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Second-harmonic generation in SiC polytypes
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A first-principles study of the frequency-dependent second-harmonic gene(atig) coefficients of vari-
ous SiC polytypes (&, 4H, 15R, 6H, and ), a group spanning the complete range of “hexagonality,” was
carried out. It uses a recently developed computational approach based on the self-consistent linear muffin-tin
orbital band-structure method, which is applied using the local-density approximation to density-functional
theory with a simplea posteriorigap correction. The susceptibilies are obtained in the independent-particle
approximation, i.e., without local-field effects. The zero-frequency limits of the x&figx$2); for the noncubic
polytypes were found to be in excellent agreement with those obtained by the pseudopotential(aredtind
disagreement with simple geometric predictipnghile the magnitudes of the individual components them-
selves were found to be smaller than the values earlier calculated. The spectral features of #@ full
(—2w,w,w) for 2H are found to differ markedly from those of the other polytypes. The spectra in the series
of decreasing degree of hexagonalityH415R, and 1) gradually approach those for the zinc-blend€}3
form. The independent tensorial components appearing in the rhombohedral but not in the hexagonal forms are
found to be about a factor 6 smaller than the other ones. An analysis of the SHG spectra in terareddiw
resonances and individual band-to-band contributions is presented. It is suggested that second-harmonic gen-
eration spectra have an advantage over linear optical spectra for probing the electronic structure, particularly
for the region within a few eV of the band edges in that they exhibit more detailed fine structure. That results
from the sign variations in the products of matrix elements occurring in the $8@.63-18208)01716-0

[. INTRODUCTION the hexagonal rings characteristic of both crystal structures
are alignegland are given by
Recently, there has been a renewed interest in calculations

of second-harmonic generati¢8HG) and related nonlinear Xha3= — 2xT15= 2x524 /3. (1)
optical spectroscopies in semiconductbidin a previous
papert we presented our computational approach, which igAnalogous relations have been used earlier for elastic
based on the linear muffin-tin orbital band-structure methodonstants:*°While these simple geometric relations hold for
and the recent formulations of the problem of evaluating théhe bond-orbital picture; in which the total polarizability is
second-order optical response functions for periodic solids it SU of local bond polarizabilities, they are not always well
the independent-electron approximation by Sipe andalisfied, as the near vanishing rat|oﬂflq/ X333 IN wurtzite
Ghahramari and Aversa and Sige.The independent- AIN demongtrateéz' The response fupp_nons of concern de.—
particle approximation band structures used in this work arCibe the field-dependent polarizabilities of the electronic
based on the density-functional theory in the Iocal-densitySyStemS' These in turn are known to depend on the electronic

L ; - tructures which differ to a nontrivial extent in the different
approximation(LDA) with some a posteriori self-energy S .
corrections to the gap. polytypes(e.g., they have different band gapBurthermore,

the relation between SHG and the band structures is also far

n t_he course of our own and ot_her S previous yvbr&a frfom trivial and involves fine details of the electronic struc-
guestion that has attracted some interest is the influence Qfres. such as interband energy difference resonances and
the crystal structure on the second-harmonic generation c ’

- i ! . 2" Fomentum matrix element products.
efficients, in particular for materials that exhibit both the  gijicon carbide would appear to be the material of choice

zinc-blende and the wurtzite structures. Of course, the NUNYy,; 5 further investigation of this question because of the
ber of independent elements and the relations between thg:currence of polytype? which are structures of varying
nonvanishing elements of the second-order susceptibilityegrees of “hexagonality.” A detailed review of recent
tensor depend on the symmetigubic or hexagonalof the  progress in the understanding of the electronic structure and
crystal structure. In addition, on the basis of the strong simiphysical properties of the SiC polytypes can be found in Ref.
larity in the bonding, which is tetrahedral in both cases, on€l3 and other papers in the same volume. Specifically, “hex-
might expect there to be simple relations between the twagonality” is defined asH=h/(h+c), whereh andc are,
tensorial componentgss; and x5 in the hexagonal struc- respectively, the number of hexagonal and cubic stackings in
ture and the one nonvanishing compongf, in the cubic  the elementary cell, a parameter that varies from zero for the
structure, particularly in the static limit. These tensor rela-cubic 3C form to unity for the purely hexagonall2 poly-
tions are obtained simply by rotating the coordinate axes ofype. Some other polytypes that are frequently encountered,
the cubic coordinate system towards the hexagonal axes (ither because of their natural abundance or because their
along[111] andx andy chosen in th§111} plane such that growth has been optimized, areH6(H=1/3) and 4 (H
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=1/2). There exist also rhombohedral polytypes such & 15 butions appear. Second, the real and imaginary parts of the
(H=2/5). These have only threefold symmetry and thusproducts of matrix elements that control the strength of a
have additional nonvanishing tensorial components, but wgiven resonance iy'?) can be positive or negative. In con-
can still assign a hexagonality to them as defined above. trast, for the linear responses the corresponding factors in-
In the static limit, Kleinmat “permutation” symmetry  Volve only the square of matrix elements, which ensures, for
allows one to reduce the number of independent tensorig@xample, that,(w) is positive. As a result, the structure in
components beyond the relations dictated purely by crystaly‘®)(—2w,»,®) is more pronounced than in the linear re-
lographic symmetry. Thus the 333 and 311 components fullgponse. Hence measurements of the frequency-dependent
describe the SHG susceptibility in the static limit. The rationonlinear responses can in principle provide more detailed
of x514/ xha3in the static limit was studied previously for SiC information about the electronic structure than those for the
polytypes by Cheret al® Additional questions arise abo(i} linear response. In that sense these measurements are similar
the magnitude of the nonvanishing tensor components of th&® modulation spectroscopy techniqu&sinother factor fa-
rhombohedral polytypes an(i) the validity of these rela- Vvoring the nonlinear studies is that the threshold for the 2
tions for the frequency-dependent susceptibilities, includingPart occurs at half the energy of threshold for linear pro-
the additional independent tensorial components. cesses. The measurements could thus be performed in a more
Some of these issues are investigated in this paper. Aconvenient spectral region for the incident light. Although
though we are at present unable to explain the magnitudegne still needs detection capabilities of the second harmonic
of the discrepancies from the expected geometric relation® the doubled-frequency range, at least the intensity require-
in simple terms, we can provide information on the generaments for the incident light are thereby somewhat relaxed.
behavior of the frequency-dependent®(—2w,w,w) Unfortunately, at this point there has been only a very
susceptibility tensor as function ¢f. To this end we per- limited amount of experimental work on SHG in SiC in spite
formed calculations of various tensor components ofof the technological importance of this material. So far, there
¥ (- 2w,0,0) for the 3C, 6H, 15R, 4H, and H Sic  Wwere measurements of the SHG only for the zero-frequency
polytypes and we relate them to the corresponding linearimit; some were carried out more than two decades'dgb.
response functiofimore precisely to the imaginary part of Later there appeared some rene_vved expgrlm_entql interest in
the dielectric functione,(w)] and the calculated electronic Such measurements and SHG in a cubic SIC fitrin a
band structures. The chosen group of polytypes encompass@i§gle crystal of polytype B, and in a pulsed laser ablated
the complete range of hexagonality. hexagonal SiC thin fil? was measured. Very recently, Nie-

The relation of SHG to the band structures is an importanflermeieret al® carried out measurements of the anisotropy
qguestion in its own right. In fact, one may think of SiCc of the SHG on & SiC films on Si substrates and46and
polytypes as “twist” superlattice¥> They consist essentially 15R crystals grown by the modified Lely method. At present,
of narrow layers of cubic material bonded together with athe primary interest of this work appears to be characteriza-
180° twist at the twin boundaries corresponding to the hextion of the quality of SiC samples. We hope that our present
agonally stacked layers. The result of these twists is a fruswork will stimulate further interest in the more fundamental
tration of the electron wave propagatibhThis leads to questions a(_jdressed here. In view of the absence of experi-
standing-wave patterns which constitute essentially thénental studies of the frequency-dependent SHG, our first-
“miniband structure” of the superlattice. In particular, the Principle calculations of the SHG have a predictive charac-
conduction-band structure near the band edges can B8 ) )
thought of in this manner and shows minigaps between The restof the paper is organized as follows. In Sec. Il we
folded cubic bands. Just as nonlinear optics is currently ofliSCuss our computational approach based on the linear
great interest in more conventional compositionally modu-muffin-tin orbital (LMTO) band-structure code. In Sec. IlI
|ated Semiconductor Superlatticéﬂ particu|ar those W|th We <_’:1na|yze the reSUItS Of Ca|Cu|ati0nS and f|nd the main Simi'
polar interfacek it is also expected to be of interest in the Igrltles ano_l differences between the nonlinear responses for
present context. Specifically, we will show that the seconddifferent SiC polytypes. A conclusion and summary of the
harmonic generation spectrum in the range below the bantgsults are presented in Sec. IV.
gap but above half the band gap contains detailed informa-

Fion abput the ba'nd structure. Measurements of these spectra Il. COMPUTATIONAL METHOD

in conjunction with the analysis presented here could thus

provide experimental insight into these aspects of the poly- The expressions used in the present work to calcyléfte
type band structures. In that sense, the present work isere given elsewhereThey are a rearrangement of the for-
closely related to our previous work on linear optical re-malism obtained by Sipe and Ghahramaaind Aversa and
sponse function>'” which was also mainly concerned with Sipé using the “length-gauge” formalism. Those results are
the question of extracting as detailed as possible experimeased on the independent-particle approximatioeaning

tal information about the band structures from the opticathat no local-field effects are includefibr undoped semicon-
data. ductors, i.e., systems without partially filled bands. There are

The SHG spectra appear to be more sensitive to the deseveral advantages in using this formulation, namgjythe
gree of hexagonality and to the underlying band structurenanifest absence of unphysical singularities in the zero-
than the corresponding linear response functions. There afeequency limit, (i) the simple and natural account of the
two main reasons for that sensitivity. First, the second-ordeeffects of the intraband motion of electrons that gives an
response involves more “resonances” than the linear one. lessential contribution to SHG, atrtii ) the obvious satisfac-
addition to the usual resonances the«2resonant contri- tion of the Kleinman relatiort in the zero-frequency limit.
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This formulation has recently been used successfullfions. In our other papénwe noted some principle shortcom-
in two sets of studies. In one set Hughetsal. calculated ings of this approach in that it breaks the consistency be-
x?(—2w,0,0) in GaAs and GaP,which have the zinc- tween the eigenvalues and eigenvectors. We showed that
blende structure, and in GaN and AfNyhich form with the  better results were obtained by introducing the shift at the
wurtzite structure. These calculations were based on bangvel of the LMTO Hamiltonian by an empirical modifica-
energies and momentum matrix elements obtained by thgon of diagonal elements corresponding to the basis func-
self-consistent full-potential linearized augmented-planetions that primarily make up the conduction-band states.
wave band-structure method. The other set was carried ofthese typically are the cation and empty sphefike states
by the present authofswho studied € SiC in addition to  for the lowest conduction bands in zinc-blende semiconduc-
the above-mentioned four semiconductors. In those calculaors. However, at present this approach only allows us to
tions we used the self-consistent metfidd LMTO within  shift the lowest conduction bands rather than the whole set of
the atomic sphere approximation. The same approach will beonduction bands, which appears to be more appropriate for
used here. The method is very efficient mainly because i§iC. Also, a fine-tuning of this approach for SiC polytypes
employs a rather small basis set. As a result it can morehat are described using different empty spheres for the hex-
easily deal with systems containing a large number of atomggonal and cubic local stackings remains to be carried out. In
per unit cell while maintaining a sufficiently large number of the interest of simplicity and a consistent treatment of all
k points so as to ensure converged Brillouin z9BEZ) inte-  polytypes, we therefore here adopt the scissor’s approach as
grations. Extensive checks performed in our other paperdescribed above.
demonstrate that our LMTO-based approach yields accurate The next question is what value of the constant shifo
results for the second-order response functions. adopt. The scissors approach gives a reasonable quantitative

The self-consistent calculations of the electronic banchgreement with experiment for a variety of optical constants
structure (eigenvalues and eigenstatesere carried out for moderately small-band-gap semiconductors when the
within the framework of density-functional theory in the value of A is straightforwardly taken to the difference be-
LDA (Ref. 27 using the exchange-correlation parametriza-tween the experimental and LDA minimum band gaps. How-
tion of Hedin and Lundquist As is extensively discussed in ever, as was noted by Chet al® and by Gavrilenko and
our other papet,correcting for the well-known “gap prob- Bechstedt the shifts required to reproduce the magnitude of
lem” of the LDA is extremely important for nonlinear- the experimental dielectric constantg(0) for the SiC poly-
response functions. While this is true even in the static limittypes are less than th& needed to match the band gaps.
as can be justified from the point of view of the recently Similar results occur for other large-band-gap semiconduc-
developed concept of polarization-dependent densitytors that contain second-row elemerig,C,N,O), i.e., the
functional theory?? it is clearly imperative for frequency- discrepancy in the LDA optical response functions are over-
dependent response functions to somehow deal with the agorrected by the use of the scissors appro£di.In our
tual quasiparticle excitations rather than the Kohn-Shamppinion, this problem is further complicated by the effects of
eigenvalues. One of the most accurate approaches presenfétal-field corrections and continuum excitonic effects on the
available for the corrections to the LDA is th&W  oscillator strength. Therefore, we think it is premature to
approximatior’® However, calculation of the full energy- attach too much importance to the magnitudes of the re-
dependent and nonlocal self-energy operator even in thisponse functions, especially since we are presently not in-
relatively simple approximation is rather cumbersome incjuding local-field corrections. We prefer to focus on the
practice because of the need for determining the fully dyenergetic position of the spectral features. It was shown that
namically screened Coulomb interactidh A simplified ap-  a simple self-energy correction of about 1 eV for all the
proach is based on the observation that the conduction ban@sajor SiC polytypes appears to bring the LDA values for the
to a good approximation shift up rigidly i@ W calculations.  minimum gaps into good coincidence with experimént.
The effect can thus be described by a the so-called scissomhis value is well justified by recent calculations of such
operator, which can be written as a projection operator on theorrections using th&w approximatiorﬁ2‘34 Also, a con-
conduction bands times a constant shift in enekgyAs was  stant energy shift of,(w) by 1 eV leads to reflectivities in
pointed out by Levine and Alldnand later by Hughes and good agreement with measured reflectivity spééaa far as
Sipe? the introduction of this shift operator into the Hamil- the location of spectral features is concerned. Since our ma-
tonian results in renormalization of the veloc{tpomentum jor interest for y® is also in the location of the spectral
operator matrix elements. In practice, this renormalizatiofeatures, we therefore adopt the valde=1 eV. From our

factor is taken simply as experience with other materials, we expect that both the use
of the scissor operator approach in its present form and the
onmt (A7) (Spe= Sme) choice ofA may somewhat overestimate the correction to the
Pant=Pam Onm ' 2) LDA. We will keep this in mind when comparing to other

values in the static limit. It should not affect our major con-
in which p,,,, is @ momentum matrix element between Blochclusions about the spectral features. Local-field correction
statesn andm, A w,,=E,— E,, is their band difference, and were shown to be not larger than 10% for the zero-frequency
the factord,.— &y, limits the corrections to matrix elements limit of x(?) in the SiC polytypes.They are neglected in the
involving one valence and one conduction band. That appresent calculations.
proximation is based on the explicit assumption that the di- Next, we turn to some computational details. The imagi-
pole moment ,,, matrix elements are unchanged because th@ary part of the frequency-dependent SHG is calculated first
perturbed wave functions are close to the LDA wave func{see Ref. 1 The real part of the SHG is then obtained from
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the Kramers-Kronig transformation. However, in the zero- 2.5 T T T T
frequency limit, the SHG can be evaluated with less effort by 3c
the use of a special expression. A comparison of that resul 6H

with the limit of the frequency-dependept? serves as a 20¢ ° 15R 1
check of the accuracy of both the BZ integration and the e 4H
Kramers-Kronig transformation. We note that théntegra- 15k 3 i

tion can be limited to the irreducible wedge of the Brillouin
zone only if a preliminary symmetrization of the product of
the three momentum matrix elements over all the transfor-=; 1.0 .
mation of the crystal group is performed. For the frequency- =<2 2H
dependent SHG, we use the usual tetrahedron scheme for tt ¢
integrations with linear interpolation of the band energies 05T 1
and the products of the matrix elements. For the zero-
frequency limit on the other hand, we employ a semianalyti- 0.0 . . .
cal linear interpolation scheme that is more efficient and pro- 0.0 0.2 0.4 0.6 0.8 1.0
duces a smaller errdr. Hexagonality

Orbitals with angular moments up 1@,,,=3 were in-
cluded in the basis set. As shown in other previous Work FIG. 1. Calculated ratie- x$35(0)/x5%(0) as a function of hex-
neglecting thef states leads to non-negligible errors in the @gonality. The results of the present LDA calculations are shown as
momentum matrix elements and the SHG's. closed diamonds and those of Ref. 5 as open diamonds.

We finish this section with a note on the symmetry-
allowed tensorial components. In the cubic case, there is onlyevine using the bond-charge modélHe found that the
one independent component, with indices 123, and all itg/{2}in zinc-blende SiC ang{3}in wurtzite crystals are both
possible permutations are equal t@l 2, and 3 refer to the negative. The subsequent analysis of the bond-charge model
X, y, andz axes, respectively, which are chosen along thefound that its predicted SHG values in SiC are very sensitive
cubic axes In the hexagonal polytypes that correpond to theto the choice of the bond charge and the ion radii because
point group 6nm, there are three independent componentsoth Si and C have the same ionic chalyélowever, the
with indices 333, 311, and 131, the last one equaling the 11fatio of the 333 and 311 tensor components in this model is
component because for SHG the last two indices can alway®und to be independent of the particular bond-charge model
be permuted. The coordinate axes here are chosenawith and to be equal to the above-mentioned value-@&f for all
along the sixfold symmetry axis. Furthermore, in the staticpolytypes. For the @ polytype, the ratio is purely geometric
limit the 311 and 131 components are equal by the Kleinmaiin origin. For this value to hold for the other polytypes, the
permutation symmetry, but this is no longer true for theapproximation implied is one of similarity in the underlying
frequency-dependent case. The rhombohedral polytype 15electronic structure.
(point group 3n) has a threefold symmetry axis along the An indication that the real situation is more complicated
axis, which is normal to the basal planes, instead of the sixand that the bond-charge model is not accurate at least for
fold screw axis present in the hexagonal structure. As a corsome hexagonal materials includingd SiC appeared in the
sequence of the lower symmetry there is one additional inwork of Chenet al®>® Our calculated ratios of the 333 and
dependent component of the SHG and several symmetn811 components of'? for the zero-frequency limit are
related nonvanishing components. These)@f=—x3)=  shown as a function of hexagonality in Fig. 1 along with the
—x13=—x{2\. As noted in the Introduction, a transforma- results of Cheret al? It can be seen that the deviations for
tion of the 3C x(? tensor from a cubic coordinate system to the noncubic forms increase with increasing hexagonality be-
a hexagonal onéhaving thez axis along the cubi¢111]  coming substantial for the large valuestdf Our values for
direction yields the 333, 311, and 131 components in termghe ratio are in excellent agreement with those obtained in
of the 123 response function forC3 The resulting ratio the LDA pseudopotential calculations of Chenal.,” which
x2Yx2=—-2 for arbitrary frequencyw. The —2 value include local-field corrections. A comparison of the values of
found for the ratio when one uses directly computed compothe individual 333 and 311 components obtained in the
nents for & in the hexagonal coordinate system represent@resent and pseudopotential calculations is presented in
an additional verification of the computer code. One of thel@ble I. Itis seen that while there is good agreement for the

central questions of this paper is to what extent the samEtios, the absolute LDA values of t¢?) appear to be more
relation holds for the other polytypes. sensitive to the method of calculation. Those obtained by the

LMTO method are found to be smaller than those by the

pseudopotential approach. As expected, the gap corrections
ll. RESULTS reduce the values in both our calculations and those of Chen
et al. A slightly different value of the gap correction was
used for each polytype in their case, with 1<04<1.27 eV.

Since the zero-frequency limit of the SHG is simpler to  Although there are non-negligible differences between

calculate, it is the first aspect of the nonlinear response onur and theiry(?) values, even in the LDA, we wish to point
which we will focus our attention. To put our own results in out that the two results agree much better with each other
perspective, we briefly recall the history of static SHG resultghan with the bond-charge model predictions. The latter pre-
for SiC. One such calculation for SiC was carried out bydict values independent of polytype, which in Ref. 11 are

0)/x21+(0)

A. Static limit
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TABLE I. LDA and LDA plus “scissors” calculations(with a 1-eV shify of x{340) and x{2(0)
compared with pseudopotential LDA calculatigitspm/V). The sign of the SHG's from Ref. 5 was adapted
to the present choice of coordinate systemee the tejt

Component Method =] 4H 15R 6H woH (3C)
¥240) LDA 3.6 14.5 16.4 17.8 20.2
x$2:(0) -61 -89 -93 -97 ~101
x$240) LDA plus scissors 25 9.2 10.4 11.4 13.0
xX524(0) -39 -57 -61 -63 —65
X5240) LDA? 8.6 23.2 27.6 28.2
x$24(0) ~132 -148 ~15.0 ~14.2
x$240) LDA plus scissor8 5.8 15.6 18.6 18.4
x$4(0) -8.8 -10.0 -10.4 —-9.2
X5340) Expt.° +23

x5240) 14

*Reference 5.
PRescaled from Ref. 19 for an undetermineeSiC polytype; see the text.

X333= — 166 andys;;=84 pm/V. Singhet al!® pointed out  siderable problem in those measurements as the authors state
that values about 10 times smallgfs= — 16 andys ;=8  themselves, we can only consider their results as providing a
pm/V, are obtained when different ionic radii values are usedoWer limit for the SHG coefficient. Therefore, we chose to
as input to the same model. The two-band model predictio§oMpare our calculations only to the older data by Singh
of Kleinmar?® gave yass— —80 and ys1;=40 pm/V. Note €t al,™ in spite of the fact that the polytype was not com-
that all of these have opposite sign to ours. ExperimentallyPl€tely determined in that paper. _
the values available correspond to an incompletely deter- We note that the signs of all the components in Table | are
mined polytyp&® and are ysse= =273 and ys,,=+15 OPposite to thc_>se reportezd in Ref. 5. The reason for th|s_ re-
+2 pm/V atA=1.064 um. These values are obtained by Versal in the sign of thg2) is simply that opposite coordi-
rescaling the original values by Sing al,1® which were ~ Nation of the atomic positions was employed in the two sets
relative to quartz, using a more recently obtained absolut@f calculations: In &, for example, we placed the Si atom at
value of quartz recommended by Robéftsror the 311 the(0, 0, 0 and the C atom at thel/4, 1/4, 1/3 positions in
component, the average was taken of the experimentali{n€ unit cell, while in Ref. 5 the positions of the Si and the C
slightly different 311 and 113 components. As in the originalaloms were interchangédiThere were corresponding rever-
measurement, we leave the absolute sign undetermine§?!s for the hexagonal polytypes. The agreement in the abso-
although the relative sign of the two components wagdute signs of thex® components in the two sets of SiC
clearly established. By applying Miller's rde that calculations noted above, along with a corre;ponding agree-
Xi(jzk)(_2(1’1w’w)/Xi(il)(Zw)Xj(jl)(w))((kjl-()(w) is independent of ments for se_veral other semlcc_)nducto_rs discussed in our
frequency in the low-frequency regime, Chenal® con- other pape?,glves us strong con_ﬂdence in that rega_rd. How-
verted these values tqsss=+23+3 and ya; = 7 14+2 ever, it appears tha_t the experimental data are still unclear
pm/V in the zero-frequency limit. Our LDA values are ap- about_ the sign des%toe an early effort to det.ermlne the abso-
parently closer to these values than the scissor corrected vaite Sign of the SHG."In that paper a negative sign is pro-
ues. As noted earlier, we expect our scissor values to bBOS€d fOrxsss based on a surface etching method for the
overcorrected because of both the intrinsic problem of théj(_atermmanon of thg crystal orlentat|on._ This also comm_des
scissor's approach and our use of the actual gap correctioffith the reported sign of the bond-orbital methods, which,
rather than a scaled down value that would reproduce thBOWeVer, could easily give either sign, depending on the de-
magnitude ofe(0). tails of_the model, and is in dlsagregment with our sign. An
Somewhat different experimental values were determineN@mbiguous measurement of the signs, as well as the mag-
by Lundquistet al2>2 for 6H bulk samples and I8 thin  nitudes, clearly would be useful.
films, respectively. Their second set of values is reasonably
close to ours in magnitude but shows a ratioygfs/ x311 Of
—3.2 The older dat#¥ are about a factor 2.5 larger for the
333 component and the above ratio wad0. We do not Figure 2 shows the 333, 311, and 113 components of the
think that crystalline quality alone can explain such largex'?(—2w,w,®) for the complete set of SiC polytypes con-
variations. We note that a somewhat indirect fitting proce-sidered here over the energy range 0—8 eV. We note that the
dure was used in these papers in order to determine the ratiexagonality parametét decreases monotonically fronmH2
of the two components. In an even earlier paper by HarrigH=1), shown at the top of the figure, to theC3(H)
et al?! a value smaller by an order of magnitude was ob-polytype (H=0) at the bottom. As mentioned above, the
tained for 3C SiC films. Because light scattering was a con-ratio of the 333 to the 311 component fo€3s the fixed

B. Frequency-dependent results
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FIG. 4. Calculated 222solid line) and 211(dotted ling com-
ponents of the imaginary part of the SHG for the rhombohedrgl 15
polytype. The mirror plane is perpendicular to thaxis.
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FIG. 2. Calculated values of the imaginary part of
x?(—2w,0,0) for the SIiC polytypes considereés) 333 compo-  that the spectra fori, 15R, and 84 show roughly a super-
nent,(b) 311 component, anft) 113 component. position of the M and 3C characteristic shapes, i.e., they

have a+ — + — sequence of peaks. One may interpret the

geometric value of-2. For all other polytypes the ratio is first positive peak as cubiclike, the next negative and positive
highly frequency dependent in the absorbing frequency reP€aks as hexagonal-like, and finally the negative tail ap-
gime, i.e., forﬁw>Eg/2, with Eg the smallest direct gap. poaching zero as cublpl|ke. This is not unexpected b(_acause
Below this frequency, the ratio is remarkably constant, agh® Polytypes can be viewed as mixtures of locally cubic and
can be seen in Fig. 3. Even in the absorbing frequency rang8€xagonal stackings. Of course, one cannot push this model
the ratio of the coefficients averaged over a modest energ© far because the band structures from which the spectra
of, say, 0.5-1 eV are roughly in thel to —2 range with '€ derived are not simply a superposition of local contribu-
the deviation largest for the largest that is, for the wurtzite tions but contain interference effects of the electron waves.
structure. Thus the spectra are not simply a linear superpaosition in the

It is striking that the 333 component of the wurtziteHP appropriate ratios of cubic and hexagonal components indi-
structure is very different from all other polytypes in that the €@t€d by the hexagonality.
first peak(at about 4 eV is negative and the second one _ !N the 311 and 113 components;iZappears to be more
positive. In all other polytypes, the first peak is positive angSimilar to the other polytypes. Considering the tensorial as-
the second negative, with the location of the first peak graduP€CtS, 0né may note the close similarity in spectral features

ally shifting towards the position ofG. In fact, one can see P€tween the 311 and 131 components, which are exactly
equal in the static limit.

Also evident in the figures is the general increase in the
complexity of the spectral fine structure with decreadihg
(or increasingn in the hexagonahH polytypes until the
cubic structure is reached. This is most clear for the 333
component. This fact clearly reflects the increasing folding
of the bands withn or more generally with the size of the
basic repeat unit in the stacking sequence. The latter is 2 in
4H and 3 in H because they correspond to bands of two
and three consecutive cubically stacked layers alternated
with a twin boundary(or hexagonal stackingIn 15R the
- 15R repeat unit in this sense {3), although the periodic repeat
unit along thec direction is 15 layers. This notation scheme
based on the width of the cubically stacked bands is known
as the Zhdanov notatid.Of course, some of the fine struc-
tures exhibited in curves is expected to be averaged out in
the observed spectra as a result of broadening effects.
Finally, we consider the additional independent compo-
0 y > 3 4 nent for the rhombohedral structure. The 222 and 211 com-
Energy (eV) ponents for the 1R polytype are displayed over the range of
2-8 eV in Fig. 4. It is evident that these accurately satisfy
FIG. 3. Ratio|y@4 — 20, ,0)|/|xZy—2w,»,0)| for the non-  the symmetry requirement of having opposite signs. This
cubic SiC polytypes considered. represents just one more test of the correctness of the code.
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The 112 and 121 components were also calculated and, as ' T
required, are found to be virtually identical to the 211 com-
ponent. Finally, we note that the magnitude of these compo-
nents tends to be smaller than those for the 333 and 311
components by a factor of about 6. These small magnitudes
reflect the similarity in the symmetry of the rhombohedral
and hexagonal structures.

C. Analysis of SHG spectra

As we noted in another papeit is convenient to analyze
the 2w- and w-resonant contributions in the SHG separately
as the two parts have features at different energies. A com-
parison was made there between those two parts gfftlo)
and e,(w), respectively, for € SiC (see Fig. 8 of Ref. 11
As might be expected, the location of structures in both parts
of x? coincided with those in the dielectric function. It
should be noted that the threshold for the part occurs at
an energy that is half of that for the part, EY, which is the

Im{y,,(-20,0,®)}, &,(200)/50

direct transition threshold far,(w). As a result, only the & 2 4 6

part contgibutes tcxéz) in the important energy rangeg/2 Energy (eV)

<hw<Ey. SinceE;=6 eV for the SiC polytypes, unless S

one is concerned with fairly high energiéwell into the FIG. 6. Values of the @-resonant contributions in the 333 com-
UV), the 2o part is the one of primary interest. ponent of the SHG for the noncubic SiC polytypes considésetid

lines), in units 10 esu, compared with the corresponding

As in g,(w), the origin of structure iny'“’ can be ana Eéz(zw)/so (dotted lines.

lyzed by a decomposition into separate band-to-band contri
butions(see, e.g., Ref. 17 for detailsSThe main two peaks in ) , . ,
the e,(w) curve for 3 SiC, for example, result from tran- ond conduction bands, respectively. Previous analysis shows

sitions between the upper valence band to the first and sefat the peak with lower energy comes from extended re-

gions ofk space near the cubl¢-K-L plane and close to the
I'-L line. The transitions between the same bands and
k-space regions provide the contributions in the and o
terms of they®)(— 2w, w,w). These contributions to the to-
tal SHG (mostly to its 2o part in the energy region consid-
ered from these interband transitions are displayed in the top
panel of Fig. 5 by the dotted and dashed curves. A similar
analysis can be made foiHand the contributions from the
relevant interband transitions are similarly indicated in the
lower panel of the figure. The major difference between the
dielectric function and¢® could loosely be ascribed to the
different matrix element factors involved. In the former, only
the absolute square of matrix elements occur, ensuring that
£,(w) is positive. The situation is more complicated for the
SHG. Since a complex product of three generally different
matrix elements appears 12, its real and imaginary parts
can assume either sign. This is evident in the results @r 3
and H shown in Fig. 5.

Similar analyses of the @- and w-resonant contributions
in the SHG have been also performed for the other SiC poly-
. . types. Comparisons between thgolarized component of
the dielectric functiongDF’s) and the 333 components of
Energy (eV) the SHG for the i, 4H, 15R, and 64 polytypes are shown

FIG. 5. Top, the analysis of the band-to-band contribution to the" Figs. 6 and 7. These components involve the same

123 component of the SHG forG3SiC: the total SHQsolid ling,  (2-Polarized momentum matrix element. This guarantees
the upper-valence-band to first-conduction-band contribuiitmt-  that the selection rules for a given electronic transition will
ted ling, and the upper-valence-band to second-conduction-bani® the same for both curves. Again, all the transititins
contribution (dashed ling Bottom, the same for thel® polytype  cluding those with rather small oscillator strengtre seen
(333 component total SHG (solid line), the two-upper-valence- in both the DF and SHG curves and the part of the SHG
band to first- and second-conduction-band contributidotted ~ dominates in the whole frequency range considered in Fig. 6.
line), and the two-upper-valence-band to third- and fourth-The imaginary parts of the DF’s look rather similar for all
conduction-band contributiodashed ling the polytypes and differ from each other only in some fine
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FIG. 7. Values of thev-resonant contributions in the 333 com-
ponent of the SHG for the noncubic SiC polytypes considésetid
lines), in units 10°® esu, compared with the corresponding
&34 )/100 (dotted lines.

FIG. 8. Absolute values of the frequency-dependent 333 com-
ponent of the SHG for the SiC polytypes considered.

weak dispersion in the energy interval between zero and
i for th h l ool Eg/z; that is, its coefficient of the? term, which describes
details, except 7or the pure nexagonal po ytypd. How- .the behavior in this region, is much smaller than for the other
ever, the SHG’'s contain many more features and the'bolytypes For #, 15R, and @H, the peak between 3 and 4

changes from polytype to polytype are much more dramaticev dominates. Its position gradually increases from 3.4 eV

This reflects the fact that the electronic structure for thefor 4H to 3.7 eV for 64 and to 4.1 eV for €. This structure
higher polytypes becomes more and more complicated Wm&rises from the @-resonant transitionee also Fig. band
increasingn. This results in part from the above-mentioned .

fact that the number of bands increases because of the effe¢ Scommon for all the polytypes excepti2
of the band foldinggfor layers with cubic stackingsand
also from the appearance of the new local symmefffiess D. Near-band-edge fine structure
hexagonal stackings Concomitantly, the analysis of the  An interesting feature of the various SHG spectra dis-
band-to-band contributions becomes increasingly compliplayed in the previous sections is the appearance of consid-
cated. For the pure hexagonal polytype zhowever, we see erable fine structure in the energy region between the thresh-
that the 333 component consists of two wide strips, one bep|d for the direct interband transitions and the dominant peak
tween 3 eV and 4.3 eV and the other between 4.3 eV and 5.2round 3.5 eV. These structures, if detectable, could provide
eV. The former results from transitions from the two upperimportant information about the conduction- and valence-
valence bands to the first and second conduction bands aménd edges. Neither the presently available reflectivity
the latter from transitions to the third and fourth conductionspectrd’ nor the measurements of the dielectric function by
bands(see Fig. $ The matrix element factor for the first spectroscopic ellipsomeftyhad the required resolution to
strip is negative, while that for the second one is positiveprovide such detailed information about this region of the
This is opposite to the case ofC3SiC, where the lower- spectra.
energy peak is positive. This large negative feature of the However, that information could be quite useful for deter-
333 component near the thresh(EIQIZ is unique to the & mining the nature of the band edges and hence for an under-
polytype, as was mentioned before. standing of the conduction properties in doped SiC poly-
Figure 8 shows the absolute value of the frequencyiypes. Information about the band edges has previously been
dependent 333 component g for the four noncubic poly-  obtained by different methods. These include analyses of the
types. The reported measurements of frequency-dependemptically detected cyclotron resonanteand of the phonon
results for other materials have generally been only for theeplica spectra associated with donor-bound excitons. The
absolute values of the SHG rather than the real or imaginariatter are due to the phonons, which have a wave vector
parts. Consequently, the numerical calculations of this funcequal to the k-point location of the conduction-band
tion are of interest for future comparisons to experimentaminimum?#3#4 These analyses led to the conclusion that the
data. It can be seen that the line shape of {t€(—2w,w,0)| minimum of the conduction band inHtis at theM point of
for the pure hexagonall2 material again exhibits the great- the BZ, in agreement with the predictions of the band calcu-
est differences from those of the other polytypes. Anothetations. For 61 the situation is more complicated because
interesing feature ofy(?)(—2w,w,w)| for 2H is its very  not all of the multitude of phonon lines have as yet been
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) o FIG. 10. Electronic band structures for thél4and 64 poly-
FI(%. 9. Analysis of the band-to-band contributions 10 tyeg glong thévi-L line of the BZ. The LDA conduction bands are
IM{x335(—20,0,0)} in the energy region associated with the direct ghited up by a 1-eV “correction.” The transitions associated with

transitions between the near “band edges” for the 4nd &4 the important contributions to the SH@nd displayed in Fig.)Gare
polytypes. The totals are given by the thick solid lines and thejngicated by arrows.

numbers labeling the curves for the partial band-to-band contribu-

tion correspond to the interband transitions indicated in Fig. 10. . . I .
P g of Fig. 10. The partial contribution from these transitions

resolved and also because of the believed shallow nature gfecreases and changes sign at higher energy and ultimately
the minimum itself. In another experiment, the optical tran-Produces a sharp minimum at 3.25 eV. This behavior is also
sitions from the lowest conduction band to the higher bandéeflected in the total curve. The secory) (structure at 2.51
were observed in fairly heavily-type doped samplés. €V results from the superposition of the first curve and the
These Spectra were recenﬂy ana'yzed by Lambretht_46 Contribution fl’0m tl’anSitiOHS from the same Valence bandS
The direct measurements of the SHG in this energy regiofiv2 andv3) to the second conduction bae@ (arrow 2.
could provide additional information about the bands in theThe broad hump that starts at 2.75 eV originates from tran-
first few eV from the band edges. Figure 9 shows the analysitions between the rather low-lying valence baiddand the
sis of the band-to-band contribution to the» 2erm in the ~ second conduction banc? (arrow 3. The last interesting
imaginary part of the SH&333 componentfor 4H and 64  feature to be discussed is the hump starting at _2.95tkné/c
polytypes_ We ana'yze |m(2)(_2w,w’w)}, but, of course, featuré. This structure is associated with tl’anSItIOH.S between
the same features would appear|;u/{2)(_2w,w,w)|_ For the tWO upper valence band&](_ andUZ) and the th|rd C(-)n-
both po'ytypes the behavior Of the SHG in th|s region iSdUCtIOD bandC3 (al‘rOW 4 Wh”e the tOtal CUrV-e !S fa”ly
determined by the transitions near tepoint (see Fig. 10 complicated, we see that energy d|ﬁerences in its features
For 4H. the structure of "{1)((2)(_2(0@’&))} between 2.5 ¢can .be approxmatgl_y related Fo _half the differences between
and 3 eV results from transitions between the valence banti€ interband transition energi€sig. 10.
v2 and the two lowest conduction bandsl(andc2). The
transitions to the first conduction band produce a positive
contribution to the SHG, while those to the second band are
negative. The separation between the broad maximum of The second-harmonic generation coefficients for five im-
SHG around 2.7 e\the a featurg and the minimum at 2.9 portant SiC polytypes G, 6H, 15R, 4H, and 2H have been
eV (the b featurg is thus closely related to the energy dif- calculated over the energy range from 0 to 13 eV. The results
ference between the two lowest conduction bands and thier the zero-frequency limit of the ratios of the 333 and 311
dispersion of the second highest valence band alondyithe  components are in good agreement with those obtained in
line (Fig. 10. Although the relation is not simple, it illus- pseudopotential calculationswhile the magnitudes of the
trates that we can relate the features of the SHG curve tmdividual components are found to be smaller than those
specific band-to-band contributions. reported earlier. The polytypes studied span the full range of
The situation in &1 is more complicated. The total SHG hexagonality from zero for @ to unity (complete hexago-
curve in this region exhibits more structure than fét.4The  nality) for 2H SiC. This allowed for a study of the trends in
lower peak at 2.38 e\(the a featurg results mainly from the SHG with this quantity, which characterizes the poly-
transitions between the two valence ban@sandv3 and the types. It is found that with the exception of the 333 compo-
lowest conduction bandl (arrow 1 in the right-hand panel nent of 2H SiC, the frequency-dependent SHG coefficients

IV. CONCLUSIONS
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in the different polytypes look rather similar over a broadportant for studying the bands in the vicinity of the band
frequency range. The spectra gradually approach those fadges. To our knowledge this has not been done before. The
the zinc-blende 8 polytype but exhibit increasing complex- observation of structure in the linear-response functions aris-
ity with increasing length of the basic repeat unit of the layering from direct transitions involving these band edges is hin-
stackings. All independent tensor components were obtainegered by the weakness of those features. They probably can
(and their symmetry relations verifigdncluding the small  pe seen in derivative spectra of the DF, i.e., by modulation
ones that are are only nonvanishing in the rhombohedradpectroscopy. In some sense, SHG provides information
case. We also find that the components that are strictly equajmjlar to that obtained from the modulation spectroscopies.
in the static limit by the Kleinman symmetry still show great oy the SiC polytypegand other wide-band-gap semicon-
;imilarity over the full frequency range. The spectral feat_”fe%uctors as wellthe measurements of thew2oart of the SHG

in the 333 component were further analyzed by examiningnyolving the near band edges lie in the visible light region
separately the and Z» resonances, the absolute values, andynhere available lasers can be employed. In spite of the fact
their correspondence to features in the 33 component of th@at the amplitudes of the features to be detected are rather
imaginary part of the dielectric function. These one-to-onegmg|, they are comparable to the zero-frequency limits of

correspondences and further explicit decompositions alloweghe SHG that have been measured. This implies that they can
us to assign the spectral features to specific band-to-bargk experimentally detected.

contributions. We carried this out in considerable detail for
the transitions in # and &4 in the low-energy region,
which is the most accessible region experimentally.

An important general conclusion of this last aspect of our
work is that the frequency-dependept? may provide a Part of the computations were performed at the Ohio Su-
useful tool for studying the electronic structure especially forpercomputer Center. This work was supported by NSF Grant
the wide-band-gap semiconductors. This is particularly im-No. DMR95-29376.
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