sketched in Appendix A. We find
he

e

.

t-

In

e

ot

e

e-

d
ny

e

Tr~M1!54cos4~u!@ tan2~u!1~vcT/2!cot~vcT/2!#

3$tan2~u!1sin~vcT!/~vcT!%22. ~43!

This equation describes precisely the stability proper
of the one-bounce orbits sketched above. First, every tim
new pair of roots of Eq.~39! appears with increasingb,
Tr(M1)512 corresponding to a tangent bifurcation, as d
cussed. Asb increases from this threshold one root@describ-
ing the (1)2(k) PO# becomes increasingly unstable wi
Tr(M1)→1`. In contrast, the other root corresponding
the (1)1(k) orbit initially becomes stable@Tr(M1),2# and
remains so for a finite interval before going unstable
Tr(M1)522 by PDB. For sufficiently smallu, Tr(M1) will
pass through the value22 twice more before tending to
2`, corresponding to the restabilization and subsequent
stabilization of the (1)1(k) predicted by the continuity argu
ments above. Asu increases for any fixed intervalk eventu-
ally a critical angle is reached at which this restabilizati
ceases, just as predicted. The behavior of the Tr(M1) for
(1)6(k) orbits with k50,1,2 is shown in Fig. 8. Since in
creasingk corresponds to largerb, the critical angle be-
comes smaller ask increases. The intervals of restabilizatio
of the (1)1(k) orbits are shown in Fig. 9, terminating at th
critical anglesuk

† .
Quantitative results for theb values at which the PDB’s

occur and for the critical angle are easily obtained from E
~43! for the monodromy matrix. Equation~43! can be written
as

Tr~M1!1254R~u,vcT!54cos4~u!R1~u,vcT!R2~u,vcT!,
~44!

where the zeros of the functionR(u,vcT) give the parameter
values for all PDB’s. It is easily seen from Eq.~43! that
factorR1 has exactly one root in each intervalk, whereas the
factor R2 has either two or zero roots in each interval, co

FIG. 8. Trace of the monodromy matrix for single-bounce orb
(1)1(0), (1)1(1), (1)2(1), (1)1(2), (1)2(2) for u516°. The dotted
line represents the condition for the 1:3 resonance, the dashed
show the boundaries of the stability regionuTr@M #u<2. Open
circles show the locations of the direct PDB’s, the solid circ
correspond to inverse PDB’s, open triangles represent 1:3 r
nances, squares represent tangent bifurcations.
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9820 57E. E. NARIMANOV AND A. DOUGLAS STONE
responding to the presence or absence of the restabiliza
The set of transcendental equations which determine
roots ofR1 ,R2 and hence the bifurcations points and critic
angles are summarized in Appendix B.

The existence and stability properties of the one-bou
orbits as predicted by Eqs.~39!,~43! are confirmed by the
numerically generated SOS and indeed reveal the underl
pattern to the complex behavior seen in the SOS. The per
doubling bifurcations of the one-bounce orbits are of parti
lar interest because they are closely related to the p
doubling phenomena observed experimentally. We w
elucidate this behavior in the next section on period-two
bits.

D. Two-bounce orbits

1. Qualitative description,bu!1

For u50 all two-bounce periodic orbits occur in helic
families satisfying the resonance condition:

~2k11!vL52vc , k50,1,2, . . . . ~45!

Only odd integers appear in the resonance condition s
even integers yield orbits equivalent to the period-one hel
family. As follows from Eqs.~32! and ~45!, the periods of
the two-bounce helical orbits are given by

T5~2k11!
2p

vc
. ~46!

Therefore, just as for the one-bounce helical orbits,
resonant tori corresponding to the two-bounce orbits
only appear above a threshold value ofb at which the lon-
gitudinal period becomes long enough to satisfy Eq.~46!. At
this threshold the two-bounce orbits are indistinguisha

FIG. 9. Regions of existence~shaded areas! of one-bounce or-
bits (1)1(0) ~a! and (1)1(1) ~b! in the (u,b) plane. Dark and light
shading correspond to stable and unstable regions, respective
n.
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from the second repetition of the traversing orbit. Thus
thresholds bc2

(k) are given by the condition 2TTO5(2k
11)Tc , which gives

bc2
~k!5p~2k11!. ~47!

Once emerged, the period-two resonant tori remain in
phase space of the system for arbitrary large value ofb,
simply moving towards the periphery of the surface of s
tion asb increases.

Again, as for the helical one-bounce periodic orbits, wh
the magnetic field is tilted, the resonant tori of the tw
bounce orbits are destroyed and replaced by an integer n
ber of pairs of stable and unstable two-bounce periodic
bits. By continuity, these orbits must appear in the vicinity
the (1)1(k) traversing orbits~which are now playing the role
of the TO! and near the valuesb'p(2k11) at which the
two-bounce tori appear. Our previous analysis for small
angles has already identified one direct and one inve
period-doubling bifurcation of the (1)1(k) near these values
of b ~see Fig. 8!. In a direct PDB a stable one-bounce P
becomes unstable while generating a stable two-bounce
in its neighborhood; in an inverse PDB an unstable o
bounce PO becomes stable while creating an unstable
bounce PO in its neighborhood. Hence for consistency
conclude that exactly one pair of two-bounce PO’s is crea
from each two-bounce family for infinitesimal tilt angle. Fu
thermore, one of these arises from the direct PDB and
therefore stable, whereas the other arises from the inv
PDB and is unstable.~For infinitesimal tilt angle the interva
Db between these two PDB’s is also infinitesimal and th
are created at the same ‘‘time’’ in agreement with t
Poincare´-Birkhoff theorem; for any finite angle they ar
separated by some finite interval inb.!

It follows that there must be exactly two orbits from ea
helical family that are continuously deformed into the sta
and unstable two-bounce PO’s created at these two PDB
is easy to identify one of the two in analogy to our earl
reasoning. There is only one two-bounce PO in each hel
family for which both of its two collisions with the barrie
occur with vy50 ~see Fig. 10!. This orbit can be continu-
ously deformed into a nonmixing two-bounce orbit that w
become degenerate with the nonmixing (1)1(k) at the
PDB—see Fig. 11~a!. However, unlike the case for one
bounce HO’s, there is no second orbit with fixed points
vy50, that can evolve into the second two-bounce or
which we know must be created. Hence this second orb
uÞ0 must be mixing; i.e., it must generate fixed points w
nonzerovy . Thus it must be obtained by a deformation
one of the two-bounce orbits in the helical torus with fin
values ofvy at collision.

To identify which orbit this is we must consider the ge
eral properties of mixing two-bounce orbits in this syste
We have noted above that due to time-reversal symmetry
SOS has to be symmetric under the transformationvy
→2vy . It is obvious that a two-bounce orbit with the sam
value ofvx at each collision will generate two fixed points
the SOS that satisfy this reflection symmetry. Note that si
vx}y, such a mixing period-two orbit strikes the barrier
the same value ofy in each collision. We will refer to such
orbits as self-retracing since they retrace themselves iny-z
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57 9821THEORY OF THE PERIODIC ORBITS OF A CHAOTIC . . .
projection. All such self-retracing two-bounce orbits a
mixing. However, there exist non-self-retracing two-boun
mixing orbits. These must collide with different values ofvx
at each collision, but still satisfy the required reflection sy
metry of the SOS in a more subtle manner. In such an o
the values ofvx at collision differ for any one sense of tra
versal, but traversing the orbit in the opposite sense gen
ates two additional fixed points that restore thevy→2vy
symmetry of the SOS, which has four fixed points for su
orbits. Such an orbit is shown in Fig. 11~c!, and analogous
orbits exist for higher-bounce PO’s as well. We will discu
their origin later.

However, these non-self-retracing two-bounce orbits c
not be created at a PDB of a one-bounce orbit~period-one
fixed point! since such a PDB cannot create more than t
new fixed points.32,33 Therefore the second, mixing orbit w
seek foruÞ0 must be a self-retracing orbit, i.e., it must ha
the same value ofvx at each of its two collisions with non

FIG. 10. Torus of two-bounce orbits in the surface of secti
Marked are the only ‘‘self-retracing’’~in they-z plane! two-bounce
orbits: ~a! the orbit withvy50 at collisions, which evolves into the
nonmixing two-bounce orbit (2)1, and~b! the orbit withvx50 at
collisions—which becomes the self-retracing mixing orbit (2)2. In-
sets show they-z projections of these orbits.

FIG. 11. Examples of the different types of period-two orbi
projected onto (x,z) and (y,z) planes: a nonmixing orbit~a!, a
self-retracing mixing orbit~b!, and a non-self-retracing mixing orb
~c!.
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zero vy—see Fig. 11~b!. The only orbit in theu50 helical
family with this property is the one which collides with th
barrier withvx50 at each collision~see Fig. 10!. Hence by
continuity it is this orbit which must be continuously de
formed to give the mixing orbit which must, by the Poincar´-
Birkhoff theorem, exist for infinitesimal tilt angle. Intu
itively, the PDB of the (1)1(k) orbit to the nonmixing two-
bounce orbit corresponds to splitting the (1)1(k) at the point
of collision, whereas the PDB corresponding to the mixi
one corresponds to splitting the (1)1(k) at the point furthest
away from the collision~see Table I!.

Since lack of mixing at collision should enhance the s
bility of an orbit for given b,u, we may expect that the
non-mixing two-bounce orbit is born stable in the direct PD
and the mixing one is born unstable at the inverse PDB
occurs at a slightly higher value ofb. This conjecture is
confirmed by our analytic calculations below. In accord w
our earlier notation we will label this pair of two-bounc
orbits, which must exist in each interval by continuity, as

~2!6k, ~48!

where the sign ‘‘1 ’’ corresponds to the orbit that is initially
stable, as before. For simplicity we drop the interval indexk
below. The same scenario occurs in each interval, jus
smalleru ask is increased.

2. Qualitative description,bu;1

Up to now we have focused on the limit of smallbu
where each orbit must by continuity have an analog fou
50. Unlike single-bounce orbits in the tilted well, there w
exist orbits with two or more bounces that have no analog

.

,

TABLE I. Period-1 and period-2 orbits in the SBM.
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the integrable case. In fact, we have already shown ab
~see Figs. 8,9! that after restabilizing by inverse PDB th
(1)1 orbit must eventually go unstable by a third PDB th
must give rise to a stable two-bounce orbit with no analog
the untilted system. We denote these new orbits as (2)* ; one
such orbit must exist for each (1)1 orbit although for small
tilt angle they will not appear until values ofb;1/u.

Will the (2)* orbits be mixing or nonmixing? One ca
also decide this by reference to our stability analysis of
(1)1 orbit ~see Fig. 8 above!. As we showed, for each (1)1

orbit, asu is increased to a critical valueu†, the second and
third PDB’s move closer together and finally merge, af
which no restabilization of the (1)1 orbit occurs. But the
second PDB is associated with the mixing (2)2 orbit; if it
merges with the (2)* orbit when the second and third PD
coincide, then (2)* orbits must also be of the same topolog
i.e., mixing.

What happens to the (2)2,(2)* orbits for tilt angles
aboveuk

†? On the one hand, aboveuk
† they cannot be create

by PDB’s of the (1)1 orbit, since we have shown that
never restabilizes. On the other hand, these two periodic
bits cannot cease to exist suddenly, since they exist fo
infinite interval above the threshold for PDB and the orbit
from threshold is negligibly perturbed by a small increase
tilt angle. The resolution of this apparent paradox is t
aboveuk

† the two orbits are created by a tangent bifurcat
in a region of the SOS and at a value ofb very close to that
at which the PDB’s occur belowuk

† . The detailed description
of the transition from the PDB scenario to the TB scenario
sketched in Fig. 12 and described in the caption. In contr
nothing qualitatively new happens to the behavior of the
tially stable (2)1 asu is increased beyonduk

† ; its interval of
stability just shrinks continuously.

So for all u we are able to locate all two-bounce orb
that are related originally to the one-bounce (1)1(k) orbit,
and to describe their evolution qualitatively. There are
actly three such orbits associated with each (1)1 orbit: the
(2)1, which is initially stable and nonmixing, the (2)2,
which is initially unstable and mixing, and the (2)* , which is
initially stable and mixing.

The last point to understand is the evolution of these
bits with increasingb once they are created. Since the
orbits exist for allb above threshold atu50, we expect the
same behavior for nonzerou. However, as both the (2)1 and
(2)* orbits are initially stable, we expect them both to b
come unstable asb→`. It turns out that the (2)1 orbit goes
unstable as the second stage of an infinite period-doub
transition to chaos. The (2)* , on the other hand, follows a
more complex route to its final unstable form. As the para
eterb is increased, the orbit (2)* goes unstable via a period
doubling bifurcation, but soon restabilizes and finally go
unstable via apitchfork bifurcation. In such bifurcation a
new stable~mixing! orbit is created with a period identical t
that of the orbit that has gone unstable. In this case the
orbit is precisely of the non-self-retracing type shown in F
11~c! and described above. Thus this one new two-bou
orbit creates four fixed points in the SOS and satisfies
required conservation of the Poincare´ index. From the ge-
neric properties of 2D conservative maps it can be sho
that such orbits canonly be created in these pitchfork bifur
ve
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cations. Although it is interesting to note the origin of th
non-self-retracing two-bounce orbits, they are of a little im
portance for the description of the experimental tunnel
spectra, since generally the pitchfork bifurcations appea
relatively high values ofb, as we will show in the quantita
tive description of the two-bounce orbits in the next subs
tion.

In principle, completely new two-bounce orbits can al
arise by tangent bifurcations at sufficiently large tilt ang
and values ofb, in fact no visible islands due to such orbi

FIG. 12. Bifurcation diagrams in the coordinates (b, ṽ y) for the
period-two mixing orbits, related to the bifurcations of the sing

bounce orbits. The two branches with nonzeroṽ y correspond to the
two-bounce mixing orbits (2)1(0) and (2)* (0), while the horizontal
line represents the single-bounce orbit (1)1(0). The nonmixing
period-two orbit (2)2(0) hasvy50 at each of the points of collision
and cannot be seen in this diagram. For a small tilt angle the per
two orbits are born in period-doubling bifurcations—see panel~a!.
When u.uk

† the mixing period-two orbits are born in a tange
bifurcation—see panel~c!. The transformation from the two type
of behavior cannot happen in a single step. If it were possible, t
at the critical angletwo new mixing two-bounce orbits were create
at the location of the single-bounce orbit, whichcannothappen in a
generic conservative 2D system. The alternative is provided by
following two-step process. First, at some critical angleuk

0,uk
† the

behavior of the first to appear mixing orbit (2)2(k) is changed, as is
shown in the bifurcation diagram at the panel~b!. When uk

0,u
,uk

† , the unstable orbit (2)1(k) appears in a tangent bifurcatio
with a new self-retracing mixing stable period-two orbit, which
soon to be absorbed by the single-bounce orbit in an backw
period-doubling bifurcation, while the qualitative behavior of th
stable (2)* (k) orbit remains unchanged. As the tilt angle is i
creased, the interval of stability of the single-bounce orbit shrin
while the interval of existence of the auxiliary mixing orbit in
creases. At the critical tilt angle the backwards and standard per
doubling bifurcations merge and annihilate each other, so tha
greater values of the tilt angle the mixing period-two orbit are
longer directly related to the single-bounce orbit—see panel~c!.
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are seen in the SOS for any tilt angles of interest in the ra
of b values that are accessible experimentally. Thus for
derstanding the experimentally observed peak-doubling
gions only the the three two-bounce orbits (2)1,(2)2,(2)*
for the intervalsk50,1 are most relevant. Their propertie
are summarized in Table I. These orbits, once their gene
zation to the double-barrier model is understood, will be s
ficient to explain the peak-doubling data of Refs. 10 and

We now give an analytical description of the periods a
stability of the two-bounce orbits identified above.

3. Quantitative theory: Nonmixing two-bounce orbits

The derivation of the periods of the nonmixing tw
bounce orbits can be performed using the same techn
developed in the analysis of the single-bounce orbits. In
drift frame introduced in Sec. III C 2 the orbit consists of tw
identical and overlapping arcs of a circle of angular s
vcT.p with their endpoints displaced byvdT/2. Imposing
the nonmixing condition at the two collisions determinesT.
Conservation of energy is not required to fix the period a
this leads to the striking result that the period is independ
of energy~this is the only relevant orbit with this property!.
This calculation, the details of which are given in the Appe
dix D, yields

vcT

4
cot

vcT

4
52tan2u. ~49!

The (k11)-th positive root of this equation gives the valu
of the period of the (2)1(k) orbit. Note that the solutionsT
do not depend onb. This is the only orbit with this property

We have also calculated the stability properties of th
orbits by evaluating the trace of the corresponding mo
dromy matrix using the general expressions developed
Appendix C. This straightforward but tedious derivation
given in Appendix E. In Fig. 13 we plot Tr(M ). In agree-
ment with our qualitative analysis, Tr(M ) is a monotonically
decreasing function ofb, so that the initially stable two-
bounce nonmixing orbit destabilizes by a period-doubl
bifurcation and then remains unstable for allb. The four-
bounce periodic orbit, which is born in this bifurcation, w
e
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li-
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in turn bifurcate, producing an infinite series of perio
doubling bifurcations of the same type as the perio
doubling sequence in the quadratic DeVogelaere map.34,26

However, since the periodic orbits of this sequence h
long periods and relatively large cyclotron energy, they
of a little importance for the description of the tunnelin
spectra in the tilted well, and will not be discussed in t
present paper.

4. Quantitative theory: Mixing period-two orbits

Due to nonzero energy exchange at the points of collis
the analytical description of a general mixing two-boun
periodic orbit will be very complicated. However, as w
pointed out before, the most important two-bounce mixi
orbits are self-retracing~in y-z projection! leading to the
symmetry property thatvx is the same a both collisions. Im
posing this condition simplifies the analytical treatment. F
each of these orbits, the electron collides with the bar
twice at the same point with exactly the sameabsolute val-
uesof the velocity componentsvx ,vy ,vz . Using this prop-
erty, one can show~see Appendix F!, that the periodsT of
the two-bounce self-retracing orbits must satisfy the follo
ing system of coupled transcendental equations:

FIG. 13. Trace of the monodromy matrix as a function ofb for
different nonmixing two-bounce periodic orbits: (2)1(0),
(2)1(1),(2)1(2) for u515°.
sinS vcT

2 D
vcT

2

52tan2u

sinS vcdT

2 D
vcdT

2

, ~50a!

S b

2 D 2

5sin2uS 12

vcT

2 FcosS vcT

2 D1cosS vcdT

2 D G
2sinS vcT

2 D D 2

1S vcT

4 D 2

1cot2uS vcdT

4 D 2

, ~50b!
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9824 57E. E. NARIMANOV AND A. DOUGLAS STONE
wheredT,T is the difference of the time intervals betwee
successive collisionst1 andt2 ~see Appendix F!. This system
of two equations determines the periods of all of the s
retracing two-bounce orbits as functions ofb and the tilt
angle.

Although Eqs.~50a!,~50b! look quite complicated, they
allow a further analysis. Assume at least one solution ex
for some fixed value ofT and find the corresponding value~s!
of the time differencedT from Eq.~50a! that depend explic-
itly only on T,u ~but only implicitly on b). As an equation
for dT at fixed T and u, this relation can have multiple
solutionsdT5dTn :

vcdTn52`nS 2cot2u

sinS vcT

2 D
vcT

2

D , dTn,T ~51!

where the functioǹ n(x) was defined in Appendix B@see
Eq. ~B5!# and the maximal value ofn depends on the value
of T andu. If T is not a solution of the system for anyb, Eq.
~8! will have no roots withdT,T. One knows~from the
calculation of the stability matrix for the single-bounce o
bits! the exact values ofT at which the (2)2(k),(2)* (k) orbits
are born by PDB and inverse PDB of the (1)1(k). Hence we
can find the starting value ofT for each (2)2(k),(2)* (k) orbit
and follow it continuously asb increases. Each rootdTn
when inserted into Eq.~50b! yields a solution ‘‘branch’’
bn(T) for a two-bounce orbit.

There does not however need to be exactly one s
retracing two-bounce orbit for each solution branchbn(T). If
the period of such an orbit is a nonmonotonic function ofb
then the same orbit will give rise to multiple solutio
branches that must merge at the extrema ofT(b). One can
show that there can be no more than one extremum at fi
b for T(b), thus each orbit will be described by either one
two such branches. Conversely, one solutionbn(T) can be
nonmonotonic inT, hence it must describe two differen
two-bounce orbits with different periods at the same value
b. With care,any two-bounce self-retracing orbit can be o
tained by this approach. This procedure yields the plots
the periods for the (2)2(0),(2)* (0) orbits shown in Fig. 14.
Note that unlike the nonmixing (2)1(k) orbits, the periods of
the mixing orbits depend onb.

In fact for small tilt angles the period of the (2)2(k) orbit
is a monotonically decreasing function ofb and there is only
the n51 solution branch to consider. In this case we c
expand Eqs.~7!,~8! for bu!1 and obtain an explicit formula
for the periods of these orbits:

vcT52p~112k!$11u21 1
6 u4@81p2~112k!22b2#%

1O~u6!. ~52!

Although the (2)* orbits have the same topology as t
(2)2 ~and at largeu they are born together in a tange
bifurcation!, they have no analogs in the untilted system
their periods cannot be obtained from such an expans
The quantitative analysis of Eqs.~50a!,~50b! confirms the
transition scenario between PDB and TB for the (2)2,(2)*
for large tilt angles described in Fig. 12.
-

ts

lf-

ite
r

f

f

n

o
n.

Once the values ofT and dT are known from the Eqs
~50a!,~50b!, the components of the velocity at the points
collisions can be obtained from Eq.~F4!, and one can calcu
late the monodromy matrix for each such orbit using E
~C4! and~C3!. In Fig. 15 we show the behavior of the trac
of the monodromy matrix for (2)2 and (2)* orbits. As ar-
gued above, one finds that the (2)2 orbits are unstable for al
b, whereas the (2)* orbits which are born stable@since they
arise from a direct PDB of the (1)1 orbit#, and go unstable
in the complicated sequence ending with a pitchfork bifur
tion that we have described above—see Fig. 15.

FIG. 14. Periods of the self-retracing mixing two-bounce orb
(2)2(0), (2)* (0), (2)2(1), and (2)* (1), related to the bifurcations o
the single-bounce periodic orbits as functions ofb. The tilt angle is
u515°. The dashed lines show the~scaled! time intervals of two
repetitions of single-bounce orbits~i.e., twice the period of single-
bounce orbits!.

FIG. 15. Trace of the monodromy matrix as a function ofb for
mixing two-bounce orbits~a! (2)2(0) and (2)* (0), (2)2(1), and
(2)* (1). The tilt angle isu515°.
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In Table I we summarize the relevant period-one a
period-two orbits.

E. Three-bounce periodic orbits

The scenario for the three-bounce periodic orbits is si
lar in many ways to that for the two-bounce orbits just d
scribed. When the magnetic field is not tilted all thre
bounce periodic orbits belong to resonant tori a
correspond to the resonances

kvL53vc , ~53!

where the integerk is not a multiple of 3. Thus asb in-
creases from zero in the first interval there are two thresh
for the birth of resonant tori. Whenb52p/3 the family of
helical orbits that perform 1/3 of a cyclotron rotation p
collision with the barrier appears, and atb54p/3 the family
that makes 2/3 of a rotation per collision appears. As for
two-bounce orbits, the analogous orbits in the higher in
vals behave in exactly the same manner qualitatively, an
we focus here on those in the first interval.

When the magnetic field is tilted, the period-three re
nant tori are destroyed and replaced by pairs of stable
unstable three-bounce orbits. Here some important dif
ences from the two-bounce orbits enter. First, we can
have asingle three-bounce orbit created at some value ob
since there is no analog of a period-doubling bifurcation
creating three-bounce orbits. At the threshold for creation
the three-bounce helical families, when they are degene
with the third repetition of the traversing orbit, the Tr(M1)
521 and its stability cannot change. Therefore period-th
orbits must always be created in stable-unstable pairs by
gent bifurcation. Moreover, there is generically no constra
that such a tangent bifurcation occur at the fixed point c
responding to a period-one orbit.32 In this sense there are n
trifurcations in a generic system. Whenu50 the rotational
symmetry of the system does constrain the entire family
three-bounce orbits to appear degenerate with the third
etition of the traversing orbit, but as soon asuÞ0 the pair of
three-bounce orbits that survive are created away from
period-one fixed point. However, by continuity the tange
bifurcation ~TB! that creates this pair must occur near th
fixed point and at approximately the same value ofb. We
infer that for small tilt angles there are at least two TB’s
the first interval, each of that creates a stable-unstable pa
three-bounce orbits, atb1'2p/3,b2'4p/3. Extending our
earlier notation, we will denote these four orbits b
(3)1

6 ,(3)2
6 .

Which orbits of the resonant tori survive? In this ca
there is no orbit in the helical family that has all of its co
lisions with vy50; therefore by continuity there can be n
three-bounce nonmixing orbits for small tilt angles~and one
can easily show that this result holds for anyu). However,
there are two orbits in each torus that collide with (vy)1
50,(vy)252(vy)3 corresponding to two possible orient
tions of the appropriate equilateral triangle along thevx axis.
These two orbits satisfy the required symmetry of the S
upon tilting, while no others in the torus do. Therefore it
these orbits which survive~slightly distorted due to the tilt,
of course!.
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This conclusion, while correct, must be reconciled w
our earlier statement that the two orbits must appear a
tangent bifurcation. At a TB the two orbits are identical, y
the two orbits we have identified correspond to opposite
entations of the triangle and would not coincide for any fin
size of the triangle defining the three fixed points~see Fig.
16!. In order to coincide at the TB the unstable member
the pair must actually pass through the single-bounce fi
point at the center of the triangle in what is known as
‘‘touch-and-go’’ bifurcation.32 At this point the unstable
three-bounce orbit coincides with the third repetition of t
(1)1 orbit, which is no longer isolated and Tr(M1

3)52 @or
equivalently Tr(M1)521#. So asb is reduced to the thresh
old for the TB, first the unstable three-bounce orbit shrinks
a point coinciding with the period-one fixed point, and th
at even lowerb reappears on the other side with the app
priate symmetry to disappear by TB with the stable mem
of the pair. In Fig. 16 we show the surfaces of section j
before~a! and soon after~b! the touch-and-go bifurcation o
the orbits (3)1

2 and (1)1(0). This ‘‘touch-and-go’’ ~TAG!
bifurcation of the three-bounce orbits occurs over such
small b interval for small tilt angles that it is hard to distin
guish from a trifurcation of the (1)1 orbit without careful
magnification of the transition, but it is required by contin
ity and the generic principles of 2D conservative maps.
Fig. 17 we plot the periods of these four three-bounce orb
(3)1

6 ,(3)2
6 , that are related to the resonant tori of the u

tilted system.
As in the case of the two-bounce orbits, our knowledge

FIG. 16. Surface of section near the one-bounce periodic o
(1)1(0) close to its 1:3 resonance and the corresponding tou
and-go bifurcation of the orbits (3)2

2 : ~a! just before and~b! soon
after the touch-and-go bifurcation.
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the behavior of the (1)1 orbit allows us to predict that in the
first interval their must exist a further~pair! of three-bounce
orbits that have no analog in the untilted system. The rea
is the following. From Fig. 8, for small tilt angle, we know
that the Tr(M1) for the (1)1 orbit passes through21 three
times before the (1)1 orbit becomes permanently unstab
Each time Tr(M1)521 there must be a TAG bifurcation, s
there must be three such bifurcations. Two of them are a
ciated with the (3)1

2 ,(3)2
2 orbits we have already identifie

and occur nearb52p/3,4p/3; the third TAG bifurcation
must be associated with a third pair of orbits born by TB
large b;1/u. This pair plays a similar role for the three
bounce orbits as does the (2)* orbit for the two-bounce or-
bits in each interval, hence we denote them by (3)* .

As u is increased to order unity, the TAG bifurcation
the (3)

*
2 orbit moves to lowerb till it eventually coincides

with the TAG bifurcation of the (3)2
2 orbit and the two bi-

furcations ‘‘annihilate.’’ We know this must occur sinc
Tr(M1) ceases passing through21 the second and third
times~see Fig. 8!. The TAG resonances relating the orbits
the resonances of the (1)1 orbit no longer exist for higheru
~just as the PDB’s of the 22,2* no longer exist above som
critical angle!, but the orbits do not disappear. Instead, th
demonstrate an ‘‘exchange of partners’’ bifurcation, whi
for higher tilt angles allows them to exist without ever evo
ing into TAG resonances of the (1)1—see Fig. 18. Again,
just like for the two-bounce orbits, the transformation fro
the small tilt angle to large tilt angle behavior requires t
appearance of auxiliary three-bounce orbits in additional t
gent bifurcations to provide a smooth evolution. This s
nario is illustrated by the bifurcation diagrams in Fig. 18.

In principle, an analytic theory of the periods and stabil
of these three-bounce orbits is possible, but the system
three coupled transcendental equations which define the
riod is not easily analyzed. Since we already know the qu
tative scenario, we have simply used the symmetry prop
ties of these three-bounce orbits to locate numerically
fixed points and hence find the period and time interval

FIG. 17. The periods of the three-bounce orbits (3)1
60 and

(3)2
60 vs b for tilt angle for u515° ~solid lines!. The dashed line

represents the period of single-bounce orbit (1)1(0), multiplied by
3.
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tween collisions. These quantities are all we need to use
general formalism for the monodromy matrix developed
Appendix C.

In Fig. 19 we show the behavior of the trace of the mon
dromy matrix for three-bounce orbits (3)1

6(0) , (3)2
6(0), and

(3)
*
6(0) . The stability properties of the three-bounce orb

show a clear analogy with the behavior of two-bounce orb
The (3)1

6 ,(3)2
6 orbits related to the resonant tori, are eith

always unstable, or go unstable via period-doubling bifur
tions and never regain stability. Whereas the behavior of
new (3)* is different. As follows from Fig. 19, the initially
unstable (3)* restabilizes via a pitchfork bifurcation after it
TAG bifurcation with the (1)1 orbit, before eventually go-
ing unstable in a period-doubling bifurcation at higher val
of b. The initially stable (3)* orbit has a monotonically
decreasing trace of the monodromy matrix and goes unst
via a period-doubling bifurcation. All of these orbits are se
retracing in the sense defined above. At the pitchfork bif

FIG. 18. The bifurcation diagrams of the self-retracing thre
bounce orbits in three different regimes~see text!, u515°. The
vertical axis represents thex component of the scaled velocity o

the electron at the point of collision withṽ y50. The dotted line
represents the single-bounce orbit. Note the exchange of par
bifurcation between~b! and ~c!.

FIG. 19. Trace of the monodromy matrix as a function ofb for
self-retracing three-bounce orbits. The inset shows the behavio
Tr@M # near the touch-and-go bifurcation.
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57 9827THEORY OF THE PERIODIC ORBITS OF A CHAOTIC . . .
cation of the (3)* orbit just described, a new three-boun
orbit appears that is non-self-retracing. Thus, as for the t
bounce orbits, orbits of this type only appear after the c
ation of the self-retracing orbits and hence arise at relativ
high b values. Hence they have little effect on the expe
mental observations and will be disregarded below.

F. Many-bounce orbits

The analysis of period-N (N.3) orbits can be conducte
in a similar framework. First, one can identify the period
orbits, which survived from the resonant tori of the untilt
system, and then relate these orbits to the 1:n resonances o
the single-bounce orbits (1)1. Since for small tilt angles
Tr(M1) is nonmonotonic withb and crosses the stabilit
region three times, the third crossing will always give rise
new orbits that are born atb;1/u and that have no analog
in the untilted system. Asu is increased these resonanc
will move to lowerb and annihilate with earlier resonanc
leading to new tangent bifurcations and the ‘‘exchange
partners’’ already understood and observed for the tw
bounce and three-bounce orbits.. Additional new orbits
be formed both by pitchfork bifurcations of self-retracin
orbits and by completely new tangent bifurcations, howe
such orbits appear to play no role in the first and sec
interval for experimentally relevant values ofb. More gen-
erally, there is no experimental evidence that periodic or
with N.5 play a role, presumably because either their p
ods are too long and they are damped out by phonon effe
or they have too much cyclotron energy to reach the em
in the experimental parameter range. As they introduce
essentially new physics we will not present a detailed tre
ment of these orbits.

IV. PERIODIC ORBITS IN THE DBM

We now analyze the periodic orbit structure of t
double-barrier model~DBM!. This model will provide a de-
scription of periodic orbits relevant to the experiments
Refs. 10 and 12. A crucial point discussed in Sec. II A a
II B above is that in general for a fixed tilt angle the classi
dynamics of the DBM depends on two dimensionless par
eters: the parameterb52v0B/E already used in analyzing
the SBM, and the parameterg5e0 /eV measuring the ratio
of the injection energy to the voltage drop. Fortunately,
the experiments this second parameter is roug
constant,12,15 g'1.1521.17. Therefore the theory of the pe
riodic orbits ~and ultimately the semiclassical tunnelin
theory! need only be done varyingb with g fixed to the
experimental value. We will focus on this case henceforth
interpreting the results of this section however, it must
borne in mind thatb no longer is the product of three inde
pendent variables;v0 and E are related by the condition o
constantg. The magnetic field, however, is still an indepe
dent variable and thus it is easiest to think of increasingb as
increasing the magnetic field.

Many of the periodic orbits we will discuss below hav
been previously identified by Fromhold and co-workers10 or
Monteiro and Dando.14 What has not been done is to syste
atize all the experimentally relevant orbits and find their
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tervals of existence and stability. This we attempt to do
low.

As previously noted, the theory of periodic orbits in th
DBM is in many respects similar to that of the SBM, b
there are three significant differences. First, orbits can
born or disappear in a manner that violates the generic bi
cation principles for conservative systems since the Poinc´
map for the DBM is nonanalytic on the critical boundary
the SOS~the curve separating initial conditions that w
reach the emitter barrier from those that will not, cf. Se
II E!. The bifurcations that result~which we call cusp bifur-
cations! play a crucial role in the behavior of the short pe
odic orbits in the system. Second, the unperturbed sys
has a more complicated structure as there can exist two
tinct resonant tori corresponding to the same resonance
dition nvc5kvL , one corresponding to helical orbits that d
reach the emitter, and the other corresponding to helical
bits that do not. Third, once the field is tilted, orbits whic
are periodic afterN bounces with the collector may collid
with the emitter any number of times from zero toN. As a
function of b such orbits can change their connectivity wi
the emitter. In fact, it can be shown that any orbit that do
reach the emitter can only exist for a finite interval ofb. We
will now explain these important points in detail.

A. Periodic orbits at u50

First let us assume there exists an$n,k% resonant torus of
the unperturbed system that does not make any collis
with the emitter barrier for a given value ofb. At u50
longitudinal and cyclotron energy decouple and, as the em
ter barrier plays no role, the frequency of the longitudin
motion must be given by Eq.~30! for the SBM. Using this
formula forvL , the resonance conditionnvc5kvL leads to
a condition onb:

b52p
k

n
A«0 /«L. ~54!

Exactly as for the SBM, if such an orbit exists for on
value of the longitudinal energy«L , another such family will
exist at the same total energy but with smaller longitudi
energy, since adding to the cyclotron energy does not cha
vc . From Eq.~54! the new family with smaller«L will exist
at higherb as the magnetic field will have to be increased
keep it in resonance. Asb increases for such families th
orbits will just move further away from the emitter but wi
always exist above the threshold value defined by the m
mum value of«L . Unlike the SBM, however, the maximum
allowed value is not«0, since before all the energy is put int
longitudinal motion the orbit begins to hit the emitter barrie
this happens of course when«L5eV[«0 /g. We will call
orbits that do not reach the emitter ‘‘collector’’ orbits an
those which do ‘‘emitter’’ orbits. Our argument implies th
there exist families of$n,k% helical collector orbits for allb
abovethe thresholdbc52p(k/n)Ag. These orbits are iden
tical to those in the SBM and the only change introduced
the emitter barrier is that the threshold for their creation h
been raised by a factorAg5A«0 /eV.
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Now assume there exists an$n,k% family for a given
value of b that doesreach the emitter barrier. The longitu
dinal frequency of any such orbit is easily calculated to b

vL5
2pvc

b
A«0

«L
S 12A12

eV

«L
D 21

. ~55!

Note the crucial difference here from Eq.~30!: for the emit-
ter orbitsvL is an increasingfunction of «L . Imposing the
resonance condition then leads to the relation

b52p
k

n
A«0

«L
S 12A12

«0

g«L
D 21

, ~56!

which implies thatb is also an increasing function of«L in
the interval of interest. For emitter orbits thesmallestvalue
that«L can take iseV, otherwise they will cease to reach th
emitter, and for this valueb5bc . Therefore, like the collec-
tor families, the emitter$n,k% families also do not exist be
low bc . They are born whenb increases throughbc at the
critical boundary simultaneously with the collector fami
corresponding to the same values of$n,k% ~see Fig. 20!.

When created, the emitter families have nonzero cyc
tron energy~see Fig. 20! and can be continuously deforme
by transferring cyclotron energy to longitudinal energ
moving the family to higher values ofb for fixed total en-
ergy. This can only continue until«L5«0 and all of the
energy is longitudinal, yielding now amaximumallowed
value ofb,

bTO5bc@Ag1Ag21#. ~57!

We denote this value bybTO because at this value the$n,k%
helical emitter family has collapsed to the traversing or
~which exists and always reaches the emitter forg.1). Thus
the scenario atu50 is that two$n,k% families are born at the
critical boundary each timeb increases throughbc(n,k).
The collector family moves outwards in the SOS and ex
for all b.bc , whereas the emitter family moves inwards
the SOS and annihilates with the TO atbTO(n,k) ~see Fig.
21!. The consequence is that each emitter family lives
only a finite interval,bc,b,bTO. By continuity all the
emitter periodic orbits which evolve from these emitter t
~in a manner similar to the SBM! will also live in a finite

FIG. 20. The scaled cyclotron velocity for the resonant tori
function of b at zero tilt angle;g51.2, n51, number of cyclotron

rotations per periodk51. The horizontal lineṽ c50 corresponds to
the traversing orbit. Inset shows the~scaled! period of the corre-
sponding orbits.
-

,
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interval given approximately by this inequality for small ti
angle. To our knowledge this property of the system has
been demonstrated in the previous literature. As only
emitter orbits will play a major role in the semiclassic
theory of the tunneling spectrum~collector orbits make ex-
ponentially small contributions!, the point is of some signifi-
cance.

It follows from this argument that asb increases the col-
lector families evolve by transferring longitudinal energy
cyclotron energy in the manner familiar from the SBM
whereas asb increases the new emitter orbitsgive upcyclo-
tron energy to remain in resonance. To understand this
familiar behavior recall that increasingb may be regarded a
increasingB with all other parameters fixed. AsB increases
the cyclotron frequency increases and the longitudinal
quency will need to increase to maintain the resonance c
dition. As noted already, unlike the collector orbits, for em
ter orbits the longitudinal frequency increases with«L . The
reason for this is that as«L increases the electron travers
the fixed distance to the emitter faster and is more rap
returned to the collector. We will see below that the con
quence of this reversal of the dependence on«L means that
all bifurcations of emitter orbits in the DBM happen in th

s

FIG. 21. A schematic representation of~a! the two resonant tori
of the period-one orbits atu50° and~b! the surviving orbits atu
!1. The arrows in~a! indicate the direction of the evolution of th
resonant tori with the increase ofb at constantg.
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reverse direction~as a function ofb) from the bifurcations of
the corresponding orbits in the SBM.

B. Period-one orbits in the DBM

1. Continuity argument

We now analyze the period-one PO’s of the DBM foru
Þ0. Here we mean period-one orbits with respect to iterat
of the Poincare´ map defined at the collector of the DBM, i.e
the orbits must collide with the collector only once befo
retracing. For zero tilt angle these orbits will be of thr
types: ~1! the collector orbits corresponding to then51,k
51,2, . . . resonances, which do not collide with the emitte
~2! the emitter orbits corresponding to then51,k51,2, . . .
resonances which do reach the emitter;~3! the traversing
orbit, which has zero cyclotron energy and which hence m
reach the emitter forg.1. The TO has the period

TTO5
b

vc
S 12A12

1

g D . ~58!

As in the SBM, the helical families of orbits will genera
pairs of PO’s whenuÞ0 and by continuity, for infinitesima
tilt angle, the orbits arising from emitter families will b
emitter orbits and those arising from collector families w
be collector orbits.

We must now classify periodic orbits not only by th
number of bounces with the collector, but also by the num
of bounces with the emitter. We introduce the generalizat
of our earlier notation:

~1,1!6~k! for the emitter orbits,

~0,1!6~k! for the collector orbits,

where the first number in the parentheses denotes the nu
of collisions with the emitter barrier and the second the nu
ber with the collector barrier per period.k is the integer
defining the interval as in the SBM; the period of the cor
sponding orbit is betweenkTc and (k11)Tc . This notation
is used in Fig. 22.

For infinitesimal tilt angle andb,bc.2p there will ex-
ist only one period-one orbit, the analog of the TO, which
denote as (1,1)1(0). This orbit differs only infinitesimally
from a straight line whenb→0, but gains more cyclotron
energy asb is increased, just as in the SBM.

As b is increased to'bc four new period-one orbits aris
in an infinitesimal interval; these are the two nonmixing o
bits from each of the collector and emittern51,k51 fami-
lies. Due to the breaking of the symmetry between these
orbits in each family, they are created pairwise at sligh
different b values and with slightly different periods. How
ever the corresponding collector and emitter orbits are
born at the sameb value in a cusp bifurcation. The tw
orbits that survive from the period-one collector orbit fam
lies are identical to those already discussed in the SBM, t
are denoted by (0,1)1(0) and (0,1)2(1), because they are
born in different intervals~see Fig. 22! of the period@the
period of the orbit (0,1)1(0) is greater thanTc , while the
period of (0,1)2(1) is less thanTc#. The period-one collecto
orbits must be nonmixing by the simple argument given
discussing the SBM. The period-one emitter orbits coll
n
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twice in each period and so it is less obvious that they m
be nonmixing in their collision with the collector barrie
however, it can be rigorously proved that this must be
case. Therefore, again our continuity argument implies t
only the two emitter orbits withvy50,vx56vc will survive.
The one with period shifted slightly down fromTc will be
denoted (1,1)2(0); the one with period shifted up will be
denoted (1,1)1(1).

Abovebc in the first interval there now exist three perio
one orbits, the (0,1)1(0) orbit that does not reach the emitte
the (1,1)2(0) ‘‘helical’’ emitter orbit, and the (1,1)1(0) ‘‘tra-
versing orbit,’’ which has the shortest period of the three.
in the SBM, foruÞ0 there is no qualitative difference be
tween traversing orbits and helical orbits, since both m
have nonzero cyclotron energy. Asb increases to'bTO @see
Eq. ~58!#, the helical (1,1)2(0) orbit loses cyclotron energy
~as would the corresponding orbits atu50 discussed above!
whereas the (1,1)1(0) orbit gains cyclotron energy. Eventu
ally the two orbits become degenerate and annihilate i
backwards tangent bifurcation, the analog of the annihilat
of the n51,k51 emitter family atu50 ~see Fig. 22!.

At b larger than the value for this TB the (1,1)1(0) orbit
does not exist, and this is apparently in contradiction with
behavior of the TO atu50 which survives unscathe
through the annihilation of the helical family. Moreover, b
continuity, for an infinitesimal tilt angle the analog of th
~normally! isolated TO must survive at all but a discrete s
of values ofb. The resolution of this apparent paradox
that, just as in the SBM, an orbit in the next interval, t
(1,1)1(1), which is the partner of the (1,1)2(1), takes over
the role of the TO at this value ofb; see Fig. 22. The sam
scenario repeats then in thek51 and higher intervals. Note
that in this scenario all period-one emitter orbits only surv
for a finite interval, being born at some threshold value ofb
by cusp bifurcation and disappearing at higherb by back-
wards tangent bifurcation.

The behavior of the period-one orbits for larger tilt ang
differs in one important respect. It becomes more and m
difficult for the (1,1) orbits to reach the emitter barrier and
a result their intervals of existence inb ~which initially fill
the entireb axis! shrink monotonically until they go to zero
at a critical angle that differs for each interval~see Fig. 23!.
The only exception is in the first interval where for suf
ciently small b it is always possible to have a (1,1)1(0)

analogous to the TO of the untilted system. The reason
(1,1)1(0) orbit always exists is that we may regards the lim
b→0 as the limit of vanishing magnetic field, so its tilt ca
have no effect on the orbit, which does have enough ene
to reach the emitter (g.1). However, since all other period
one orbits require finiteb, tilting the field sufficiently for
fixed g can prevent the electron from reaching the emitt
As these intervals shrink the scenario also changes. Ins
of the (1,1)1(k) orbit being created directly by a cusp bifu
cation, it is created in a tangent bifurcation as a (0,1)1(k)

orbit and then evolves at higherb into (1,1)1(k) orbit. This
is the first example of an orbit continuously changing
connectivity with the emitter as a function ofb; these events
also play a role in the theory of the period-two or perio
three orbits, as discussed below.
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FIG. 22. The scaled periodvcT as function ofb and the corresponding bifurcation diagrams for the period-one orbits in the do
barrier model at zero tilt angle. The tilt angle~a! u50.64°, ~b! 14°, and~c! 25°. g51.17. The vertical axis in the bifurcation diagram
represents thex component of the scaled velocity of the electron at the point of collision with the collector barrier.
ts

o
iv
ly

he

he
e

Now we discuss the stability of the period-one orbi
Clearly, the collector (0,1)6 orbits have identical stability
properties as their SBM counterparts. As for the emitter
bits, their stability can also be understood using qualitat
arguments similar to the ones we applied in our SBM ana
sis. Just as in the SBM, in the DBM for zero tilt angle t
.
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e
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traversing orbit is stable for anyb and g except when its
period is either an integer or a half-integer multiple of t
cyclotron periodTc , when it is marginally stable. When th
period takes the valuesT5kTc the corresponding value ofb
is b5bTO(1,k); when T5(k1 1

2 )Tc the correspondingb
values areb5bms(k)[@11(1/2k)#bTO(1,k). Therefore, for
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a small tilt angle the single-bounce orbit which evolved fro
the TO of the untilted system, can become unstable only n
bTO and bms. In particular, the (1,1)1(0) orbit is stable for
small b, but goes unstable and soon restabilizes n
bms(0)[p/(12A121/g). As in the SBM, this instability
for period 'Tc/2 locates the bifurcations involving the im
portant period-two orbits.

Whereas in the SBM the (1)1(0) orbit simply evolves into
a helical orbit whenb@2p, its analog, the (1,1)1(0) annihi-
lates with the (1,1)2(0) orbit nearbTO. Due to the genera
properties of tangent bifurcations, one of these orbits mus
stable, while the other must be unstable. Since the (1,1)1(0)

orbit is a deformation of the stable TO it is the stable one j
before the TB, while the orbit (1,1)2(0) is unstable. This is
illustrated by the plot of the monodromy matrix for the
orbits ~Fig. 24!.

This (1,1)2(0) is worth further consideration because
appears at the critical boundary nearb5bc in a cusp bifur-
cation together with the collector orbit (0,1)1(0). By defini-
tion of the critical boundary a periodic orbit appearing the
has precisely the energy to reach the emitter barrier with z
normal velocity (vz50). If b is increased infinitesimally
abovebc , this periodic orbit ‘‘breaks up’’ into two PO’s
one of which reaches the emitter near the previous poin
contact, the other of which does not~see schematic, Fig. 25!.
The bifurcation diagram for this pair of orbits as a functi
of b will exhibit a cusp atbc . A detailed analysis of cusp
bifurcations is given in Sec. IV B 3 below. Here we simp
note that due to the singularity in the Poincare´ map at the
critical boundary the monodromy matrices defining the s

FIG. 23. The intervals of existence of the period-one ‘‘emitte
orbits shown as shaded areas in the (u,b) plane for ~a! (1,1)1(0)

and~b! (1,1)1(1). Dark and light shading represents existing sta
and unstable periodic orbits, respectively.
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bility of the new orbits cannot be uniquely defined at t
cusp bifurcation. We will show that, therefore, the two orb
need not be born as unstable-stable pairs as in tangent b
cations@this is why we have introduced the new term cu
bifurcation27 ~CB!#. Moreover, one can show that of the tw
orbits born in a CB, the one with the greater number
collisions with the emitter barrier is necessarily unstable
follows that the orbit (1,1)2(0) is unstable immediately afte
it is born, and turns out to be unstable over its entire inter
of existence until it vanishes in the TB with (1,1)1(0).

These principles allow us to understand the behavior
the next interval as well. The emitter orbit (1,1)1(1) is also
born in a cusp bifurcation with the (0,1)2(1) collector orbit
and hence is born unstable. Initially it plays the role of t

FIG. 24. The bifurcation diagram for the period-one orb
(1,1)2(0) and (0,1)1(0) near the cusp bifurcations. The schematic
the top represents the real space projections of the ‘‘cusp’’ o
exactly at the bifurcation~dotted lines! and the orbits produced by
the bifurcation~solid lines!.

FIG. 25. Trace of monodromy matrix of the period-one orbits
the first two intervals atu511°, g51.17. The tangent bifurcations
cusp bifurcations and connectivity transitions are labeled by o
circles, open squares, and open triangles, respectively. Shaded
corresponds to the stable region.
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‘‘other’’ emitter helical orbit. However, nearb5bTO the
orbit (1,1)1(1) loses almost all its cyclotron energy~see Fig.
22! and becomes a recognizable deformation of the TO
the untilted system. By continuity, since away frombTO the
TO was stable, the (1,1)1(1) periodic orbit must restabilize
nearbTO. Its further evolution is similar to that of the firs
interval orbit (1,1)1(0) just discussed. It will bifurcate and
then restabilize nearbms(1) and later annihilate with the
unstable orbit (1,1)2(1) in a tangent bifurcation—see Fig. 24
This scenario is repeated in higher intervals although the
interval of stability@below bms(1)# may disappear. We not
however, that as long as a (1,1)1(k) orbit exists in each in-
terval, it must have a region of stability just before it ann
hilates with the (1,1)2(k) orbit ~which is always unstable!,
although these intervals will shrink with increasing tilt ang
andk.

2. Exact analysis

The derivation of the periods of the period-one emit
orbits in the DBM can be performed using a technique si
lar to the one employed for the description of period-tw
nonmixing orbits in the SBM, since both the emitter a
collector bounces are nonmixing. The calculation is given
Appendix G and yields the following equation:

b25S vCT

2 D 2S 11
b2

g~vcT!2

12 f ~vcT!

12cos2u f ~vcT!
D 2

14sin2u f 2~vcT!

3S 11
b2

16g

1

f ~vcT!@12cos2u f ~vcT!#
D 2

, ~59!

where

f ~x!512
x

4
cotS x

4D . ~60!

This is a quadratic equation forb2 for a givenT; it should
be solved along with condition~G11!, thatvz just before the
collision with the emitter is positive, to determine the phy
cally meaningful roots. Solving Eq.~58! together with the
condition~G11!, one can obtain the dependenceb(T), which
was plotted in Fig. 22 and used to obtain the correspond
bifurcation diagrams. Equation~25! and the condition~G11!
imply that b(T) is not monotonic in each interval@(k
21)Tc,T,kTc , but always has a single maximum. Ther
fore it describestwo different (1,1) orbits, which we alread
identified as the (1,1)6 orbits.

Using Eqs.~59! and~G11!, one can show, that, as for th
period-one orbits in the SBM, for a nonzero tilt angle t
period of the (1,1) orbits cannot be equal to integer multip
of the cyclotron periodkTc . Moreover, the period also ca
not take values too close tokTc . The width of each of these
‘‘forbidden’’ regions in each interval increases~from zero at
u50) with the increase of tilt angle, so that at some critic
angle~which depends on the interval numberk) the ‘‘forbid-
den’’ regions originating fromT5(k21)Tc and T5kTc
merge and as already noted, it becomes impossible for
period-one orbits to reach the emitter in this interval of p
f
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riod. When period-one emitter orbits exist in an interval, w
can calculate their interval of existence inb from Eqs.
~58!,~G11!. The results for the (1,1)1(0) and (1,1)1(1) orbits
are shown in Fig. 23.

One can also calculate the stability properties of the (1
orbits as outlined in Appendix H. The results for the trace
the monodromy matrix for different (1,1) orbits are shown
Fig. 24. The qualitative behavior is as discussed above.
key new feature that emerges is an analytic understandin
the cusp bifurcations at the birth of the (1,1)2 and (0,1)1

orbits.

3. Cusp bifurcations and connectivity transitions

First, we note again thatall relevant emitter orbits are
born in cusp bifurcations at the lowb side of their existence
interval. As shown in Appendix H, the monodromy matr
for the emitter orbit born in a CB involves terms proportion
to the inverse of the velocity at the emitter barrier. Since
the cusp bifurcation the emitter velocity goes to zero,
trace of the monodromy matrix of the corresponding or
will diverge ~see Fig. 24!. Thereforeall emitter orbits are
extremely unstable just after their appearance in a CB~unless
both orbits born in a cusp bifurcation are emitter orbits,
which case the one with greater number of collision with t
emitter barrier will be extremely unstable!. On the other
hand, their companion collector orbits, forb just above the
CB no longer ‘‘feel’’ the emitter barrier and must have st
bility properties as in the SBM, where there is no such
vergence for any values ofb. Therefore the monodromy ma
trix for this orbit asb is reduced to the CB value does n
tend to infinity but tends toward a finite value~see Fig. 24!.
Whether this value is in the stable region or not depends
the value of the tilt angle and ofg. For large tilt angle the
companion collector orbit is typically unstable just above t
CB andtwo unstable orbits are born at the CB, in contrast
the generic behavior at tangent bifurcations.

There is an interesting and important variant on the c
cept of cusp bifurcation. It is possible that orbits may be bo
as collector orbits in a TB, and lose cyclotron energy w
increasingb until at some higherb they reach the emitte
and evolve into emitter orbits. We will refer to these even
asconnectivity transitionssince the orbit changes its conne
tivity to the emitter. However, in this case no new orbit
created at the value ofb at which the emitter is reached, s
this is not a bifurcation point in any sense. Nonetheless,
behavior of the monodromy matrix of this one orbit in th
neighborhood of the connectivity transition is similar to th
near a CB. The Tr@M # tends to a finite value on the lowb
side, whereas it diverges at the highb side. For a not too
small tilt angle this behavior occurs for the (0,1)1(1) and
(1,1)1(1) orbits ~see Fig. 24!. Interestingly enough, the dy
namics does not seem to favor these connectivity chan
although they are allowed. For tilt angles larger than a f
degrees they are typically replaced by a tangent bifurca
and a new cusp bifurcation that ultimately results in the
pearance of an orbit with higher connectivity and the dis
pearance of one with lower connectivity.

C. Period-two orbits

As in the SBM, the most important set of period-two o
bits, for small tilt angles, are those associated with
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period-doubling bifurcations of the~deformed! traversing or-
bit (1,1)1(0) which occurs nearT'Tc/2 ~so that the relevan
period-two orbits haveT'Tc). The scenario for their cre
ation and evolution is in many respects similar to the beh
ior of the helical period-one orbits just described. Foru50 a
pair of emitter and collector families are created at the cr
cal boundary at the thresholdbc(n52,k51)5pAg. The
emitter family loses cyclotron energy with increasingb,
moves inward in the SOS and annihilates with the TO
bTO(2,1)5p(g1Ag22g). The collector family gains cy-
clotron energy with increasingb, moves outward, and exist
for all b.

WhenuÞ0 two orbits survive from each of the collecto
and emitter families. These four orbits are born pairwise
two cusp bifurcations involving degenerate collector a
emitter orbits, which occur at slightly different values ofb.
The two collector orbits involved are identical to the no
mixing (2)1 orbit of the SBM and the mixing (2)2 orbit.
According to our notation, these collector orbits are deno
as (0,2)6. The emitter orbit created in a CB with the no
mixing orbit (0,2)1, which will be referred to as the (2,2)1

orbit ~see Fig. 26!, has the simplest qualitative behavior a
we will discuss it first.

1. (2,2)1 orbits

The period-two emitter orbit, which appears together w
the (0,2)1 orbit, at the cusp bifurcation is degenerate w
(0,2)1 and has, therefore, the same shape. However, as
parameterb is increased, it begins striking the emitter wa
with a nonzero velocity. Since at the point of this collisio
the angle in the (y,z) plane between the electron veloci
and the normal to the barrier isnot 90°, it is amixing colli-
sion. In fact, it can be shown that any orbit in either the SB
or DBM with more than two total collisions must be partial
mixing.

FIG. 26. Examples of the different types of period-two orbits
the DBM, projected onto (x,z) and (y,z) planes:~a! (2,2)2 orbit,
~b! (2,2)1 orbit, ~c! self-retracing (1,2) orbit, and~d! non-self-
retracing (1,2) orbit.
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As a result of the mixing collision with the emitter barrie
this emitter orbit acquires a cusp at the emitter~see Fig. 27!.
Although this (2,2)1 orbit is mixing in a strict sense, it re
mains nonmixing at the ‘‘collector’’ barrier. Since the ma
nitude of the velocity is very low at the emitter collision th
mixing for this orbit remains very weak.

Whereas the (0,2)1 orbit moves away from the emitte
with increasingb in the usual manner, the (2,2)1 orbit trans-
fers more and more energy to longitudinal motion until
‘‘two legs’’ come together and it becomes degenerate w
the (1,1)1 traversing orbit. It is then absorbed in a bac
wards period-doubling bifurcation, causing a change in
stability of the (1,1)1 orbit.

We have already shown by continuity that the (1,1)1 or-
bit must destabilize and restabilize in a short interval wh
its period is'Tc/2. And we have argued that all its bifurca
tions must be backwards, since in the DBM orbits are born
lower b in cusp bifurcations. Therefore this backwards PD
of the emitter (2,2)1 orbit corresponds to one of these st
bility changes. To decide which one, we note that althou
the (2,2)1 orbit must be born unstable because it is the m
connected partner in a cusp bifurcation, it should typically
more stable than other period-two orbits which are mixing
the collector, when the velocity is large. Thus, we expec
to restabilize at higherb and, therefore, to restabilize th
(1,1)1 orbit when the (2,2)1 orbit is absorbed as a stab
period-two orbit in the backwards PDB~see Fig. 28!. The
exact calculation of the monodromy matrix~see Appendix H
for the details! confirms this scenario—see Fig. 29. Furthe
more, increasing the tilt angle does not change the scen
for the (2,2)1 orbit, it only reduces its interval of existence
This orbit is relevant in the first peak-doubling region o
served at small tilt angles in the data of Muller an
co-workers.12

2. (1,2) and (2,2)2 orbits

As just noted above, a collector orbit identical to the m
ing (2)2 orbit of the SBM@the (0,2)2 orbit# is also created
in a cusp bifurcation with an emitter orbit which must ha
similar morphology. The simplest scenario would have t
emitter orbit evolving exactly as did the (2,2)1 orbit, losing
cyclotron energy until it is absorbed by the (1,1)1 in the
other backwards PDB. However, we can immediately
that this simplest scenario is impossible. The mixing colle
tor orbit (0,2)2 with zero emitter collisions per period and a
emitter orbit (2,2)2 with two emitter collisions per period
can never be created in asinglecusp bifurcation.

If it were possible, then at the cusp bifurcation these t
orbits would have zeroz and ycomponents of the velocity a
two different points of collision with the emitter barrier.35

Since the total kinetic energy of the electron must be
same at any collision with the emitter barrier, this means t
the velocities at each of the collisions with the emitter w
will differ only by the sign ofvx . That is possible only for a
zero tilt angle, when the system possesses reflection sym
try.

What must happen instead is that the (0,2)2 is born in a
cusp bifurcation with an orbit of the type (1,2)1 ~see Fig.
26!, which infinitesimally above the CB is connected to t
emitter at one point and not two. For small tilt angle t
reflection symmetry is only weakly broken and the other
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FIG. 27. Surfaces of section, showing the fixed points of (2,2)1, (0,2)1, (2,2)2, and (1,2) orbits forb54.5,g51.17 and the tilt angle
u5 ~a! 11°, ~b! 528°. The top and bottom panels correspond to the surfaces of section at the collector and the emitter barriers, res
~a! One can clearly see one big stable island of the period-one orbit (1,1)1, and stable islands of the (2,2)1 and (0,2)1 orbits. The stable

islands of the (0,2)1 orbit lie at theṽ x[vx /v0 axis at the periphery of the collector surface of section, they are absent at the emitter

The (2,2)1 orbit produces two islands centered on theṽ x axis at the collector barrier and two islands at the emitter barrier. To show
(0,2)1 and (2,2)1 orbits in a single bifurcation diagram it is therefore natural to represent these orbits by their values of thex component
of the scaled velocity at the collector barrier. The fixed points of the generally unstable orbit (2,2)2 are not so easy to see by an~untrained!

eye and are pointed out by the arrows. Both fixed points of (2,2)2 have zeroṽ y at the emitter barrier and nonzeroṽ y at the collector barrier.

Note, that at the collector barrier the (2,2)2 orbit has the same values of thex component of the scaled velocity@sinceṽ x;y and the (2,2)2

orbit strikes the collector wall at the same point#. Therefore, this value is a convenient representation for the (2,2)2 orbits in the bifurcation
diagrams.~b! One can see a relatively large stable island of the (1,1)1 orbit, two islands of the (0,2)2 orbit ~in collector barrier SOS only!
and stable islands of the (1,2) orbit~two islands at the collector barrier surface of section and one island at the emitter barrier SOS!. Just as

for the (2,2)2 orbit, the fixed points of the (1,2) orbits at the collector SOS have exactly the same values ofṽ x , which can therefore be use
as their representation in the bifurcation diagrams.
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of this orbit will be quite close to the emitter, but it may n
touch. Eventually, the creation of this orbit leads to the c
ation of a (2,2)2 orbit ~see Fig. 26!, which is absorbed by the
(1,1)1 in a backwards inverse PDB. However the qualitat
scenario changes several times with increasing tilt angle
may be quite subtle, with no less than four regimes which
relevant to the recent experiments. Since the orbits invol
control much of the peak-doubling behavior at larger
angles, we will describe these scenarios in some detail h
-

nd
re
d

t
re.

Regime one(u, û1). This regime is described complete
by continuity arguments once it is understood that the mix
(0,2)2 collector orbit must pair with a (1,2)1 orbit. As b
increases above the thresholdbc'pAg(112k) ~where k
50,1, . . . is theinterval number! the (0,2)2 and (1,2)1 or-
bit are created in a CB. In a very small interval ofb this
(1,2)1 orbit attaches its other leg to the emitter and becom
a (2,2)2 orbit in a connectivity transition of the type de
scribed in Sec. IV B 3 above. The (1,2)1 orbit must have
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FIG. 28. The bifurcation diagram of the (2,2)1 and (0,2)1 or-
bits in the DBM. The vertical axis representsx component of the
scaled velocity of the electron at the point of collision with t
collector barrier@see also Fig. 27~a!# . The tilt angleu515°, and
g51.17. The tangent bifurcations, cusp bifurcations, and per
doubling bifurcation are labeled by open circles, open squares,
an open star, respectively.

FIG. 29. The trace of monodromy matrix for different perio
two orbits of the first interval at~a! u517° and~b! u528°.
been born unstable at the CB and since the (0,2)2 orbit it
creates is mixing at the collector we expect it to remain u
stable as it loses cyclotron energy until it is absorbed in
backwards inverse PDB with the (1,1)1 orbit. The (1,1)1

then becomes unstable and is shortly after restabilized b
backwards PDB with the (2,2)2 orbit. All steps are consis-
tent with the continuity argument fromu50. The bifurcation
diagram in Figs. 30 illustrates the behavior in this regime

The (1,1)1 continues its evolution until it vanishes in th
backwards tangent bifurcation described above and nei
creates nor destroys any further period-two emitter orb
However, there is a new period-two orbit created by t
(0,1)1 collector orbit. It behaves just as in the SBM and go
unstable creating a (0,2)* orbit that is the exact analog of th
(2)* orbit of the SBM. However, this only occurs at largeb
values and the orbit never reaches the emitter once it is
ated, so it is not relevant to the experiments at small
angle. We mention it because it will become very relevan
large tilt angles.

Regime two( û1,u, û2). The behavior in this regime is
as follows. Asb increases, as before, the first event is t
creation of the (0,2)2 collector orbit and the (1,2)1 orbit via
CB. This (1,2)1 orbit evolves for some interval inb without
becoming a (2,2)2 and in this interval a second CB occurs
which a distinct orbit (1,2)2 and a (2,2)2 are created—see
Fig. 31~a! ~this can happen because their connectivity o
differs by one!. At slightly higher b still the two orbits
(1,2)1, (1,2)2 annihilate in a backwards TB and a yet high
b the (2,2)2 orbit is absorbed by the traversing orbit in th
now-familiar PDB. The net effect of the creation of this se
ond orbit (1,2)2 is to eliminate the connectivity transitio

-
nd

FIG. 30. The bifurcation diagram of the (2,2)2, (1,2), and
(0,2)2 orbits in the DBM in ‘‘regime one.’’ The vertical axis rep
resentsy ~top panel! and x ~bottom panels! components of the
scaled velocity of the electron at the point of collision with th
collector barrier@see Fig. 27~b!#; g51.17; the tilt angleu55°.
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FIG. 31. The bifurcation diagrams of the (2,2)2, (1,2), and (0,2)2 orbits in the DBM in (b,vx /v0) coordinates@see Fig. 27~b!# in
regimes~a! two, @~b!,~c!# three, and~d! four; g51.17; the tilt angleu5 ~a! 20°, ~b! 27°, ~c! 29°, and~d! 30°.
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directly from (1,2)1 to (2,2)2. The dynamics seems to rap
idly eliminate these transitions even though they are
strictly forbidden; preferring to replace one connectiv
transition with a CB and TB which results in the same fin
state. The total number of (1,2) orbits is increased to two
this change.

Regime three( û2,u, û3). As already mentioned, a fur
ther period-two orbit, (0,2)* is created by the PDB of the
(0,1)1 collector orbit, exactly as the (2)* orbit is created in
the SBM. As tilt angle is increased this PDB moves to low
and lowerb until at the valueû2, it coincides with the cusp
bifurcation that creates the (1,1)2 and (0,1)1 orbits. For
largeru a period-two emitter orbit of type (1,2) is created
this CB. Thus in a somewhat mysterious manner this CB
‘‘point of accumulation’’ for the creation of higher perio
orbits ~a similar thing happens for period-three here as we!.
We may call this orbit (1,2)

*
1 since it is similar in many

ways to the (2)* orbit of the SBM. For example it has n
analog in the untilted system. Just above the critical angleû2

this (1,2)
*
1 orbit is barely reaching the emitter and it rapid

detaches for higherb and becomes a collector orbit. Asu is
increased, very quickly this connectivity transition is aga
replaced by a combination of CB and TB, where in this ca
the CB involves the (0,2)* collector orbit and a secon
(1,2)* orbit, (1,2)

*
2 . The orbits (1,2)

*
1 ,(1,2)

*
2 then annihi-

late at higherb in tangent bifurcation —see Figs. 31~b,c!. So
except for very near the critical angleû2, there are now a
total of four (1,2) orbits associated with the first interv
These are the two (1,2)

*
6 orbits just mentioned, which ar

connected with the cusp bifurcation of the (0,1)1,(1,1)2 or-
bits, and the two (1,2)6 orbits that can be associated with th
t

l
y

r

t
a

e

destabilizing PDB of the (1,1)1 traversing orbit. Therefore
although the scenario is substantially more complicated t
in the SBM, the bifurcations of the period-one orbits in t
first interval determine all the relevant period-two orbits.

For most of this interval the two (1,2)6 orbits exist at
lower b than the two (1,2)

*
6 orbits. However, as the nex

critical angleû3 is approached the intervals of existence
these pairs of orbits begin to overlap and their associa
fixed point move together@see Fig. 31~c!#. The final act is
about to take place.

Regime four(u. û3). Recall that in the SBM the differen
branches of the (2)* and (2)2 orbits linked up above the
critical angleu†. In that case the link was established by t
merging of the PDB’s at which these orbits were crea
from the traversing orbit. In the DBM a similar connectio
now occurs for the (1,2)

*
1 and (1,2)6 orbits via an ‘‘ex-

change of partners’’ bifurcation~note, that we already en
countered this bifurcation in the SBM—see the descript
of three-bounce orbits!. The (1,2)1 and (1,2)

*
2 orbits are

both created at cusp bifurcations with collector orbits@which
are identical to the (2)2,(2)* orbits of the SBM# and are
annihilated at tangent bifurcations with their partne
(1,2)2,(1,2)

*
1 . At a critical angleû3 the (1,2)1 and (1,2)

*
2

orbits exchange partners. Above this angle, the (1,2)1 orbit
born in CB with the (0,2)2 annihilates in a TB with the
(1,2)

*
2 orbit born in a CB with the (0,2)* ; whereas the

(1,2)2 orbit born in a CB with the~one and only! (2,2)2

orbit now annihilates with the (1,2)
*
1 orbit born at the CB of

the period-one orbits—see Fig. 31~d!.
In the experiments of Ref. 12 one of the most puzzli

features of the observed peak doubling is that a large reg
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of peak-doubling is seen36 to separate aroundu.30°. It is
now clear that this reseparation is initiated by the ‘‘exchan
of partners’’ bifurcation described above. This will be dem
onstrated quantitatively using the semiclassical tunne
formula ~1!.16

After the ‘‘exchange of partners’’ transition the (1,2)1

orbit exists for a very large interval ofb and has relatively
low cyclotron energy. Thus it plays a dominant role in t
tunneling spectrum in this interval ofb. The importance of
this orbit has been emphasized in work of Fromhold.10

In contrast, the other pair of orbits, (1,2)2,(1,2)
*
1 , de-

crease their interval of existence because the PDB and C
which they are connected move together.

In Fig. 29 we show the behavior of the trace of the mon
dromy matrix for different period-two orbits. Note that th
orbit (1,2)2 remains near marginal stability in the who
interval of its existence. This is an unusual dynamical pr
erty, not shared by the other period-two orbits in its fami
nor by typical unstable orbits, e.g., in chaotic billiards. It
now well known that unstable periodic orbits that are clo
to stability are most likely to generate nonergodic quant
states concentrated in real and phase space along these
~‘‘scarred wave functions’’!.37–39 Therefore orbits such a
the (1,2)2, which are ‘‘pinned’’ near marginal stability
while the classical parameters of the system are varied,
generate many scars of the same orbit. We have arg
elsewhere24 that this special dynamical property of the tilte
well explains the existence of the long sequence of w
functions scarred by the same orbit found numerically11

Only certain orbits in each family can participate in th
anomalous scarring; we will point out examples for t
period-three and period-five orbits below.

To summarize the complicated story of the period-t
orbits: For small tilt angles the important orbits are the (2
orbits we have denoted as (2,2)6 orbits. As tilt angle in-
creases the importance of (1,2) orbits increases and eve
ally they become the dominant period-two orbits in the fi
interval. Since higher intervals correspond to greater chao
ity, they become important more quickly in the second int
val. These (1,2) orbits are created in a complicated bifur
tion tree that connects to a period-doubling bifurcation of
period-one traversing orbit, as well as cusp bifurcations w
various period-one and period-two collector orbits. It is ve
difficult to discern these relationships from simple obser
tions of the SOS as many of these orbits are born hig
unstable in cusp bifurcations and certain of the transiti
described occur over very small angular intervals.

D. Period-three orbits

All of the qualitative differences between the periodic o
bit theory of the SBM and that of the DBM already ha
entered into the description of the period-one and two orb
However, peak-tripling regions have been clearly obser
in experimental tunneling spectra, indicating that the beh
ior of period-three orbits is relevant to these experimen
Moreover, there has been a recent Comment questioning
interpretation proposed for these peak-tripling regions22,23 in
Ref. 12, where they were attributed to trifurcations of t
traversing orbit. Since we are able to reach a complete
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derstanding of these orbits based on the principles use
discussing the period-one and two orbits, we will brie
summarize their properties.

As for the period-two orbits, for small tilt angles the ma
period-three orbits are those related to the resonances o
traversing orbit. When the tilt angle is exactly zero, the t
versing orbit hastwo 1:3, resonances in each interval, whe
its period is equal to (3k11)Tc/3 and 2(3k11)Tc/3, re-
spectively. The behavior near each of these resonance
essentially the same for small tilt angles, so we just cons
the first one. First, an emitter and collector family is crea
at the critical boundary atbc1,b1. The emitter family
moves inwards in the SOS and collapses to the TO at re
nance. When the field is tilted only two period-three orb
survive from each emitter family and they are now created
cusp bifurcations with the corresponding collector families
slightly different values ofb.

As with the period-two orbits in the DBM, these emitte
orbits will move inwards in the SOS until they annihilat
The one difference in their behavior has already been no
in the discussion of of the SBM~see Sec. III E!. Because
period-three orbits generically are not born or absorbed
bifurcations with a period-one orbit, these two orbits cann
disappear precisely on resonance with the TO. Instead on
them ~the unstable one! passes through the fixed point ass
ciated with the (1,1)1(k) traversing orbit in a touch-and-g
bifurcation and then annihilates with the other in a backw
tangent bifurcation. For all tilt angles the interval betwe
the TAG bifurcation and the TB is negligibly small, and s
practically speaking it is as if these two orbits vanish in
‘‘backwards trifurcation.’’

Again, as with the period-two orbits, for finite tilt angl
the emitter orbits cannot be created as (3,3) orbits at
initial cusp bifurcation. Therefore the two emitter orbits ju
described are created in the form of a (1,3) and a (2,3) or
These orbits are the analogs of the period-two (1,2) orb
but now there are two different types of orbits with less th
the maximum (3,3) connectivity to the emitter. Iny-z pro-
jection the (3,3) orbits each have a mixing collision po
~where two collisions occur! and a nonmixing collision point
~where only one collision occurs, see Fig. 32.! The (1,3)
orbits correspond to detaching the orbit at the mixing co
sion point, the (2,3) orbits correspond to detaching it at
nonmixing collision point. As noted, both occur for eac
resonance.

For small tilt angles the (1,3) and (2,3) orbits created
these cusp bifurcations evolve by connectivity transitio
into the stable and unstable (3,3) orbits which participate
the TAG/TB behavior already described. At higher t
angles, as for the period-two orbits, the connectivity tran
tions are replaced by the appearance of a new (1,3) and (
orbit that through a combination of CB and TB leads to t
same final state. In the regime of small tilt angle there are
period-three orbits created in the neighborhood of each re
nance: two collector orbits, a (1,3), a (2,3), and two (3
orbits. For large tilt angles there areeightperiod-three orbits
due to the new (1,3) and (2,3) orbits that arise to replace
connectivity transitions~see Fig. 33!. The bifurcation dia-
grams of Fig. 33 summarize the behavior of the family
period-three orbits related to the first resonance; qualitativ
the same behavior is observed at the second resonanc
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well. In Fig. 34 we show the behavior of the trace of t
monodromy matrix for these orbits. Note, that as for t
period-two orbits, there is one orbit which, although exists
a substantial interval, does not become too unstable@the orbit
(1,3)2# and is therefore expected to produce strong scar

The (1,3) and (2,3) orbits in each family appear at low
magnetic field than the resonance value, and evolve ei
directly or indirectly into the (3,3) orbits. One of these orb
has been identified previously by Fromhold a
co-workers21,22 in connection with peak tripling. We hav
recently shown that this orbit satisfies the same criteria
generating strong scars in the quantum wave functions
does the period-two orbit discussed above.24 We will analyze
the relation of the entire family to the experimental obser
tions elsewhere. We simply point out here that each fam
of eight period-three orbits is connected to a period-th
resonance through bifurcation processes, and in the sch
presented in this paper they arise as a natural consequen
that resonance.

As noted, for small tilt angles both resonances betw
the period-three and period-one orbits in the first interval
similar, with the creation of six or eight period-three orbi
four of which are related by continuity to tori of the unpe
turbed system. As with the period-two orbits, there is anot
resonance corresponding toT'3Tc that occurs in the first
interval, but initially for very highb. This resonances wil
give rise to (1,3) and (2,3) orbits analogous to the (1,2*
period-two orbits. For small tilt angles they are created n
the (0,1) collector orbit and do not reach the emitter,
happened also for the (1,2)* . Just as for that case, as t
angle is increased the resonance moves ‘‘down’’ to
period-one cusp bifurcation and now gives rise to emi
orbits. These emitter orbits then evolve similarly to t
(1,2)* orbits with exchange of partner bifurcations, e
However, the periods of these orbits (T.2Tc) apparently

FIG. 32. Examples of the different types of period-three orb
in the DBM, projected onto (y,z) planes:~a! (3,3) orbit, ~b! (2,3)
orbit, ~c! (1,3) orbit.
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are too long for them to be resolved as resonance peak
the experimental data of Ref. 12.

Higher period orbits also appear in families in connec
bifurcation sequences which begin with collector orbits a
end with fully connected emitter orbits which are annihilat
at resonances with the TO. The principles and analytic re
tions we have derived can be used to develop a quantita
theory of such orbits. We have done this elsewhere24 for the
case of a period-five orbit of the (1,5) topology, which
expected to cause anomalously strong scarring. Here we
strict ourselves to the relevant orbits of the DBM with pe
ods less than four, their properties are summarized in Ta
II.

V. SUMMARY AND CONCLUSIONS

We have developed a complete qualitative and quan
tive theory of the periodic orbits relevant to the magnetotu
neling spectra of quantum wells in tilted magnetic field.

First we introduced two model Hamiltonians and show
how to scale the variables so that only one or two dim
sionless parametersb;(b,g) describe the classical dynamic
at fixedu. As g5e0 /eV is approximately constant in exper
ments, the dependences on magnetic field, voltage and in
tion energy are all summarized by the behavior of the Po

s

FIG. 33. The bifurcation diagrams of the period-three orbits
the DBM, atg51.17,u5 ~a! 11°, ~b! 38°.
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carévelocity map as a function of the variablesb,u.
The theory of the periodic orbits was first developed

the single-barrier model, which elucidates many of the qu
tative features of the system. In particular, the SBM d
scribes a standard KAM transition to chaos as a function
tilt angle. The period-one orbit with the smallest cyclotr
energy~the traversing orbit! plays a fundamental role in th
transition, with the relevant periodic orbits appeari
through the bifurcations of this orbit. These bifurcations f
low the known bifurcation rules for generic~2D! conserva-
tive maps. However, the detailed scenario for the bifur
tions evolves with tilt angle in a complicated manner, whi
nonetheless can be understood using continuity argume
Exact analytic expressions for the period and stability
most of the relevant orbits were obtained for all parame
values, something that has not been possible for other ex
mentally studied chaotic quantum systems. We note ag
that the SBM could be realized in a practical double-bar
structure in which the band profiles were chosen to red
the emitter energy appropriately.

In generalizing the theory to the double-barrier model t
is relevant to the present generation of experiments we
covered several new features of the dynamics. Perhaps
interesting was the discovery thatall relevant orbits~except
the traversing orbit! are created in a new kind of bifurcation
called a cusp bifurcation, which can violate generic bifurc
tion rules due to the discontinuity in the Poincare´ map on the
curve separating initial conditions that reach the emitter fr
those that do not. These orbits are created in families be
the value ofb at which resonances with the traversing or
occur. They only exist for a finite interval ofb ~or magnetic
field! and then annihilate in backwards bifurcations with t
traversing orbit or in tangent bifurcations. In a given fam
of period-N orbits (N collisions with the collector per pe

FIG. 34. The trace of monodromy matrix for different perio
three orbits related to the first 1:3 resonance of the traversing o
(1,1)1(0) at u517°.
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riod! there will exist orbits with 0,1, . . .N emitter collisions,
connected together by one or more bifurcation ‘‘trees
Typically, several orbits in a given family will be relevan
for understanding the magnetotunneling spectra, with th
relative importance changing as a function of tilt angle.

Having determined the periods and stability of all the o
bits that are short enough to resolve in the experimental
neling spectra, we can now calculate the tunnel current se
classically using Eq.~1! from Ref. 16 above and compare t
experiment. We have reported initial results of this semicl
sical theory in comparison to the experiments of Mulleret al.
elsewhere.16 Many features of the complicated evolution
the observed spectra with increasing tilt angle find a natu
explanation in this approach. The ability to develop a se
classical theory in essentially analytic form makes this s
tem unique among the few quantum systems which h
been studied experimentally in the transition regime
chaos.
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APPENDIX A: THE MONODROMY MATRIX
FOR THE SINGLE-BOUNCE PERIODIC ORBITS

In this appendix we derive the expressions for the components and the trace of the monodromy matrix for the pe
orbits in the single-barrier model. By definition, the monodromy matrixM5(mi j ) of a period-one orbit is the matrix, which
represents the linearized Poincare´ map, calculated at the position of the single-bounce periodic orbit (ṽ x* , ṽ x* ) in the Poincare´
surface of section:

Fx~ ṽ x* 1d ṽ x , ṽ x* 1d ṽ x!5 ṽ x* 1m11d ṽ x1m12d ṽ y1O„~d ṽ x!
2 ,~d ṽ y!2 ,~d ṽ x!~d ṽ y!…,

Fy~ ṽ x* 1d ṽ x , ṽ x* 1d ṽ x!5 ṽ y* 1m21d ṽ x1m22d ṽ y1O„~d ṽ x!
2 ,~d ṽ y!2 ,~d ṽ x!~d ṽ y!…. ~A1!

The monodromy matrixmi j therefore relates to each other the deviationd ṽ from the location of the periodic orbit after on
iteration of the Poincare´ map to the initial deviationd ṽ0 in the limit ud ṽu→0:

S d ṽ x

d ṽ y
D 5S m11 m12

m21 m22
D S ~d ṽ x!0

~d ṽ y!0
D 1O~d ṽ 0

2!. ~A2!

Expanding the Poincare´ map ~14! in d ṽ, we obtain

Fx~ ṽ x* 1d ṽ x , ṽ x* 1d ṽ x!5 ṽ x* 1dTFsinuvcT*

b
cos~vcT* !2S ṽ x* 1

2sinu

b D sin~vcT* !G1~d ṽ x!0S cos~vcT* !

2
sinub ṽ x*

vcT*
sin~vcT* !D 2~d ṽ y!0cosusin~vcT* !1O„~d ṽ x!0

2 ,~d ṽ y!0
2 ,~d ṽ x!0~d ṽ y!0…, ~A3!

Fy~ ṽ x* 1d ṽ x , ṽ x* 1d ṽ x!5 ṽ y* 1vcdTcosuF S ṽ x* 1
2sinu

b D cos~vcT* !1sinuA12~ ṽ x* !2sin~vcT* !2
2sinu

b G
1~d ṽ x!0cosuS sin~vcT* !2

ṽ x* sinu

A12~ ṽ x* !2
@12cos~vcT* !# D 1~d ṽ y!0@cos2ucos~vcT* !1sin2u#

1O„~d ṽ x!0
2 ,~d ṽ y!0

2 ,~d ṽ x!0~d ṽ y!0…, ~A4!

where the parameterdT is the difference between the time interval to the next collision of the electron with the ba
T(b,u; ṽ ) and the period of the single-bounce periodic orbitT* :

T~b,u; ṽ !5T* ~b,u!1dT. ~A5!

To obtain the linearization of the Poincare´ map in terms of the velocity deviations, we therefore need to calculate
expansion ofdT in (d ṽ x)0 and (d ṽ y)0 up to linear order. This result can be obtained from Eq.~16!, which relates the scaled
in-plane components of the velocity of the electron (ṽ x , ṽ y) at the point of collision with the barrier to the time intervalT to
the next collision. Substituting the expression~A5! into Eq. ~16!, we obtain

vcdT52

sinu@12cos~vcT* !#1b ṽ x* S cos2u1sin2u
sin~vcT* !

vcT*
D

vcT*

b
@cos2u2sin2ucos~vcT* !#1sinusin~vcT* !S ṽ x* 1

2sinu

b D ~d ṽ x!0

1sinucosu
vcT* 2sin~vcT!

vcT*

b
@cos2u2sin2ucos~vcT* !#1sinusin~vcT* !S ṽ x* 1

2sinu

b D
3~d ṽ y!01O„~d ṽ x!0

2 ,~d ṽ y!0
2 ,~d ṽ x!0~d ṽ y!0…. ~A6!



57 9841THEORY OF THE PERIODIC ORBITS OF A CHAOTIC . . .
Substituting Eq.~A6! into Eqs.~A3!,~A4! and using Eq.~37!, the monodromy matrix, we obtain

m115sin2u1cos2ucos~vcT* !22sin2ucos2uS 12
vcT*

tan~vcT* !
D S 12

sin~vcT* !

vcT*
D ,

m1252cosu@sin2uvcT* 1cos2usin~vcT* !#,

m215cosusin~vcT* !1
4sin2ucosu

vcT* S 12

vcT*

2

tanS vcT*

2 D D
3F 12cos~vcT* !2S 12

vcT*

2

tanS vcT*

2 D D S cos2u1sin2u
sin~vcT* !

vcT*
D G ,

m225m11, ~A7!

and the trace of the monodromy matrix is therefore

Tr~M !52m11. ~A8!
ri
fo

bi
l

le
s

-

he

le

e

eri-
For the analysis of the stability of the single-bounce pe
odic orbits it is convenient to represent the expression
Tr(M ) as a sum of22 ~which is the critical value of the
trace of the monodromy matrix, when the periodic orbit
furcates and loses stability!, and an additional term. A trivia
rearrangement of terms yields

Tr~M !52214cos4~u!„tan2~u!1~vcT* /2!cot~vcT* /2!…

3@ tan2~u!1sin~vcT* !/~vcT* !#, ~A9!

which is exactly Eq.~43!.

APPENDIX B: PERIOD-DOUBLING BIFURCATIONS
OF SINGLE-BOUNCE ORBITS AND THE SCALING

OF THE POINCARÉ MAP

In this appendix we consider the evolution of the sing
bounce orbits (1)1(k), which appear in tangent bifurcation
together with the unstable orbits (1)2(k). As follows from
Eqs. ~43! and Eq.~39!, immediately after the tangent bifur
cation all (1)1(k) orbits are stable@22,Tr(M )<2—see
Fig. 8#.

At b5bb1
(k) , where

bb1
~k!5F„sinu,ik~2tan2u!…; ~B1!

the functionF is defined in Eq.~41! and ik(a) is the kth
positive root of the equation

i

tani
5a, ~B2!

the trace of the corresponding monodromy matrix reac
the value22, and the orbit (1)1(k) goes unstable via a
period-doubling bifurcation. At that moment a new stab
-
r

-

-

s

two-bounce periodic orbit with the period exactly twice th
period of (1)1(k) is born in the neighborhood.

However, althoughall one-bounce periodic orbits (1)1(k)

(k50, . . . ,̀ ) show the period-doubling bifurcation atb
5bb1

(k) , the further evolution of the (1)1(k) periodic orbits
depends onu andk and is qualitatively different foru,uk

†

andu>uk
† , where

uk
†5arctan~A2sin~jk!/jk! ~B3!

and jk is the (k11)th positive root of the equation tan(j)
5j.

Note, that since critical angleuk
† is a monotonically de-

creasing function ofk for a fixed value of the tilt angleu, the
inequality u,uk

† is equivalent to the conditionk,kmin(u),
where the integerkmin(u) is the smallest integer value ofk,
for which the inequalityuk

†,u still holds. kmin(u) is a de-
creasing function ofu, it diverges as integer(1/u) at u→0,
andkmin(u)50 for u.u0. The regimeu,uk

† corresponds to
k<kmin(u), and u.uk

† holds for k>kmin(u) ~hence an for
arbitraryu at sufficiently highb the system is in the regime
u.uk

†).
First, we consider the casek,kmin ~which is nongeneric

in a sense that it corresponds to afinite part of an infinite
sequencek50, . . . ,̀ ). At b5bb2

(k) , where

bb2
~k!5F„sinu,`~2tan2u!… ~B4!

and`n(a) is thenth positive root of the equation

siǹ

`
5a; ~B5!

the trace of the monodromy matrix of the one-bounce p
odic orbit (1)1(k) again passes through the value22 ~see
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Fig. 8!. At this point, the orbit (1)1(k) restabilizes via a
period-doubling bifurcation. In this bifurcation, the perio
one orbit (1)1(k) can either ‘‘emit’’ an unstable two-bounc
orbit or absorb a stable two-bounce orbit. A detailed desc
tion of this behavior is given in Sec. III D, where we analy
the properties of the two-bounce orbits.

As follows from the Eqs.~42! and ~B1!, for a fixed tilt
angleu the intervals of stability of the single-bounce orb
(1)1(k) at largek scale as 1/k. If we introduce an effective
‘‘local’’ parameterb l such that

b l 5k@b2p~2k11!#, ~B6!

then in the limit k@1 the values of this local paramete
corresponding to the bifurcations of the single-bounce or
do not depend onk. This property gives a hint about th
existence of a universal limiting behavior of the Poinca´
map in the regimek@1. Also, using Eqs.~B1!,~B4! together
with Eq. ~39!, one can show that fork@1 the ‘‘nontrivial’’
part of the evolution of the single-bounce orbit (1)1(k) takes
place in the vicinity of the origin of the surface of section,
that the ‘‘universality’’ of the behavior of the Poincare´ map
is expected to show up forṽ !1.

Introducing the rescaled velocity

vl 5S ṽ x

k
,
ṽ y

k2 D ~B7!

and substituting the expressions ofb and ṽ in terms of the
local variablesb l andvl into the exact Poincare´ map ~14!,
in the leading order in 1/k we obtain the following mapping

~vl !n115Fl „~vl !n ;b l …, ~B8!

where

~F l !x5a001a10~v l !x1a10~v l !x1a20~v l !x
21a01~v l !y

1OS 1

kD ,

~F l !y5b001b10~v l !x1b10~v l !x1b20~v l !x
21b30~v l !x

3

1b40~v l !x
41b01~v l !y1b02~v l !y

21b11~v l !x~v l !y

1b21~v l !x
2~v l !y1OS 1

kD , ~B9!

and

a0052cos2usinuS b l 1
2

p D ,

a1052cos22u,

a205pcos2usinu,

a01522psin2ucosu,

b005sin2u
12cos4u

2p
2

sin2ucos2u

p2
2b l

2 2sin2ucos2u

4
,

-

ts

b105
2

p
cosusin2u~322sin2u!2b l cos2ucos3u,

b205sin2u~cos4u2sin2u1 1
2 !,

b305pcos3ucos2u,

b405
p2cos4usin2u

4
,

b0152cos2u2
pb l

2
sin22ucos2u,

b0252
p2

4
sin32u,

b1152
p

2
sin4ucosu,

b215
p2

2
sin22ucos2u.

In Fig. 35 we compare the Poincare´ surfaces of section o
the mapping~B8! with Poincare´ surfaces of section of the
exact map~14!, and an excellent agreement is found.

APPENDIX C: THE MONODROMY MATRIX
FOR A MANY-BOUNCE ORBIT IN SBM

To obtain the monodromy matrix for the period-one o
bits, we used the nonmixing property of the single-boun
periodic orbits. Therefore, it may seem that an analyti
expression for the trace of the monodromy matrix may
obtained only for the simplest nonmixing orbits. However
is not the case. The nonmixing property substantially sim

FIG. 35. Comparison of the SOS for the limiting mapping~B8!
~b,d! with the ones of the exact Poincare´ map ~a,c!. The tilt angle
u515°,b local50.2 ~a,b! and 0.5~c,d!. The SOS of the exact map i
obtained fork520.
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fies the calculation of the monodromy matrix, but is not ne
essary for an analytical description of the stability, as sho
in the present appendix.

Consider a general~mixing! periodic orbit withn colli-
sions with the barrier per period. Let ṽk

[@( ṽ x)k ,( ṽ y)k ,( ṽ z)k# and tk be, respectively, the scale
velocity immediatelyafter the kth collision and the time in-
terval fromkth to (k11) th collision. Once the values ofṽk
and tk are known, one can linearize the Poincare´ map near
the point„( ṽ x)k ,( ṽ y)k…:

~d ṽ x!k115~Mk!11~d ṽ x!k1~Mk!12~d ṽ y!k ,

~d ṽ y!k115~Mk!21~d ṽ x!k1~Mk!22~d ṽ y!k , ~C1!

whered ṽk andd ṽk11 are the deviations of the velocity from
ṽk and fromṽk11, respectively, and the matrixMk is defined
as follows:

Mk5S ]Fx~ ṽ x , ṽ y!

] ṽ x
U

ṽ5 ṽk

]Fx~ ṽ x , ṽ y!

] ṽ y
U

ṽ5 ṽk

]Fy~ ṽ x , ṽ y!

] ṽ x
U

ṽ5 ṽk

]Fy~ ṽ x , ṽ y!

] ṽ y
U

ṽ5 ṽk

D .

~C2!

Using the definition of the functionsFx ,Fy @Eq. ~14!#,
we obtain the following expressions for the components
the matrixMk :

~Mk!115cos~vctk!2
~ ṽ x!ksinusin~vctk!

~ ṽ z!k

1k1tk t1 ,

~Mk!1252cosusin~vctk!2
~ ṽ y!ksinusin~vctk!

~ ṽ z!k

1k1tk t2 ,

~Mk!215cosusin~vctk!2
~ ṽ y!ksinucosu@12cos~vctk!#

~ ṽ z!k

1k2tk t2 ,

~Mk!225cos2ucos~vctk!1sin2u

2
~ ṽ y!ksinucosu@12cos~vctk!#

~ ṽ z!k

1k2tk t2 ,

~C3!

where

k1t5~ ṽ z!ksinucos~vctk!2
2sinusin~vctk!

b
2~ ṽ x!ksin~vctk!

2~ ṽ y!kcosucos~vctk!,

k2t5~ ṽ z!ksinucosusin~vctk!2
2sinucosu@12cos~vctk!#

b

1~ ṽ x!kcosucos~vctk!2~ ṽ y!kcos2usin~vctk!,
-
n

f

k t152S sinu@12cos~vctk!#

1
~ ṽ x!k@vctkcos2u1sin2usin~vctk!#

~ ṽ z!k
D §k

21 ,

k t25S sinucosu@ tk2sin~vctk!#

2
~ ṽ y!k@cos2u1sin2usin~vctk!#

~ ṽ z!k
D §k

21 ,

§k5sinusin~vctk!S ~ ṽ x!k1
2sinu

b D
1

vctk@cos2u2sin2ucos~vctk!#

b
.

The matrixMk relates the deviations of the velocity from
the periodic orbit after two successive iterations of the Po
carémap, and is, therefore, directly connected to the mo
dromy matrix. The monodromy matrix of a period-n orbit
relates the velocity deviation after the first collision to t
velocity deviation after thenth collision, and therefore can
be obtained as

M5Pk51
n Mk . ~C4!

The analytical expressions for the components of the mo
dromy matrix~C4! and ~C3! are the final results of this ap
pendix.

APPENDIX D: PERIODS OF NONMIXING
TWO-BOUNCE ORBITS

As in the case of single-bounce orbits, the derivation
the periods of the two-bounce periodic orbits is most ea
performed in the ‘‘drifting’’ coordinate system (x9,y9,z9),
which was defined in Eq.~36!. In this coordinate system, th
electron moves under the action of electric and magn
fields, which areboth parallel to thez9 axis: E5Ecosuẑ9,
B5Bẑ9. An immediate consequence of this fact is that in th
coordinate system the kinetic energy of the electron at
point of collision depends on the corresponding value ofz9:

m* v2

2 U
z
19
2

m* v2

2 U
z
29
52eEcosu~z192z29!. ~D1!

Projected onto the plane (x9,y9), a two-bounce periodic
orbit forms a repeating pattern of two arcs of two differe
circles, as shown in Fig. 36. Each ‘‘kink’’ in the projectio
of the trajectory corresponds to a collision with the barri
when the direction of the electron velocity abruptly chang
The radius of each circle is related to the value of the cyc
tron velocity:Rc5vc /vc . If the periodic orbit is nonmixing,
then the cyclotron velocity remains unchanged and
circles have equal radii—see Fig. 36~b!.

Another consequence of the nonmixing property is that
the successive collisions of the electron with the barrier
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separated by equal time intervals, so that the trajectory of
electron is symmetric under mirror reflection around a
axis, parallel to theŷ9 and passing through any of the coll
sion points. If it were not true, then the collisions wou
necessarily have to change theabsolute valueof they9 com-
ponent of the velocity. Since thex9 component of the veloc
ity of the electron remains intact at collisions, this wou
introduce a nonzero energy exchange between cyclotron
longitudinal motion, which contradicts the nonmixing pro
erty of the periodic orbit.

At the point of a ‘‘nonmixing’’ collision the electron ha
zeroy component of the velocity. In the drifting coordina
system this condition is equivalent to the following relatio

vy952vz9tanu. ~D2!

Equation~D2! implies that the collision only reversessignof
the velocity in the (y9,z9) plane, leaving thex9 component
unchanged:

vx9
1

5vx9
2 ,

vy9
1

52vy9
2 ,

vz9
1

52vz9
2 , ~D3!

wherev2 andv1 are the velocities of the electron immed
ately before and immediately after the collision, respective

Let v1 andv2 be the velocities of the electron, correspon
ing to two successful~nonmixing! collisions with the barrier
@Fig. 36~b!#. As follows from Eqs.~D3! and ~11!,

vz
29

1
52S vz

19
1

2
eEcosuT

2m*
D , ~D4!

whereT is the period of the orbit, equal to twice the tim
interval between successful collisions. Due to the conse
tion of the cyclotron energy Eq.~D1! reduces to

vz
29

12
2vz

19
12

52
2eEcosu

m*
~z292z19!. ~D5!

Using Eq.~D4!, we can rewrite Eq.~D5! as

vz
29

1
2vz

19
1

5
4

T
~z292z19!. ~D6!

If a is the phase of the cyclotron rotation immediately af
the first collision, then

vx
19

1
5vccosa,

FIG. 36. A nonmixing two-bounce orbit, projected onto th
(x8,y8) plane of the laboratory system of coordinates~a! and onto
(x9,y9) plane of the ‘‘drifting’’ frame of reference.
e
y

nd

:

.
-

a-

r

vy
29

1
5vccos~a1vcT/2! ~D7!

and

vy
19

1
5vcsina,

vy
29

1
52vcsin~a1vcT/2!. ~D8!

Substituting Eq.~D8! into ~D2!, we obtain

vz
19

1
52vcsinacotu,

vz
29

1
5vcsin~a1vcT/2!cotu. ~D9!

The distancez292z19 can be obtained as

z292z195~y292y19!tanu, ~D10!

where

y292y1952
vc

vc
sin

vcT

4
sinS a1

vcT

4 D . ~D11!

Substituting Eqs.~D9!–~D11! into Eq. ~D6!, we finally ob-
tain

vcT

4
cot

vcT

4
52tan2u. ~D12!

The (k11)th positive root of this equation gives the value
the period of the (2)1(k) orbit.

APPENDIX E: THE MONODROMY MATRIX
FOR A TWO-BOUNCE NONMIXING ORBIT

The trace of the corresponding monodromy matrix fo
~nonmixing! two-bounce orbit can be obtained using the ge
eral expressions developed in Appendix C. For the peri
two orbits the monodromy matrix can be represented as

M5M1M2 , ~E1!

where the matrixMk (k51,2) relates the velocity deviation
from the periodic orbit at two successive collisions and c
be calculated using the relations~C3!. As the input informa-
tion for this machinery one needs the values of the veloc
of the electron immediately after each collision with the b
rier (ṽ1 and ṽ2) and the time intervals between success
collisions (t1 and t2).

For the period-two nonmixing orbits, as we have shown
Appendix D, all the collisions are separated by equal ti
intervals, so that

t15t25
T

2
. ~E2!

To obtain the velocity at the point of collision, we can u
the energy conservation condition

«5
m*

2
@~vx91vd!21vy9

2
1vz9

2
#. ~E3!
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Substituting the expressions for the velocity component
the point of collision@Eqs. ~D7!, ~D8!, and ~D9!# into Eq.
~E3! and using Eq.~D4!, we obtain

S bcos2u

2sinu D 2

5F11sin2utan2S vcT

4 D G~11sin2utan2f!,

~E4!

where we introduced a new anglef, defined asf5p2a
2vcT/4.

Using Eq.~E4!, we obtain

tanf56
1

tan2u!S b

2 D 2

2S vcT

4 D 2

2
tan2u

cos2u

11sin2utan2S vcT

4 D , ~E5!

where the two different solutions correspond to the value
tanf at the two nonequivalent points of collision.

As follows from Eq. ~E5!, a particular period-two non
mixing orbit (2)1(k) exists only above the critical value ofb
given by

bc2
5AS vcT

2 D 2

1S tanu

cosu D 2

, ~E6!

which isexactlyequal to the value ofb5bb1, corresponding
to the first period-doubling bifurcation of the single-boun
orbit (1)1(k), as expected.

For the velocity components at the points of collision
the nontilted ‘‘stationary’’ system of coordinates (x,y,z) we
therefore obtain

~ ṽ x!1,252
2sinu

b S 1

cos2u
6tanS vcT

2 D

3AS b

2 D 2

2S vcT

4 D 2

2S tanu

cosu D 2

11sin2utan2S vcT

4 D D ,

~ ṽ y!1,250. ~E7!

The relations~E7! and ~49! together with Eqs.~E1! and
~C2! provide the complete information we need for the s
bility analysis. Substituting Eqs.~E7! and~49! into Eq.~C2!,
we obtain the matricesM 1 andM2, which together with Eq.
~E1! yield the monodromy matrixM .

APPENDIX F: PERIODS OF THE TYPE-1 MIXING
TWO-BOUNCE ORBITS

Projected onto the plane (x9,y9) of the drifting frame of
reference, a self-retracing mixing period-two orbit forms
repeating pattern of two portions of circles ofdifferentradii,
with ‘‘kinks’’ at the points of collision with exactly same
values ofy9—see Fig. 37~b!.
at

of

-

Since thex9 component of the velocity is unchanged
collisions, we obtain

vc1
cosS vct1

2 D5vc2
cosS vct2

2 D , ~F1!

wherevc andt are the cyclotron velocity and the time inte
val between collisions, respectively.

The periodicity of the orbit requires, that the distan
traveled by the electron in the drifting frame of referen
after two successive collisions,

dx295
2vc1

vc
sinS vct1

2 D1
2vc2

vc
sinS vct2

2 D ,

is equal to the displacement of this coordinate system,

dxd95vd~ t11t2!,

which yields

vc1
sinS vct1

2 D1vc2
sinS vct1

2 D5vdvc~ t11t2!. ~F2!

Using Eq.~F1! together with Eq.~F2!, we obtain

vc1
5vd

vcT

2

sinS vcT

2 D cosS vct2

2 D ,

vc2
5vd

vcT

2

sinS vcT

2 D cosS vct1

2 D , ~F3!

whereT[t11t2 is the period of the orbit. The ‘‘in-plane’’
components of the electron velocityvx9, vx8 and vy8[vy9
are therefore given by

vx95vd

vcT

2

sinS vcT

2 D cosS vct1

2 D cosS vct2

2 D ,

vx85vdS 211

vcT

2

sinS vcT

2 D cosS vct1

2 D cosS vct2

2 D D ,

FIG. 37. A mixing self-retracing two-bounce orbit, projecte
onto the (x8,y8) plane of the laboratory system of coordinates~a!
and onto (x9,y9) plane of the ‘‘drifting’’ frame of reference.
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vy91,2
[vy81,2

5vd

vcT

2

sinS vcT

2 D cosS vct2,1

2 D sinS vct1,2

2 D .

~F4!

Since they9 coordinate is the same at each bounce, the l
gitudinal energy immediately after one collision is equal
the longitudinal energy immediately before the next co
sion, and the longitudinal velocitiesvz

18
1

[vz
29

1
immediately

after two successive collisions the time intervalst1 and t2
between successive collisions must satisfy the relations

vz
1,28 5

eEcosut1,2

2m*
. ~F5!

Substituting Eqs.~F4! and ~F5! into Eq. ~12! and using the
conservation of the total energy,

«5
m*

2
~vx8

2
1vy8

2
1vz8

2
!,

we obtain

sinS vcT

2 D
vcT

2

52tan2u

sinS vcdT

2 D
vcdT

2

,

S b

2 D 2

5sin2uS 12

vcT

2 FcosS vcT

2 D1cosS vcdT

2 D G
2sinS vcT

2 D D 2

1S vcT

4 D 2

1cot2uS vcdT

4 D 2

, ~F6!

where dT[ut22t1u. This system of two equations define
the periods of all of the self-retracing mixing period-two o
bits as functions ofb and the tilt angleu.

APPENDIX G: DOUBLE-BARRIER MODEL:
PERIODS OF „1,1… ORBITS

In this appendix we derive Eq.~58!. We perform the deri-
vation in the drifting coordinate system (x9,y9,z9), which
was defined in Eq.~36!. In this coordinate system, the ele
tron moves under the action of electric and magnetic fie
which areboth parallel to thez9 axis: E5Ecosuẑ9, B5Bẑ9.
Since the (1,1) orbit is nonmixing, the cyclotron velocityvc
is conserved and the cyclotron radiusRc[vc /vc is the same
for each part of the trajectory. Therefore, the (x9,y9) projec-
tion of the (1,1) orbit produces a pattern of two arcs of tw
different circles withequalradii and it looks exactly like the
(x9,y9) projection of a two-bounce nonmixing orbit (2)1 in
the single-barrier model~see Fig. 36!. However, the ‘‘kink’’
at (x29 ,y29) is due to collision at theemitter barrier @Fig.
36~b!#, so that the periods of the (1,1) orbits are differe
from the ones of (2)1.

In the drifting coordinate system the kinetic energy of t
-

s,

t

electron at the point of collision depends on the correspo
ing value ofz9, so that@cf. ~D1!#

m* v2
2

2
2

m* v1
2

2
52eEcosuS d

cosu
1~y292y19! D . ~G1!

As for the nonmixing two-bounce orbits (2)1 in the
single-barrier model, the successive collisions of the (1
with different barriers are are separated by equal time in
vals, so that the trajectory of the electron is symmetric un
mirror reflection around any vertical~i.e., parallel to they9)
axis, passing through any of the collision points.

At the point of a nonmixing collision with both the emit
ter and the collector barriers the electron has zeroy compo-
nent of the velocity, therefore at each collision of the (1,
orbits the correspondingy9 andz9 components of the elec
tron velocity are related to each other by Eq.~D2!, while the
velocity immediately before the collisionv2 and the velocity
immediately after the collisionv1 satisfy the relations~D3!.

Let v1 andv2 be the velocities of the electron, correspon
ing to two successful~nonmixing! collisions with the collec-
tor and emitter barrier, respectively. As follows from E
~11!,

vz
29

2
5vz

19
1

2
eEcosuT

2m*
, ~G2!

whereT is the period of the orbit, equal to twice the tim
interval between successful collisions. Substituting Eq.~G2!
into Eq. ~G1! and using the conservation of the cyclotro
velocity, we obtain

vz
19

1
1vz

29
2

5
4

TS d

cosu
1~y292y19!tanu D . ~G3!

If a is the phase of the cyclotron rotation immediately af
the collision with the collector wall, then

vx
19

1
5vccosa,

vy
19

1
5vcsina,

vx
29

2
5vccos~a1vcT/2!,

vy
29

2
5vcsin~a1vcT/2!, ~G4!

and @see Eq.~D2!# we obtain

vz
19

1
52vcsinacotu,

vz
29

2
52vcsin~a1vcT/2!cotu. ~G5!

The distancey292y19 can be obtained as@cf. Eq. ~D11#

y292y1952
vc

vc
sin

vcT

4
sinS a1

vcT

4 D . ~G6!

Substituting Eqs.~G5! and ~G6! into Eq. ~G3!, we obtain
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vcsinS a1
vcT

4 D cosS vcT

4 D

52
dvctanu

2cosu

cotS vcT

4 D
tan2u1

vcT

4
cot~vcT/4!

. ~G7!

The periodicity of the orbit requires, that the distance tra
eled by the electron in the drift frame of reference betwe
two successive collisions with the collector barrierx292x19 is
equal to the displacement of this coordinate systemvdT,
which yields

vccosS a1
vcT

4 D sinS vcT

4 D5vd

vcT

4
. ~G8!

Using Eqs.~G7! and ~G8!, one can easily obtain

vy
18

1
5vcsina

52vd

vcT

4
2

dvctanu

2cosu

cotS vcT

4 D
tan2u1

vcT

4
cotS vcT

4 D ,

vx
18

1
52vd1vccosa52vdF12

vcT

4
cotS vcT

4 D G
2

dvctanu

2cosu

1

tan2u1
vcT

4
cotS vcT

4 D . ~G9!

Substituting Eq.~G9! into the equation for energy conserv
tion,

vx8
2

1vy8
2

1vz8
2

5v0
2,

and using Eq.~D2!, we finally obtain

b25S vcT

2 D 2S 11
b2

g~vcT!2

12 f ~vcT!

12cos2u f ~vcT!
D 2
cs

et

s

-
n

14sin2u f 2~vcT!

3S 11
b2

16g

1

f ~vcT!@12cos2u f ~vcT!#
D 2

,

~G10!

which is exactly the Eq.~59!. To obtain the period of the
period-one orbits from this equation, one has to solve it
gether with the condition

~ ṽ e!z
25

2cosu

b

vcT

4
1

bcosu

2gvcT

12 f ~vcT!

12cos2u f ~vcT!
.0,

~G11!

which ensures thatvz just before the collision with the emit
ter is positive and allows to select the physically meaning
roots.

APPENDIX H: THE MONODROMY MATRIX
FOR A GENERAL PERIODIC ORBIT IN THE DBM

In this appendix we consider the monodromy~stability!
matrix for a general orbit in the double-barrier model. As
our stability analysis for the periodic orbits in the SBM, th
velocity at each collision with the barriers and the time
terval between successive collisions for the periodic orbit
considered already known.

By definition, the monodromy matrix is the linearizatio
of the Poincare´ map around the periodic orbits. It is straigh
forward to show that, since the evolution of the electr
velocity betweensuccessive collisions is exactly the same
both SBM and DBM, and any collision only reverses t
sign of z component of the velocity, the monodromy matr
will still be given by Eqs.~C4! and~C3!, where the indexk
now labels all successive collisions of the electron~with both
emitter and collector barriers!.

Note that the components of the matricesMk contain
terms proportional to 1/ṽ z . Therefore, if at any of the colli-
sions with the emitter barrier thez component of the velocity
goes to zero~as it happens in a cusp bifurcation!, the com-
ponents of the matrixMk diverge, which leads to the diver
gence of the trace of the monodromy matrix. An immedia
consequence of this behavior is that by continuity any o
with sufficiently smallvz at one of the collisions of the emit
ter barrier per period is unstable.
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