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Second-harmonic generation in SiC polytypes

Sergey N. Rashkeev,* Walter R. L. Lambrecht, and Benjamin Segall
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~Received 29 September 1997!

A first-principles study of the frequency-dependent second-harmonic generation~SHG! coefficients of vari-
ous SiC polytypes (2H, 4H, 15R, 6H, and 3C), a group spanning the complete range of ‘‘hexagonality,’’ was
carried out. It uses a recently developed computational approach based on the self-consistent linear muffin-tin
orbital band-structure method, which is applied using the local-density approximation to density-functional
theory with a simplea posteriori gap correction. The susceptibilies are obtained in the independent-particle
approximation, i.e., without local-field effects. The zero-frequency limits of the ratiox333

(2) /x311
(2) for the noncubic

polytypes were found to be in excellent agreement with those obtained by the pseudopotential method~and in
disagreement with simple geometric predictions!, while the magnitudes of the individual components them-
selves were found to be smaller than the values earlier calculated. The spectral features of the fullx (2)

(22v,v,v) for 2H are found to differ markedly from those of the other polytypes. The spectra in the series
of decreasing degree of hexagonality (4H, 15R, and 6H) gradually approach those for the zinc-blende (3C)
form. The independent tensorial components appearing in the rhombohedral but not in the hexagonal forms are
found to be about a factor 6 smaller than the other ones. An analysis of the SHG spectra in terms ofv and 2v
resonances and individual band-to-band contributions is presented. It is suggested that second-harmonic gen-
eration spectra have an advantage over linear optical spectra for probing the electronic structure, particularly
for the region within a few eV of the band edges in that they exhibit more detailed fine structure. That results
from the sign variations in the products of matrix elements occurring in the SHG.@S0163-1829~98!01716-0#
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I. INTRODUCTION

Recently, there has been a renewed interest in calculat
of second-harmonic generation~SHG! and related nonlinea
optical spectroscopies in semiconductors.1–6 In a previous
paper,1 we presented our computational approach, which
based on the linear muffin-tin orbital band-structure meth
and the recent formulations of the problem of evaluating
second-order optical response functions for periodic solid
the independent-electron approximation by Sipe a
Ghahramani7 and Aversa and Sipe.8 The independent-
particle approximation band structures used in this work
based on the density-functional theory in the local-den
approximation~LDA ! with some a posteriori self-energy
corrections to the gap.

In the course of our own and other’s previous work,1–6 a
question that has attracted some interest is the influenc
the crystal structure on the second-harmonic generation
efficients, in particular for materials that exhibit both th
zinc-blende and the wurtzite structures. Of course, the n
ber of independent elements and the relations between
nonvanishing elements of the second-order susceptib
tensor depend on the symmetry~cubic or hexagonal! of the
crystal structure. In addition, on the basis of the strong si
larity in the bonding, which is tetrahedral in both cases, o
might expect there to be simple relations between the
tensorial componentsx333

h and x113
h in the hexagonal struc

ture and the one nonvanishing componentx123
c in the cubic

structure, particularly in the static limit. These tensor re
tions are obtained simply by rotating the coordinate axes
the cubic coordinate system towards the hexagonal axez
along@111# andx andy chosen in the$111% plane such that
570163-1829/98/57~16!/9705~11!/$15.00
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the hexagonal rings characteristic of both crystal structu
are aligned! and are given by

x333
h 522x113

h 52x123
c /A3. ~1!

Analogous relations have been used earlier for ela
constants.9,10 While these simple geometric relations hold f
the bond-orbital picture,11 in which the total polarizability is
a sum of local bond polarizabilities, they are not always w
satisfied, as the near vanishing ratio ofx113

h /x333
h in wurtzite

AlN demonstrates.1,3,6The response functions of concern d
scribe the field-dependent polarizabilities of the electro
systems. These in turn are known to depend on the electr
structures which differ to a nontrivial extent in the differe
polytypes~e.g., they have different band gaps!. Furthermore,
the relation between SHG and the band structures is also
from trivial and involves fine details of the electronic stru
tures, such as interband energy difference resonances
momentum matrix element products.

Silicon carbide would appear to be the material of cho
for a further investigation of this question because of
occurrence of polytypes,12 which are structures of varying
degrees of ‘‘hexagonality.’’ A detailed review of recen
progress in the understanding of the electronic structure
physical properties of the SiC polytypes can be found in R
13 and other papers in the same volume. Specifically, ‘‘h
agonality’’ is defined asH5h/(h1c), whereh and c are,
respectively, the number of hexagonal and cubic stacking
the elementary cell, a parameter that varies from zero for
cubic 3C form to unity for the purely hexagonal 2H poly-
type. Some other polytypes that are frequently encounte
either because of their natural abundance or because
growth has been optimized, are 6H (H51/3) and 4H (H
9705 © 1998 The American Physical Society
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9706 57RASHKEEV, LAMBRECHT, AND SEGALL
51/2). There exist also rhombohedral polytypes such asR
(H52/5). These have only threefold symmetry and th
have additional nonvanishing tensorial components, but
can still assign a hexagonalityH to them as defined above

In the static limit, Kleinman14 ‘‘permutation’’ symmetry
allows one to reduce the number of independent tenso
components beyond the relations dictated purely by crys
lographic symmetry. Thus the 333 and 311 components f
describe the SHG susceptibility in the static limit. The ra
of x311

h /x333
h in the static limit was studied previously for Si

polytypes by Chenet al.5 Additional questions arise about~i!
the magnitude of the nonvanishing tensor components of
rhombohedral polytypes and~ii ! the validity of these rela-
tions for the frequency-dependent susceptibilities, includ
the additional independent tensorial components.

Some of these issues are investigated in this paper.
though we are at present unable to explain the magnitu
of the discrepancies from the expected geometric relat
in simple terms, we can provide information on the gene
behavior of the frequency-dependentx (2)(22v,v,v)
susceptibility tensor as function ofH. To this end we per-
formed calculations of various tensor components
x (2)(22v,v,v) for the 3C, 6H, 15R, 4H, and 2H SiC
polytypes and we relate them to the corresponding line
response function@more precisely to the imaginary part o
the dielectric function«2(v)# and the calculated electroni
band structures. The chosen group of polytypes encompa
the complete range of hexagonality.

The relation of SHG to the band structures is an import
question in its own right. In fact, one may think of Si
polytypes as ‘‘twist’’ superlattices.15 They consist essentially
of narrow layers of cubic material bonded together with
180° twist at the twin boundaries corresponding to the h
agonally stacked layers. The result of these twists is a f
tration of the electron wave propagation.16 This leads to
standing-wave patterns which constitute essentially
‘‘miniband structure’’ of the superlattice. In particular, th
conduction-band structure near the band edges can
thought of in this manner and shows minigaps betwe
folded cubic bands. Just as nonlinear optics is currently
great interest in more conventional compositionally mod
lated semiconductor superlattices~in particular those with
polar interfaces!, it is also expected to be of interest in th
present context. Specifically, we will show that the seco
harmonic generation spectrum in the range below the b
gap but above half the band gap contains detailed infor
tion about the band structure. Measurements of these sp
in conjunction with the analysis presented here could t
provide experimental insight into these aspects of the p
type band structures. In that sense, the present wor
closely related to our previous work on linear optical r
sponse functions,13,17which was also mainly concerned wit
the question of extracting as detailed as possible experim
tal information about the band structures from the opti
data.

The SHG spectra appear to be more sensitive to the
gree of hexagonality and to the underlying band struct
than the corresponding linear response functions. There
two main reasons for that sensitivity. First, the second-or
response involves more ‘‘resonances’’ than the linear one
addition to the usualv resonances the 2v-resonant contri-
s
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butions appear. Second, the real and imaginary parts of
products of matrix elements that control the strength o
given resonance inx (2) can be positive or negative. In con
trast, for the linear responses the corresponding factors
volve only the square of matrix elements, which ensures,
example, that«2(v) is positive. As a result, the structure i
x (2)(22v,v,v) is more pronounced than in the linear r
sponse. Hence measurements of the frequency-depen
nonlinear responses can in principle provide more deta
information about the electronic structure than those for
linear response. In that sense these measurements are s
to modulation spectroscopy techniques.18 Another factor fa-
voring the nonlinear studies is that the threshold for thev
part occurs at half the energy of threshold for linear p
cesses. The measurements could thus be performed in a
convenient spectral region for the incident light. Althoug
one still needs detection capabilities of the second harmo
in the doubled-frequency range, at least the intensity requ
ments for the incident light are thereby somewhat relaxe

Unfortunately, at this point there has been only a ve
limited amount of experimental work on SHG in SiC in spi
of the technological importance of this material. So far, th
were measurements of the SHG only for the zero-freque
limit; some were carried out more than two decades ago.19,20

Later there appeared some renewed experimental intere
such measurements and SHG in a cubic SiC film,21 in a
single crystal of polytype 6H,22 and in a pulsed laser ablate
hexagonal SiC thin film23 was measured. Very recently, Nie
dermeieret al.24 carried out measurements of the anisotro
of the SHG on 3C SiC films on Si substrates and 6H and
15R crystals grown by the modified Lely method. At prese
the primary interest of this work appears to be character
tion of the quality of SiC samples. We hope that our pres
work will stimulate further interest in the more fundamen
questions addressed here. In view of the absence of ex
mental studies of the frequency-dependent SHG, our fi
principle calculations of the SHG have a predictive char
ter.

The rest of the paper is organized as follows. In Sec. II
discuss our computational approach based on the lin
muffin-tin orbital ~LMTO! band-structure code. In Sec. I
we analyze the results of calculations and find the main si
larities and differences between the nonlinear responses
different SiC polytypes. A conclusion and summary of t
results are presented in Sec. IV.

II. COMPUTATIONAL METHOD

The expressions used in the present work to calculatex (2)

were given elsewhere.1 They are a rearrangement of the fo
malism obtained by Sipe and Ghahramani,7 and Aversa and
Sipe8 using the ‘‘length-gauge’’ formalism. Those results a
based on the independent-particle approximation~meaning
that no local-field effects are included! for undoped semicon-
ductors, i.e., systems without partially filled bands. There
several advantages in using this formulation, namely,~i! the
manifest absence of unphysical singularities in the ze
frequency limit, ~ii ! the simple and natural account of th
effects of the intraband motion of electrons that gives
essential contribution to SHG, and~iii ! the obvious satisfac-
tion of the Kleinman relations14 in the zero-frequency limit.
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57 9707SECOND-HARMONIC GENERATION IN SiC POLYTYPES
This formulation has recently been used successf
in two sets of studies. In one set Hugheset al. calculated
x (2)(22v,v,v) in GaAs and GaP,2 which have the zinc-
blende structure, and in GaN and AlN,3 which form with the
wurtzite structure. These calculations were based on b
energies and momentum matrix elements obtained by
self-consistent full-potential linearized augmented-pla
wave band-structure method. The other set was carried
by the present authors,1 who studied 3C SiC in addition to
the above-mentioned four semiconductors. In those calc
tions we used the self-consistent method25,26 LMTO within
the atomic sphere approximation. The same approach wi
used here. The method is very efficient mainly becaus
employs a rather small basis set. As a result it can m
easily deal with systems containing a large number of ato
per unit cell while maintaining a sufficiently large number
k points so as to ensure converged Brillouin zone~BZ! inte-
grations. Extensive checks performed in our other pap1

demonstrate that our LMTO-based approach yields accu
results for the second-order response functions.

The self-consistent calculations of the electronic ba
structure ~eigenvalues and eigenstates! were carried out
within the framework of density-functional theory in th
LDA ~Ref. 27! using the exchange-correlation parametriz
tion of Hedin and Lundquist.28 As is extensively discussed i
our other paper,1 correcting for the well-known ‘‘gap prob
lem’’ of the LDA is extremely important for nonlinear
response functions. While this is true even in the static lim
as can be justified from the point of view of the recen
developed concept of polarization-dependent dens
functional theory,29 it is clearly imperative for frequency
dependent response functions to somehow deal with the
tual quasiparticle excitations rather than the Kohn-Sh
eigenvalues. One of the most accurate approaches pres
available for the corrections to the LDA is theGW
approximation.30 However, calculation of the full energy
dependent and nonlocal self-energy operator even in
relatively simple approximation is rather cumbersome
practice because of the need for determining the fully
namically screened Coulomb interactionW. A simplified ap-
proach is based on the observation that the conduction b
to a good approximation shift up rigidly inGW calculations.
The effect can thus be described by a the so-called scis
operator, which can be written as a projection operator on
conduction bands times a constant shift in energyD. As was
pointed out by Levine and Allan4 and later by Hughes an
Sipe,2 the introduction of this shift operator into the Ham
tonian results in renormalization of the velocity~momentum!
operator matrix elements. In practice, this renormalizat
factor is taken simply as

pnm°pnm

vnm1~D/\!~dnc2dmc!

vnm
, ~2!

in which pnm is a momentum matrix element between Blo
statesn andm, \vnm5En2Em is their band difference, and
the factordnc2dmc limits the corrections to matrix elemen
involving one valence and one conduction band. That
proximation is based on the explicit assumption that the
pole momentr nm matrix elements are unchanged because
perturbed wave functions are close to the LDA wave fu
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tions. In our other paper,1 we noted some principle shortcom
ings of this approach in that it breaks the consistency
tween the eigenvalues and eigenvectors. We showed
better results were obtained by introducing the shift at
level of the LMTO Hamiltonian by an empirical modifica
tion of diagonal elements corresponding to the basis fu
tions that primarily make up the conduction-band stat
These typically are the cation and empty spheres-like states
for the lowest conduction bands in zinc-blende semicond
tors. However, at present this approach only allows us
shift the lowest conduction bands rather than the whole se
conduction bands, which appears to be more appropriate
SiC. Also, a fine-tuning of this approach for SiC polytyp
that are described using different empty spheres for the h
agonal and cubic local stackings remains to be carried ou
the interest of simplicity and a consistent treatment of
polytypes, we therefore here adopt the scissor’s approac
described above.

The next question is what value of the constant shiftD to
adopt. The scissors approach gives a reasonable quantit
agreement with experiment for a variety of optical consta
for moderately small-band-gap semiconductors when
value of D is straightforwardly taken to the difference b
tween the experimental and LDA minimum band gaps. Ho
ever, as was noted by Chenet al.5 and by Gavrilenko and
Bechstedt31 the shifts required to reproduce the magnitude
the experimental dielectric constants«1(0) for the SiC poly-
types are less than theD needed to match the band gap
Similar results occur for other large-band-gap semicond
tors that contain second-row elements~B,C,N,O!, i.e., the
discrepancy in the LDA optical response functions are ov
corrected by the use of the scissors approach.5,6,29 In our
opinion, this problem is further complicated by the effects
local-field corrections and continuum excitonic effects on
oscillator strength. Therefore, we think it is premature
attach too much importance to the magnitudes of the
sponse functions, especially since we are presently not
cluding local-field corrections. We prefer to focus on t
energetic position of the spectral features. It was shown
a simple self-energy correction of about 1 eV for all t
major SiC polytypes appears to bring the LDA values for t
minimum gaps into good coincidence with experiment13

This value is well justified by recent calculations of su
corrections using theGW approximation.32–34 Also, a con-
stant energy shift of«2(v) by 1 eV leads to reflectivities in
good agreement with measured reflectivity spectra17 as far as
the location of spectral features is concerned. Since our
jor interest forx (2) is also in the location of the spectra
features, we therefore adopt the valueD51 eV. From our
experience with other materials, we expect that both the
of the scissor operator approach in its present form and
choice ofD may somewhat overestimate the correction to
LDA. We will keep this in mind when comparing to othe
values in the static limit. It should not affect our major co
clusions about the spectral features. Local-field correct
were shown to be not larger than 10% for the zero-freque
limit of x (2) in the SiC polytypes.5 They are neglected in the
present calculations.

Next, we turn to some computational details. The ima
nary part of the frequency-dependent SHG is calculated
~see Ref. 1!. The real part of the SHG is then obtained fro



ro
b
su

th

in
of
fo
cy
r
ie
ro
yt
ro

rk
he

y-
on

i

th
h
nt
11
a

ith
ti
a

he
15

si
o
in
tr

a-
to

m

po
n

th
m

to
o

in
lt

by

odel
tive
use

l is
del

c
e

g

ed
t for

d

he
or
be-

in

of
the

in
the

the
the
tions
hen
s

en
t
ther
re-
re

as

9708 57RASHKEEV, LAMBRECHT, AND SEGALL
the Kramers-Kronig transformation. However, in the ze
frequency limit, the SHG can be evaluated with less effort
the use of a special expression. A comparison of that re
with the limit of the frequency-dependentx (2) serves as a
check of the accuracy of both the BZ integration and
Kramers-Kronig transformation. We note that thek integra-
tion can be limited to the irreducible wedge of the Brillou
zone only if a preliminary symmetrization of the product
the three momentum matrix elements over all the trans
mation of the crystal group is performed. For the frequen
dependent SHG, we use the usual tetrahedron scheme fo
integrations with linear interpolation of the band energ
and the products of the matrix elements. For the ze
frequency limit on the other hand, we employ a semianal
cal linear interpolation scheme that is more efficient and p
duces a smaller error.1

Orbitals with angular moments up tol max53 were in-
cluded in the basis set. As shown in other previous wo1

neglecting thef states leads to non-negligible errors in t
momentum matrix elements and the SHG’s.

We finish this section with a note on the symmetr
allowed tensorial components. In the cubic case, there is
one independent component, with indices 123, and all
possible permutations are equal to it~1, 2, and 3 refer to the
x, y, and z axes, respectively, which are chosen along
cubic axes!. In the hexagonal polytypes that correpond to t
point group 6mm, there are three independent compone
with indices 333, 311, and 131, the last one equaling the
component because for SHG the last two indices can alw
be permuted. The coordinate axes here are chosen wz
along the sixfold symmetry axis. Furthermore, in the sta
limit the 311 and 131 components are equal by the Kleinm
permutation symmetry, but this is no longer true for t
frequency-dependent case. The rhombohedral polytypeR
~point group 3m) has a threefold symmetry axis along thez
axis, which is normal to the basal planes, instead of the
fold screw axis present in the hexagonal structure. As a c
sequence of the lower symmetry there is one additional
dependent component of the SHG and several symme
related nonvanishing components. These arex222

(2)52x211
(2)5

2x112
(2)52x121

(2) . As noted in the Introduction, a transform
tion of the 3C x (2) tensor from a cubic coordinate system
a hexagonal one~having thez axis along the cubic@111#
direction! yields the 333, 311, and 131 components in ter
of the 123 response function for 3C. The resulting ratio
x333

(2)/x311
(2)522 for arbitrary frequencyv. The 22 value

found for the ratio when one uses directly computed com
nents for 3C in the hexagonal coordinate system represe
an additional verification of the computer code. One of
central questions of this paper is to what extent the sa
relation holds for the other polytypes.

III. RESULTS

A. Static limit

Since the zero-frequency limit of the SHG is simpler
calculate, it is the first aspect of the nonlinear response
which we will focus our attention. To put our own results
perspective, we briefly recall the history of static SHG resu
for SiC. One such calculation for SiC was carried out
-
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Levine using the bond-charge model.11 He found that the
x123

(2) in zinc-blende SiC andx333
(2) in wurtzite crystals are both

negative. The subsequent analysis of the bond-charge m
found that its predicted SHG values in SiC are very sensi
to the choice of the bond charge and the ion radii beca
both Si and C have the same ionic charge.19 However, the
ratio of the 333 and 311 tensor components in this mode
found to be independent of the particular bond-charge mo
and to be equal to the above-mentioned value of22 for all
polytypes. For the 3C polytype, the ratio is purely geometri
in origin. For this value to hold for the other polytypes, th
approximation implied is one of similarity in the underlyin
electronic structure.

An indication that the real situation is more complicat
and that the bond-charge model is not accurate at leas
some hexagonal materials includingnH SiC appeared in the
work of Chenet al.5,6 Our calculated ratios of the 333 an
311 components ofx (2) for the zero-frequency limit are
shown as a function of hexagonality in Fig. 1 along with t
results of Chenet al.5 It can be seen that the deviations f
the noncubic forms increase with increasing hexagonality
coming substantial for the large values ofH. Our values for
the ratio are in excellent agreement with those obtained
the LDA pseudopotential calculations of Chenet al.,5 which
include local-field corrections. A comparison of the values
the individual 333 and 311 components obtained in
present and pseudopotential calculations is presented
Table I. It is seen that while there is good agreement for
ratios, the absolute LDA values of thex (2) appear to be more
sensitive to the method of calculation. Those obtained by
LMTO method are found to be smaller than those by
pseudopotential approach. As expected, the gap correc
reduce the values in both our calculations and those of C
et al. A slightly different value of the gap correction wa
used for each polytype in their case, with 1.04,D,1.27 eV.

Although there are non-negligible differences betwe
our and theirx (2) values, even in the LDA, we wish to poin
out that the two results agree much better with each o
than with the bond-charge model predictions. The latter p
dict values independent of polytype, which in Ref. 11 a

FIG. 1. Calculated ratio2x333
(2) (0)/x311

(2) (0) as a function of hex-
agonality. The results of the present LDA calculations are shown
closed diamonds and those of Ref. 5 as open diamonds.
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TABLE I. LDA and LDA plus ‘‘scissors’’ calculations~with a 1-eV shift! of x333
(2) (0) and x311

(2) (0)
compared with pseudopotential LDA calculations~in pm/V!. The sign of the SHG’s from Ref. 5 was adapte
to the present choice of coordinate system~see the text!.

Component Method 2H 4H 15R 6H `H (3C)

x333
(2) (0) LDA 3.6 14.5 16.4 17.8 20.2

x311
(2) (0) 26.1 28.9 29.3 29.7 210.1

x333
(2) (0) LDA plus scissors 2.5 9.2 10.4 11.4 13.0

x311
(2) (0) 23.9 25.7 26.1 26.3 26.5

x333
(2) (0) LDA a 8.6 23.2 27.6 28.2

x311
(2) (0) 213.2 214.8 215.0 214.2

x333
(2) (0) LDA plus scissorsa 5.8 15.6 18.6 18.4

x311
(2) (0) 28.8 210.0 210.4 29.2

x333
(2) (0) Expt.b 623

x311
(2) (0) 714

aReference 5.
bRescaled from Ref. 19 for an undetermineda-SiC polytype; see the text.
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x33352166 andx311584 pm/V. Singhet al.19 pointed out
that values about 10 times smaller,x3335216 andx31158
pm/V, are obtained when different ionic radii values are us
as input to the same model. The two-band model predic
of Kleinman35 gave x3335280 andx311540 pm/V. Note
that all of these have opposite sign to ours. Experimenta
the values available correspond to an incompletely de
mined polytype36 and arex333562763 and x3115715
62 pm/V at l51.064 mm. These values are obtained b
rescaling the original values by Singhet al.,19 which were
relative to quartz, using a more recently obtained abso
value of quartz recommended by Roberts.37 For the 311
component, the average was taken of the experiment
slightly different 311 and 113 components. As in the origin
measurement, we leave the absolute sign undetermi
although the relative sign of the two components w
clearly established. By applying Miller’s rule38 that
x i jk

(2)(22v,v,v)/x i i
(1)(2v)x j j

(1)(v)xkk
(1)(v) is independent of

frequency in the low-frequency regime, Chenet al.5 con-
verted these values tox333562363 and x311571462
pm/V in the zero-frequency limit. Our LDA values are ap
parently closer to these values than the scissor corrected
ues. As noted earlier, we expect our scissor values to
overcorrected because of both the intrinsic problem of
scissor’s approach and our use of the actual gap correc
rather than a scaled down value that would reproduce
magnitude of«1(0).

Somewhat different experimental values were determin
by Lundquistet al.22,23 for 6H bulk samples and 6H thin
films, respectively. Their second set of values is reasona
close to ours in magnitude but shows a ratio ofx333/x311 of
23.23 The older data22 are about a factor 2.5 larger for th
333 component and the above ratio was210. We do not
think that crystalline quality alone can explain such lar
variations. We note that a somewhat indirect fitting proc
dure was used in these papers in order to determine the
of the two components. In an even earlier paper by Ha
et al.21 a value smaller by an order of magnitude was o
tained for 3C SiC films. Because light scattering was a co
d
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siderable problem in those measurements as the authors
themselves, we can only consider their results as providin
lower limit for the SHG coefficient. Therefore, we chose
compare our calculations only to the older data by Sin
et al.,19 in spite of the fact that the polytype was not com
pletely determined in that paper.

We note that the signs of all the components in Table I
opposite to those reported in Ref. 5. The reason for this
versal in the sign of thex (2) is simply that opposite coordi
nation of the atomic positions was employed in the two s
of calculations: In 3C, for example, we placed the Si atom
the ~0, 0, 0! and the C atom at the~1/4, 1/4, 1/4! positions in
the unit cell, while in Ref. 5 the positions of the Si and the
atoms were interchanged.39 There were corresponding reve
sals for the hexagonal polytypes. The agreement in the a
lute signs of thex (2) components in the two sets of Si
calculations noted above, along with a corresponding ag
ments for several other semiconductors discussed in
other paper,1 gives us strong confidence in that regard. Ho
ever, it appears that the experimental data are still unc
about the sign despite an early effort to determine the a
lute sign of the SHG.20 In that paper a negative sign is pr
posed forx333 based on a surface etching method for t
determination of the crystal orientation. This also coincid
with the reported sign of the bond-orbital methods, whi
however, could easily give either sign, depending on the
tails of the model, and is in disagreement with our sign.
unambiguous measurement of the signs, as well as the m
nitudes, clearly would be useful.

B. Frequency-dependent results

Figure 2 shows the 333, 311, and 113 components of
x (2)(22v,v,v) for the complete set of SiC polytypes co
sidered here over the energy range 0–8 eV. We note tha
hexagonality parameterH decreases monotonically from 2H
(H51), shown at the top of the figure, to the 3C (`H)
polytype (H50) at the bottom. As mentioned above, t
ratio of the 333 to the 311 component for 3C is the fixed
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geometric value of22. For all other polytypes the ratio i
highly frequency dependent in the absorbing frequency
gime, i.e., for\v.Eg

d/2, with Eg
d the smallest direct gap

Below this frequency, the ratio is remarkably constant,
can be seen in Fig. 3. Even in the absorbing frequency ra
the ratio of the coefficients averaged over a modest ene
of, say, 0.5–1 eV are roughly in the21 to 22 range with
the deviation largest for the largestH, that is, for the wurtzite
structure.

It is striking that the 333 component of the wurtzite (2H)
structure is very different from all other polytypes in that t
first peak ~at about 4 eV! is negative and the second on
positive. In all other polytypes, the first peak is positive a
the second negative, with the location of the first peak gra
ally shifting towards the position of 3C. In fact, one can see

FIG. 2. Calculated values of the imaginary part
x (2)~22v,v,v! for the SiC polytypes considered:~a! 333 compo-
nent,~b! 311 component, and~c! 113 component.

FIG. 3. Ratioux333
(2) (22v,v,v)u/ux311

(2) (22v,v,v)u for the non-
cubic SiC polytypes considered.
-

s
e,

gy

u-

that the spectra for 4H, 15R, and 6H show roughly a super-
position of the 2H and 3C characteristic shapes, i.e., the
have a1212 sequence of peaks. One may interpret t
first positive peak as cubiclike, the next negative and posi
peaks as hexagonal-like, and finally the negative tail
poaching zero as cubiclike. This is not unexpected beca
the polytypes can be viewed as mixtures of locally cubic a
hexagonal stackings. Of course, one cannot push this m
too far because the band structures from which the spe
are derived are not simply a superposition of local contrib
tions but contain interference effects of the electron wav
Thus the spectra are not simply a linear superposition in
appropriate ratios of cubic and hexagonal components i
cated by the hexagonality.

In the 311 and 113 components, 2H appears to be more
similar to the other polytypes. Considering the tensorial
pects, one may note the close similarity in spectral featu
between the 311 and 131 components, which are exa
equal in the static limit.

Also evident in the figures is the general increase in
complexity of the spectral fine structure with decreasingH
~or increasingn in the hexagonalnH polytypes! until the
cubic structure is reached. This is most clear for the 3
component. This fact clearly reflects the increasing fold
of the bands withn or more generally with the size of th
basic repeat unit in the stacking sequence. The latter is
4H and 3 in 6H because they correspond to bands of t
and three consecutive cubically stacked layers alterna
with a twin boundary~or hexagonal stacking!. In 15R the
repeat unit in this sense is^23&, although the periodic repea
unit along thec direction is 15 layers. This notation schem
based on the width of the cubically stacked bands is kno
as the Zhdanov notation.40 Of course, some of the fine struc
tures exhibited in curves is expected to be averaged ou
the observed spectra as a result of broadening effects.

Finally, we consider the additional independent comp
nent for the rhombohedral structure. The 222 and 211 co
ponents for the 15R polytype are displayed over the range
2–8 eV in Fig. 4. It is evident that these accurately sati
the symmetry requirement of having opposite signs. T
represents just one more test of the correctness of the c

FIG. 4. Calculated 222~solid line! and 211~dotted line! com-
ponents of the imaginary part of the SHG for the rhombohedral 1R
polytype. The mirror plane is perpendicular to thex axis.
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The 112 and 121 components were also calculated and
required, are found to be virtually identical to the 211 co
ponent. Finally, we note that the magnitude of these com
nents tends to be smaller than those for the 333 and
components by a factor of about 6. These small magnitu
reflect the similarity in the symmetry of the rhombohed
and hexagonal structures.

C. Analysis of SHG spectra

As we noted in another paper,1 it is convenient to analyze
the 2v- andv-resonant contributions in the SHG separat
as the two parts have features at different energies. A c
parison was made there between those two parts and«2(2v)
and«2(v), respectively, for 3C SiC ~see Fig. 8 of Ref. 1!.
As might be expected, the location of structures in both p
of x (2) coincided with those in the dielectric function.
should be noted that the threshold for the 2v part occurs at
an energy that is half of that for thev part,Eg

d , which is the
direct transition threshold for«2(v). As a result, only the 2v
part contributes tox (2) in the important energy rangeEg

d/2
,\v,Eg

d . SinceEg
d>6 eV for the SiC polytypes, unles

one is concerned with fairly high energies~well into the
UV!, the 2v part is the one of primary interest.

As in «2(v), the origin of structure inx (2) can be ana-
lyzed by a decomposition into separate band-to-band co
butions~see, e.g., Ref. 17 for details!. The main two peaks in
the «2(v) curve for 3C SiC, for example, result from tran
sitions between the upper valence band to the first and

FIG. 5. Top, the analysis of the band-to-band contribution to
123 component of the SHG for 3C SiC: the total SHG~solid line!,
the upper-valence-band to first-conduction-band contribution~dot-
ted line!, and the upper-valence-band to second-conduction-b
contribution ~dashed line!. Bottom, the same for the 2H polytype
~333 component!: total SHG ~solid line!, the two-upper-valence
band to first- and second-conduction-band contribution~dotted
line!, and the two-upper-valence-band to third- and four
conduction-band contribution~dashed line!.
as
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ond conduction bands, respectively. Previous analysis sh
that the peak with lower energy comes from extended
gions ofk space near the cubicG-K-L plane and close to the
G-L line. The transitions between the same bands
k-space regions provide the contributions in the 2v and v
terms of thex (2)(22v,v,v). These contributions to the to
tal SHG ~mostly to its 2v part in the energy region consid
ered! from these interband transitions are displayed in the
panel of Fig. 5 by the dotted and dashed curves. A sim
analysis can be made for 2H and the contributions from the
relevant interband transitions are similarly indicated in t
lower panel of the figure. The major difference between
dielectric function andx (2) could loosely be ascribed to th
different matrix element factors involved. In the former, on
the absolute square of matrix elements occur, ensuring
«2(v) is positive. The situation is more complicated for th
SHG. Since a complex product of three generally differe
matrix elements appears inx (2), its real and imaginary parts
can assume either sign. This is evident in the results forC
and 2H shown in Fig. 5.

Similar analyses of the 2v- andv-resonant contributions
in the SHG have been also performed for the other SiC po
types. Comparisons between thez-polarized component o
the dielectric functions~DF’s! and the 333 components o
the SHG for the 2H, 4H, 15R, and 6H polytypes are shown
in Figs. 6 and 7. These components involve the sa
(z-polarized! momentum matrix element. This guarante
that the selection rules for a given electronic transition w
be the same for both curves. Again, all the transitions~in-
cluding those with rather small oscillator strength! are seen
in both the DF and SHG curves and the 2v part of the SHG
dominates in the whole frequency range considered in Fig
The imaginary parts of the DF’s look rather similar for a
the polytypes and differ from each other only in some fi

e

nd

-

FIG. 6. Values of the 2v-resonant contributions in the 333 com
ponent of the SHG for the noncubic SiC polytypes considered~solid
lines!, in units 1026 esu, compared with the correspondin
«2

zz(2v)/50 ~dotted lines!.
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details, except for the pure hexagonal polytype 2H. How-
ever, the SHG’s contain many more features and th
changes from polytype to polytype are much more drama
This reflects the fact that the electronic structure for
higher polytypes becomes more and more complicated w
increasingn. This results in part from the above-mention
fact that the number of bands increases because of the ef
of the band foldings~for layers with cubic stackings! and
also from the appearance of the new local symmetries~for
hexagonal stackings!. Concomitantly, the analysis of th
band-to-band contributions becomes increasingly com
cated. For the pure hexagonal polytype 2H, however, we see
that the 333 component consists of two wide strips, one
tween 3 eV and 4.3 eV and the other between 4.3 eV and
eV. The former results from transitions from the two upp
valence bands to the first and second conduction bands
the latter from transitions to the third and fourth conducti
bands~see Fig. 5!. The matrix element factor for the firs
strip is negative, while that for the second one is positi
This is opposite to the case of 3C SiC, where the lower-
energy peak is positive. This large negative feature of
333 component near the thresholdEg

d/2 is unique to the 2H
polytype, as was mentioned before.

Figure 8 shows the absolute value of the frequen
dependent 333 component ofx (2) for the four noncubic poly-
types. The reported measurements of frequency-depen
results for other materials have generally been only for
absolute values of the SHG rather than the real or imagin
parts. Consequently, the numerical calculations of this fu
tion are of interest for future comparisons to experimen
data. It can be seen that the line shape of theux (2)~22v,v,v!u
for the pure hexagonal 2H material again exhibits the grea
est differences from those of the other polytypes. Anot
interesing feature ofux (2)(22v,v,v)u for 2H is its very

FIG. 7. Values of thev-resonant contributions in the 333 com
ponent of the SHG for the noncubic SiC polytypes considered~solid
lines!, in units 1026 esu, compared with the correspondin
«2

zz(v)/100 ~dotted lines!.
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weak dispersion in the energy interval between zero
Eg

d/2; that is, its coefficient of thev2 term, which describes
the behavior in this region, is much smaller than for the ot
polytypes. For 4H, 15R, and 6H, the peak between 3 and
eV dominates. Its position gradually increases from 3.4
for 4H to 3.7 eV for 6H and to 4.1 eV for 3C. This structure
arises from the 2v-resonant transitions~see also Fig. 6! and
is common for all the polytypes except 2H.

D. Near-band-edge fine structure

An interesting feature of the various SHG spectra d
played in the previous sections is the appearance of con
erable fine structure in the energy region between the thr
old for the direct interband transitions and the dominant p
around 3.5 eV. These structures, if detectable, could prov
important information about the conduction- and valen
band edges. Neither the presently available reflectiv
spectra17 nor the measurements of the dielectric function
spectroscopic ellipsometry41 had the required resolution t
provide such detailed information about this region of t
spectra.

However, that information could be quite useful for dete
mining the nature of the band edges and hence for an un
standing of the conduction properties in doped SiC po
types. Information about the band edges has previously b
obtained by different methods. These include analyses of
optically detected cyclotron resonances42 and of the phonon
replica spectra associated with donor-bound excitons.
latter are due to the phonons, which have a wave ve
equal to the k-point location of the conduction-ban
minimum.43,44 These analyses led to the conclusion that
minimum of the conduction band in 4H is at theM point of
the BZ, in agreement with the predictions of the band cal
lations. For 6H the situation is more complicated becau
not all of the multitude of phonon lines have as yet be

FIG. 8. Absolute values of the frequency-dependent 333 co
ponent of the SHG for the SiC polytypes considered.
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57 9713SECOND-HARMONIC GENERATION IN SiC POLYTYPES
resolved and also because of the believed shallow natur
the minimum itself. In another experiment, the optical tra
sitions from the lowest conduction band to the higher ba
were observed in fairly heavilyn-type doped samples.45

These spectra were recently analyzed by Lambrechtet al.46

The direct measurements of the SHG in this energy reg
could provide additional information about the bands in
first few eV from the band edges. Figure 9 shows the an
sis of the band-to-band contribution to the 2v term in the
imaginary part of the SHG~333 component! for 4H and 6H
polytypes. We analyze Im$x (2)(22v,v,v)%, but, of course,
the same features would appear inux (2)(22v,v,v)u. For
both polytypes the behavior of the SHG in this region
determined by the transitions near theM point ~see Fig. 10!.
For 4H, the structure of Im$x (2)(22v,v,v)% between 2.5
and 3 eV results from transitions between the valence b
v2 and the two lowest conduction bands (c1 andc2). The
transitions to the first conduction band produce a posi
contribution to the SHG, while those to the second band
negative. The separation between the broad maximum
SHG around 2.7 eV~the a feature! and the minimum at 2.9
eV ~the b feature! is thus closely related to the energy d
ference between the two lowest conduction bands and
dispersion of the second highest valence band along theM -L
line ~Fig. 10!. Although the relation is not simple, it illus
trates that we can relate the features of the SHG curv
specific band-to-band contributions.

The situation in 6H is more complicated. The total SHG
curve in this region exhibits more structure than for 4H. The
lower peak at 2.38 eV~the a feature! results mainly from
transitions between the two valence bandsv2 andv3 and the
lowest conduction bandc1 ~arrow 1 in the right-hand pane

FIG. 9. Analysis of the band-to-band contributions
Im$x333

(2) ~22v,v,v!% in the energy region associated with the dire
transitions between the near ‘‘band edges’’ for the 4H and 6H
polytypes. The totals are given by the thick solid lines and
numbers labeling the curves for the partial band-to-band contr
tion correspond to the interband transitions indicated in Fig. 10
of
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of Fig. 10!. The partial contribution from these transition
decreases and changes sign at higher energy and ultim
produces a sharp minimum at 3.25 eV. This behavior is a
reflected in the total curve. The second (b) structure at 2.51
eV results from the superposition of the first curve and
contribution from transitions from the same valence ban
(v2 andv3) to the second conduction bandc2 ~arrow 2!.
The broad hump that starts at 2.75 eV originates from tr
sitions between the rather low-lying valence bandv5 and the
second conduction bandc2 ~arrow 3!. The last interesting
feature to be discussed is the hump starting at 2.95 eV~thec
feature!. This structure is associated with transitions betwe
the two upper valence bands (v1 andv2) and the third con-
duction bandc3 ~arrow 4!. While the total curve is fairly
complicated, we see that energy differences in its featu
can be approximately related to half the differences betw
the interband transition energies~Fig. 10!.

IV. CONCLUSIONS

The second-harmonic generation coefficients for five i
portant SiC polytypes 3C, 6H, 15R, 4H, and 2H have been
calculated over the energy range from 0 to 13 eV. The res
for the zero-frequency limit of the ratios of the 333 and 3
components are in good agreement with those obtaine
pseudopotential calculations,5 while the magnitudes of the
individual components are found to be smaller than th
reported earlier. The polytypes studied span the full range
hexagonality from zero for 3C to unity ~complete hexago-
nality! for 2H SiC. This allowed for a study of the trends i
the SHG with this quantity, which characterizes the po
types. It is found that with the exception of the 333 comp
nent of 2H SiC, the frequency-dependent SHG coefficien

t

e
u-

FIG. 10. Electronic band structures for the 4H and 6H poly-
types along theM -L line of the BZ. The LDA conduction bands ar
shifted up by a 1-eV ‘‘correction.’’ The transitions associated w
the important contributions to the SHG~and displayed in Fig. 9! are
indicated by arrows.
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9714 57RASHKEEV, LAMBRECHT, AND SEGALL
in the different polytypes look rather similar over a bro
frequency range. The spectra gradually approach those
the zinc-blende 3C polytype but exhibit increasing complex
ity with increasing length of the basic repeat unit of the la
stackings. All independent tensor components were obta
~and their symmetry relations verified!, including the small
ones that are are only nonvanishing in the rhombohe
case. We also find that the components that are strictly e
in the static limit by the Kleinman symmetry still show gre
similarity over the full frequency range. The spectral featu
in the 333 component were further analyzed by examin
separately thev and 2v resonances, the absolute values, a
their correspondence to features in the 33 component o
imaginary part of the dielectric function. These one-to-o
correspondences and further explicit decompositions allo
us to assign the spectral features to specific band-to-b
contributions. We carried this out in considerable detail
the transitions in 4H and 6H in the low-energy region
which is the most accessible region experimentally.

An important general conclusion of this last aspect of
work is that the frequency-dependentx (2) may provide a
useful tool for studying the electronic structure especially
the wide-band-gap semiconductors. This is particularly
s
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portant for studying the bands in the vicinity of the ban
edges. To our knowledge this has not been done before.
observation of structure in the linear-response functions a
ing from direct transitions involving these band edges is h
dered by the weakness of those features. They probably
be seen in derivative spectra of the DF, i.e., by modulat
spectroscopy. In some sense, SHG provides informa
similar to that obtained from the modulation spectroscopi
For the SiC polytypes~and other wide-band-gap semicon
ductors as well! the measurements of the 2v part of the SHG
involving the near band edges lie in the visible light regio
where available lasers can be employed. In spite of the
that the amplitudes of the features to be detected are ra
small, they are comparable to the zero-frequency limits
the SHG that have been measured. This implies that they
be experimentally detected.
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