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Electron glass: Intervalley transitions and the hopping conduction noise
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The properties of the electron glass ground state and of those low-energy metastablévaliates, in
which the Coulomb potential at any occupied impurity is lower than that at any empty one, are studied by
computer simulation. The transitions between just these states are expected to determine the low-frequency
stochastic dynamics of the electron glass at low temperatures. The variation of the number of Mgl|eys,
samples with the same number of impuritidl, , but different arrangements, the shift of tNe distribution
to greater numbers with growinyp, the energy range of the valleys, the differences between the electron
arrangements in different valleys in the same sample, and the activation energies for intervalley transitions are
found. The energy range of the valleys is, at &y, on the order of the characteristic Coulomb energy at the
mean distance between impurities. Since the number of valleys growsNyitthe mean distance between
adjacent valley energies drops with, . Despite the small differences between the valley energies the valleys
are separated by energy barriers that, in samples with high numbky afdN, , are distributed within a wide
range. The width of this range grows with the size of the samilg) (and with the number of valleys in it.
This is an argument in favor of the idea that just the intervalley transitions are the source of low-frequency
hopping conduction noise with the flspectrum in lightly doped semiconductors at low temperatures.
[S0163-182698)05616-1

[. INTRODUCTION temperatures. He found that the spectral density of the noise
has 1f frequency dependence and proved that it results not
Strongly disordered systems constitute a very interestinffom surface mechanisms but is an intrinsic property of the
and important class of physical systems: amorphous solid§lopping conduction. ShklovsRiideveloped the first theory
semiconductors with hopping conduction, semiconductor®f the hopping conduction noise for the case of nearest-
near the semiconductor-metal transition, spin glasses, vortexeighbor hops. According to the main idea of this theory, the
glasses in highF, superconductors, proton glasses, metal-noise spectrum hasflfrequency dependence due to the ex-
insulator mixtures, and many others. One of their commorponentially wide spectrum of transition frequencies of the
features is the high magnitude of the low-frequency noiseone-electron hops between impurity centers. These frequen-
whose spectrum is, as a rule, of Iype: resistance noise in cies strongly depend on the hopping distance v
amorphous solids and semiconductors with hopping conduc= vo €xp(—2r/a), wherea is the effective Bohr radius of the
tion, magnetic noise in spin glasses, dfor a review see impurities, andy, is a factor that weakly depends on the
Ref. 1). The noise is a manifestation of the stochastic dynamparameters of the hogthe effect of the change of the energy
ics of the system. What common properties stemming froniccompanying each hop has been neglgctadse doped by
the frozen-in strong disorder are responsible for the specifishallow impuritiesvy~ 1010 s7%. It is well knowr? that
low-frequency stochastic dynamics of these systems, whickhe dc hopping conduction is determined by the so-called
results in the intensive fL/noise? To answer this question, critical network(critical infinite cluster, CIQ. It is formed by
we should study the mechanisms of low-frequency noise ithose impurities between which all distances do not exceed
various strongly disordered systems and find their commori.+a, wherer is the critical percolation radiusThe fre-
basic features. quencies of hops within the CIC are of the order of or higher
This paper is concerned with the low-frequency hoppingthan v.= vy exp(—2r./a). These hops contribute to the
conduction noise in electrai€oulomb glassesEG), thatis,  growth of the resistance noise with decreasing frequératy
in semiconductors, doped with shallow impurities and parf=wv.. At f<wp. the charge carriers within the CIC quickly
tially compensated, at low temperatures. The mean propeequilibrate, and the resistance fluctuations are produced by
ties, including the mean transport properties, of EG are welhops between the CIC, on one hand, and finite clusters lo-
studied(see Ref. 2 The stochastic dynamics and the result-cated in its pores. As the frequentydecreases, the infinite
ing resistance noise are much less understood. The higtluster (IC) within which the occupation of the impurities
magnitude of the resistance noise in strongly disordered corean be considered as quickly equilibrating, grows at the ex-
ductors is well explained, at least qualitatively, within simple pense of finite clusters. At each such frequency, the resis-
percolation models, by the strongly nonuniform distributiontance fluctuations, i.e., the fluctuations of the number of
of current density and the electric field. However, it is well charge carriers in the CIC, are produced by hops between
known that simple percolation models, being “geometrical,” this IC (its size depends oh) and the remaining finite clus-
give no answer to the problem of the noise spectrum. ters, which are separated from the IC by distancéfs)
Voss' measured the low-frequency noise in Si inversion=(a/2)In(yy/f )>r.. The greatest relaxation times in this
layers with an impurity band, created by Né#ons, at low  system correspond to the electron exchange between the IC
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and such finite cluster®r single impuritieg that are almost mum that can be considered as the ground state. The same
isolated, i.e., the distance between them and their nearestructure of the low-energy states was found also for a more
neighbors belonging to the IC is much greater than the mearealistic model of the Coulomb glagdt was also found in
distance between impurity centersn51’3, wheren is the  Refs. 8 and 9 that the differences between the energies of the
concentration of impurities. Such great distances corresponground state and these metastable states are very small, usu-
to large “voids” with no impurities. According to the Pois- ally less than or of the order of the characteristic energy of
son distribution, the probability of such a void is of the orderthe Coulomb interaction at the mean distance between neigh-
of exp(—4mnpr3), i.e., is steeply falling withr at npr3  boring donor impuritiesE = e?n%% k, whereny, is the con-
>1. This exponential function decays faster than expcentration of the major shallow impurity, amds the dielec-
(—2r/a) atr>ry=1/y2mwnpa. Hence, even if at higher fre- tric permittivity of the host crystal. The ground state and
guencies the noise spectral density grows with decreasiridiese low-lying pseudoground states are called below “val-
frequencyf as 1f, it deviates from 1 and saturates at such leys.” During the last several years several groups have de-
frequencies at which(f ) becomes greater than, i.e., at  veloped special computational algorithms for finding, within
frequencies some simplified models of the electron glass of small size,
more complete sets of the lowest excited states of this many-
5 body system®1# Presumably, these excited states include
f min= Vo eXF{ ERE— (1.1)  the pseudo ground states.
V2mnpa’ There is a second requirement: only those transitions that
have long enough relaxation times contribute to the growth
The one-electron-hop model of hopping resistance noiséf the spectral density of noise &w frequencies This
was later analyzed in more detdiNumerical calculations Mmeans that the states between which the transition occurs
have been performed for practically achievable values ofmust be separated by a high enough activation or tunnel
npa’. The frequency dependence of the spectral density waarrier. The relaxation times of the low-lying excited states
found to follow a power lawS(f )o<f = but with the expo- ©0f @ model EG have been studied in Refs. 10 and 11. The
nent y considerably lower than 1. No frequency range with authors found some extremely slow relaxation processes and
the 1f spectrum was found within these calculations. associated them with relaxation from metastable states of the
The frequencyf,,,, at which, in this model, the power- EG. Transitions between states not separated by barriers do
law behavior OBR(f ) turns out to be a constant, depends onnot contribute to the grOWth of the SpeCtral denSity of noise
npa®. Practically, in the samples used in experiments orat low frequencies.
hopping conduction and noise, this quantity cannot be too The main idea of the present paper is that the transitions
small, otherwise the resistivity becomes immeasurablyetween low-lying energy valleys of the EG are a real source
high*° Usually (npa®) ~Y2<30, hence the exponential func- ©f 1/f hopping conduction noise. Each intervalley transition

tion in the right-hand sidgrhs) of Eq. (1.1) cannot be IS, in gen_eral, a reconfiguration of a great number of elec-
smaller than~10"9. Since vo~101-102s %, the lower- trons, which can occur even by one-electron hops, but by a
frequency limit for 1f noise produced by one-electron hops 9réat numper Of'SUCh hops. Therefore, we studied, using
is ~10'—1CF Hz. However, the experimental spectrum is computer simulation, the properties of valleys relevant to the
1/f at lower frequencie® Moreover, if the noise is found to 10W-frequency stochastic dynamics of the EG. In Sec. Il the
have a 1f spectrum, no low-frequency limit of this fre- Model and the method of computer simulation are presented.

quency dependence has ever been found in any exper’rmenW Sec. llI thg statistics of the vaI_Ieys is found: their number
It does not mean that fhas no lower limit: for all mecha- Versus the size of the EG, the differences between their en-
nisms that are at least qualitatively substantiated, this lower€"di€s, the differences between the electron arrangements in
frequency limit is practically not achievablae must con- dlffergnt valleys, _the_depen_dence of t_hese d|fferen_ces on the
clude that the mechanism of the hopping conduction nois&C size a_nd their distribution. Despite the energies of the
suggested in Ref. 4 works at intermediate, but not too lowV2lleys being very close to one another they are separated by
frequencies. high barriers. In Sec. IV the calculation of the intervalley

The same qualitative conclusion is also true for the modefictivation energies that determine the relaxation times and,
suggested by Kozublin this model the resistance fluctua- Ultimately, the low-frequency stochastic dynamics of the EG
tions are produced by hops within finite clusters that chang@r€ Presented, and the resistance noise produced by interval-
the electrical potentials at the impurities belonging to the/®Y transitions is discussed. In Sec. V some qualitative con-
CIC and, consequently, modulate the conduction along th&lusions are formulated.
CIC. In real samples with not too smalha® the frequency
range of this noise is limited from below. Il. THE MODEL AND THE METHOD OF COMPUTATION

The main problem in the physics of noise is to find what
transitions and between what states determine the stochastic Electron glass is a system of randomly arranged major
dynamics of the system in the given frequency range. Firstand compensating impurities. For definiteness, we assume
only those transitions that occur between states that arédat they are donor@otal numberNp) and acceptorsgtotal
populated at the temperature of measureriiecontribute to  numberN,), respectively. At a given arrangement of the
the spectral density of noise. Baranovskii, Efros, Gelmontjmpurities, each state of the EG corresponds to a specific
and Shklovskft found, by computer simulation of a simple distribution of Np—N, electrons among\N, donor sites.
model of the EG, several energy minima, i.e., metastable, oince the number of electrons in a definite donor,N(i),
pseudoground, states, very close to the lowest-energy minsan be only 0 or 1, the number of such states eqdfls
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=Np!/[(Np—Na)!N4!]. For any representative sample of the

EG this number is huge. Therefore the properties of this ()= qj ij + Qi 2.3

disordered many-body system are studied by numerical =)

simulation. In the present paper all calculations have beeffhe electron hops affect only the “chargesj; of the do-

performed for compensation ratio 0.5, i.8,,=2Np. nors. The variation of the system’s energy due to an electron
The model of an EG used for computer simulations conhop from the donor to an empty donoj equals

stitutes an infinite number of identical simulation cubes, each

of which contains randomly arranged impuritidé&; donors

andN, acceptorsNp — N, electrons are placed onto the do- AE:_ Z , Qi (jir = i) 24

nors. Thus, in each simulation cube there BMrenegatively LD

charged acceptors\, positively charged donors, and,

— N, neutral donorgelectrong, and the arrangements of the [ll. THE VALLEYS AND THE DIFFERENCES

impurities, charged and neutral, in all cubes are identical. All BETWEEN THEM

energies are expressed in unis=e’ny¥ «, whereny, is

any given concentration of donors W|th|n the scope of the The EG valleys were found using the same procedure that

model, all distances are expressed in ungé’s. The side of was used in Refs. 8 and[¢he only difference is the Ewald

the simulation cube in these unitsNg;>. It was important to ~ summation, Eq(2.1)] and in simulations of other disordered

study an infinite system because otherwise one could gue$gany-body systems, e.g., spin glasses. Starting from a ran-

that the low-lying valleys result from some effect of the sur-dom distributionN(i) of electrons among the donor impuri-

face of a finite and small sample, and are not a bulk effectties, the electrons are moved, one by one, from one donor to
Since the energy of the EG is the energy of Coulomban unoccupied donor, irrespective of the distance between

interaction of the ionized impurities, and the Coulomb inter-them, if this transfer lowers the total energy of the system.

action falls off slowly, the Ewald method of summation was The state(or stategfound by this procedure must satisfy two

used(for a recent review see Ref. 15 he calculated energy reéquirements(1) no one-electron transfer from an occupied

E is the Coulomb energy of the entire system per one simudonor to an empty one, even across the entire systesn
lation cube. It can be written as follows: only to the nearest neighborcan result in a transition to a

state with lower total energy, i.e., the variation of the sys-
1 tem’s energy by any one-electron transfer is always positive,
=3 > Q[ (1= 6 ) v+ 8,41, (2.1)  (2) the Coulomb potentialp(i) at anyith occupied donor
4 must be lower than that at any empty donpr,Different
wherei andj number all impurities within one simulation Starting states, in general, yield different energy minkja
cube,q;=1 for acceptorsg;= —[1—N(i)] for donors,N(i) The so fou_nd energy minima that are higher than the lowest
is the occupation of théth donor by an electrofiN(i)=1 one, considered as the ground state, are metastable, or
for a neutral donorN(i)=0 for an ionized, i.e., empty, do- pseudo ground statésee below. Both the ground state and

nor]. The “potentials” y;; and y are expressed in terms of these m_etastable s'tate_s may be calleq valleys. Since valleys
are obtained by satisfying the two requirements listed above,

Ewald sums: they differ from other states of the EG, including other meta-
erfo(ar; g) stable states, by the presence of the Coulomb gap in the
. _2 TR spectrum of one-electron energy levels.
MijRr 1. The energies and the number of vallejke obtained
exp( — 72G2 o?) gnergies_of the valleyg,,, (m=1,...N,) are always. nega-
+ E . cog2wGr;;) (i#j), tive. Their absolute valugd&,,|, depend on the specific ran-
G#0 VG dom arrangement of the impurities and are greater, by a fac-
tor ~2-3, than those obtained without Ewald summation.
erfd aR) exp(— 72G%a?) 2a The energy of the ground state per one donén|/Np,
:R<¢0) T+G¢O T__Tr- strongly fluctuates alNp=>50 (from ~0.6 up to~1.4) and

2.2 most frequently is around 1.1. As the size of the system
grows the fluctuations become smaller and the mean value
The vectorsR andG are the vectors of the cubic lattice and slightly greater. AtNy =500 the energyE,|/Np fluctuates
its inverse, respectively;; is the radius vector of theth by ~*+10% around~1.3. One may guess that N
impurity in the simulation cuber;;=r;—r;, rjjr=|r;; +R|, =1000 the size of the simulation cube is greater than the
R=|R|, andV is the volume of the unit cube. The value of length that determines the Coulomb ener@screening
the parametew is chosen to obtain the best convergence oflength, i.e., in this respect the simulation cube is a macro-
the Ewald serie$® The function erfcf) is the complemen-  scopic self-averaging system.
tary error function. The number of valley§, for a givenNp strongly varies
The quantitiesy;; depend on the arrangement of the im- for different random arrangements of the impurities. For in-
purities only and are not affected by the variation of thestance, foNp=400 the number of valleys was found to vary
donors’ occupanciebl(i). Being calculated for a given ran- from N,=4 up to 106, forNp =500 from 10 up to 176. It
dom arrangement of impurities, they can be stored and usddoks like N, is not a self-averaging quantity. Nevertheless,
for calculation of the energl and the Coulomb potentials at one may anticipate that, in samples of sufficiently large size,
any site, the relative variation oN, is small. Using our data we can
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En, —E1 remains~Ec irrespective ofNp butN, , on aver-
] . age, grows witiNp , therefore the density of the valleys per
120 unit energy also grows.
1 The valleys differ not only by their energies but, obvi-
ously, by the sets of the occupancy numbifgi), i.e., by
5.02 exp(Ny/151.3 the distribution of theN, — N, electrons amondy donors.
Some donors that are occupied in one vallsgy, mth) are
empty in another valleysay, thenth). Since the total number
of electrons is the same in all valleys, the total number of
donors whose occupation is different in the two valleys is
always an even number. It is convenient to denote one-half
of this total number aaN,,,. The electrons in the donors
Y D " S occupied_ in thenth valley and empty in thath one may be _
N, called “difference electrons;” those donors that are empty in
_ the mth valley and occupied in thath one may be called
FIG. 1. The mean number of valleydl, ), vs the size of the “difference holes.” AN is the number of “difference
sampleNp . (N, )y is found, at each giveNp, by averaging over  gjecirons” or “difference holes.” This number can be only
1_0 different arrangements of the impurities. Exponential curve is & 5 Otherwise the transfer of the only “difference electron”
fitto the data. of the higher valley to its only “difference hole” will result
in the transition to the lower valley. This is impossible be-
neither prove this nor determine the size at which the crosscayse, according to the method used to find the vallsye
Over occurs. above, no transition of only one electron may lower the
There is an pbvious tr.enq: the greater the size of the Syssnergy of this state. The numbAN,,, can be reduced, by
tem,Np, the wider the distribution o, and the less prob- gne-electron hops, only if the energy of the system in the
able are smalN, . Hence, on averagdy, grows withNp.  higher valley is first increased. This means that a transition
The dependence of the megN, ), averaged over 10 dif- from a higher valley to a lower one by one-electron hops
ferent arrangements of impurities at ed¢h, onNp is pre-  always requires a nonzero activation eneffgy the inverse
sented in Fig. 1. Exceptionally high numbers of valleys wereransition the barrier includes also the difference of the en-
found in one system withl, =400 (N, = 106) and 5 systems ergies of the two valleys
with Np =500 (N, =128, 132, 144, 145, and 2D5 By analogy with spin glasses, one can define, for pure
2. The differences between the valleyhe greatest en- statesm andn, their overlapq,,, and the distancd,,, be-
ergy difference between valleyky —E;, is always~Ec  tween them(analog of the Hamming distance
only. The mean distance between adjacent valley energies,
[En,—E1l/(N,—1), for impurity arrangements witiN, 1 ) .
>1, fluctuates significantly at giveNp : atNp=50 it varies 9™~ N Z [2Nm(1) = 1][2Nn(1) = 1]= 1= 2ANmn/No,
from ~0.03 to~0.3, at higheMNp=300-500 it most often
does not exceee=0.1, and is typically a few 0.01at Np 1
=500, <0.01). Much more obvious is the correlation be- d,,;=—— > [Ny(i)—Nu(i)12=1~qmn=2ANmn/Np .
tween the mean separation of valley energies and the number Np 4
of valleys,N, , which is shown in Fig. 2. As one can see, it (R
falls off with N, : the valley spectra become more dense atl_
greaterN, . In other words, the range of valley energies
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he greaterAN,,, is the greater is the Hamming distance
between them in the space of the states and the smaller is the
overlap between the two valleys.

For a definite arrangement of impurities, the numbers
] AN, vary within some range. Of course, if any 3 valleys
are taken, any of the three differencell,,,, must be smaller
than or equal to the sum of the two others, that is, the triangle
= 014%, rule must hold. In fact, the equalityN,3=AN;,+ AN, oc-
10w, curs if the impurities whose occupation is different in valleys
"} . 2 and 1, and the impurities whose occupation is different in 3
1 . and 1, do not coincide. An interesting problem is as follows:
K . do the differencea N,,, or, equivalently, the Hamming dis-
0.015 . . : tances between the valleys, obey also the condition of ultra-

] metricity? Ultrametricity means that for any 3 valleys,
1 I,m,n, the following condition is satisfied: AN,

. — —— — =maxXAN,,AN,,,}. It implies that 2 of the 3 differences are
0 %0 N P 150 equal and are greater than or equal to the third one. If this
condition holds the structure of the states is hierarchioal

FIG. 2. The mean distance between adjacent valley energies & review see Ref. 16 The results show that sometimes the
the number of valley®N, . The energies are in unit. . last inequality is satisfiefor instance, the differences are 3,
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at definite arrangements of impurities vs the corresponding number
of valleys N, . (b) The mean number of “difference electrons”
(ANppar VS Np. (AN ar is obtained by averaging, at each
given Np, over 10 different arrangements of the impurities. The

continuous curve is a power-law fit to the data.

3, and 2. However, often all three numbers are differéor
instance, 2, 4, and)5and even if twa(of three numbers are

equal, they may be smaller than the third one.

Like the number of valleys, the numbeki ,,, depend on
the specific arrangement of the impurities but their relative
variations are much less than those Mf. The mean

(AN, is obtained by averaging over aliN,,, at a given
impurity arrangement. This mean value grows, on average,
with correspondingN,, as shown in Fig. @. The mean
difference,(ANy ) ar, averaged over a number of random

arrangements of the impurities with givéy, grows with
Np [Fig. 3(b)]. Obviously,{AN,.) ar Cannot grow withNp
faster than linearly. The results presented in Figp) &re in

agreement with this expectation.
A typical distribution of AN,,, at smallNp is shown in

Fig. 4@. The most frequent value @&N,,, is the minimum
one, i.e., 2. At higheNp the typical distribution is different
[Figs. 4b) and 4c)]: the smallest differencAN,,,=2 and
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FIG. 4. The histograms of the numbers of “difference elec-
trons” AN,,, for three samples witlia) N5 =100, N,=6; (b) Np

The valleys are found by descent from states with random
occupation of donors and, consequently, with high energy.
The number of such initial statel;;, must be high enough

the maximumAN,, are the least probable; the most prob-and it must grow with the size of the systeiMy. By in-
able are the numbers in the middle between the extremereasing this number in excess of, shly, (for Np<600) no
ones. As a whole, the distribution is roughly a normal oneincrease of the number of valleys, is usually found. How-

One can see also in Figsi@—4(c) that the maximumAN,,,
is ~0.09Np . However, even ifAN,, is a small portion of

Np, in a macroscopic sample, for any part of the sampleo already found.

with large enough size this number is great.

The most important problem is whether an energy mini-

ever, for our purpose and for qualitative conclusions, it is not
very important if one more or a few other valleys exist close
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mum exists that is considerably deeper than the already Two valleys, saym andn, are specified. One valley,
found group of valleys with close energies. In other words,is considered as the initial one, and the goal is to find the
does an energy gap E exist between the ground level and energy barrier for the transition to the target vallay,Be-

the next valleys? If such a minimum exists and if it is alwaysfore each electron hop is performed, a difference electron
a single ongwith no close valleysthen the stochastic mo- (DE) or a difference holéDH) is randomly chosen among
tion in the form of intervalley transitions does not exist in theall DE and DH. The DH(DE) that is nearest to the chosen
EG at low temperatures. In numerous calculations for sysbE (DH) is then found. Thus, a pair DE-DH is chosen. Then
tems of different sizes we have never found such a minimuna number M) of such, nearest to the chosen DE, empty
whose energy is lower than the energies of a group of valleydonors that are closer to DH are found. Similarl, such,

by more than the characteristic difference of the valleys’ ennearest to the chosen DH, filled donors that are closer to DE
ergies. During the procedure of finding the energy barrierare also found. A hop of the DE or the DH to any of its
between the valley$see below, the system was frequently correspondingM chosen neighbors decreases the distance
checked: into what state does it descend after being alloweBE-DH (the results presented below are obtained with
to make hops to states with lower energies? The system wag =3). Of all these possible hofs general, M hops one
never found in any state deeper than the already found lowis actually performed that results in the minimal change of

est valley. the system’s Coulomb energyE. This requirement makes
less probable a significant difference between the calculated
IV. THE ENERGY BARRIERS FOR INTERVALLEY energy barrier and the true one.
TRANSITIONS AND THE RESISTANCE NOISE After each hop the set of donor occupation numbers,
SPECTRUM N(i), and the set of difference electrons and holes are up-

. o dated. The energy of the system in the new state is stored.
We show below that, despite the variations of the valleyThan a new pair DE-DH is randomly chosen. AN, > 2

energies at a fixed impurity arrangement being small, thepis new pair, most probably, is different from the previous
valleys are separated by energy barriers of various heights. If,e  some hops result in the “recombination” of a differ-

a macroscopic system, these barriers may vary in a Vergnce electron with a difference hole. Their number gradually
broad range. Just such broad and smooth distribution of aggngs o zero. This means that the intervalley transition is
tivation energies is well known to yield aflspectrum of performed. Then the differenc&E,.,, between the maxi-

noise down to very low frequencies. mum energy of the system along the transition path and the
In an EG the notion of the energy barrier between valley§pitial energyE,, is found and stored.

becomes definite only if a definite restriction on the number /4 iation” of the sequence of random numbers used to

of electrons r_na_king simultaneously a hop and on the lengthy, ose the pairs DE-DIby changing the initial number of

of the hops is imposed. We assume that the hops are onge random number generatagenerates a different transi-
electron only and each hop is performed from an occupieg,y, path between the same two valleys, and, in general, a
donor to the nearest empty one or to one of the W jigterent value of AE,, is obtained. The procedure is re-
mstqnce, 2—Bneare_st empty donors. It is worth noticing that peated many time&n the present calculations, no less than
the intervalley barriers are always nonzesee Sec. L 20 times for each pair of valleysThe lowest among the so

The transition from one valleyn, to anot.her one, Is a“ obtainedAE,,,, is taken as the energy barrie,,,, for the
sequence of electron hops that results, ultimately, in the reyirect transition from the valleym to the valleyn. This

combination” of the diffgrence electrons and holes. Eachﬂ orithm leaves room for various generalizations.
such sequence is a path, in the_ space of states, conngctm_gt hen the number of valleyl,>2 the actual(easiest
two vall_eys. It ha_s SOME maximum energy. The_ aCtIVat'orbath from one valleym, to another onen, that is, the path
energy is the minimum of these maximum energies: with minimal energy barrier, may pass through other, inter-
ach_ mediate, valleys. Thactual activation energie&(?®) must
Emn patl?:m—»n{alongqtiz pathE}. @9 satisfy at least the following condition for the case of one
intermediate valley:

For any EG system with more than one valley, i.e., with
great enougiNy =100, the number of paths from one valley
to another is very great. Even if, for not too low noise fre-
guencies and hence not too high activation energies, the cal- . _
culations are confined to low-energy intermediate states onlfiere | numbers all valleys that can serve as intermediate
and are using, for instance, the numerical methods elaboratéiies. The conditiof4.2) is similar to the condition of ultra-
in Ref. 11, the total number of possible paths from one valleynetricity (see Sec. Il N _ .
to another through these states remains great. This makes In order to satisfy this condition the direct energigs,
impossible a rigorous calculation of barrier heights satisfyingound by the procedure outlined above have been subjected
Eq. (4.1) and compels one to limit the number of pathsto the next procedure. For any definite pair of vallegsr)
checked. Of course, the results obtained in this way aréhe value of mafey €} has been found for all intermediate
merely estimates of the true activation energies. The goal i%alleysl(#m,n). The minimum value of these maxima was
to obtain the correct order of their magnitudes and the charcompared withey,,, and the smallest of these two quantities
acteristic features of their distribution. Several algorithmswas recorded a&'%. This procedure significantly reduces
have been tested. The one that yields the lowest intervallethe calculated energy barriers as compared with the direct
barriers is presented below. barriers,eq -

El<maxER™ E2} for any I#=m,n. (4.2
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The distributions of the activation energie& found by
this method, for three definite samples wik, =100, Np
=200, andNp =500, are shown in Figs.(8-5(c). The
samples are the same for which data are presented in Figs. & //

—_

00, N, = 50

D

Z 2
non
D

<

%
4(a)—4(c). The most important conclusion is that the interval % // /
w?thin which the energy barriers vary grows, on average, o e ?? 7 /%
with the system’s sizéNp. For N =100 the barriers be- w %// 7 //
tween valleys are perhaps of the same order as the typical < | /% f 7 //
barriers for intravalley transitions, that is, for these small 2 // 7 %
sizes one cannot expect a great difference between the two =2 1 // / //
types of transitions. o / —

At higher Np [Fig. 5b) and Fc)] the distribution of the // ) , / Z
activation energies roughly resembles that of the differences o // / Y. 7 4
0. 1.0 1.

ANy, for the same samplgFigs. 4b) and 4c)]. In particu- 0.0 2 0.4 08
lar, the distributions are the highest in the middle range be- (a) mn
tween the minimum and maximum values Bf*® and _
AN, respectively, the extreme values being the least prob- 00{N, =200, N, =100 [7]
able. It shows that, despite the fact that no direetermin- INz19 7 7
istic) relationship betweerE®® and AN,,, exists in this ! 7 7,
strongly disordered system, they are correlated: on average, =3
the greateAN,,, and, consequently, the Hamming distance & 40+
between two valleys i$Eq. (3.1)], the higher the barrier o
between thentthis result is similar to that obtained, usinga
different method, by Vertechi and Virasdfdfor the Ising Q
spin-glass model with infinite range interactipnthe corre- 2
lation betweerE " and AN, is illustrated in Fig. 6. One

can see that, on average, one pair “difference electron— 104 7 A
difference hole” contributes- (0.06—0.15F to the energy ] 7
barrier, which is a quite plausible result. o % ’ v s
If the method were exact the difference of energy barriers 00 o2 ootz 4
for transitions between two valleys, from to n and fromn (b)

tom, i.e.,, E2—E2% must coincide with the difference of
the valley energiest:,,— E,,. Due to the inaccuracy of the N. = 500. N. = 250 ]
! : . p=500,N, =
method used these two differences, in general, do not coin- 60004 \°_ 4z ,
cide. Since, for each pair of valleys) and n, the energy '
barriersE2" andE2S are calculated independently, the ratio
[EX—E2%—E +E,,]/E2 can be considered as a measure
of the accuracy of the method of energy barriers’ computa-
tions. This ratio was found for all pairs of valleys. The ab-
solute values of the ratios are typically lower than 0.25, and
seldom exceeded 0.3. For many pairs of valleys the ratio was | N 7
found to be+ computer zero. 7 Z
An intervalley transition results in a change of the set of ] Z / 7
occupancy numberil(i). One may expect that this change Z ' 75
produces a fluctuation of the specimen’s hopping conduc- ol N 4 1 4 0 %
tance,8G(t). It stems, first of all, from the change of some 00 02 04 06 08 10 12 RO
resistances of the Miller-Abrahams netwdrihe conduc- © Enn
tanceg;; (inverse resistangeconnecting two donor sites
andj (of this networK is nonzero only when one of these
sites is occupied by an electron and another one is empt)']:'.c’
The change of the occupation number of a donor impurity
results in a drastic change of several conductaggeson-  vation energies grows with the size of the system. One can
necting this impurity to its neighbors. The specimen’s con-therefore expect that, in a macroscopic sample, for any
ductanceG is changed also due to the variation of the Cou-achievable low frequenc§ such intervalley transitions and,
lomb potentials and to electron correlation effeéctslo  consequently, such conductance fluctuations exist which
symmetry restriction is known that can reduce the hoppindiave high enough relaxation timezw™!. The low-
conduction fluctuations produced by intervalley transitions tdrequency noise spectrum is expected to be bityipe due to
zero. If they are not zero the spectral density is expected tthe smooth distribution of intervalley activation energies in a
grow with decreasing frequendy In fact, according to the broad rangdsee, for instance, Ref).1At low temperatures,
data presented in this section, the range of intervalley actithe thermal motion of a Coulomb system in equilibrium and

4000

NUMBER PER BIN

FIG. 5. The histograms of the energy barri&$, in units
for the same three samples as in Fig. 4.
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N, = 600, N, = 300 electrons” or “difference holes,”AN,,, which is propor-
s N,=118 tional to the Hamming distance between these two states
: [Eqg. (3.2)]. On averageAN,,, grows with the size of the
system and with the number of valleys in the sanipig. 3).
The distribution ofAN,,, in multivalley sampleghigh Np
=200 has a typical form similar to a normal distribution, the
extreme values being the least probaffégs. 4a)—4(c)].
The maximum values cAN,, do not exceed-0.09\ .
The energy barriers for intervalley transitions have been
estimated by a computer simulation of the “recombination”
: : of the “difference electrons” with the “difference holes”
P (Sec. IV). Despite the fact that the valley energies are almost
00— T - T : - - T degenerate, the energy barriers for transitions between them
AN, ™ 2 are not small and are distributed in a range whose width
) ) rows with the size of the system. The energy barriers be-
FIG. 6. The energy barrie§7 vs the number of difference '?ween valleys and the corregponding numbe?syof difference

electrons ANmn, f(.)r a sample withNp =600, N,=118. In those lectrons are correlated. In particular, the distribution of the
ranges of the barrier energy where the density of the scattered dots - - . LT

TS ) L €nergy barriers in a given sample is similar to that of the
is high they coalesce and create continuous vertical lines.

differencesAN,, [Figs. §a)-5(c)]. For highNp, both re-

o i semble a normal distribution. The growth of the energy bar-
under a small electric field is confined to a small part of the,g g’ range is determined by two major patterg) the

total number of states. The transition from one valley to angplinear growth of typical values &N, with Np, [Sec. Il]

other one with different configuration of electrons may result, Fig. 3b)]; (2) the typical contribution of one “difference

therefore in a significant change of the sample’s resistance,|actron—difference hole” pair to the energy barrier is
Despite the fact that the noise spectrum is qualitativelyz(0_06_0_15EC_

understolodl, the prolfalehm of Itgagnltudeshnot sol;)/edd_here. The intervalley transitions satisfy both requirements for
First, calculations of the conductance change by direct Nug,,qe transitions that are a source of low-temperature low-
merical .modellng are lacking sufﬂmentlaccuracy. Secor_‘dfrequency noise(1) in any macroscopic sample and on any
calculatl_ons based on the Markpv equations for the hOppIn%cale higher than several hundred major impurities there are
conduction(see Appendixseem impossible due to the great , 5 jevs whose energy separation from the ground state is
number of the system’s states involved. Therefore in th'%any times smaller than the thermal enekgyl at the tem-
section only qualitative considerations are presented. peratureT of the experiment(2) despite the valley energies

The problem of the magnitude of the conduction nOisebeing very close, the valleys are separated by high activation

can be conS|d_er¢d as a part of tbe general_prqble_m of thﬁarriers whose magnitude grows, on average, with the size of
effect of a variation of the donors’ occupanci®,i), in a

) : . ) the system considered. Therefore, these transitions definitely
given sample on its hopping conductaqce. It is SOme""h""t'iontribute to the growth of the spectral density of the hop-

similar to the pro.bI.em of damage. spr_ea(_j(lsge Ref. 18.and ping conduction noise with decreasing frequency at low fre-

referenc_e_s th_ere)m.e., the gvol_uﬂon in t!me of a relatively quencies. Due to the broad and smooth distribution of acti-

small initial difference ofN(i) (like the difference between

I ) | ith identical i _ vation energies the spectrum of this noise is expected to be
%v:n\t/sa eys in two samples with identical impurity arrange- o 1t tyne However, the intervalley transitions are not ex-

pected to be the only ones that produce fluctuations of the
hopping conductance in EG.
V. CONCLUSIONS The slow (“glassy,” nopergodi() stpchast!c dynamics
that generates the fLhopping conduction noise manifests
The low-energy EG landscape has a valley strudtdms itself also in other low-temperature phenomena: slow relax-
was found in Sec. lll, for alNp used in computations, the ation of the Coulomb gap after injection of extra charge car-
number of valleysN,, in samples of the same sidé¢p riers at low temperaturéSand slow field effect and persis-
strongly varies for different arrangements of the impurities.tent photoconductivity®?! The intervalley transitions may
On averageN, steeply grows with the size of the sample contribute to these phenomena as well.
(Fig. 1. The hopping conduction noise is a particular example of
In all samples for which the calculations have been mad@oise in many-body systems with a strong frozen-in disorder.
(50=Np=600), the total range of valley energies is of the Despite all differences between two such systems, EG and
order of the characteristic Coulomb enerBy. Since the spin glass, the low-frequency stochastic dynamics of these
number of the valleys rapidly grows witNp, the mean two systems are similafor reviews of noise in spin glasses
energy gap between two adjacent valleys drops Withand  see Refs. 22 and)1The fact that transitions between low-
N, (Fig. 2). If this tendency holds at even highbi,, the lying (created by the disordemetastable states play an im-
distribution of the valleys is expected to be a relatively veryportant role in two such systems, makes very plausible the
narrow peak near the ground energy. It can be considered &dea that in other similar systems, including those in which
a highly degenerate ground level. the low-energy landscape has not yet been studied, just such
The difference between the electron arrangements in twtransitions determine the low-frequency stochastic dynamics.
valleys,m andn, is described by the number of “difference Similar low-frequency stochastic dynamics may be found

(act)

‘mn

E

0.5
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also in proton glasses, in strongly disordered semi-insulatingxponential law. The eigenvector corresponding to the low-
granular metallic films, and some other systems withest\y=0 (no decay is simply the set of the equilibrium
frozen-in strong disorder. probabilities of the statesVo(a)=w,. All other eigenvec-
tors (k>0) are relaxation modes, and the correspondipg
are their inverse relaxation times. These modes satisfy the

. relations
| am grateful to Professor B. I. Shklovskii, Professor B.
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> W(a)=0, X, YXa)lw(a)=1. (A3)

APPENDIX The first relation means that any sugf(«) is a perturbation

Since the stochastic dynamics of the EG through hops is af the equilibrium population of states that is an increase of
Markov one the problem of hopping conduction noise can bgopulation of some states at the expense of some other states.
formulated in terms of the eigenvectors and eigenvalues ofhe second relation is the normalization equation.

the matrix of Markov equations for the variation of the prob-

ability, P(a,t), to find the system in a state at the timet:

JP(a,t)
ot = 2 TasP(B), (A1)
where the matrix
5= %; W(ay)—W(Ba), (A2)

and W(aB) is the probability of transition, per unit time,
from the statex to the stateg.

It is well known that the eigenvectom,(«) and eigen-
values \,. of the matrix I ,; determine the distributions
T (a)exp(Nd), which decay in time following a purely

The spectral density of the conductance fluctuations can
be expressed in terms of these relaxation modes:

EON
So(1)=2 Gl rryze G 2 Gla)¥i@),

(A4)

whereG(a) is the conductance in the stateof the system.
Part of these relaxation modes may be associated with inter-
valley transitions. The low-frequency noise is determined by
those N\ #0 that are sufficiently small for the given fre-
quencyf, i.e.,\,<~w and for which the correspondir@,

is significant. If the distribution of I, i.e., the activation
barriers or tunnel exponents, is smooth in a broad range the
spectral densityss(f ) is of 1/ type.
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