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Diffusion and carrier recombination by interstitials in silicon
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We analyze a model of the electronic structure of the silicon interstitial, consistent with full local-density
approximationLDA) calculations. The model assumes three charge states: n@trsihgly (+), and doubly
ionized (++). The (0) interstitial is stable in a shared site, the+) stable in a tetrahedral site, and the)
state has energy nearly independent of position. In thermal equilibrium the relative occupatior{@®fahd
(++) states, each near its stable position, depends upon the electronic Fermi energy) Stete has much
lower probability than either th@) or the (++), making this a negative} center. Nevertheless, the predicted
diffusion constant for dopant atoms is dominated by motion of the interstitial in(thestate. It has an
activation energy of about one-half the band gap and is also proportional to the total interstitial density. If the
interstitial density is established at some high annealing temperature, it depends strongly upon the Fermi
energy at that temperature, and is much higher deype silicon. The moving interstitial also provides
radiationless recombination of excess carriers, at a rate calculated using matrix elements derived from the full
LDA electronic structure. The recombination rate does not contain an important Boltzmann factor, in contrast
to a Huang-Rhys mechanism, but is proportional to the interstitial density and, at high carrier densities, to the
square root of the product of the electron and hole densities. This recombination causes an enhancement of the
diffusion rate, given near equilibrium by a facta. 7, /N2+ N, 7o /NP1/[ 76+ 7], with N, NS, and 7, the
density of electrons, the equilibrium density, and an electron emission timé, iadécating the corresponding
parameters for holes. For high carrier densities, the enhancement can greatly exceed the equilibrium diffusion.
[S0163-182698)02816-1

I. INTRODUCTION that scale. There are further sizable corrections to the LDA
approximation, such as the enhancement of the gap from
In an earlier study, Harrison and Willsnade an all- Coulomb correlations, which we take to be 0.64 eV. These
electron local-density approximatidhDA ) super-cell calcu- are clearly large compared to the accuracy of the LDA cal-
lation of the electronic structure and total energy of the sili-culations themselves, so the straight LDA calculation with-
con self interstitial in a tetrahedral site and in a shared sit®ut corrections would be of little value. However, we believe
(the so-called110] dumbbel). Bar-Yam and Joannopoufos that our corrections—mostly from Ref. 1—are also accurate
had earlier found that the latter geometry had lower energyn a scale of tenths of an electron volt. Thus we have reason
for the neutral interstitial, and calculations by Blo, Smar-  to proceed with our model, recognizing that there may be
giassi, Car, Laks, Andreoni, and Pantelﬁjesnd by Wi||S1 errors of this size in the numerics.
confirmed this. Wills and Harrison also pointed out that, as |n terms of this model we calculate the distribution of
an interstitial moves from the tetrahedral site to the Sharedmterstitia|s in Various states in therma' equi”brium_ By ex-
site geometry, an electronic level associated with the intertenging this to a system with a concentration gradient we
stitial drops from the conduction band into the valence bangyain the diffusion constant. We then calculate the rate of
and that because of this electrons can be carried from the, e recombination when there are excess electrons and
conduction band to the hole band, constituting carrier recomgoleS’ using emission and capture rates obtained by Harrison

bi”f‘jt.iot”t-hThe prefte”t ?t“dyhis an fff"” tg t‘;}”derlsta'.‘td la” nd Wills' and, finally, we calculate the additional diffusion
predic € properties of sucn a system an erolesitp ayﬁ]duced by such recombination.

in recombination and diffusion.
We should recognize that although these LDA calcula-

tions suggest the diffusion path from shared site through tet-

rahedral site, that is not experimentally established. It could !l- MODEL OF THE INTERSTITIAL ELECTRONIC

be that a direct shift from one shared site to the next by STRUCTURE

motion along the bond direction is of lower energy and

dominant. However, it seems likely that again only in the We imagine the minimum-energy path that an interstitial

shared site would the electronic level lie in the bonding-  follows between the shared sifpositions=0) and the tet-

lence band so the properties of the system would be similarrahedral sitépositions= 1) and of course, it can continue to
We proceed by first defining a model electronic structurea second shared-site positigpositions=21), etc. We as-

that corresponds approximately to the calculations made bgociate an electronic energy level with the interstitial which

Wills.! Certainly there are major uncertainties in the accuds doubly occupied for the neutral interstitial, designated by

racy of even the best LDA calculations, but the fact that the(0), singly occupied +), or empty(++). We write that en-

independent calculations of Refs. 1, 2, and 3 are consisterrgy levele(s), which we take to be the enerdgy-,+ +) at

on the scale of tenths of an electron volt for the level enerwhich an electron is removed from the-) state. For the

gies, indicates their validityvithin the contextof LDA on neutral statd0) the electron is taken from a shallower level
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L5 L B B T £(0)+U* is at the valence-band maximdgnand &()

b O ; =—E4/2+1.27 eV, we obtaine;=[e(m)—&(0)]/2=0.96
3 . and &=-0.25eV, and we have Ey=[E, . (0)

0.5 - e —E, ,(7)]/2=1.00 eV. The accuracy of these estimates is
F (htt % 3 probably not enough to really distinguish them from the sim-
% 0L Ey ] pler symmetric arrangemeni=—U*/2=-0.32 eV again
w o f U= ] with £,=0.96 eV. This is the form that was illustrated in

-0.5 }\X_ \ A= Fig. 1. We have

1 F 4n ]
~— £(s) ] u*
15 J | ! ! | ! L e(s) 5 £,C04S) 2
Shared Site § Tetrahedral Site

FIG. 1. A schematic representation of the interstitial energyand the energy of th€0,+) level is U*/2—&,cosE) mea-

level for electrons in an interstitial as it moves frsw0 at the  syred from midgap. Note that for this symmetric case we
shared site ts= at the tetrahedral site. The level8,+) and  require

(+,++) are taken ase; cosg)+=U*/2, respectively, withe;
=0.96 eV, as described in the text.
) ) £,=0.96=(E4+U*)/2=0.89 eV 3)
(0,+), e(s)+U*, with U*=0.64 eV an effective Coulomb
energy? equal to the atomic Coulomb energy of 7.64 eV ) o )
divided by the dielectric constant of 12. The total energy ofif the (+,++) level is to dip into the conduction band and
the interstitial depends upon the charge state and is written 48€ (0,1) level is to enter the valence band. _
an energyE, , (s) for the interstitial in the(++) state, plus The predicted difference of 0.04 between and E, is
an energys(s) if it is in the (+) state, plus anothes(s) also not significant and we také,=¢,=0.96 eV for our
+U* if it is in the neutral state, with two electrons in the @nalysis. Note that foE,=e¢, the total energy of thé+)
level including the Coulomb repulsion between them. interstitial isEocos€) —e,c0s€)=0 independent 0. This is

We may now learn about the energis . (s) ands(s) a conS|der'at')Ie simplification, and certainly not exactly true.
from Wills'! results, as corrected for Coulomb and finite- HOWever, it is true as close as we can predict from our cal-
cell-size effectS. The energy level for the neutral interstitial culations and we will indicate where it makes a difference in
at the shared site was at the valence-band maximum, corr@r discussion. .
sponding toe (0)+U* equal to the valence-band maximum. ~ With this E;=£,=0.96 eV, withE;=1.13 eV, andU*
Wills found the level for the tetrahedral site, containing 0.9 =0-64 €V we have all the parameters we need. This leads to
electrons, at 1.22 eV above the valence-band maximuninterstitial levels moving into the bands by the.=A,
Adding 0.1U* (because only 0.9 electrons were present in=0-075 €V, as shown in Fig. 1. This provides a very clear
the calculatiop brings it to the energy—+,++) at which an model and we proceed dw_ect}y with it. At thg same time we
electron is removed from thé+) state, ore(m)=1.22 should note that we have indicated accuracies for the energy
+0.1U* =1.27 eV above the valence-band maximum, and€Vels only on a scale of tenths of an electron volt, so we are
well above the conduction-band minimum Bg=1.13 eV. not really guaranteed that this interstitial level moves into the
(This 1.13 eV isU* above the LDA gap of 0.49 é¥). This bands as we have a§sumgd. The_ calculations suggest.it, and
is shown schematically in Fig. 1. our models assume it, but it remains to be teste.d experimen-

We found the total energy change for an isolated neutrait!ly- Ho.pefyll)_/ our calculation of the properties of this
interstitial in going from the shared site to the tetrahedral sitdnedel will aid in that test.
was 0.78 eV, corrected from Wills’ super-cell calculations.
At the tetrahedral site the two electrons were put in a shallow
level below the conduction band, lower in energy than two lll. EQUILIBRIUM DISTRIBUTIONS

electrons at the conduction-band edge by 0.12 eV. In terms | gquilibrium the probability of any particular state of the

of our model this 0.78 eV equals the changein. () plus  jnterstitial in an intervatls will be proportional tods and to

the change in energy of the two electron€& .2 0.12 eV exp(—E/KT), with E the energy of that state. When we com-

—[2£(0)+U*]=2E4+U*-0.12eV=2.78eV. Thus the pare states with different numbers of electrons we must con-

changeE. , (7) - E. (0)=0.78-2.78 —2.00 eV. sider the energy: of the reservoir to or from which electrons
Now for convenience in our model we shall take bothare taken. Thigs is of course the electronic Fermi energy for

&(s) andE. ,(s) to vary sinusoidally from zero ter, as in  the system in equilibrium. Thus, the energy, for example, of

Fig. 1. Then withs(s) measured from midgap as in Fig. 1 the (+) state relative to thé++) state is given by—U*/2
andE. , (s) measured fronk, . (7/2) we can write — &£,c086)— u using Eq.(2).

g(s)=e—e,C04S), @

E. . (X)=Eqcoqs) A. The relative probabilities of different charge states

X)=Eycogs). ) )
o Taking all energies from our model we have the prob-

Setting £(s) in the first toe(0)=—Ey/2—U* [so that abilities
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P, . (s)ds= Ae LEocods) kT g— A @ £1€099)/kTy s,
P, (s)ds=2Ae[Eoc09) ~U/2=e1c085)~ KT g
= 2Ae(u*/2+ mIKTq s,
Po(s)ds= Ae[Eqcoss)—U* —2e1co8s)+ U* = 2u]/kT g

— Ae[leOS(S)+2,u]/deS.

(4)
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From Eq.(3), ,—U*/2 is greater tharEy/2, half the band
gap, and this probability is always tiny, as we noted before.
This behavior is frequently described as a “negativeen-
ter” because the tendency to bifurcate into systems with zero
and two electrons, and no systems with one, would occur for
an attraction between electrons in place of the usual Cou-
lomb repulsionU.

We may note that this is really a three-dimensional prob-
lem and we could redo the problem allowing the interstitial
to move in they andz directions perpendicular to the mini-

The factor of 2 inP, (s) came because there are two spinmum energy path that we followed with thecoordinate.

states available, whereas there is only a sif@lestate and a
single (++) state. We take equal priori probabilities of

equal intervals ins, so thatA is a normalization constant,

which is obtained by setting

foz [P++(8)+P.(s)+Po(s)]ds=1, ©)

Then the probabilities of Eq4) are replaced by Rdsdydz

We would again expand for small andz and integrate to
obtain the normalization. If the’E/dy?+ 9°E/9z> varied
along the path we would obtain asrdependent factor,
equivalent to lettingA become a functioi\(s). This com-
plicates the algebra but leaves a one-dimensional problem as
we have done, so it is not an important feature.

normalizing the path along one period. We will need to relate

this to a number of interstitials per unit volume when we

discuss diffusion.

Since ¢,>kT, the first and third integrals are heavily
dominated by the region & near the minimum energy. For

P, . (s) we expand the cosine arouse 7 and perform the
integration notingf_w,we‘(*’l’zmszds= V27kT/e, to ob-
tain the integral equal té\\27kT/e,e°1/%T. We similarly

expandPy(s) arounds=0 and integrate. We shall find that
the integral oveP . (s) is always much smaller than the sum

of these so that we may add and solve Aoto obtain

A:( €, 1/2

e*sllkT

1+ e2;/,/kT'

2akT ©)

This may be substituted into E€p) to obtain eaclP(s). We
also have the integrated probabilRy, , of finding the(++)

state (with that probability concentrated &= ) and the
integrated probabilityP, of finding the (0) state(with that
probability concentrated &= 0),

e*,u/kT
P =gamr g amT
and

e;L/kT
Po= kT g=arkT-
07 gul/KT 4 o= nikT

()

B. Total atom fraction of interstitials

Up to this point we have addressed only te&ative prob-
ability of interstitials having the three charge states. At any
temperature there will be an equilibrium density of intersti-
tials, minimizing the free energy by compromising between
the energy of formation of the interstitials and the entropy
increase due to their presence. Shockley and Rodling a
statistical analysis similar to ours by Shockley and Last,
showed that the equilibrium concentration of neutral defects
depends only upon temperature, but that of charged defects
depends strongly also upon Fermi energy. Their argument
was based upon defects diffusing througprajunction. In
equilibrium there can be no net flux of any species and since
the neutral interstitials feel no force from the field of the
junction, there must be no density gradient causing diffusion.
The density remains the same across the junction though the
Fermi energy shifts from the valence band to the conduction
band. This same independence of Fermi energy must apply
to uniform equilibrium systems. On the other hand+at)
interstitial will feel a strong force toward the-type region
and correspondingly the density Gf +) interstitials must be
much higher where the Fermi energy is near the valence-
band maximum. This same ratio 6f +) to (0) interstitials
follows directly from Eq.(7), but we now see it arises from
many extra(++) interstitials rather than a decrease in the
number of(0) interstitials.

The total density of interstitials may be very slow to
equilibrate when the temperature is changed, freezing in in-

Note that_ if =0, corr.espondlng to the (_al_ectromc Ferm|- terstitials with a concentration appropriate to a high tempera-
energy midgap, there is an equal probability of having twoy e in quenched systems, but the relative numbers in differ-
electrons in the interstitial or no'electrons in the interstitial in ¢ charge states can equilibrate quickly. Thus it may usually
our symmetric model. If we raise the Fermi energy above,e 5nhrgpriate to estimate the concentration of interstitials
for the high temperature, which we denote By, at which
the concentration was fixed, and use that density with the
relative probabilities given above at the temperature and
Fermi energy at which the system is operating.

We begin with the atom fraction of neutral interstitials,
X, the ratio of the density of neutral interstitials to the den-
sity of bulk atoms. The density of neutral interstitials is
lower by a factore™ Eom/KTh - with Eq,,, the energy of for-
mation of a neutral interstitigin the shared sijerelative to

shared-site geometry and reduce the probability of(the)
state in the tetrahedral geometry.

We may also substitute E¢6) into Eq.(4) and obtain the
integrated probabilityP, of finding the (+) state (equally
likely at anys for our choice of parameters

12 o= (e1—U*/2)/KT

e
e,u,/kT_’_ e*y,/kT '

)
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an atom in the bulk, estimated by Bl et al® as 3.3 eV. distance between such sitegy2, with a the cube edge
However, that extra atom can lie in any of the 10| =4d/v3=5.43 A for silicon. Then the real velocity of an
directions relative to the site it shares so this atom fraction ofnterstitial is
neutral interstitials in equilibrium is

a ds

Y 27v2 dt
Th's. corresponds to about>aL0*Ycm? for SI|ICOI'.1 at the .and the probability of finding a neutral interstitial in the
melting temperature of 1683 K. There are also differences "Pangeds on the path with velocity along the path in a
the entropy associated with the interstitial atom, WhiChrange do is

Blochl et al® estimated as 16 increasing this estimate by a
factor ofe®=403. The atom fraction of thet+ +) interstitials M |12

will be much higher if the Fermi energy is near the valence- Po(S,v)dsdv= Po(S)(m— exp(— sMv?/kT)dsv
band maximum. The atom fraction of interstitials including (12)
all charge states will be

XO: 12e~ Eform/kTh_ (9) (11)

since [ _.. .. exp(—3MuvZkT)dv=27kT/M and M is the
mass of the interstitial, the silicon-atom mass. The number of
interstitials, in a velocity rangdv, which will cross a given
point in a timedt, is the number in a range & equal to

X
Xior= P_Z =12(e#KTn+ g~ #/KThy g~ (Erom* W/KTh  (10)

which can be much larger thafy,. ds=(ds/dt)dt. We divide that number byt to get the rate
of crossing. Then the rafe, neutral interstitials are crossing
IV. DIFFUSION the barrier ats= in the direction of increasing on a

particular path isX,/6 times [ ..Po(7,v)(ds/dt)dv, or
We return to a system at some lower temperafurand

may use the probabilities we have obtained to write the flux
of interstitials, equal in both directions for an equilibrium  Ro*
distribution. The flux will depend upon the interstitial atom
fraction, and if we then allow a small gradient in the atom A7kT\ Y2 Xiot
fraction of interstitials, we may infer a net flux and the dif- —( ) Ba ' O ™)
fusion constant for interstitials. We may also see how the
moving interstitials move dopant atoms to derive a diffusion Xiot
constant for dopants. -
We first relate our normalization from E¢5) to the in-
terstitial atom fraction. In the equilibrium state we have seerwhere we have used Eqg) and(6) for Po(7) to obtain the
that theneutral interstitials are predominantly in the shared- final form. We similarly calculate the rate tiie-+) intersti-
site geometry, vibrating aroursk=0, and a diffusion of the tials crosss=0 in the same direction, which is the same but
neutral occurs only if it crosses a neighboring tetrahedrawith e“/*T in the numerator replaced By */*T so the rate
site. Note that eactshared site is surrounded by four neigh- for interstitial motion for the two charge states is
boring unoccupiedif the interstitial atom fraction is not too
high) tetrahedral interstitial sites. That means that the shared R.+R :X_tot
site is a part of six paths such as we are discus$img 0Tt 6
between each pair of nearest neighpomghich cross this
site. Each of these six paths connects tab+[110]a/2 for Of course, in equilibrium an equal number flow in the
example of the 12 second-neighbor possible shared sitesopposite direction. The form is as expected for our symmet-
Thus the probability of finding a neutral interstitial with 0 ric model. Either species must overcome an activation barrier
<s<24 on any one path is one-sixth of the atom fraction of2e,. The leading factor is proportional to the number of
neutral interstitials presenBX,/6, with P, from Eq.(7)  interstitials and the square root has units of the reciprocal of
and X,,; from Eg. (10). Almost all of these interstitials will time, sometimes called an attempt frequency. In our simple
lie at or aboves=0 or will lie at or belows=27. Similarly model, the vibrational frequency at the minimum turns out to
a fraction P, , X,,/6, with P, , given in Eq.(7), of the be exactlyw/27= \2&,/Ma? but these two constants would
interstitials along any path will be in a state +) and pre- not be the same if the model included a variatiorA¢$) as
dominantly neas= 7. P, X,,/6 will be in the charge state discussed after Ed8).
(+) and be equally distributed along<G<2. The rate for(+) interstitials is simpler to estimate. The
number of interstitials in the 0 to/2range on a particular
path is given byX;./6 times theP, of Eq. (8) and is inde-

o o ) ~ pendent ofs. The rate they cross in one direction is this
We calculate contributions to diffusion from interstitials humber times the velocity

in each of the charge states, beginning with. We need

now consider the distribution of velocities along the path,

which we may do just as we considered displacements of the VM/ZWkTJO wdv v exp(—Mv?/2kT) = VkT/27M
path (in the y andz directions following Eg. (8). We take ’

the path length between equivalent sitAs=21, to be the divided by the path lengtha/v2, or

47M 1/2 X_tot
kT 6a

Po(m)exp — tMv2/kT)vdv
O’oc

M

2¢ 1 1/2 ep,/kT

Ma?

— 26, KT
oHIKT o= kT € 1 (13

12

2¢e
Ll e-2ea/kT (14)

Ma?

A. Equilibrium flux
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Xior [ 261 | V2 e (e1=U*/2/KT independent of position, whereas certainly there will be some
R,=2 FO M aZ KT g~ AlRT - (15  variation, perhaps of the order of tkg=0.04 eV, which we
a € € obtained from our estimate at the end of Sec. Il. This would

; ; reduce the probability of the interstitial overcoming the high-
(SIPLIJi difers ~from =~ Eg. (12 by a factor est barrier along the path by a factor such as exp(kT).
€ Since this barrier is certainly very small on the scale: pf
—U*/2, which itself is uncertain, this aspect of our model is
not a serious problem.

"2/kTjcosh@/kT), which is always so large that this
contribution dominates the diffusion, recalling thats mea-
sured from midgap so the cosh will ordinarily be near one.
Even if u is near a band edge so cogfT)
~expEy/2kT)/2, the factor is of order 2 exp(/KT), using

Eq. (3). Thus we may neglect the contributioRg andR,, , C. Dopant diffusion

to the flux of interstitials. Of more interest is the diffusion constant for dopants,
which we assume to move the same as host silicon atoms. Of
B. Interstitial diffusion course a dopant interstitial will have slightly different energy

than a silicon interstitial, but we take that difference to be
small as we took the variation in energy wishof the (+)
interstitial to be small. Each time an interstitial moves
through a site occupied by a dopant, it displaces that dopant
by one period §=2) along the path. Thus the flufin a
[100] direction of dopants across(@00) plane to the right is
equal to the flux of interstitials to the right times the atom
fraction of dopants in the plane immediately to the left, at a
distancea/4. For the diffusion of dopants we take the inter-

. _ . stitial density to be independent of position, but the dopant
charged staté+) v periods beforeg=—2m»), and did not density to vary in the[100] direction so that instead of

scatter after that. Clark an_d Acklafhtia\_/e suggested on the — X,/ XX val2 We have—X,o@Xaop! XX al4 in the flux of
basis of molecular-dynamics calculations that such succes;

. ; X opants. The diffusion constant for dopants becomes
sive correlated jumps occur even when the energy is no
independent of position as we have assumed here fdrithe
interstitial. We shall keep as a parameter in our calculation,
thinking of it being 3 to 5, though further study is required to
give a good estimate. Similarly, the flow from the left will be
reduced by the same expressiorvifs the same. Since the Of course there are other mechanisms for diffusion, but
period ins of 27 for a path along 4+1,+1,0] or[+1,0, this is the contribution from the interstitials present and it is
+1] direction corresponds to a distance in thdirection of ~ proportional to the atom fraction of interstitials. The Boltz-
(a/v2)cos 45%=a/2, it is more convenient to replace Mmann factor in the numerator faising Eq.(3)] of order
— Xyl ISX 27w DY — IX,opl XX val2 for two-thirds of the € Fo/®*T. Forn-type doping there is an additional factor of
six paths per interstitial, and zero for the other tHifg=1,  about this size from the denominator. Fotype doping, if
+1]. Furthermore, the number of interstitials per unit vol- the same Fermi energy applied during the formation of the
ume isN,,=(8/a%) X,;. We need also to divide by the area interstitials, X, would be increased relative to thg appro-
per interstitiala®/2 in a(100) plane, but double the result to Ppriate to undoped materials by a factoPg/from Eq. (7).
account for the paths crossing this plane at a tetrahedral sit€hen the factoe ™ (¢1~ U™ /2/kTj(gu/kT o= 1/kTy \yould be re-

We Obtain an interstitial ﬂUX Of p|aced bye_ (Sl_U*/2+ﬂ)/kT and forlulw — Eg/2 the exponen_

2 2 tial would be near one. Diffusion is greatly enhanced for
36(ra’lA) (R [Xio) Nior/ 9 p-type materials, because of the positive charge states of the

The diffusion constant for interstitial3;,; is defined such
that the interstitial flux equals minu3;,; times the gradient
of the interstitial densityD,, is isotropic in a cubic crystal
so we evaluate it for gradients in[&00] direction. Again in
equilibrium, with X,.; constant, the flow of+) interstitials
from the left would equal that from the right given by Eq.
(15). If however dXy/ds is nonzero, there will be an addi-
tional term from the left given by Eq15) with X, replaced
by —dX/0sX2mv if the interstitial acquired the singly

_ _11*
a2 g, |12 e (eamURI2)KT

2Ma2

Daop=3 KT g kT KXot (17)

or a diffusion constant of interstitial.
2 12 o—(s,—U*12)IKT
D. .= pa?R _2va® [ 2g e 16 D. Transient enhanced diffusion
int— Va"R = 3 | Ma2 eHKT L g WIKT" (16)

An important point has been made by Rafferty, Gilmer,
v again is the average number of period$+g interstitial  Jaraiz, Eaglesham, and Gossntacmncerning the quenching
moves before changing charge. It is interesting that there is af interstitials, which we discussed in Sec. Ill B. They indi-
Boltzmann factor with an activation energy slightly larger cate that interstitials which arise from ion implantation con-
than half the gapsee Eq(3)] which we may associate with dense into complexes, the so-calig11} defects. This, of
the formation energy of thét) interstitial, since the motion course, occurs because the energy is lofiretheir estimate
is without an activation energy. The denominator, equal tdy 1.8 e\ with the extra atom as a part of the complex
2 coshp/KT) is also interesting. Sincg is measured from rather than as a free interstitial. There then arises a quasi-
midgap, the denominator equals 2 for intrinsic silicon, butequilibrium between the free interstitials and the complex.
increases greatly for doping of either sign, suppressing difThis 1.8 eV energy gain in condensing onto the complex is
fusion. very much less than the 3.3 eV formation energy of an in-
We should note at this point that our symmetric model hagerstitial from the bulk. In this quasi-equilibrium the form of
let the interstitial move along its path with kinetic energy the atom fraction given in Eq9) remains correct, buE,
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is replaced by this much smaller condensation energyTgnd with ) the volume of the system ang a " p-state radius”

is replaced by the ambient temperature. The resulting coreharacteristic of the interstitial electronic state. This léAds
centration of interstitials can be much higher than in the trugo coupling between interstitial states separated Royf
equilibrium we have discussed. Rafferty, Gilmer, JaraizV,,,=#%% ,/(7mR®) andV,,,= —3V,,,, so thatr, could
Eaglesham, and Gossmdrindicate that this gives a good be obtained by fitting the calculated density of states. The
account of the familiar transient enhanced diffusion follow-variation with R could be tested by comparison of fits to
ing ion implantation. Eventually, through equilibration at different super-cell sizes. Wills’ fit of the bari'dgaverp

surfaces, th¢311} defects will evaporate and the interstitial = —9.5 A. The corresponding state for tt® interstitial, in
density drop to its true equilibrium value signaling the end ofthe shared site, was expected to have symmetry more like
the transient-enhanced diffusion. that of ad state and the formula corresponding to Etf)
was(k|H|d)= \/47-rrd3/(39)(ﬁ2k2/m)Y2m(k) and Wills’ fit!
V. CARRIER RECOMBINATION gavery=—1.2 A. Using these matrix elements, and repre-

) o o _senting the conduction band as a parabolic band with effec-
Our calculation of equ|l|br|um distributions among the in- tive massm,= 0.33 m, we obtain an emission rate from the

terstitial charge states implicitly assumes that carriers can bf.jike interstitial state to an energy conserving state of wave
emitted and absorbed in order to reach that equilibrium, bubymberk as

does not depend upon the rate. However, when the system is

not in equilibrium the rates themselves are of interest. The 3

; N : 2w ARK[r g
changes in charge state can lead to radiationless recombina- = K (PIHIK)|?8(ex—ep) = ————
tion of carriers, which is the subject of a major text by Aba- Te(k) h 3me
kumov, Perel, and Yassievithand we address only a small (19

part of the subject. However, the interstitial provides a mode
for radiationless recombination, which seems quite differen
from all of those they considered. It is perhaps closest to the

Huang-Rhys mechanistin which a local electronic level is 1 45KS|r o3
shifted by a harmonic oscillator, corresponding to some de- = ,
fect in the system. An electron can be captured when the 7h(K) 3my
oscillator has sufficient amplitude for the level to move into
the conduction band. However, the resulting rate inevitabl
has an activation energy,. associated with such a large
excursion of the oscillator, and the correspond@igact’<T

bimilarly, the emission rate into the hole band was found to

(20

and we takemn,=0.42 m. These lead to values at the energy
YA, in our model(Fig. 1) of 7,=4.3x10 5 sec. and at\,

for holes7,=2.5x 10 12 sec. These numbers are extremely
. . uncertain, largely from the uncertainty in the real magnitude
appears in the result. We shall see here that no large actlvg:f A, andA,, but also from the fitting of the coupling using

tion energy appears in the final Tesu“* E82). . Eq. (18), which could easily lead to errors of factors of ten in
Recombination such as we discuss here will show up a8 e rates in Eqsi19) and (20)

leakage current in diodes and Liu, Lu, Sung, Pai, and*¥sai

have recently suggested that their observations of eXCe${ on it is in the conduction band. is given bgp) and the
leakage current are consistent with recombination arisin ’

from vacancies or interstitials quenched into silicon mosfets: robability of the conduction-band state being empty is 1

. . . . -~ ~—f(k), then the rate of emission i(p)[1—f(k)]/7o(Kk).
Our study of the_ |ntgrst|t|al provides a detailed mechamsml.he rate of capture must contain the same statistical factors
for such recombination.

with k and p interchanged, and since they must be equal
when bothf’s are the equilibrium distribution, it follows
A. Emission and capture rates from detailed balance that the factorrd(k) must be the

The emission rates can be directly calculated using théame. Thus we have estimated emission and capture rates for
familiar Golden Rule of quantum mechanics, but we requirecarrers in terms of the distribution functhns. Again, the val-
a matrix element between the electronic state of the interstiues for there(k) at A above the conduction-band edge and
tial and the band states for the free electron. These matrithe correspondingy(k) are quite uncertain. The form, how-
elements can be obtained indirectly from Wills’ super-cell€Vver, allows us to proceed.
calculation! This was done for thé++) interstitial by fit-
ting the density of states arising from the interstitials in the B. Rates in equilibrium
super-cell calculation to a tight-binding bandmlike inter-
stitial levels, through matrix element,,, and V,,, be-
tween adjacent interstitials. These were in turn treated
indirect couplings from interstitialp) to interstitial |p)
through the conduction-band statesk) as Vopm
=3 (p|H[k)(k|H|p")/(ep—€\) following the theory of
Wills and Harrisorf. In that theory the couplings are of the
form

If the probability of occupation of the interstitial state,

We first calculate the rate at whi¢k-+) interstitials cap-
ture electrons from the conduction band. The probability that
&3n interstitial in the staté+) captures an electron is negligi-
bly smaller because the fraction of interstitials in the)
state is so small. We consider first an equilibrium situation,
but distinguish the Fermi energy;, which enters the prob-
abilitiesP, . (s) from Eq.(4) andP, , from Eq.(7) and the
Fermi energyu., which determines the occupation of the
12 v 2 electronic states in the condu_ction b_an_d. We shall see, of
(k|H|p)= ( 47”13) ﬂ Y,(K) (18) course, that they are the same in equilibrium, but they are not
30 m ~mh the same when there are excess carriers. The probability that
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a given interstitial has this charge statePis, given in Eq. rate R, _, is the same without the facta“i—#n/kT we

(7) ase” #i/KT[e#i KT+ @~ 1 /KT] |t then sits with high prob-  have again forced the net rates to be exactly zero in equilib-
ability nears= 7 and we write the corresponding(s= ) rium.

corresponding to thk for an electron with the energy of the If we now move out of equilibrium, but assume that what
(+,++) interstitial state as= 7 (see Fig. 1L The rate elec- electrons are present in the conduction band are in thermal
trons are being captured into this empty level is lfimes  equilibriumwith each otherand the holes are in equilibrium
the probability of band states at that energy being occupiedyith each other, we may use the same formulas, but with the
fo=1/[els1Y*/2-#/kT 1 1] with the electron energy and thre_e different Fermi energieg,; defining the relative occu-
the Fermi energy for the electrops, measured from midgap Pation of the(++) and(0) states, angke and uu, represent-
(again, see Fig.)11t will be adequate to take the exponential INg the density of carriers in the conduction and valence
in the Fermi distribution to be large to write this probability bands. The relation between the density of electidpsind
asfowe*(sfu*’sz‘e)’”. Thus the capture rate by an indi- the corresponding Fermi energy, measured from midgap

vidual interstitial is IS given b)}
312
—(e1—U* 124 ;- o) KT m.kT
e e _ _ _ _
R++4>+:[ TR —,u-/kT] ( ) (21) Ne:2(29h2> e (Egl2 Me)/kTECee (Ey2 P«e)/kT,
et e M To(S= T

(25)
Similarly, the probability of th€+) state is given by Eq.
(8) and since the energy is independenspéll s values are  obtained by summing the occupied states for the conduction
equally likely. Thus, taking the occupation of the band, expanding the Fermi distribution function for a Fermi
conduction-band states as much less than one, the rate benergy far from the band edge comparedi The corre-
comes P, /(7o) with 1 7o)=1/2m[dsl/zs(s), integrated sponding expression for holes i,=Cye (o2 #n)/kT,
over the region where the level,++) is in the conduction  Thus we could rewrite the equations in termaNgf, Ny, , and

band. Using Eq(8), this is the density of interstitials in each charge state to obtain the
rate equations for the changes in carrier concentrations in
A g, |\ e (e1=U*/2)/kT each interstitial charge state with time. We shall not do this
R+ﬂ++=® 2’7TkT) i KT g mi /KT (22 here but go immediately to steady-state equations.
We see immediately that in equilibrium, witla; = u, the C. Steady state

exponential factors are the same for E@&l) and Eq.(22) ,

and the multiplicative factors differ only because we have [N Steady state the number of electrons leaving the con-
used different approximations in the evaluation of the inte-duction band must equal the number arriving in the valence
grals and for the occupation probabiliies for the twoPand, and the occupation of the two charge staBsand
cases. /) is much smaller than 2(s=) because the (++) will sh_|ft until tha_lt is the case, then becoming inde-
integral extends only over a small rangesofas seen in Fig. Pendent of time. That is, we s&, , ., —Ry_,+=Ri_o

1, and 1#(s)<1/7,(s= ) over that range. This is compen- — Ro—+ t0 obtain

sated for by the large ratio @f, /kT in the square root in Eq.

(22). We enforce the exact equality of the two rates at equi- e (immekT_7  glui—un)lkT_q

librium by using the simpler form for the leading factor from Te - ™ ' (26)

Eq. (21) to replace Eq(22) by

which is the steady-state condition determinjagin terms
of ue anduy,, or correspondingiN, andN,,. We may solve
for e#i’kT and evaluate the rate electrons are disappearing
from the conduction bandR,, .,—R,_.,,, which is
identical to Eq(21) without the factore™ (i~ #e/kT We also  equal to the rate they appear in the valence band. We also
simplified the notation by writing.= 7,(s= ), the value at have R, _,,, equal to R,, . except for the factor
the maximum. e~ (wi~rJ/KT Using Eq.(21) and (26) we obtain the recom-
For our symmetric model the same analysis applied to th@ination rate for a single interstitial of

emission and capture of holésr electrongfrom the valence
band yields g (s1-U*/2)/KT

o (1= U 12— i+ pp) IKT Rer‘_[e“i KTt gmilkT]
(29)

e (s1=U*12)/kT

Ri_ 4= . — ,
+—++ [eM'/kT‘Fe /.L,/kT]Te

(23

Ro_ .=~ . — _
0—+ [e/,l,l /kT_’_e i /kT] . X[(Te_ Th)2+4TeThe('Me Mh)/kT]1/2_ Te— Th

27TeTh

with 7, evaluated as= 0. The difference in the sign before
the Fermi energies in the exponent of course is as expected (27
since alowering of the Fermi energy for the holes,,, in-

creases the number of holes and similarly a shift in the We have not inserted the solution feti’<T in the denomi-
Fermi energyu;, which increases the number of interstitials nator, which seems to yield too complicated a form to be of
in the state(++) reduces the number in the stdf®. The interest.
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This may be written in terms of carrier concentratidfs Ren 1 omh2 \%?
andNj, and the corresponding equilibrium concentratittys N 20t JmamkT NiotVNeNp
€ elllh

andNﬂ for an equilibrium Fermi energyq by using Eq(25)

to write ~0.7X 10" "N,V NN e
~ V. tot elNh sec’

(32)
NeNh
— . (28)  WhereV stands for volume.
NeNp It is interesting that all of the Boltzmann factors have
disappearedif we don’t count the one that determinisig,),
Still the dependence of the recombination upon concentraexcept ag~ (de™ 40T with A= A~0.07 eV in our model,
tion is quite unfamiliar. It is interesting to consider two lim- which we have dropped by using the approximation in Eq.
its. (3). In addition, the factor T7*2 increases with decreasing
First, if the system is close to equilibrium then the Fermitemperature. The principal Boltzmann factor also disappears
energies are close to each other and we may expand tlie Eq. (29) near equilibrium, becauseN@ and 1Nﬂ contain
exponential under the square root in E2j7), and the square factors analogous to that in E(B1). This is a very remark-
root itself, to lowest order inue— up, to obtain able aspect of this mechanism for radiationless recombina-
tion, which distinguishes it from the Huang-Rhys
mechanisnt! This would, nevertheless, seem to be a rather
R~ He™ Fh low capture rate: ifN,, equals the X 10 interstitials/cnd
e 2 costi g /KT) (7ot 7)KT we estimated after Eq9), the decay rate for carriers is
2% 10’ per second. However, the very loag we have used
is a very uncertain number. Further if the material wpre

elie—rn)/KT —

o (51~ U*12/IKT

e~ (1 UTKT 5N, /NS+ SNy, /NP

T2 coshiug/kT) Tet Th (29 type when the density of interstitials was fixed, the concen-

tration of interstitials would increase by a facteFs’kTh
~ — A= 2ulKT, H

with the last form obtained from Eq25) using Ne=N,  ~1500. [P, /Po=e =" from Eq. (7), with u

—NC and 6N, =N, —N®. This dependence upon th&l may =~ E4/2.] This would raise our estimate tox3L0' /sec.

S .
also look unfamiliar but it would also follow from a mass-
action law that the recombination rate was proportional to VI. RECOMBINATION-INDUCED DIFFUSION

NN, /NIN2—1 near equilibrium.
We may finally obtain the rate far from equilibrium, when
Ne>N2 andN,>NP. Then Eq.(27) becomes

When there are excess carriers present, the rate at which
(++) interstitials capture electrons from the conduction
band to becomé+) increases, as does the capture of holes in
the valence band bg0) interstitials to producé+) intersti-

e (e1-U*I2/KT  a(pe—up)/2kT tials. This increases the fraction ¢f-) interstitials in the
Ren™ raRT - a—a kT steady state, thereby enhancing diffusion.
[efi™ +e 1 rem We may readily calculate the increase by noting that the
rates of formation of +) interstitials from Eq(21) and(24),
(30)  respectively, increase by factors efe’kT and e~ o#n /KT,

e—(el—U*/Z)/kT ( NeNh)llz

T e * T4 e #KT | NOND Noting the many common factors in the two equations we

obtain an increase of the total rate of production(-6) in-
with, of coursew= (ue+ un)/2. This dependence upon con- terstitials by a factor of given by
centrations is the square root of the mass-action form, and

follows because the recombination is sequential. Such de- ekl e om/kT &jL N
pendences were also found by Abakumov, Perel, and Te + ™ h N2 Te ND
Yassievicht® Because of the form of the first denominator in f= 1 1 B (33
the final form, the longest relaxation timg, which we es- —+ — e’ 'h

timated as 2.5 10 *? sec, completely dominates the recom- Te Th

bination.

In a steady state, the fraction of interstitials in {He) state
must increase by just this factor, and both diffusion constants
we defined must also increase by the same factor. The final
form in Eqg. (33) may thus be multiplied by the diffusion
3/2 constant of Eq(17) to obtain the recombination enhanced
) e B/, (31)  diffusion constants for dopants. Since in devid&scan be
considerably larger than the equilibrium valut% the en-
hancement may be considerably larger than the original dif-
We then use E3) to takeEy/2~¢,—U*/2 and with excess fusion rate. Note that these formulas also obtain if there is a
carriers in both bands, the individual Fermi energies are asuppressed number of carriet®, or SN, negative, leading
the band edges and~0. We multiply by the number of to a carrier-generation-suppressed diffusion.
interstitials per unit volumé\,,, to obtain a recapture rate per  Finally, we should note in addition that recombination of
unit volume of carriers liberates an energy approximately equal to the band

We may obtain a more meaningful form using E85)
for the equilibrium concentrations to obtain

Vmem kT

NONO) 2= 2 ]
(NNb) 21h?
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gap for each pair combined. This occurs, for example, whethe system remains fairly close to equilibrium. However,
an interstitial has acquired an electron from the conductionwhen there are net recombinations the energy shows up as
band to becomé+) with a thermal kinetic energy, but then heat and can also modify the diffusion through the tempera-
deposits it in the valence band to becofdet+) with a po-  ture dependence of Eq&l6) and (17).

tential energy of the order of the gap. As it falls to the tetra-
hedral site it acquires the corresponding kinetic energy,
which ultimately arrives as heat in the lattice. This also oc-
curs in equilibrium but is then rare enough that these high- This work was sponsored by the Semiconductor Research
kinetic-energy interstitials are a normal part of the equilib-Corporation. The author benefited from discussions with
rium distribution. This will be true also in a steady state if Professor J. D. Plummer.
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