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Diffusion and carrier recombination by interstitials in silicon

Walter A. Harrison
Applied Physics Department, Stanford University, Stanford, California 94305-4085

~Received 10 November 1997!

We analyze a model of the electronic structure of the silicon interstitial, consistent with full local-density
approximation~LDA ! calculations. The model assumes three charge states: neutral~0!, singly ~1!, and doubly
ionized ~11!. The ~0! interstitial is stable in a shared site, the~11! stable in a tetrahedral site, and the~1!
state has energy nearly independent of position. In thermal equilibrium the relative occupation of the~0! and
~11! states, each near its stable position, depends upon the electronic Fermi energy. The~1! state has much
lower probability than either the~0! or the~11!, making this a negative-U center. Nevertheless, the predicted
diffusion constant for dopant atoms is dominated by motion of the interstitial in the~1! state. It has an
activation energy of about one-half the band gap and is also proportional to the total interstitial density. If the
interstitial density is established at some high annealing temperature, it depends strongly upon the Fermi
energy at that temperature, and is much higher forp-type silicon. The moving interstitial also provides
radiationless recombination of excess carriers, at a rate calculated using matrix elements derived from the full
LDA electronic structure. The recombination rate does not contain an important Boltzmann factor, in contrast
to a Huang-Rhys mechanism, but is proportional to the interstitial density and, at high carrier densities, to the
square root of the product of the electron and hole densities. This recombination causes an enhancement of the
diffusion rate, given near equilibrium by a factor@Neth /Ne

01Nhte /Nh
0#/@te1th#, with Ne , Ne

0, andte the
density of electrons, the equilibrium density, and an electron emission time, andh indicating the corresponding
parameters for holes. For high carrier densities, the enhancement can greatly exceed the equilibrium diffusion.
@S0163-1829~98!02816-1#
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I. INTRODUCTION

In an earlier study, Harrison and Wills1 made an all-
electron local-density approximation~LDA ! super-cell calcu-
lation of the electronic structure and total energy of the s
con self interstitial in a tetrahedral site and in a shared
~the so-called@110# dumbbell!. Bar-Yam and Joannopoulos2

had earlier found that the latter geometry had lower ene
for the neutral interstitial, and calculations by Blo¨chl, Smar-
giassi, Car, Laks, Andreoni, and Pantelides3 and by Wills1

confirmed this. Wills and Harrison also pointed out that,
an interstitial moves from the tetrahedral site to the shar
site geometry, an electronic level associated with the in
stitial drops from the conduction band into the valence ba
and that because of this electrons can be carried from
conduction band to the hole band, constituting carrier reco
bination. The present study is an effort to understand
predict the properties of such a system and the roles it p
in recombination and diffusion.

We should recognize that although these LDA calcu
tions suggest the diffusion path from shared site through
rahedral site, that is not experimentally established. It co
be that a direct shift from one shared site to the next
motion along the bond direction is of lower energy a
dominant. However, it seems likely that again only in t
shared site would the electronic level lie in the bonding~va-
lence! band so the properties of the system would be simi

We proceed by first defining a model electronic struct
that corresponds approximately to the calculations made
Wills.1 Certainly there are major uncertainties in the ac
racy of even the best LDA calculations, but the fact that
independent calculations of Refs. 1, 2, and 3 are consis
on the scale of tenths of an electron volt for the level en
gies, indicates their validitywithin the contextof LDA on
570163-1829/98/57~16!/9727~9!/$15.00
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that scale. There are further sizable corrections to the L
approximation, such as the enhancement of the gap f
Coulomb correlations, which we take to be 0.64 eV. The
are clearly large compared to the accuracy of the LDA c
culations themselves, so the straight LDA calculation wi
out corrections would be of little value. However, we belie
that our corrections—mostly from Ref. 1—are also accur
on a scale of tenths of an electron volt. Thus we have rea
to proceed with our model, recognizing that there may
errors of this size in the numerics.

In terms of this model we calculate the distribution
interstitials in various states in thermal equilibrium. By e
tending this to a system with a concentration gradient
obtain the diffusion constant. We then calculate the rate
carrier recombination when there are excess electrons
holes, using emission and capture rates obtained by Harr
and Wills1 and, finally, we calculate the additional diffusio
induced by such recombination.

II. MODEL OF THE INTERSTITIAL ELECTRONIC
STRUCTURE

We imagine the minimum-energy path that an interstit
follows between the shared site~positions50! and the tet-
rahedral site~positions5p! and of course, it can continue t
a second shared-site position~position s52p!, etc. We as-
sociate an electronic energy level with the interstitial whi
is doubly occupied for the neutral interstitial, designated
~0!, singly occupied~1!, or empty~11!. We write that en-
ergy level«(s), which we take to be the energy~1,11! at
which an electron is removed from the~1! state. For the
neutral state~0! the electron is taken from a shallower lev
9727 © 1998 The American Physical Society
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~0,1!, «(s)1U* , with U* 50.64 eV an effective Coulomb
energy,4 equal to the atomic Coulomb energy of 7.64 e
divided by the dielectric constant of 12. The total energy
the interstitial depends upon the charge state and is writte
an energyE11(s) for the interstitial in the~11! state, plus
an energy«(s) if it is in the ~1! state, plus another«(s)
1U* if it is in the neutral state, with two electrons in th
level including the Coulomb repulsion between them.

We may now learn about the energiesE11(s) and«(s)
from Wills’ 1 results, as corrected for Coulomb and finit
cell-size effects.5 The energy level for the neutral interstitia
at the shared site was at the valence-band maximum, co
sponding to«(0)1U* equal to the valence-band maximum
Wills found the level for the tetrahedral site, containing 0
electrons, at 1.22 eV above the valence-band maxim
Adding 0.1U* ~because only 0.9 electrons were present
the calculation! brings it to the energy~1,11! at which an
electron is removed from the~1! state, or «(p)51.22
10.1U* 51.27 eV above the valence-band maximum, a
well above the conduction-band minimum atEg51.13 eV.
~This 1.13 eV isU* above the LDA gap of 0.49 eV1,4!. This
is shown schematically in Fig. 1.

We found5 the total energy change for an isolated neut
interstitial in going from the shared site to the tetrahedral
was 0.78 eV, corrected from Wills’ super-cell calculation1

At the tetrahedral site the two electrons were put in a shal
level below the conduction band, lower in energy than t
electrons at the conduction-band edge by 0.12 eV. In te
of our model this 0.78 eV equals the change inE11(s) plus
the change in energy of the two electrons, 2Ec20.12 eV
2@2«(0)1U* #52Eg1U* 20.12 eV52.78 eV. Thus the
changeE11(p)2E11(0)50.78– 2.78522.00 eV.

Now for convenience in our model we shall take bo
«(s) andE11(s) to vary sinusoidally from zero top, as in
Fig. 1. Then with«(s) measured from midgap as in Fig.
andE11(s) measured fromE11(p/2) we can write

«~s!5 «̄2«1cos~s!,
~1!

E11~x!5E0cos~s!.

Setting «(s) in the first to «(0)52Eg/22U* @so that

FIG. 1. A schematic representation of the interstitial ene
level for electrons in an interstitial as it moves froms50 at the
shared site tos5p at the tetrahedral site. The levels~0,1! and
~1,11! are taken as«1 cos(s)6U* /2, respectively, with «1

50.96 eV, as described in the text.
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«(0)1U* is at the valence-band maximum# and «(p)
52Eg/211.27 eV, we obtain«15@«(p)2«(0)#/250.96
and «̄520.25 eV, and we have E05@E11(0)
2E11(p)#/251.00 eV. The accuracy of these estimates
probably not enough to really distinguish them from the si
pler symmetric arrangement«̄52U* /2520.32 eV again
with «150.96 eV. This is the form that was illustrated
Fig. 1. We have

«~s!52
U*

2
2«1cos~s! ~2!

and the energy of the~0,1! level is U* /22«1cos(s) mea-
sured from midgap. Note that for this symmetric case
require

«150.96i~Eg1U* !/250.89 eV ~3!

if the ~1,11! level is to dip into the conduction band an
the ~0,1! level is to enter the valence band.

The predicted difference of 0.04 between«1 and E0 is
also not significant and we takeE05«150.96 eV for our
analysis. Note that forE05«1 the total energy of the~1!
interstitial isE0cos(s)2«1cos(s)50 independent ofs. This is
a considerable simplification, and certainly not exactly tr
However, it is true as close as we can predict from our c
culations and we will indicate where it makes a difference
our discussion.

With this E05«150.96 eV, withEg51.13 eV, andU*
50.64 eV we have all the parameters we need. This lead
interstitial levels moving into the bands by theDe5Dh
50.075 eV, as shown in Fig. 1. This provides a very cle
model and we proceed directly with it. At the same time w
should note that we have indicated accuracies for the en
levels only on a scale of tenths of an electron volt, so we
not really guaranteed that this interstitial level moves into
bands as we have assumed. The calculations suggest it
our models assume it, but it remains to be tested experim
tally. Hopefully our calculation of the properties of th
model will aid in that test.

III. EQUILIBRIUM DISTRIBUTIONS

In equilibrium the probability of any particular state of th
interstitial in an intervalds will be proportional tods and to
exp(2E/kT), with E the energy of that state. When we com
pare states with different numbers of electrons we must c
sider the energym of the reservoir to or from which electron
are taken. Thism is of course the electronic Fermi energy f
the system in equilibrium. Thus, the energy, for example,
the ~1! state relative to the~11! state is given by2U* /2
2«1cos(s)2m using Eq.~2!.

A. The relative probabilities of different charge states

Taking all energies from our model we have the pro
abilities
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57 9729DIFFUSION AND CARRIER RECOMBINATION BY . . .
P11~s!ds5Ae2@E0cos~s!#/kTds5Ae2«1cos~s!/kTds,

P1~s!ds52Ae2@E0cos~s!2U* /22«1cos~s!2m#/kTds

52Ae~U* /21m!/kTds,

P0~s!ds5Ae2@E0cos~s!2U* 22«1cos~s!1U* 22m#/kTds

5Ae@«1cos~s!12m#/kTds. ~4!

The factor of 2 inP1(s) came because there are two sp
states available, whereas there is only a single~0! state and a
single ~11! state. We take equala priori probabilities of
equal intervals ins, so thatA is a normalization constant
which is obtained by setting

E
0,2p

@P11~s!1P1~s!1P0~s!#ds51, ~5!

normalizing the path along one period. We will need to rel
this to a number of interstitials per unit volume when w
discuss diffusion.

Since «1@kT, the first and third integrals are heavi
dominated by the region ofs near the minimum energy. Fo
P11(s) we expand the cosine arounds5p and perform the
integration noting*2`,`e2(«1/2kT)s2

ds5A2pkT/«1 to ob-
tain the integral equal toAA2pkT/«1e«1 /kT. We similarly
expandP0(s) arounds50 and integrate. We shall find tha
the integral overP1(s) is always much smaller than the su
of these so that we may add and solve forA to obtain

A5S «1

2pkTD 1/2 e2«1 /kT

11e2m/kT . ~6!

This may be substituted into Eq.~5! to obtain eachP(s). We
also have the integrated probabilityP11 of finding the~11!
state ~with that probability concentrated ats5p! and the
integrated probabilityP0 of finding the ~0! state~with that
probability concentrated ats50!,

P115
e2m/kT

em/kT1e2m/kT

and

P05
em/kT

em/kT1e2m/kT . ~7!

Note that if m50, corresponding to the electronic Ferm
energy midgap, there is an equal probability of having t
electrons in the interstitial or no electrons in the interstitial
our symmetric model. If we raise the Fermi energy abo
midgap we increase the probability of the neutral state in
shared-site geometry and reduce the probability of the~11!
state in the tetrahedral geometry.

We may also substitute Eq.~6! into Eq.~4! and obtain the
integrated probabilityP1 of finding the ~1! state~equally
likely at anys for our choice of parameters!,

P154pS «1

2pkTD 1/2 e2~«12U* /2!/kT

em/kT1e2m/kT . ~8!
e

o

e
e

From Eq.~3!, «12U* /2 is greater thanEg/2, half the band
gap, and this probability is always tiny, as we noted befo
This behavior is frequently described as a ‘‘negative-U cen-
ter’’ because the tendency to bifurcate into systems with z
and two electrons, and no systems with one, would occur
an attraction between electrons in place of the usual C
lomb repulsionU.

We may note that this is really a three-dimensional pro
lem and we could redo the problem allowing the interstit
to move in they andz directions perpendicular to the min
mum energy path that we followed with thes coordinate.
Then the probabilities of Eq.~4! are replaced by aPdsdydz.
We would again expand for smally and z and integrate to
obtain the normalization. If the]2E/]y21]2E/]z2 varied
along the path we would obtain ans-dependent factor,
equivalent to lettingA become a functionA(s). This com-
plicates the algebra but leaves a one-dimensional problem
we have done, so it is not an important feature.

B. Total atom fraction of interstitials

Up to this point we have addressed only therelativeprob-
ability of interstitials having the three charge states. At a
temperature there will be an equilibrium density of inters
tials, minimizing the free energy by compromising betwe
the energy of formation of the interstitials and the entro
increase due to their presence. Shockley and Moll,6 using a
statistical analysis similar to ours by Shockley and Las7

showed that the equilibrium concentration of neutral defe
depends only upon temperature, but that of charged def
depends strongly also upon Fermi energy. Their argum
was based upon defects diffusing through apn junction. In
equilibrium there can be no net flux of any species and si
the neutral interstitials feel no force from the field of th
junction, there must be no density gradient causing diffusi
The density remains the same across the junction though
Fermi energy shifts from the valence band to the conduc
band. This same independence of Fermi energy must a
to uniform equilibrium systems. On the other hand a~11!
interstitial will feel a strong force toward thep-type region
and correspondingly the density of~11! interstitials must be
much higher where the Fermi energy is near the valen
band maximum. This same ratio of~11! to ~0! interstitials
follows directly from Eq.~7!, but we now see it arises from
many extra~11! interstitials rather than a decrease in t
number of~0! interstitials.

The total density of interstitials may be very slow
equilibrate when the temperature is changed, freezing in
terstitials with a concentration appropriate to a high tempe
ture in quenched systems, but the relative numbers in dif
ent charge states can equilibrate quickly. Thus it may usu
be appropriate to estimate the concentration of interstit
for the high temperature, which we denote byTh , at which
the concentration was fixed, and use that density with
relative probabilities given above at the temperature a
Fermi energy at which the system is operating.

We begin with the atom fraction of neutral interstitial
X0 , the ratio of the density of neutral interstitials to the de
sity of bulk atoms. The density of neutral interstitials
lower by a factore2Eform /kTh, with Eform the energy of for-
mation of a neutral interstitial~in the shared site! relative to
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9730 57WALTER A. HARRISON
an atom in the bulk, estimated by Blo¨chl et al.3 as 3.3 eV.
However, that extra atom can lie in any of the 12@110#
directions relative to the site it shares so this atom fraction
neutral interstitials in equilibrium is

X0512e2Eform /kTh. ~9!

This corresponds to about 331014/cm3 for silicon at the
melting temperature of 1683 K. There are also difference
the entropy associated with the interstitial atom, wh
Blöchl et al.3 estimated as 6k, increasing this estimate by
factor ofe65403. The atom fraction of the~11! interstitials
will be much higher if the Fermi energy is near the valen
band maximum. The atom fraction of interstitials includin
all charge states will be

Xtot5
X0

P0
512~em/kTh1e2m/kTh!e2~Eform1m!/kTh, ~10!

which can be much larger thanX0 .

IV. DIFFUSION

We return to a system at some lower temperatureT and
may use the probabilities we have obtained to write the fl
of interstitials, equal in both directions for an equilibriu
distribution. The flux will depend upon the interstitial ato
fraction, and if we then allow a small gradient in the ato
fraction of interstitials, we may infer a net flux and the d
fusion constant for interstitials. We may also see how
moving interstitials move dopant atoms to derive a diffus
constant for dopants.

We first relate our normalization from Eq.~5! to the in-
terstitial atom fraction. In the equilibrium state we have se
that theneutral interstitials are predominantly in the share
site geometry, vibrating arounds50, and a diffusion of the
neutral occurs only if it crosses a neighboring tetrahed
site. Note that each~shared! site is surrounded by four neigh
boring unoccupied~if the interstitial atom fraction is not too
high! tetrahedral interstitial sites. That means that the sha
site is a part of six paths such as we are discussing~one
between each pair of nearest neighbors!, which cross this
site. Each of these six paths connects two~at 6@110#a/2 for
example! of the 12 second-neighbor possible shared si
Thus the probability of finding a neutral interstitial with
,s,2p on any one path is one-sixth of the atom fraction
neutral interstitials present,P0Xtot/6, with P0 from Eq. ~7!
and Xtot from Eq. ~10!. Almost all of these interstitials will
lie at or aboves50 or will lie at or belows52p. Similarly
a fraction P11Xtot/6, with P11 given in Eq. ~7!, of the
interstitials along any path will be in a state~11! and pre-
dominantly nears5p. P1Xtot/6 will be in the charge state
~1! and be equally distributed along 0,s,2p.

A. Equilibrium flux

We calculate contributions to diffusion from interstitia
in each of the charge states, beginning with~0!. We need
now consider the distribution of velocities along the pa
which we may do just as we considered displacements of
path ~in the y and z directions! following Eq. ~8!. We take
the path length between equivalent sites,Ds52p, to be the
f
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distance between such sites,a/&, with a the cube edgea
54d/)55.43 Å for silicon. Then the real velocity of a
interstitial is

v5
a

2p&

ds

dt
~11!

and the probability of finding a neutral interstitial in th
rangeds on the path with velocityv along the path in a
rangedv is

P0~s,v !dsdv5P0~s!S M

2pkTD 1/2

exp~2 1
2Mv2/kT!dsdv

~12!

since *2`,` exp(21
2Mv2/kT)dv5A2pkT/M and M is the

mass of the interstitial, the silicon-atom mass. The numbe
interstitials, in a velocity rangedv, which will cross a given
point in a timedt, is the number in a range ofs equal to
ds5(ds/dt)dt. We divide that number bydt to get the rate
of crossing. Then the rateR0 neutral interstitials are crossin
the barrier ats5p in the direction of increasings on a
particular path isXtot/6 times*0,̀ P0(p,v)(ds/dt)dv, or

R06S 4pM

kT D 1/2 Xtot

6a E
0,`

P0~p!exp~2 1
2 Mv2/kT!vdv

5S 4pkT

M D 1/2 Xtot

6a
P0~p!

5
Xtot

6 S 2«1

Ma2D 1/2 em/kT

em/kT1e2mkT e22«1 /kT ~13!

where we have used Eqs.~4! and~6! for P0(p) to obtain the
final form. We similarly calculate the rate the~11! intersti-
tials crosss50 in the same direction, which is the same b
with em/kT in the numerator replaced bye2m/kT so the rate
for interstitial motion for the two charge states is

R01R115
Xtot

6 S 2«1

Ma2D 1/2

e22«1 /kT. ~14!

Of course, in equilibrium an equal number flow in th
opposite direction. The form is as expected for our symm
ric model. Either species must overcome an activation bar
2«1 . The leading factor is proportional to the number
interstitials and the square root has units of the reciproca
time, sometimes called an attempt frequency. In our sim
model, the vibrational frequency at the minimum turns out
be exactlyv/2p5A2«1 /Ma2 but these two constants woul
not be the same if the model included a variation ofA(s) as
discussed after Eq.~8!.

The rate for~1! interstitials is simpler to estimate. Th
number of interstitials in the 0 to 2p range on a particular
path is given byXtot/6 times theP1 of Eq. ~8! and is inde-
pendent ofs. The rate they cross in one direction is th
number times the velocity

AM /2pkTE
0,`

dv v exp~2Mv2/2kT!5AkT/2pM

divided by the path lengtha/&, or
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R152
Xtot

6 S 2«1

Ma2D 1/2 e2~«12U* /2!/kT

em/kT1e2m/kT . ~15!

This differs from Eq. ~12! by a factor
e(«11U* /2)/kT/cosh(m/kT), which is always so large that thi
contribution dominates the diffusion, recalling thatm is mea-
sured from midgap so the cosh will ordinarily be near o
Even if m is near a band edge so cosh(m/kT)
'exp(Eg/2kT)/2, the factor is of order 2 exp(U* /kT), using
Eq. ~3!. Thus we may neglect the contributionsR0 andR11

to the flux of interstitials.

B. Interstitial diffusion

The diffusion constant for interstitialsD int is defined such
that the interstitial flux equals minusD int times the gradient
of the interstitial density.D int is isotropic in a cubic crysta
so we evaluate it for gradients in a@100# direction. Again in
equilibrium, with Xtot constant, the flow of~1! interstitials
from the left would equal that from the right given by E
~15!. If however]Xtot /]s is nonzero, there will be an add
tional term from the left given by Eq.~15! with Xtot replaced
by 2]Xtot /]s32pn if the interstitial acquired the singly
charged state~1! n periods before (s522pn), and did not
scatter after that. Clark and Ackland8 have suggested on th
basis of molecular-dynamics calculations that such suc
sive correlated jumps occur even when the energy is
independent of position as we have assumed here for the~1!
interstitial. We shall keepn as a parameter in our calculatio
thinking of it being 3 to 5, though further study is required
give a good estimate. Similarly, the flow from the left will b
reduced by the same expression ifn is the same. Since th
period in s of 2p for a path along a@61,61,0# or @61,0,
61# direction corresponds to a distance in thex direction of
(a/&)cos 45°5a/2, it is more convenient to replac
2]Xtot /]s32pn by 2]Xtot /]x3na/2 for two-thirds of the
six paths per interstitial, and zero for the other third@0,61,
61#. Furthermore, the number of interstitials per unit vo
ume isNtot5(8/a3)Xtot . We need also to divide by the are
per interstitiala2/2 in a ~100! plane, but double the result t
account for the paths crossing this plane at a tetrahedral
We obtain an interstitial flux of

2
3 6~na2/4!~R1 /Xtot!]Ntot /]x

or a diffusion constant of

D int5na2R15
2na2

3 S 2«1

Ma2D 1/2 e2~«12U* /2!/kT

em/kT1e2m/kT . ~16!

n again is the average number of periods a~1! interstitial
moves before changing charge. It is interesting that there
Boltzmann factor with an activation energy slightly larg
than half the gap@see Eq.~3!# which we may associate with
the formation energy of the~1! interstitial, since the motion
is without an activation energy. The denominator, equa
2 cosh(m/kT) is also interesting. Sincem is measured from
midgap, the denominator equals 2 for intrinsic silicon, b
increases greatly for doping of either sign, suppressing
fusion.

We should note at this point that our symmetric model h
let the interstitial move along its path with kinetic ener
.
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te.
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independent of position, whereas certainly there will be so
variation, perhaps of the order of the«B50.04 eV, which we
obtained from our estimate at the end of Sec. II. This wo
reduce the probability of the interstitial overcoming the hig
est barrier along the path by a factor such as exp(2«B /kT).
Since this barrier is certainly very small on the scale of«1
2U* /2, which itself is uncertain, this aspect of our model
not a serious problem.

C. Dopant diffusion

Of more interest is the diffusion constant for dopan
which we assume to move the same as host silicon atoms
course a dopant interstitial will have slightly different ener
than a silicon interstitial, but we take that difference to
small as we took the variation in energy withs of the ~1!
interstitial to be small. Each time an interstitial mov
through a site occupied by a dopant, it displaces that dop
by one period (s52p) along the path. Thus the flux~in a
@100# direction! of dopants across a~100! plane to the right is
equal to the flux of interstitials to the right times the ato
fraction of dopants in the plane immediately to the left, a
distancea/4. For the diffusion of dopants we take the inte
stitial density to be independent of position, but the dop
density to vary in the@100# direction so that instead o
2]Xtot /]x3na/2 we have2Xtot]Xdop/]x3a/4 in the flux of
dopants. The diffusion constant for dopants becomes

Ddop5
a2

3 S 2
«1

Ma2D 1/2 e2~«12U* /2!/kT

em/kT1e2m/kT Xtot . ~17!

Of course there are other mechanisms for diffusion,
this is the contribution from the interstitials present and it
proportional to the atom fraction of interstitials. The Bolt
mann factor in the numerator is@using Eq. ~3!# of order
e2Eg /(2kT). For n-type doping there is an additional factor o
about this size from the denominator. Forp-type doping, if
the same Fermi energy applied during the formation of
interstitials,Xtot would be increased relative to theX0 appro-
priate to undoped materials by a factor 1/P0 from Eq. ~7!.
Then the factore2(«12U* /2)/kT/(em/kT1e2m/kT) would be re-
placed bye2(«12U* /21m)/kT and form'2Eg/2 the exponen-
tial would be near one. Diffusion is greatly enhanced
p-type materials, because of the positive charge states o
interstitial.

D. Transient enhanced diffusion

An important point has been made by Rafferty, Gilm
Jaraiz, Eaglesham, and Gossmann9 concerning the quenching
of interstitials, which we discussed in Sec. III B. They ind
cate that interstitials which arise from ion implantation co
dense into complexes, the so-called$311% defects. This, of
course, occurs because the energy is lower~in their estimate
by 1.8 eV! with the extra atom as a part of the comple
rather than as a free interstitial. There then arises a qu
equilibrium between the free interstitials and the compl
This 1.8 eV energy gain in condensing onto the complex
very much less than the 3.3 eV formation energy of an
terstitial from the bulk. In this quasi-equilibrium the form o
the atom fraction given in Eq.~9! remains correct, butEform
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is replaced by this much smaller condensation energy anTh
is replaced by the ambient temperature. The resulting c
centration of interstitials can be much higher than in the t
equilibrium we have discussed. Rafferty, Gilmer, Jara
Eaglesham, and Gossmann9 indicate that this gives a goo
account of the familiar transient enhanced diffusion follo
ing ion implantation. Eventually, through equilibration
surfaces, the$311% defects will evaporate and the interstiti
density drop to its true equilibrium value signaling the end
the transient-enhanced diffusion.

V. CARRIER RECOMBINATION

Our calculation of equilibrium distributions among the i
terstitial charge states implicitly assumes that carriers can
emitted and absorbed in order to reach that equilibrium,
does not depend upon the rate. However, when the syste
not in equilibrium the rates themselves are of interest. T
changes in charge state can lead to radiationless recom
tion of carriers, which is the subject of a major text by Ab
kumov, Perel, and Yassievich10 and we address only a sma
part of the subject. However, the interstitial provides a mo
for radiationless recombination, which seems quite differ
from all of those they considered. It is perhaps closest to
Huang-Rhys mechanism11 in which a local electronic level is
shifted by a harmonic oscillator, corresponding to some
fect in the system. An electron can be captured when
oscillator has sufficient amplitude for the level to move in
the conduction band. However, the resulting rate inevita
has an activation energy«act associated with such a larg
excursion of the oscillator, and the correspondinge2«act/kT

appears in the result. We shall see here that no large ac
tion energy appears in the final result, Eq.~32!.

Recombination such as we discuss here will show up
leakage current in diodes and Liu, Lu, Sung, Pai, and Ts12

have recently suggested that their observations of ex
leakage current are consistent with recombination aris
from vacancies or interstitials quenched into silicon mosfe
Our study of the interstitial provides a detailed mechani
for such recombination.

A. Emission and capture rates

The emission rates can be directly calculated using
familiar Golden Rule of quantum mechanics, but we requ
a matrix element between the electronic state of the inte
tial and the band states for the free electron. These ma
elements can be obtained indirectly from Wills’ super-c
calculation.1 This was done for the~11! interstitial by fit-
ting the density of states arising from the interstitials in t
super-cell calculation to a tight-binding band ofp-like inter-
stitial levels, through matrix elementsVpps and Vppp be-
tween adjacent interstitials. These were in turn treated
indirect couplings from interstitialup& to interstitial up&
through the conduction-band statesuk& as Vppm
5Sk^puHuk&^kuHup8&/(«p2«k) following the theory of
Wills and Harrison.6 In that theory the couplings are of th
form

^kuHup&5S 4pr p

3V D 1/2 \2k

m
Y1m~k!, ~18!
n-
e
,

-

f

be
ut

is
e
na-
-
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with V the volume of the system andr p a ‘‘p-state radius’’
characteristic of the interstitial electronic state. This lead13

to coupling between interstitial states separated byR of
Vpps5\2r p /(pmR3) andVppp52 1

2 Vpps , so thatr p could
be obtained by fitting the calculated density of states. T
variation with R could be tested by comparison of fits
different super-cell sizes. Wills’ fit of the bands1 gave r p
529.5 Å. The corresponding state for the~0! interstitial, in
the shared site, was expected to have symmetry more
that of ad state and the formula corresponding to Eq.~18!
was^kuHud&5A4pr d

3/(3V)(\2k2/m)Y2m( k̂) and Wills’ fit1

gave r d521.2 Å. Using these matrix elements, and rep
senting the conduction band as a parabolic band with ef
tive massme50.33 m, we obtain an emission rate from th
p-like interstitial state to an energy conserving state of wa
numberk as

1

te~k!
5

2p

h́
( ku^puHuk&u2d~«k2«p!5

4\k3ur pu

3me
~19!

Similarly, the emission rate into the hole band was found
be

1

th~k!
5

4\k5ur du3

3mh
, ~20!

and we takemh50.42 m. These lead to values at the ener
De in our model~Fig. 1! of te54.3310215 sec. and atDh
for holesth52.5310212 sec. These numbers are extreme
uncertain, largely from the uncertainty in the real magnitu
of De andDh , but also from the fitting of the coupling usin
Eq. ~18!, which could easily lead to errors of factors of ten
the rates in Eqs.~19! and ~20!.

If the probability of occupation of the interstitial state
when it is in the conduction band, is given byf (p) and the
probability of the conduction-band state being empty is
2 f (k), then the rate of emission isf (p)@12 f (k)#/te(k).
The rate of capture must contain the same statistical fac
with k and p interchanged, and since they must be eq
when both f ’s are the equilibrium distribution, it follows
from detailed balance that the factor 1/te(k) must be the
same. Thus we have estimated emission and capture rate
carriers in terms of the distribution functions. Again, the v
ues for thete(k) at De above the conduction-band edge a
the correspondingth(k) are quite uncertain. The form, how
ever, allows us to proceed.

B. Rates in equilibrium

We first calculate the rate at which~11! interstitials cap-
ture electrons from the conduction band. The probability t
an interstitial in the state~1! captures an electron is neglig
bly smaller because the fraction of interstitials in the~1!
state is so small. We consider first an equilibrium situati
but distinguish the Fermi energym i , which enters the prob-
abilities P11(s) from Eq.~4! andP11 from Eq.~7! and the
Fermi energyme , which determines the occupation of th
electronic states in the conduction band. We shall see
course, that they are the same in equilibrium, but they are
the same when there are excess carriers. The probability
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a given interstitial has this charge state isP11 given in Eq.
~7! ase2m i /kT/@em i /kT1e2m i /kT#. It then sits with high prob-
ability nears5p and we write the correspondingte(s5p)
corresponding to thek for an electron with the energy of th
~1,11! interstitial state ats5p ~see Fig. 1!. The rate elec-
trons are being captured into this empty level is 1/te times
the probability of band states at that energy being occup
f 051/@e(«12U* /22me)/kT11# with the electron energy an
the Fermi energy for the electronsme measured from midgap
~again, see Fig. 1!. It will be adequate to take the exponenti
in the Fermi distribution to be large to write this probabili
as f 0'e2(«12U* /22me)/kT. Thus the capture rate by an ind
vidual interstitial is

R11→15
e2~«12U* /21m i2me!/kT

@em i /kT1e2m i /kT#te~s5p!
. ~21!

Similarly, the probability of the~1! state is given by Eq.
~8! and since the energy is independent ofs, all s values are
equally likely. Thus, taking the occupation of th
conduction-band states as much less than one, the rate
comes P1 /^te& with 1/̂ te&51/2p*ds1/te(s), integrated
over the region where the level~1,11! is in the conduction
band. Using Eq.~8!, this is

R1→115
4p

^te&
S «1

2pkTD 1/2 e2~«12U* /2!/kT

em i /kT1e2m i /kT . ~22!

We see immediately that in equilibrium, withm i5me , the
exponential factors are the same for Eqs.~21! and Eq.~22!
and the multiplicative factors differ only because we ha
used different approximations in the evaluation of the in
grals and for the occupation probabilities for the tw
cases. 1/^te& is much smaller than 1/t(s5p) because the
integral extends only over a small range ofs, as seen in Fig.
1, and 1/te(s)<1/te(s5p) over that range. This is compen
sated for by the large ratio of«1 /kT in the square root in Eq
~22!. We enforce the exact equality of the two rates at eq
librium by using the simpler form for the leading factor fro
Eq. ~21! to replace Eq.~22! by

R1→11'
e2~«12U* /2!/kT

@em i /kT1e2m i /kT#te
, ~23!

identical to Eq.~21! without the factore2(m i2me)/kT. We also
simplified the notation by writingte5te(s5p), the value at
the maximum.

For our symmetric model the same analysis applied to
emission and capture of holes~or electrons! from the valence
band yields

R0→1'
e2~«12U* /22m i1mh!/kT

@em i /kT1e2m i /kT#th
~24!

with th evaluated ats50. The difference in the sign befor
the Fermi energies in the exponent of course is as expe
since alowering of the Fermi energy for the holesmh , in-
creases, the number of holes and similarly a shift in th
Fermi energym i , which increases the number of interstitia
in the state~11! reduces the number in the state~0!. The
d,

be-

e
-

i-

e

ed

rate R1→0 is the same without the factore(m i2mh)/kT. We
have again forced the net rates to be exactly zero in equ
rium.

If we now move out of equilibrium, but assume that wh
electrons are present in the conduction band are in ther
equilibriumwith each other, and the holes are in equilibrium
with each other, we may use the same formulas, but with
three different Fermi energies,m i defining the relative occu-
pation of the~11! and~0! states, andme andmh represent-
ing the density of carriers in the conduction and valen
bands. The relation between the density of electronsNe and
the corresponding Fermi energyme measured from midgap
is given by14

Ne52S mekT

2ph́2D 3/2

e2~Eg/22me!/kT[Cee
2~Eg/22me!/kT,

~25!

obtained by summing the occupied states for the conduc
band, expanding the Fermi distribution function for a Fer
energy far from the band edge compared tokT. The corre-
sponding expression for holes isNh5Che2(Eg/21mh)/kT.
Thus we could rewrite the equations in terms ofNe , Nh , and
the density of interstitials in each charge state to obtain
rate equations for the changes in carrier concentration
each interstitial charge state with time. We shall not do t
here but go immediately to steady-state equations.

C. Steady state

In steady state the number of electrons leaving the c
duction band must equal the number arriving in the vale
band, and the occupation of the two charge states~0! and
~11! will shift until that is the case, then becoming ind
pendent of time. That is, we setR11→12R1→115R1→0
2R0→1 to obtain

e2~m i2me!/kT21

te
5

e~m i2mh!/kT21

th
, ~26!

which is the steady-state condition determiningm i in terms
of me andmh , or correspondinglyNe andNh . We may solve
for em i /kT and evaluate the rate electrons are disappea
from the conduction band,R11→12R1→11 , which is
equal to the rate they appear in the valence band. We
have R1→11 equal to R11→1 except for the factor
e2(m i2me)/kT. Using Eq.~21! and ~26! we obtain the recom-
bination rate for a single interstitial of

Reh5
e2~«12U* /2!/kT

@em i /kT1e2m i /kT#

3
@~te2th!214tethe~me2mh!/kT#1/22te2th

2teth
.

~27!

We have not inserted the solution forem i /kT in the denomi-
nator, which seems to yield too complicated a form to be
interest.
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This may be written in terms of carrier concentrationsNe

andNh and the corresponding equilibrium concentrationsNe
0

andNh
0 for an equilibrium Fermi energym0 by using Eq.~25!

to write

e~me2mh!/kT5
NeNh

Ne
0Nh

0 . ~28!

Still the dependence of the recombination upon concen
tion is quite unfamiliar. It is interesting to consider two lim
its.

First, if the system is close to equilibrium then the Fer
energies are close to each other and we may expand
exponential under the square root in Eq.~27!, and the square
root itself, to lowest order inme2mh to obtain

Reh'
e2~«12U* /2!/kT

2 cosh~m0 /kT!

me2mh

~te1th!kT

5
e2~«12U* /2!/kT

2 cosh~m0 /kT!

dNe /Ne
01dNh /Nh

0

te1th
~29!

with the last form obtained from Eq.~25! using dNe5Ne

2Ne
0 anddNh5Nh2Nh

0. This dependence upon thedN may
also look unfamiliar but it would also follow from a mas
action law that the recombination rate was proportional
NeNh /Ne

0Nh
021 near equilibrium.

We may finally obtain the rate far from equilibrium, whe
Ne@Ne

0 andNh@Nh
0. Then Eq.~27! becomes

Reh'
e2~«12U* /2!/kT

@em i /kT1e2m i /kT#

e~me2mh!/2kT

Ateth

5
e2~«12U* /2!/kT

them̄/kT1tee
2m̄/kT S NeNh

Ne
0Nh

0D 1/2

~30!

with, of course,m̄5(me1mh)/2. This dependence upon con
centrations is the square root of the mass-action form,
follows because the recombination is sequential. Such
pendences were also found by Abakumov, Perel,
Yassievich.10 Because of the form of the first denominator
the final form, the longest relaxation timeth , which we es-
timated as 2.5310212 sec, completely dominates the recom
bination.

We may obtain a more meaningful form using Eq.~25!
for the equilibrium concentrations to obtain

~Ne
0Nh

0!1/252SAmemhkT

2ph́2 D 3/2

e2Eg/2kT. ~31!

We then use Eq.~3! to takeEg/2'«12U* /2 and with excess
carriers in both bands, the individual Fermi energies are
the band edges andm̄'0. We multiply by the number of
interstitials per unit volumeNtot to obtain a recapture rate pe
unit volume of
a-

i
the

o

d
e-
d

at

Reh

V
5

1

2~te1th! S 2ph́2

AmemhkT
D 3/2

NtotANeNh

'0.731027NtotANeNh

cm3

sec
, ~32!

whereV stands for volume.
It is interesting that all of the Boltzmann factors ha

disappeared~if we don’t count the one that determinesNtot!,
except ae2(De1Dh)/2kT with Dh5De'0.07 eV in our model,
which we have dropped by using the approximation in E
~3!. In addition, the factor 1/T3/2 increases with decreasin
temperature. The principal Boltzmann factor also disappe
in Eq. ~29! near equilibrium, because 1/Ne

0 and 1/Nh
0 contain

factors analogous to that in Eq.~31!. This is a very remark-
able aspect of this mechanism for radiationless recomb
tion, which distinguishes it from the Huang-Rhy
mechanism.11 This would, nevertheless, seem to be a rat
low capture rate: ifNtot equals the 331014 interstitials/cm3

we estimated after Eq.~9!, the decay rate for carriers i
23107 per second. However, the very longth we have used
is a very uncertain number. Further if the material werep
type when the density of interstitials was fixed, the conc
tration of interstitials would increase by a factoreEg /kTh

'1500. @P11 /P05e22m/kTh from Eq. ~7!, with m
'2Eg/2.# This would raise our estimate to 331010 /sec.

VI. RECOMBINATION-INDUCED DIFFUSION

When there are excess carriers present, the rate at w
~11! interstitials capture electrons from the conducti
band to become~1! increases, as does the capture of holes
the valence band by~0! interstitials to produce~1! intersti-
tials. This increases the fraction of~1! interstitials in the
steady state, thereby enhancing diffusion.

We may readily calculate the increase by noting that
rates of formation of~1! interstitials from Eq.~21! and~24!,
respectively, increase by factors ofedme /kT and e2dmh /kT.
Noting the many common factors in the two equations
obtain an increase of the total rate of production of~1! in-
terstitials by a factor off given by

f 5

edme/kT

te
1

e2dmh/kT

th

1

te
1

1

th

5

th

Ne

Ne
0 1te

Nh

Nh
0

te1th
. ~33!

In a steady state, the fraction of interstitials in the~1! state
must increase by just this factor, and both diffusion consta
we defined must also increase by the same factor. The
form in Eq. ~33! may thus be multiplied by the diffusion
constant of Eq.~17! to obtain the recombination enhance
diffusion constants for dopants. Since in devicesNe can be
considerably larger than the equilibrium valueNe

0 the en-
hancement may be considerably larger than the original
fusion rate. Note that these formulas also obtain if there
suppressed number of carriers,dNe or dNh negative, leading
to a carrier-generation-suppressed diffusion.

Finally, we should note in addition that recombination
carriers liberates an energy approximately equal to the b
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gap for each pair combined. This occurs, for example, w
an interstitial has acquired an electron from the conduc
band to become~1! with a thermal kinetic energy, but the
deposits it in the valence band to become~11! with a po-
tential energy of the order of the gap. As it falls to the tet
hedral site it acquires the corresponding kinetic ener
which ultimately arrives as heat in the lattice. This also o
curs in equilibrium but is then rare enough that these hi
kinetic-energy interstitials are a normal part of the equil
rium distribution. This will be true also in a steady state
or
-

nd

ies
olk
n
n

-
y,
-
-

-

the system remains fairly close to equilibrium. Howev
when there are net recombinations the energy shows u
heat and can also modify the diffusion through the tempe
ture dependence of Eqs.~16! and ~17!.
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3P. E. Blöchl, E. Smargiassi, R. Car, D. B. Laks, W. Andreoni, a
S. T. Pantelides, Phys. Rev. Lett.70, 2435~1993!.

4W. A. Harrison, Phys. Rev. B31, 2121~1985!.
5W. A. Harrison,Materials Research Society Symposium Ser,

edited by S. Coffa, C. Rafferty, T. de la Rubia, and P. St
~Materials Research Society, Pittsburgh, 1997!, Vol. 469, E 2.3.

6W. Shockley and J. L. Moll, Phys. Rev.119, 1480~1960!.
7W. Shockley and J. T. Last, Phys. Rev.107, 392 ~1957!.
s,

8S. J. Clark and G. J. Ackland, Phys. Rev. B56, 47 ~1997!.
9C. S. Rafferty, G. H. Gilmer, M. Jaraiz, D. Eaglesham, and H

Gossmann, Appl. Phys. Lett.68, 23 956~1996!.
10V. N. Abakumov, V. J. Perel, and I. N. Yassievich,Nonradiative

Recombination in Semiconductors~North-Holland, Amsterdam,
1991!.

11K. Huang, and A. Rhys, Proc. R. Soc. London, Ser. A204, 406
~1950!.

12R. Liu, C.-Y. Lu, J. J. Sung, C.-S. Pai, and N.-S. Tsai, Solid-St
Electron.38, 1473~1995!.

13J. M. Wills and W. A. Harrison, Phys. Rev. B28, 4363~1983!.
14Given in any standard solid-state text; e.g., W. A. Harrison,Solid

State Theory~McGraw-Hill, New York, 1970!, p. 241.


