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Electron glass: Intervalley transitions and the hopping conduction noise

Sh. Kogan
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 15 August 1997; revised manuscript received 14 January 1998!

The properties of the electron glass ground state and of those low-energy metastable states~valleys!, in
which the Coulomb potential at any occupied impurity is lower than that at any empty one, are studied by
computer simulation. The transitions between just these states are expected to determine the low-frequency
stochastic dynamics of the electron glass at low temperatures. The variation of the number of valleys,Nv , in
samples with the same number of impurities,ND , but different arrangements, the shift of theNv distribution
to greater numbers with growingND , the energy range of the valleys, the differences between the electron
arrangements in different valleys in the same sample, and the activation energies for intervalley transitions are
found. The energy range of the valleys is, at anyND , on the order of the characteristic Coulomb energy at the
mean distance between impurities. Since the number of valleys grows withND the mean distance between
adjacent valley energies drops withND . Despite the small differences between the valley energies the valleys
are separated by energy barriers that, in samples with high number ofND andNv , are distributed within a wide
range. The width of this range grows with the size of the sample (ND) and with the number of valleys in it.
This is an argument in favor of the idea that just the intervalley transitions are the source of low-frequency
hopping conduction noise with the 1/f spectrum in lightly doped semiconductors at low temperatures.
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I. INTRODUCTION

Strongly disordered systems constitute a very interes
and important class of physical systems: amorphous so
semiconductors with hopping conduction, semiconduct
near the semiconductor-metal transition, spin glasses, vo
glasses in high-Tc superconductors, proton glasses, me
insulator mixtures, and many others. One of their comm
features is the high magnitude of the low-frequency no
whose spectrum is, as a rule, of 1/f type: resistance noise i
amorphous solids and semiconductors with hopping cond
tion, magnetic noise in spin glasses, etc.~for a review see
Ref. 1!. The noise is a manifestation of the stochastic dyna
ics of the system. What common properties stemming fr
the frozen-in strong disorder are responsible for the spe
low-frequency stochastic dynamics of these systems, wh
results in the intensive 1/f noise? To answer this questio
we should study the mechanisms of low-frequency noise
various strongly disordered systems and find their comm
basic features.

This paper is concerned with the low-frequency hopp
conduction noise in electron~Coulomb! glasses~EG!, that is,
in semiconductors, doped with shallow impurities and p
tially compensated, at low temperatures. The mean pro
ties, including the mean transport properties, of EG are w
studied~see Ref. 2!. The stochastic dynamics and the resu
ing resistance noise are much less understood. The
magnitude of the resistance noise in strongly disordered c
ductors is well explained, at least qualitatively, within simp
percolation models, by the strongly nonuniform distributi
of current density and the electric field. However, it is w
known that simple percolation models, being ‘‘geometrica
give no answer to the problem of the noise spectrum.

Voss3 measured the low-frequency noise in Si inversi
layers with an impurity band, created by Na1 ions, at low
570163-1829/98/57~16!/9736~9!/$15.00
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temperatures. He found that the spectral density of the n
has 1/f frequency dependence and proved that it results
from surface mechanisms but is an intrinsic property of
hopping conduction. Shklovskii4 developed the first theory
of the hopping conduction noise for the case of neare
neighbor hops. According to the main idea of this theory,
noise spectrum has 1/f frequency dependence due to the e
ponentially wide spectrum of transition frequencies of t
one-electron hops between impurity centers. These frequ
cies strongly depend on the hopping distancer : n
5n0 exp(22r/a), wherea is the effective Bohr radius of the
impurities, andn0 is a factor that weakly depends on th
parameters of the hops~the effect of the change of the energ
accompanying each hop has been neglected!. In Ge doped by
shallow impuritiesn0;1011– 1012 s21. It is well known2 that
the dc hopping conduction is determined by the so-ca
critical network~critical infinite cluster, CIC!. It is formed by
those impurities between which all distances do not exc
r c1a, wherer c is the critical percolation radius.2 The fre-
quencies of hops within the CIC are of the order of or high
than nc5n0 exp(22rc /a). These hops contribute to th
growth of the resistance noise with decreasing frequencyf at
f >nc . At f ,nc the charge carriers within the CIC quickl
equilibrate, and the resistance fluctuations are produced
hops between the CIC, on one hand, and finite clusters
cated in its pores. As the frequencyf decreases, the infinite
cluster ~IC! within which the occupation of the impuritie
can be considered as quickly equilibrating, grows at the
pense of finite clusters. At each such frequency, the re
tance fluctuations, i.e., the fluctuations of the number
charge carriers in the CIC, are produced by hops betw
this IC ~its size depends onf ! and the remaining finite clus
ters, which are separated from the IC by distancesr ( f )
5(a/2)ln(n0 /f ).rc . The greatest relaxation times in th
system correspond to the electron exchange between th
9736 © 1998 The American Physical Society
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57 9737ELECTRON GLASS: INTERVALLEY TRANSITIONS . . .
and such finite clusters~or single impurities! that are almost
isolated, i.e., the distance between them and their nea
neighbors belonging to the IC is much greater than the m
distance between impurity centers,;nD

21/3, wherenD is the
concentration of impurities. Such great distances corresp
to large ‘‘voids’’ with no impurities. According to the Pois
son distribution, the probability of such a void is of the ord
of exp(24pnDr3/3), i.e., is steeply falling withr at nDr 3

.1. This exponential function decays faster than e
(22r/a) at r .r 051/A2pnDa. Hence, even if at higher fre
quencies the noise spectral density grows with decrea
frequencyf as 1/f , it deviates from 1/f and saturates at suc
frequencies at whichr ( f ) becomes greater thanr 0 , i.e., at
frequencies

f min5n0 expF2
2

A2pnDa3G . ~1.1!

The one-electron-hop model of hopping resistance no
was later analyzed in more detail.5 Numerical calculations
have been performed for practically achievable values
nDa3. The frequency dependence of the spectral density
found to follow a power lawS( f )} f 2g but with the expo-
nentg considerably lower than 1. No frequency range w
the 1/f spectrum was found within these calculations.

The frequencyf min , at which, in this model, the power
law behavior ofSR( f ) turns out to be a constant, depends
nDa3. Practically, in the samples used in experiments
hopping conduction and noise, this quantity cannot be
small, otherwise the resistivity becomes immeasura
high.4,5 Usually (nDa3)21/2<30, hence the exponential func
tion in the right-hand side~rhs! of Eq. ~1.1! cannot be
smaller than;1029. Sincen0;1011– 1012 s21, the lower-
frequency limit for 1/f noise produced by one-electron ho
is ;101– 102 Hz. However, the experimental spectrum
1/f at lower frequencies.3,6 Moreover, if the noise is found to
have a 1/f spectrum, no low-frequency limit of this fre
quency dependence has ever been found in any experim1

It does not mean that 1/f has no lower limit: for all mecha-
nisms that are at least qualitatively substantiated, this low
frequency limit is practically not achievable.1 We must con-
clude that the mechanism of the hopping conduction no
suggested in Ref. 4 works at intermediate, but not too lo
frequencies.

The same qualitative conclusion is also true for the mo
suggested by Kozub.7 In this model the resistance fluctua
tions are produced by hops within finite clusters that cha
the electrical potentials at the impurities belonging to
CIC and, consequently, modulate the conduction along
CIC. In real samples with not too smallnDa3 the frequency
range of this noise is limited from below.

The main problem in the physics of noise is to find wh
transitions and between what states determine the stoch
dynamics of the system in the given frequency range. F
only those transitions that occur between states that
populated at the temperature of measurementT contribute to
the spectral density of noise. Baranovskii, Efros, Gelmo
and Shklovskii8 found, by computer simulation of a simpl
model of the EG, several energy minima, i.e., metastable
pseudoground, states, very close to the lowest-energy m
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mum that can be considered as the ground state. The s
structure of the low-energy states was found also for a m
realistic model of the Coulomb glass.9 It was also found in
Refs. 8 and 9 that the differences between the energies o
ground state and these metastable states are very small,
ally less than or of the order of the characteristic energy
the Coulomb interaction at the mean distance between ne
boring donor impurities,EC5e2nD

1/3/k, wherenD is the con-
centration of the major shallow impurity, andk is the dielec-
tric permittivity of the host crystal. The ground state a
these low-lying pseudoground states are called below ‘‘v
leys.’’ During the last several years several groups have
veloped special computational algorithms for finding, with
some simplified models of the electron glass of small si
more complete sets of the lowest excited states of this ma
body system.10–14 Presumably, these excited states inclu
the pseudo ground states.

There is a second requirement: only those transitions
have long enough relaxation times contribute to the grow
of the spectral density of noise atlow frequencies. This
means that the states between which the transition oc
must be separated by a high enough activation or tun
barrier. The relaxation times of the low-lying excited stat
of a model EG have been studied in Refs. 10 and 11.
authors found some extremely slow relaxation processes
associated them with relaxation from metastable states o
EG. Transitions between states not separated by barrier
not contribute to the growth of the spectral density of no
at low frequencies.

The main idea of the present paper is that the transiti
between low-lying energy valleys of the EG are a real sou
of 1/f hopping conduction noise. Each intervalley transiti
is, in general, a reconfiguration of a great number of el
trons, which can occur even by one-electron hops, but b
great number of such hops. Therefore, we studied, us
computer simulation, the properties of valleys relevant to
low-frequency stochastic dynamics of the EG. In Sec. II
model and the method of computer simulation are presen
In Sec. III the statistics of the valleys is found: their numb
versus the size of the EG, the differences between their
ergies, the differences between the electron arrangemen
different valleys, the dependence of these differences on
EG size and their distribution. Despite the energies of
valleys being very close to one another they are separate
high barriers. In Sec. IV the calculation of the intervalle
activation energies that determine the relaxation times a
ultimately, the low-frequency stochastic dynamics of the E
are presented, and the resistance noise produced by inte
ley transitions is discussed. In Sec. V some qualitative c
clusions are formulated.

II. THE MODEL AND THE METHOD OF COMPUTATION

Electron glass is a system of randomly arranged ma
and compensating impurities. For definiteness, we ass
that they are donors~total numberND! and acceptors~total
number NA!, respectively. At a given arrangement of th
impurities, each state of the EG corresponds to a spe
distribution of ND2NA electrons amongND donor sites.
Since the number of electrons in a definitei th donor,N( i ),
can be only 0 or 1, the number of such states equalsNs
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9738 57SH. KOGAN
5ND!/@(ND2NA)!NA!#. For any representative sample of th
EG this number is huge. Therefore the properties of t
disordered many-body system are studied by numer
simulation. In the present paper all calculations have b
performed for compensation ratio 0.5, i.e.,NA5 1

2 ND .
The model of an EG used for computer simulations c

stitutes an infinite number of identical simulation cubes, e
of which contains randomly arranged impurities:ND donors
andNA acceptors.ND2NA electrons are placed onto the d
nors. Thus, in each simulation cube there areNA negatively
charged acceptors,NA positively charged donors, andND
2NA neutral donors~electrons!, and the arrangements of th
impurities, charged and neutral, in all cubes are identical.
energies are expressed in unitsEC5e2nD

1/3/k, wherenD is
any given concentration of donors within the scope of
model, all distances are expressed in unitsnD

21/3. The side of
the simulation cube in these units isND

1/3. It was important to
study an infinite system because otherwise one could g
that the low-lying valleys result from some effect of the su
face of a finite and small sample, and are not a bulk effe

Since the energy of the EG is the energy of Coulo
interaction of the ionized impurities, and the Coulomb int
action falls off slowly, the Ewald method of summation w
used~for a recent review see Ref. 15!. The calculated energy
E is the Coulomb energy of the entire system per one sim
lation cube. It can be written as follows:

E5
1

2 (
i j

qiqj@~12d i , j !c i j 1d i j c#, ~2.1!

where i and j number all impurities within one simulatio
cube,qi51 for acceptors,qi52@12N( i )# for donors,N( i )
is the occupation of thei th donor by an electron@N( i )51
for a neutral donor,N( i )50 for an ionized, i.e., empty, do
nor#. The ‘‘potentials’’ c i j andc are expressed in terms o
Ewald sums:

c i j 5(
R

erfc~ar i j R!

r i j R

1 (
GÞ0

exp~2p2G2/a2!

pVG2 cos~2pGr i j ! ~ iÞ j !,

c5 (
R~Þ0!

erfc~aR!

R
1 (

GÞ0

exp~2p2G2/a2!

pVG2 2
2a

Ap
.

~2.2!

The vectorsR andG are the vectors of the cubic lattice an
its inverse, respectively,r i is the radius vector of thei th
impurity in the simulation cube,r i j 5r i2r j , r i j R5ur i j 1Ru,
R5uRu, andV is the volume of the unit cube. The value
the parametera is chosen to obtain the best convergence
the Ewald series.15 The function erfc(x) is the complemen-
tary error function.

The quantitiesc i j depend on the arrangement of the im
purities only and are not affected by the variation of t
donors’ occupanciesN( i ). Being calculated for a given ran
dom arrangement of impurities, they can be stored and u
for calculation of the energyE and the Coulomb potentials a
any site,
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f~ i !5 (
j ~Þ i !

qjc i j 1qic. ~2.3!

The electron hops affect only the ‘‘charges’’qi of the do-
nors. The variation of the system’s energy due to an elec
hop from the donori to an empty donorj equals

DE5 (
i 8~Þ i , j !

qi 8~c j i 82c i i 8!. ~2.4!

III. THE VALLEYS AND THE DIFFERENCES
BETWEEN THEM

The EG valleys were found using the same procedure
was used in Refs. 8 and 9@the only difference is the Ewald
summation, Eq.~2.1!# and in simulations of other disordere
many-body systems, e.g., spin glasses. Starting from a
dom distributionN( i ) of electrons among the donor impur
ties, the electrons are moved, one by one, from one dono
an unoccupied donor, irrespective of the distance betw
them, if this transfer lowers the total energy of the syste
The state~or states! found by this procedure must satisfy tw
requirements:~1! no one-electron transfer from an occupie
donor to an empty one, even across the entire system~not
only to the nearest neighbor!, can result in a transition to a
state with lower total energy, i.e., the variation of the sy
tem’s energy by any one-electron transfer is always posit
~2! the Coulomb potentialf( i ) at any i th occupied donor
must be lower than that at any empty donor,j . Different
starting states, in general, yield different energy minimaEm .
The so found energy minima that are higher than the low
one, considered as the ground state, are metastable
pseudo ground states~see below!. Both the ground state an
these metastable states may be called valleys. Since va
are obtained by satisfying the two requirements listed abo
they differ from other states of the EG, including other me
stable states, by the presence of the Coulomb gap in
spectrum of one-electron energy levels.

1. The energies and the number of valleys.The obtained
energies of the valleysEm (m51,. . .,Nv) are always nega-
tive. Their absolute valuesuEmu, depend on the specific ran
dom arrangement of the impurities and are greater, by a
tor ;2 – 3, than those obtained without Ewald summatio
The energy of the ground state per one donor,uE1u/ND ,
strongly fluctuates atND550 ~from '0.6 up to'1.4! and
most frequently is around 1.1. As the size of the syst
grows the fluctuations become smaller and the mean v
slightly greater. AtND5500 the energyuE1u/ND fluctuates
by '610% around'1.3. One may guess that atND
*1000 the size of the simulation cube is greater than
length that determines the Coulomb energy~screening
length!, i.e., in this respect the simulation cube is a mac
scopic self-averaging system.

The number of valleysNv for a givenND strongly varies
for different random arrangements of the impurities. For
stance, forND5400 the number of valleys was found to va
from Nv54 up to 106, forND5500 from 10 up to 176. It
looks like Nv is not a self-averaging quantity. Nevertheles
one may anticipate that, in samples of sufficiently large s
the relative variation ofNv is small. Using our data we ca
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57 9739ELECTRON GLASS: INTERVALLEY TRANSITIONS . . .
neither prove this nor determine the size at which the cro
over occurs.

There is an obvious trend: the greater the size of the
tem,ND , the wider the distribution ofNv and the less prob
able are smallNv . Hence, on average,Nv grows withND .
The dependence of the mean^Nv&arr, averaged over 10 dif-
ferent arrangements of impurities at eachND , on ND is pre-
sented in Fig. 1. Exceptionally high numbers of valleys w
found in one system withND5400 (Nv5106) and 5 systems
with ND5500 ~Nv5128, 132, 144, 145, and 205!.

2. The differences between the valleys.The greatest en
ergy difference between valleys,ENv

2E1 , is always;EC

only. The mean distance between adjacent valley energ
@ENv

2E1#/(Nv21), for impurity arrangements withNv

.1, fluctuates significantly at givenND : at ND550 it varies
from '0.03 to'0.3, at higherND5300– 500 it most often
does not exceed'0.1, and is typically a few 0.01~at ND
5500, ,0.01!. Much more obvious is the correlation be
tween the mean separation of valley energies and the num
of valleys,Nv , which is shown in Fig. 2. As one can see,
falls off with Nv : the valley spectra become more dense
greaterNv . In other words, the range of valley energi

FIG. 1. The mean number of valleys^Nv&arr vs the size of the
sampleND . ^Nv&arr is found, at each givenND , by averaging over
10 different arrangements of the impurities. Exponential curve
fit to the data.

FIG. 2. The mean distance between adjacent valley energie
the number of valleysNv . The energies are in unitsEC .
s-

s-

e

s,

er

t

ENv
2E1 remains;EC irrespective ofND but Nv , on aver-

age, grows withND , therefore the density of the valleys pe
unit energy also grows.

The valleys differ not only by their energies but, obv
ously, by the sets of the occupancy numbersNm( i ), i.e., by
the distribution of theND2NA electrons amongND donors.
Some donors that are occupied in one valley~say,mth! are
empty in another valley~say, thenth!. Since the total numbe
of electrons is the same in all valleys, the total number
donors whose occupation is different in the two valleys
always an even number. It is convenient to denote one-
of this total number asDNmn . The electrons in the donor
occupied in themth valley and empty in thenth one may be
called ‘‘difference electrons;’’ those donors that are empty
the mth valley and occupied in thenth one may be called
‘‘difference holes.’’ DNmn is the number of ‘‘difference
electrons’’ or ‘‘difference holes.’’ This number can be on
>2. Otherwise the transfer of the only ‘‘difference electron
of the higher valley to its only ‘‘difference hole’’ will result
in the transition to the lower valley. This is impossible b
cause, according to the method used to find the valleys~see
above!, no transition of only one electron may lower th
energy of this state. The numberDNmn can be reduced, by
one-electron hops, only if the energy of the system in
higher valley is first increased. This means that a transit
from a higher valley to a lower one by one-electron ho
always requires a nonzero activation energy~for the inverse
transition the barrier includes also the difference of the
ergies of the two valleys!.

By analogy with spin glasses, one can define, for p
statesm and n, their overlapqmn and the distancedmn be-
tween them~analog of the Hamming distance!:

qmn5
1

ND
(

i
@2Nm~ i !21#@2Nn~ i !21#5122DNmn /ND ,

dmn5
1

ND
(

i
@Nm~ i !2Nn~ i !#2512qmn52DNmn /ND .

~3.1!

The greaterDNmn is the greater is the Hamming distanc
between them in the space of the states and the smaller i
overlap between the two valleys.

For a definite arrangement of impurities, the numb
DNmn vary within some range. Of course, if any 3 valle
are taken, any of the three differencesDNmn must be smaller
than or equal to the sum of the two others, that is, the trian
rule must hold. In fact, the equalityDN235DN121DN13 oc-
curs if the impurities whose occupation is different in valle
2 and 1, and the impurities whose occupation is different i
and 1, do not coincide. An interesting problem is as follow
do the differencesDNmn or, equivalently, the Hamming dis
tances between the valleys, obey also the condition of ul
metricity? Ultrametricity means that for any 3 valley
l ,m,n, the following condition is satisfied: DNmn
<max$DNnl ,DNlm%. It implies that 2 of the 3 differences ar
equal and are greater than or equal to the third one. If
condition holds the structure of the states is hierarchical~for
a review see Ref. 16!. The results show that sometimes th
last inequality is satisfied~for instance, the differences are

a
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3, and 2!. However, often all three numbers are different~for
instance, 2, 4, and 5!, and even if two~of three! numbers are
equal, they may be smaller than the third one.

Like the number of valleys, the numbersDNmn depend on
the specific arrangement of the impurities but their relat
variations are much less than those ofNv . The mean
^DNmn& is obtained by averaging over allDNmn at a given
impurity arrangement. This mean value grows, on avera
with correspondingNv , as shown in Fig. 3~a!. The mean
difference,^DNmn&arr, averaged over a number of rando
arrangements of the impurities with givenND , grows with
ND @Fig. 3~b!#. Obviously,^DNmn&arr cannot grow withND
faster than linearly. The results presented in Fig. 3~b! are in
agreement with this expectation.

A typical distribution ofDNmn at smallND is shown in
Fig. 4~a!. The most frequent value ofDNmn is the minimum
one, i.e., 2. At higherND the typical distribution is different
@Figs. 4~b! and 4~c!#: the smallest differenceDNmn52 and
the maximumDNmn are the least probable; the most pro
able are the numbers in the middle between the extre
ones. As a whole, the distribution is roughly a normal o
One can see also in Figs. 4~a!–4~c! that the maximumDNmn
is ;0.05ND . However, even ifDNmn is a small portion of
ND , in a macroscopic sample, for any part of the sam
with large enough size this number is great.

FIG. 3. ~a! The mean number of ‘‘difference electrons’’^DNmn&
at definite arrangements of impurities vs the corresponding num
of valleys Nv . ~b! The mean number of ‘‘difference electrons
^DNmn&arr vs ND . ^DNmn&arr is obtained by averaging, at eac
given ND , over 10 different arrangements of the impurities. T
continuous curve is a power-law fit to the data.
e

e,

e
.

e

The valleys are found by descent from states with rand
occupation of donors and, consequently, with high ener
The number of such initial states,Ninit , must be high enough
and it must grow with the size of the system,ND . By in-
creasing this number in excess of, say,ND ~for ND<600! no
increase of the number of valleysNv is usually found. How-
ever, for our purpose and for qualitative conclusions, it is
very important if one more or a few other valleys exist clo
to already found.

The most important problem is whether an energy mi

er

FIG. 4. The histograms of the numbers of ‘‘difference ele
trons’’ DNmn for three samples with~a! ND5100, Nv56; ~b! ND

5200,Nv519, and~c! ND5500,Nv5205.



ad
ds
d
ys
-
he
y
u

ley
en
er
y
w
w
ow

le
th
s.
e
a

y
be
g
o
ie

at

‘re
c
g
io

ith
y
e-
c
n
a
lle
ak
in
hs
a
l
a

m
ll

the

ron
g
n
en
ty

DE
ts
nce
ith

of

ted

rs,
up-
red.

us
r-
lly
is

the

to
f
i-
l, a
-

an

er-

ne

ate

cted

e
s

es
s
rect

57 9741ELECTRON GLASS: INTERVALLEY TRANSITIONS . . .
mum exists that is considerably deeper than the alre
found group of valleys with close energies. In other wor
does an energy gap@EC exist between the ground level an
the next valleys? If such a minimum exists and if it is alwa
a single one~with no close valleys! then the stochastic mo
tion in the form of intervalley transitions does not exist in t
EG at low temperatures. In numerous calculations for s
tems of different sizes we have never found such a minim
whose energy is lower than the energies of a group of val
by more than the characteristic difference of the valleys’
ergies. During the procedure of finding the energy barri
between the valleys~see below!, the system was frequentl
checked: into what state does it descend after being allo
to make hops to states with lower energies? The system
never found in any state deeper than the already found l
est valley.

IV. THE ENERGY BARRIERS FOR INTERVALLEY
TRANSITIONS AND THE RESISTANCE NOISE

SPECTRUM

We show below that, despite the variations of the val
energies at a fixed impurity arrangement being small,
valleys are separated by energy barriers of various height
a macroscopic system, these barriers may vary in a v
broad range. Just such broad and smooth distribution of
tivation energies is well known to yield a 1/f spectrum of
noise down to very low frequencies.

In an EG the notion of the energy barrier between valle
becomes definite only if a definite restriction on the num
of electrons making simultaneously a hop and on the len
of the hops is imposed. We assume that the hops are
electron only and each hop is performed from an occup
donor to the nearest empty one or to one of the few~for
instance, 2–3! nearest empty donors. It is worth noticing th
the intervalley barriers are always nonzero~see Sec. III!.

The transition from one valley,m, to another one,n, is a
sequence of electron hops that results, ultimately, in the ‘
combination’’ of the difference electrons and holes. Ea
such sequence is a path, in the space of states, connectin
two valleys. It has some maximum energy. The activat
energy is the minimum of these maximum energies:

Emn
~act!5 min

paths m→n
$ max

along the path
E%. ~4.1!

For any EG system with more than one valley, i.e., w
great enoughND>100, the number of paths from one valle
to another is very great. Even if, for not too low noise fr
quencies and hence not too high activation energies, the
culations are confined to low-energy intermediate states o
and are using, for instance, the numerical methods elabor
in Ref. 11, the total number of possible paths from one va
to another through these states remains great. This m
impossible a rigorous calculation of barrier heights satisfy
Eq. ~4.1! and compels one to limit the number of pat
checked. Of course, the results obtained in this way
merely estimates of the true activation energies. The goa
to obtain the correct order of their magnitudes and the ch
acteristic features of their distribution. Several algorith
have been tested. The one that yields the lowest interva
barriers is presented below.
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Two valleys, say,m andn, are specified. One valley,m,
is considered as the initial one, and the goal is to find
energy barrier for the transition to the target valley,n. Be-
fore each electron hop is performed, a difference elect
~DE! or a difference hole~DH! is randomly chosen amon
all DE and DH. The DH~DE! that is nearest to the chose
DE ~DH! is then found. Thus, a pair DE-DH is chosen. Th
a number (M ) of such, nearest to the chosen DE, emp
donors that are closer to DH are found. Similarly,M such,
nearest to the chosen DH, filled donors that are closer to
are also found. A hop of the DE or the DH to any of i
correspondingM chosen neighbors decreases the dista
DE-DH ~the results presented below are obtained w
M53!. Of all these possible hops~in general, 2M hops! one
is actually performed that results in the minimal change
the system’s Coulomb energyDE. This requirement makes
less probable a significant difference between the calcula
energy barrier and the true one.

After each hop the set of donor occupation numbe
N( i ), and the set of difference electrons and holes are
dated. The energy of the system in the new state is sto
Then a new pair DE-DH is randomly chosen. AtDNmn@2,
this new pair, most probably, is different from the previo
one. Some hops result in the ‘‘recombination’’ of a diffe
ence electron with a difference hole. Their number gradua
tends to zero. This means that the intervalley transition
performed. Then the difference,DEmax, between the maxi-
mum energy of the system along the transition path and
initial energyEm is found and stored.

Variation of the sequence of random numbers used
choose the pairs DE-DH~by changing the initial number o
the random number generator! generates a different trans
tion path between the same two valleys, and, in genera
different value ofDEmax is obtained. The procedure is re
peated many times~in the present calculations, no less th
20 times for each pair of valleys!. The lowest among the so
obtainedDEmax is taken as the energy barrier,emn , for the
direct transition from the valleym to the valley n. This
algorithm leaves room for various generalizations.

When the number of valleysNv.2 the actual~easiest!
path from one valley,m, to another one,n, that is, the path
with minimal energy barrier, may pass through other, int
mediate, valleys. Theactual activation energiesEmn

(act) must
satisfy at least the following condition for the case of o
intermediate valley:

Emn
~act!<max$Eml

~act! ,Eln
~act!% for any lÞm,n. ~4.2!

Here l numbers all valleys that can serve as intermedi
ones. The condition~4.2! is similar to the condition of ultra-
metricity ~see Sec. III!.

In order to satisfy this condition the direct energiesemn
found by the procedure outlined above have been subje
to the next procedure. For any definite pair of valleys (m,n)
the value of max$eml ,eln% has been found for all intermediat
valleys l (Þm,n). The minimum value of these maxima wa
compared withemn , and the smallest of these two quantiti
was recorded asEmn

(act) . This procedure significantly reduce
the calculated energy barriers as compared with the di
barriers,emn .
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The distributions of the activation energiesEmn
(act) found by

this method, for three definite samples withND5100, ND

5200, andND5500, are shown in Figs. 5~a!–5~c!. The
samples are the same for which data are presented in
4~a!–4~c!. The most important conclusion is that the interv
within which the energy barriers vary grows, on avera
with the system’s sizeND . For ND5100 the barriers be
tween valleys are perhaps of the same order as the typ
barriers for intravalley transitions, that is, for these sm
sizes one cannot expect a great difference between the
types of transitions.

At higher ND @Fig. 5~b! and 5~c!# the distribution of the
activation energies roughly resembles that of the differen
DNmn for the same sample@Figs. 4~b! and 4~c!#. In particu-
lar, the distributions are the highest in the middle range
tween the minimum and maximum values ofEmn

~act! and
DNmn , respectively, the extreme values being the least pr
able. It shows that, despite the fact that no direct~determin-
istic! relationship betweenEmn

~act! and DNmn exists in this
strongly disordered system, they are correlated: on aver
the greaterDNmn and, consequently, the Hamming distan
between two valleys is@Eq. ~3.1!#, the higher the barrier
between them~this result is similar to that obtained, using
different method, by Vertechi and Virasoro17 for the Ising
spin-glass model with infinite range interactions!. The corre-
lation betweenEmn

~act! and DNmn is illustrated in Fig. 6. One
can see that, on average, one pair ‘‘difference electro
difference hole’’ contributes;(0.06– 0.15)EC to the energy
barrier, which is a quite plausible result.

If the method were exact the difference of energy barri
for transitions between two valleys, fromm to n and fromn
to m, i.e., Emn

act2Enm
act , must coincide with the difference o

the valley energies,En2Em . Due to the inaccuracy of the
method used these two differences, in general, do not c
cide. Since, for each pair of valleys,m and n, the energy
barriersEmn

act andEnm
act are calculated independently, the rat

@Emn
act2Enm

act2En1Em#/Emn
act can be considered as a measu

of the accuracy of the method of energy barriers’ compu
tions. This ratio was found for all pairs of valleys. The a
solute values of the ratios are typically lower than 0.25, a
seldom exceeded 0.3. For many pairs of valleys the ratio
found to be6 computer zero.

An intervalley transition results in a change of the set
occupancy numbersN( i ). One may expect that this chang
produces a fluctuation of the specimen’s hopping cond
tance,dG(t). It stems, first of all, from the change of som
resistances of the Miller-Abrahams network.2 The conduc-
tancegi j ~inverse resistance! connecting two donor sitesi
and j ~of this network! is nonzero only when one of thes
sites is occupied by an electron and another one is em
The change of the occupation number of a donor impu
results in a drastic change of several conductancesgi j con-
necting this impurity to its neighbors. The specimen’s co
ductanceG is changed also due to the variation of the Co
lomb potentials and to electron correlation effects.2 No
symmetry restriction is known that can reduce the hopp
conduction fluctuations produced by intervalley transitions
zero. If they are not zero the spectral density is expecte
grow with decreasing frequencyf . In fact, according to the
data presented in this section, the range of intervalley a
gs.
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vation energies grows with the size of the system. One
therefore expect that, in a macroscopic sample, for
achievable low frequencyf such intervalley transitions and
consequently, such conductance fluctuations exist wh
have high enough relaxation times*v21. The low-
frequency noise spectrum is expected to be of 1/f type due to
the smooth distribution of intervalley activation energies in
broad range~see, for instance, Ref. 1!. At low temperatures,
the thermal motion of a Coulomb system in equilibrium a

FIG. 5. The histograms of the energy barriersEmn
~act! , in units

EC , for the same three samples as in Fig. 4.
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under a small electric field is confined to a small part of
total number of states. The transition from one valley to
other one with different configuration of electrons may res
therefore in a significant change of the sample’s resistan

Despite the fact that the noise spectrum is qualitativ
understood, the problem of itsmagnitudeis not solved here.
First, calculations of the conductance change by direct
merical modeling are lacking sufficient accuracy. Seco
calculations based on the Markov equations for the hopp
conduction~see Appendix! seem impossible due to the gre
number of the system’s states involved. Therefore in t
section only qualitative considerations are presented.

The problem of the magnitude of the conduction no
can be considered as a part of the general problem of
effect of a variation of the donors’ occupancies,N( i ), in a
given sample on its hopping conductance. It is somew
similar to the problem of damage spreading~see Ref. 18 and
references therein!, i.e., the evolution in time of a relatively
small initial difference ofN( i ) ~like the difference between
two valleys! in two samples with identical impurity arrange
ments.

V. CONCLUSIONS

The low-energy EG landscape has a valley structure.8,9 As
was found in Sec. III, for allND used in computations, th
number of valleys,Nv , in samples of the same sizeND
strongly varies for different arrangements of the impuriti
On average,Nv steeply grows with the size of the samp
~Fig. 1!.

In all samples for which the calculations have been m
(50<ND<600), the total range of valley energies is of t
order of the characteristic Coulomb energyEC . Since the
number of the valleys rapidly grows withND , the mean
energy gap between two adjacent valleys drops withND and
Nv ~Fig. 2!. If this tendency holds at even higherND , the
distribution of the valleys is expected to be a relatively ve
narrow peak near the ground energy. It can be considere
a highly degenerate ground level.

The difference between the electron arrangements in
valleys,m andn, is described by the number of ‘‘differenc

FIG. 6. The energy barriersEmn
~act! vs the number of difference

electrons,DNmn , for a sample withND5600, Nv5118. In those
ranges of the barrier energy where the density of the scattered
is high they coalesce and create continuous vertical lines.
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electrons’’ or ‘‘difference holes,’’DNmn , which is propor-
tional to the Hamming distance between these two sta
@Eq. ~3.1!#. On average,DNmn grows with the size of the
system and with the number of valleys in the sample~Fig. 3!.
The distribution ofDNmn in multivalley samples~high ND

*200! has a typical form similar to a normal distribution, th
extreme values being the least probable@Figs. 4~a!–4~c!#.
The maximum values ofDNmn do not exceed;0.05ND .

The energy barriers for intervalley transitions have be
estimated by a computer simulation of the ‘‘recombinatio
of the ‘‘difference electrons’’ with the ‘‘difference holes’
~Sec. IV!. Despite the fact that the valley energies are alm
degenerate, the energy barriers for transitions between t
are not small and are distributed in a range whose wi
grows with the size of the system. The energy barriers
tween valleys and the corresponding numbers of differe
electrons are correlated. In particular, the distribution of
energy barriers in a given sample is similar to that of t
differencesDNmn @Figs. 5~a!–5~c!#. For highND , both re-
semble a normal distribution. The growth of the energy b
riers’ range is determined by two major patterns:~1! the
sublinear growth of typical values ofDNmn with ND @Sec. III
and Fig. 3~b!#; ~2! the typical contribution of one ‘‘difference
electron—difference hole’’ pair to the energy barrier
.(0.06– 0.15)EC .

The intervalley transitions satisfy both requirements
those transitions that are a source of low-temperature l
frequency noise:~1! in any macroscopic sample and on a
scale higher than several hundred major impurities there
valleys whose energy separation from the ground stat
many times smaller than the thermal energykBT at the tem-
peratureT of the experiment;~2! despite the valley energie
being very close, the valleys are separated by high activa
barriers whose magnitude grows, on average, with the siz
the system considered. Therefore, these transitions defin
contribute to the growth of the spectral density of the ho
ping conduction noise with decreasing frequency at low f
quencies. Due to the broad and smooth distribution of a
vation energies the spectrum of this noise is expected to
of 1/f type. However, the intervalley transitions are not e
pected to be the only ones that produce fluctuations of
hopping conductance in EG.

The slow ~‘‘glassy,’’ nonergodic! stochastic dynamics
that generates the 1/f hopping conduction noise manifes
itself also in other low-temperature phenomena: slow rel
ation of the Coulomb gap after injection of extra charge c
riers at low temperatures19 and slow field effect and persis
tent photoconductivity.20,21 The intervalley transitions may
contribute to these phenomena as well.

The hopping conduction noise is a particular example
noise in many-body systems with a strong frozen-in disord
Despite all differences between two such systems, EG
spin glass, the low-frequency stochastic dynamics of th
two systems are similar~for reviews of noise in spin glasse
see Refs. 22 and 1!. The fact that transitions between low
lying ~created by the disorder! metastable states play an im
portant role in two such systems, makes very plausible
idea that in other similar systems, including those in wh
the low-energy landscape has not yet been studied, just
transitions determine the low-frequency stochastic dynam
Similar low-frequency stochastic dynamics may be fou

ots
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also in proton glasses, in strongly disordered semi-insula
granular metallic films, and some other systems w
frozen-in strong disorder.
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APPENDIX

Since the stochastic dynamics of the EG through hops
Markov one the problem of hopping conduction noise can
formulated in terms of the eigenvectors and eigenvalue
the matrix of Markov equations for the variation of the pro
ability, P(a,t), to find the system in a statea at the timet:

]P~a,t !

]t
52(

b
GabP~b,t !, ~A1!

where the matrix

Gab5dab(
g

W~ag!2W~ba!, ~A2!

and W(ab) is the probability of transition, per unit time
from the statea to the stateb.

It is well known that the eigenvectorsCk(a) and eigen-
values lk of the matrix Gab determine the distributions
Ck(a)exp(2lkt), which decay in time following a purely
g,

-

C

g
h

.
r

a
e
of

exponential law. The eigenvector corresponding to the lo
est l050 ~no decay! is simply the set of the equilibrium
probabilities of the states:C0(a)5wa. All other eigenvec-
tors (k.0) are relaxation modes, and the correspondinglk
are their inverse relaxation times. These modes satisfy
relations

(
a

Ck~a!50, (
a

Ck
2~a!/w~a!51. ~A3!

The first relation means that any suchck(a) is a perturbation
of the equilibrium population of states that is an increase
population of some states at the expense of some other st
The second relation is the normalization equation.

The spectral density of the conductance fluctuations
be expressed in terms of these relaxation modes:

SG~ f !5 (
k.0

Gk
2 4lk

v21lk
2 , Gk5(

a
G~a!Ck~a!,

~A4!

whereG(a) is the conductance in the statea of the system.
Part of these relaxation modes may be associated with in
valley transitions. The low-frequency noise is determined
those lkÞ0 that are sufficiently small for the given fre
quencyf , i.e.,lk<;v and for which the correspondingGk
is significant. If the distribution of lnlk , i.e., the activation
barriers or tunnel exponents, is smooth in a broad range
spectral densitySG( f ) is of 1/f type.
.
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