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High-field calculations of Landau-like shallow donor states: A finite-difference approach
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A theoretical method for calculating the energies and wave functions of an electron bound to a shallow
donor in a semiconductor, subject to an applied magnetic field, is presented. This approach is particularly
useful for describing highly excited Landau-like states, which cannot be dealt with properly using most other
theoretical models. First, an adiabatic high-field approximation is used where mixing between different
Landau-like states is neglected. Solving the one-electron Schro¨dinger equation is then reduced to finding
solutions to a one-dimensional differential equation for motion along the field axis. We present results in which
a finite-difference technique is used to solve this equation numerically. Values for the electron wave function
at discrete points along the field axis are then determined. By calculating the discrete Fourier transform of this
set of values, an analytical form for the wave function in terms of sines and cosines is obtained. These resultant
wave functions are then used to calculate a Hamiltonian matrix in which mixing between different high-field
states is included. Diagonalization of this matrix yields improved values for the energies of the impurity states.
Where previous results exist, our results are compared with those of other theoretical approaches and from
experiments on the donor in GaAs. The advantage of our approach is that it enables both energies and wave
functions to be determined without any prior assumptions of the form of the wave function in the field
direction. This includes expressions for highly excited states which are difficult to obtain by other means. The
results demonstrate the validity of the present method of calculation.@S0163-1829~98!08315-5#
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I. INTRODUCTION

The theoretical description of shallow donor impurities
semiconductor structures has been a major area of inte
for many years. An exact analytical solution of the Sch¨-
dinger equation for the donor electron in a magnetic field
not yet been found and so approximate methods mus
used. Many different approaches have been employe
both bulk and quantum-well~QW! systems, of which the
most common have been perturbation, variational, num
cal, and adiabatic methods. A good review of the ear
papers on bulk systems has been made by Zawadski1 In
addition, many recent references to work on multi-QW s
tems are given in Ref. 2.

In general, the influence of the semiconductor host on
interaction between a donor electron and the donor nucleu
taken into account through the introduction of an ‘‘effe
tive’’ electron mass and the use of the proper dielectric c
stant of the medium. The problem is then equivalent to t
of an isolated hydrogen atom in a magnetic field, except
field and energy scaling parameters. The effects
laboratory-strength magnetic fields can be equated to th
of the intense magnetic fields that occur in the hydrogen-
atmospheres of white dwarfs and neutron stars. Many ca
lations performed on hydrogen atoms in intense fields in
der to understand the optical spectra obtained from th
astrophysical objects can also be applied to the donor p
lem. A concise discussion of the differences between
hydrogen atom and a donor in a bulk semiconductor
been given by Klaassen.3
570163-1829/98/57~16!/9682~8!/$15.00
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Solutions to both the donor problem~and hence the
intense-field hydrogen problem! fall into two categories.
First, because of the strong similarity with the hydrog
atom, a common approach for weak-field calculations is
treat the effect of the applied magnetic field starting from
basis of zero-field hydrogenlike states.4–10 However, many
of the excited electron states observed experimentally
low-temperature bulk donor magneto-spectroscopy11–17 can-
not be explained within this basis. An alternative view is
consider a strong-field picture in which the Coulomb inte
action between the donor electron and the impurity ion
taken to be small. This allows the behavior of the electr
perpendicular to the magnetic-field axis to be described
Landau wave functions. There is a direct correlation betw
some of the high-field Landau-like states and the low-fi
hydrogenlike states.17–21 However, there are in effect an in
finite number of Landau-like states, generated by the hi
field method, that do not have a hydrogenlike~zero-field!
counterpart.

In this paper, we will refer to high-field states which co
respond to hydrogenlike states as hydrogenic. The states
be labeled by three quantum numbersn, l , andm by analogy
to the hydrogen atom. High-field states which do not cor
spond to states in the hydrogenlike picture will be referred
as Landau-like. In other papers, these states are also ref
to as metastable or autoionizing states. The Landau-
states can be labeled by the quantities (N,m,n), whereN is
the principal Landau index.n refers to the number of node
of the wave function in the field direction, and is introduc
to distinguish between states with the sameN andm.
9682 © 1998 The American Physical Society
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57 9683HIGH-FIELD CALCULATIONS OF LANDAU-LIK E . . .
It is obviously necessary to adopt a high-field approac
Landau-like states are to be described. One such appr
will be adopted in this paper. As the motion of the electr
perpendicular to the magnetic-field direction is described
Landau wave functions in these approaches, the calcula
reduces to solving a one-dimensional problem for mot
along the field direction. This equation can be solved
proximately by a variety of variational and relate
methods,4,5,13,23–26or by numerical approaches.19,22,26–29A
discussion of different variational wave functions was giv
in Ref. 30. Within manifolds of states with a given symme
and magnetic quantum numberm, the Landau-like states ar
nearly always excited states. As a result, the majority of
theoretical methods do not, or only with difficulty, yield re
liable data on energies and wave functions of these sta
Therefore, despite the large amount of work already p
formed, there is still a continuing interest in formulating
good model for these highly excited states in bulk III-
semiconductors.11,12,31,32

The model will be developed for shallow donor impuriti
in bulk semiconductors, and applied particularly to GaAs
order to compare with experimental results. The results
also be compared to those from other theoretical models
simple scaling of the magnetic field and energy, the res
are directly applicable to donors in other semiconductors
to the hydrogen atom as well. Moreover, the method of c
culation employed can be extended easily to describe im
rities in QWs by modifying the wave functions to take th
confinement effects of the QW potential into account. T
QW case will not be considered here, because it is impor
that an accurate model for an impurity in the bulk case
formulated first of all. However, the viability of the metho
for QW and multi-QW devices will be discussed at the e
of the paper in the context of future studies.

II. THE THEORETICAL MODEL

A. The Hamiltonian of the system

The Hamiltonian for a shallow donor impurity subject to
magnetic fieldB along thez axis, can be written in the form

H5Hrf1Hz1Hr ,

where

Hrf52
1

r

]

]r S r
]

]r D2
1

r2

]2

]f2 1gLz1
g2r2

4
,

Hz52
]2

]z2 ,

Hr52
2

~r21z2!1/2. ~2.1!

Due to the symmetry of this system, a symmetrical form
the magnetic vector potential has been used and the Ha
tonian expressed in terms of cylindrical coordinates. For
sake of generality, the Hamiltonian is written in dimensio
less form such that lengths are given in units of effect
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Bohr radii a0* and energies are given in units of effectiv
RydbergsRy* . These two quantities are defined by the e
pressions

a0* 5
\24pe

m* e2 and Ry* 5
e2

8pea0*
, ~2.2!

wheree is the effective permittivity andm* is the effective
mass of an electron in the medium under consideration.Lz is
the operator associated with the orbital angular momen
of an electron about the field axis, andg is a dimensionless
form of the magnitude of the applied field given by

g5
~4pe!2\3

m* 2e3 B. ~2.3!

B. High-field approximation

If the effect of the Coulomb interaction on the donor ele
tron is much less than that of the magnetic field in the dir
tion perpendicular to the field axis, the component of t
Hamiltonian operating on ther and f coordinates can be
approximated toHrf only. Also, the Coulomb interaction
does not mix together different Landau states. The solu
of the modified Schro¨dinger equation in the directions pe
pendicular to the field axis is then given by normalized La
dau wave functions33

FNm~r,f!5S g

2p D 1/2F nr!

~nr1umu!! G
1/2

ej/2j umu/2Lnr

umu~j!eimf,

~2.4!

wherej is the dimensionless variableg2r2/2 andnr is the
non-negative integerN2(m2umu)/2. Substituting the Lan-
dau wave function into Eq.~2.1!, multiplying by its complex
conjugate and integrating over ther andf directions leads to

H52gS N1
1

2D2
]2

]z2 1VNm~z!,

where

VNm~z!522g1/2F nr!

~nr1umu!! G
1/2E

0

` e2jj umu@Lnr

umu~j!#2

~2j1gz2!1/2 dj.

~2.5!

The Schro¨dinger equation then reduces to

Hf Nm~z!5E fNm~z!, ~2.6!

which is a one-dimensional differential equation inz. The
function f Nm(z) is the~as yet unknown! impurity wave func-
tion along the magnetic-field axis for givenN andm.

C. Finite-difference calculation and Fourier transforms

Equation~2.6! can be solved approximately using a num
ber of different methods. Using a variational approa
which assumes a specific form forf Nm(z), the values ofE
for the impurity states can be estimated readily.4,5,23–26The
advantage of these methods is thatf Nm(z) obviously has an
analytical form, which is useful when using the wave fun
tions in further calculations such as of the polaron effe
However, as the form is assumed, this is likely to lead
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inaccuracies in other aspects of the calculations. Another
proach is to solve the equation using numerical metho
This is likely to give more accurate values for the energ
than the variational approach but the drawback is that
analytical form for the wave function is not directl
obtained.18,21,26–29

In this paper, we adopt a different approach to the im
rity problem in which numerical results obtained usi
finite-difference techniques are Fourier transformed to ob
an approximate analytical form for the wave function. N
prior assumption of the form of the wave function is mad
The analytical wave functions are then used as basis fu
tions for an improved calculation in which the limit of n
admixing of Landau states imposed by the high-field limit
lifted. They are also used to obtain transition probabiliti
The states are suitable for use as a basis for a calculatio
the magnetopolaron effect, although this is not attempte
this paper.

The finite-difference approximation~as described in Ref
34, for example! is used to solve the one-dimensional diffe
ential equation~2.6! by dividing thez direction inton dis-
crete points. A set ofn linear equations involving the value
of f Nm(z) at each point are deduced. These linear equat
can be solved using matrix methods to obtain a series on
possible values ofE and a corresponding set ofn values of
f Nm(z). The finite-difference approach requires knowled
of the boundary conditions for the differential equatio
Therefore, for the case of an impurity in a bulk semicond
tor material, we assume a finite widthL in the z direction
into which the donor electron is confined. The boundary c
ditions are therefore taken to bef Nm(z)50 at z56L/2,
taking the impurity to be atz50. This confined case is ex
pected to be equivalent to the bulk case.

Like other numerical methods, the finite-difference calc
lation described so far only produces discrete numerical
ues forf Nm(z). However, these values can be used to obt
an approximate analytical form for the wave function by ta
ing the discrete Fourier transform of the set ofn values
f Nm(z). This in turn allows the wave functions to be writte
as a combination of sine and cosine functions. The analyt
forms for thez component of the impurity wave function ar
thus

f n
Nm~z!5S 2

L D 1/2

(
k51

n

ak
NmncosS kp

L
zD

for even-parity states

f n
Nm~z!5S 2

L D 1/2

(
k51

n

ak
NmnsinS kp

L
zD

for odd-parity states,~2.7!

where ak
Nmn are the Fourier coefficients obtained from t

transform of the n values of the normalized function
f n

Nm(z). The quantum numbern @corresponding to the num
ber of nodes off Nm(z) along thez axis# distinguishes be-
tween possible states with the same values for the quan
numbersN andm.

1. Admixing of Landau states

The method discussed above employed the high-field
proximation, in which the mixing between different Landa
states by the Coulomb interaction was neglected. Howe
p-
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as analytical forms for the impurity wave function have be
obtained in this limit, improvements can be made by us
the states as basis functions for a more complete impu
wave function. Thus a basis state with quantum numbersN,
m, andn will have the form

cNmn5FNm~r,f! f n
Nm~z!. ~2.8!

As the Hamiltonian mixes Landau states having differe
values forN and n, it is necessary to evaluate matrix el
ments of the form

^cN8mn8uHucNmn&52gS N1
1

2D dNN8dnn8

1
p2

L2 (
k51

n

ak
Nmnak

Nmn8k23dNN8

22E
2L/2

L/2 E
0

2pE
0

` 1

~r21z2!1/2

3FN8m
* ~r,f!FNm~r,f!@ f n8

N8m
~z!#

3 f n
Nm~z!r dr df dz. ~2.9!

If N5N8, the results from the finite-difference calculatio
can be used directly. Also, since the diagonalization pro
dure in the finite-difference calculation results in orthogon
states, the matrix elements of the Hamiltonian could be
placed by the original value of the energy of a given state
n5n8, or zero if nÞn8. However, these values for the en
ergies are not used here for reasons which will be given
Sec. III. Therefore expression~2.9! is used to calculate al
the matrix elements. A matrix is thus constructed, wh
ideally would encompass all valuesn and an infinite set of
valuesN. However, it is obviously necessary to restrict t
matrix to a reasonable size by carrying out the summatio
some maximum valueNmax. It is a straightforward matter to
diagonalize the resulting matrix using computational mea
The resulting impurity wave function is then written as

C5(
N

(
n

bNmnFNm~r,f! f n
Nm~z!, ~2.10!

where thebNmn are coefficients obtained from the diagona
ization procedure.

2. Transition probabilities

In order to ascertain which of the many impurity stat
predicted are most likely to be involved in experimental o
servations, the probability of transition from the ground st
@(0,0,0)[1s# is calculated for each of the states using t
impurity wave functions obtained in Eq.~2.10!. In the Fara-
day configuration, where the transition-inducing radiation
applied in the same direction as the magnetic field, the tr
sition probability is proportional tou^C8uxuC&u2 ~to a first
approximation!. For transitions to and from the ground sta
of the impurity, for whichm50, it can be shown that ifC8
is an even parity state andm851, then
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^C8uxuC&5 (
N50

Nmax21

(
n8

(
n

(
k

S N11

2g D 1/2

3bN11m8n8ak
N11m8n8~bNmnak

Nmn

2bN11mnak
N11mn!. ~2.11!

If C8 is an even-parity state andm8521, then

^C8uxuC&5 (
N50

Nmax

(
n8

(
n

(
k

S N11

2g D 1/2

3bNmnbNm8n8ak
Nmnak

Nm8n8

2 (
N51

Nmax

(
n8

(
n

(
k

S N

2g D 1/2

3bNmnbN21m8n8ak
Nmnak

N21m8n8 . ~2.12!

The transition probability is otherwise zero in this config
ration. In the Voigt configuration, for which the radiation
applied perpendicular to the magnetic field, the transit
probability is proportional tou^C8uzuC&u2. Therefore, the
transition probability is nonzero ifC8 is an odd-parity state
andm850 such that

^C8uzuC&5
2L

p2 (
N50

Nmax

(
n8

(
n

(
k8

(
k

bNmnbNm8n8ak
Nmn

3ak
Nm8n8F 1

~k81k!22
1

~k82k!2G . ~2.13!

The relative magnitudes of the transition probabilities
volving each impurity state can be obtained directly fro
these equations. From these results, the states which are
likely to be involved in transitions to and from the groun
state can be obtained.

III. RESULTS AND DISCUSSION

A. Validation of the method

The adiabatic finite-difference calculation described
Sec. II has been carried out initially for impurity states w
quantum numbersN50 and m50 in a magnetic field for
which g51. Although the model is not designed to wo
best for these predominantly low-field hydrogenlike stat
we can conclude that if it works reasonably well for the
states, it will work much better for the high-field Landau-lik
states. The width of the sampleL in the calculation was
taken to be 100a0* and the number of points used was chos
to ben5199. The results show that the ground state has e
parity with no nodes (n50) along the field axis, and th
next-lowest state is an odd-parity state withn51. These
states are therefore labeled~0,0,0! and ~0,0,1!, respectively.
It is well known that these states correspond to the hyd
genlike 1s and 2p0 states, respectively.1 As the wave func-
tion f (z) has already reduced to zero byuz/a0u>10, it seems
reasonable to assume that these states will be unaffecte
the finite width imposed on the bulk sample. In fact, th
finite width only becomes important for highly excited im
purity states. Since the confinement is in thez direction only
n

-

ost

,

n
en

-

by

and the quantum numbersN and m denote the behavior o
the donor electron perpendicular to this direction, it also f
lows that only states with largen will be affected.

The discrete Fourier transforms of the values off (z) for
each of the low-lying states have been calculated to ob
the Fourier coefficientsak

Nmn . The magnitudes of the coef
ficients with wave numberk for the ~0,0,0! and~0,0,1! states
are plotted as histograms in Figs. 1~a! and 1~b! respectively.
It is found that for even-parity states, the values obtained
the Fourier coefficients for whichk is even are effectively
zero. This is to be expected since we are imposing the c
dition that f (z)50 at z56L/2; this is only satisfied for
even-parity states ifk is odd. Similarly, the coefficients fo
odd-parity states are effectively zero ifk is even. Therefore,
only half of the possible value ofk need to be considered fo
any given wave function. However, it should be noted th
that if the impurity is positioned away from the center of t
sample~or well!, then odd- and even-parity states will m
and the wave functions will be composed of both sine a
cosine terms. However, since we are looking at the prob
of an impurity in a bulk material, it is reasonable to impo
artificial boundary conditions which are symmetric about t
impurity center.

As can be seen in Fig. 1, the magnitudes of the Fou
coefficients fall off almost to zero with larger values ofk.
Therefore, we expect the accuracy of the results to cha
only slightly if the number of pointsn in the finite-difference
calculation, and therefore the number of sine/cosine term
the wave functionf (z), is increased aboven5199. We also
expect that for states with higher values ofn, the higherk
terms will be increasingly less important. This is becau
these states are energetically more excited and therefore
as strongly bound to the impurity ion by the Coulomb inte
action. This will result in less mixing of free-electron state
This conclusion is supported by the histogram shown in F
1 for the~0,0,1! state which shows a fall off slightly quicke
with increasingk than that found with the~0,0,0! state.

The effect on the energy of the~0,0,0! ground state of
varying n up to 199 is shown in Fig. 2. The figure show
both the energies obtained directly from the finite-differen
calculation and the energies obtained using the wave fu
tions from the Fourier transformation to calculate the Ham
tonian matrix followed by its diagonalization to find the im

FIG. 1. A histogram of the magnitude of the Fourier coefficien
as a function of the wave numberk for the two lowestN50, m
50 states.
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9686 57BARMBY, DUNN, BATES, AND KLAASSEN
purity energies. For simplicity, the Hamiltonian matrix w
constructed usingN50 states only. As can be seen, bo
methods appear to be converging to some definite value
the ground-state energy asn increases. However, the wave
function method appears to approach this value more qui
than the finite-difference method, and to have a smaller
pendence onn. This is why, when the Hamiltonian matri
elements are calculated as described in Sec. II C 1, we do
use the energy value directly from the finite-differen
method alone. We feel that the wave function result has c
verged sufficiently byn5199 to render further computation
ally intensive calculations with higher values ofn unneces-
sary.

B. Ionization energies

As the method presented here is essentially a high-fi
approach it can be expected to work best for the Landau-
states. They are also the states which have received
attention in the literature. We will therefore concentrate
these now. Figure 3 shows a plot of the ionization energ
of the~1,0,1!, (1,21,0), ~3,1,0!, and~4,1,0! metastable state
calculated using our method.~The scatter on our points i
due to taking onlyn5199 points in the calculations.! The

FIG. 2. Variation of the ground-state energy with the number
pointsn used as calculated by the finite-difference method~d! and
by the wave-function method~j!.

FIG. 3. A plot of ionization energy against magnetic field for t
Landau-like states~1,0,1!, (1,21,0), ~3,1,0!, and ~4,1,0!. The
circles and squares are the results of the current calculations.
dashed lines are the variational results of Barmbyet al. ~Ref. 11!
and the dot-dashed lines the results of Friedrich and Chu~Ref. 13!.
or

ly
e-

ot

n-

ld
e
ast
n
s

figure also reproduces results of the variational method
Barmbyet al.1 It can be seen that the agreement between
two approaches is excellent for the~3,1,0! and~4,1,0! states.
The ionization energies predicted here for the~1,0,1! and
(1,21,0) states are higher than the variational results: a
on an expanded scale shows the differences to be aro
0.03Ry* . However, this means the variational state has
higher actual energy than that predicted here, so our n
state is a better approximation to the true state than the va
tional one. Results obtained up tog51 for the ~1,0,1! and
(1,21,0) states by Friedrich and Chu22 using a standard dis
cretization technique have also been plotted on the fig
They agree very closely with those of the current calcu
tions.

Experimental magneto-optical data has already been
tained on impurities in bulk GaAs.11 The experimental data
has been converted to dimensionless units and stripped o
material-specific character by removing the small band n
parabolicity and nonresonant electron-phonon coupling
fects. A correction was also applied to account for t
change in effective mass with field and energy. These res
were then found to agree well with the results of the var
tional calculations.11 The variational calculations have re
cently been repeated and extended to higher excited s
and material-specific effects included in th
parametrization.18 These authors also find excellent agre
ment between these results and experiment.

C. Hydrogenic states

Although our method is not expected to be as accurate
low-lying hydrogenic states as for the Landau-like states
is instructive to compare our results with those of the ma
previous calculations for these states.4–10 Here, we will con-
centrate on the results of Makado and McGill8 because they
give tables of values for fields up tog55. However, the
choice is not important as the discrepancies between Mak
and McGill’s results and those of others is much smaller th
the experimental uncertainties on magneto-optical results
impurities in GaAs. For example, the differences betwe
their predictions for the 1s and 2s states and those o
Praddaude9 or Rösneret al.27 are at most 2.831024Ry* , and
with those of Shiet al.10 0.018Ry* .

Figure 4 shows the calculated energies for the~0,0,0!,
~0,0,2!, and ~1,1,0! states, which correspond to hydrogen
1s, 2s, and 2p11 states, respectively, together with the r
sults of Ref. 8. The results are given as a function of m
netic field both without admixing of different Landau stat
and with admixing up toNmax57. It can be seen that there
a significant discrepancy between the energy of the~0,0,0!
ground state excluding admixing and the result of Maka
and McGill.8 This is because the donor electron in its grou
state is tightly bound to the impurity ion by the Coulom
interaction and so a theoretical method~such as ours! which
does not take into account the effect of the Coulomb int
action is unlikely to be accurate. However, when the adm
ing of Landau states is included, there is much better ag
ment for higher values of field. Nevertheless, the meth
described here is still inaccurate at the lower values ofg.
Although possibly the problem at these lowerg values could
be reduced by taking a larger value ofNmax the construction
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of a wave function in terms of Landau states in this regi
remains inappropriate for a situation where the effect of
magnetic field is negligible compared to that of the Coulo
interaction.

Although the energies of the~0,0,2! and ~1,1,0! impurity
states neglecting the admixing of Landau levels deviate
nificantly from the hydrogenic values, the values includi
admixing are still close to those of hydrogenic methods.
g50.1, the difference between the energies obtained w
admixing included and those from the variational calcu
tions are 0.04Ry* and 0.01Ry* for the ~0,0,2! and ~1,1,0!
states, respectively. For these excited states, the donor
tron is not as tightly bound to the impurity ion as in the ca
of the ground state and so the Coulomb interaction is no
dominant. Hence the high-field approach is a more reas
able approximation. It can be seen from the figure that
agreement between the results of the present approach
those of weak-field models becomes even better towa
higher magnetic field.

D. Transition energies

The energies calculated above can also be used to pr
transition energies. These results can then be compare
experimental transition energies obtained for impurities
n-type GaAs.11,12As our calculations are not accurate for t
ground state, we have calculated our energies relative to
energy of the~0,0,0! state obtained by Makado and McGill8

To express the calculated values for magnetic fields and
ergies in nondimensionless units appropriate to GaAs, va
of e512.5e0 , m* 50.067me , a0* 598.7 Å, and Ry*
55.83 meV547.0 cm21 were used.

When admixing is included, a whole set of impurity e
ergies is produced; it is not immediately obvious whi
states should be considered. Therefore we have examine
magnitudes of the wave-function coefficientsbNmn from Eq.
~2.10! to find the dominant basis state involved in a giv
admixed state. In this way, a given admixed state can
labeled (N,m,n) according to its dominant contribution. T
confirm this identification, the transition probability betwe
each selected state and the ground state has been calc

FIG. 4. Comparison of the energies calculated by Makado
McGill ~Ref. 12! ~d! with those derived here for the hydrogen
states~0,0,0!, ~0,0,2!, and ~1,1,0!. Both sets of results are plotte
without admixing of other states~solid line! and with admixing
included~dashed line!.
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using Eqs.~2.11!, ~2.12!, and~2.13!. A plot of the transition
probabilities for m51 states in the Faraday configuratio
against their theoretical transition energies for differentg
values is given in Fig. 5. The~1,1,0! and~1,1,2! states were
omitted in order to highlight the peaks belonging to mo
excited Landau-like states, as their transition probabilit
are much greater than those shown. The results for a g
field have also been joined by a solid line as a guide to
eye. For the calculation of these transition probabilities,
present method was used to estimate the form for
ground-state wave function although the ground-state ene
values of Ref. 8 were used to calculate the transition en
gies. The figure shows clear transition peaks, each varyin
position with differentg values.

The theoretical and experimental results for transitio
from the~0,0,0! ground state have been plotted for a range
magnetic fields and impurity states in Figs. 6~a!–6~d!. Many
of these excited states are difficult to predict using ot
models. These figures show that the theoretical transition
ergies agree very well with the experimental values. They
most accurate for high-energy states, although the calc
tions do tend to consistently overestimate the transition
ergies at higher fields. This deviation is probably the resul
not correcting for material-specific factors, of which the mo
important will be the polaron interaction involving the don
electron and longitudinal-optical phonons. This is known
be very important for fields at which anticrossing of impuri
transition energies occurs in the region of 300 cm21. How-
ever, away from this region, calculations35 indicate that the
effect induces an energy lowering of the order of 1.5 cm21.
As calculations of the polaron effect involve using secon
order perturbation theory and the Fro¨lich Hamiltonian,35 it is
necessary to have an analytical form for the impurity wa
functions. Hence the results of our calculations could be u
directly here. Indeed, since the impurity wave function
calculated in terms of sine and cosine functions, such a
culation will be simpler with this method than with othe
methods. This is an area for future consideration, espec
if the procedure is extended to quantum wells where it
known that the polaron effect is measurably larger.36

IV. CONCLUSIONS

In this paper, we have put forward a theoretical approa
to modeling the properties of shallow donor impurities

d FIG. 5. A plot of the transition probabilities for them51 states
as a function of their calculated transition energies. Three differ
plots are given for different values ofg : A51.6, B51.8, andC
52.0.
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FIG. 6. A comparison of calculated transition energies~solid lines! and the corresponding experimental values~d! for transitions from
the ~0,0,0! ground state to various states (N,m,n): ~a! A5(1,1,0), B5(2,1,0), C5(3,1,0), andD5(4,1,0), ~b! A5(0,21,0), B5(1,
21,0), C5(2,21,0), andD5(3,21,0), ~c! A5(1,1,2), B5(2,1,2), C5(3,1,2), andD5(4,1,2), ~d! A5(0,21,2), B5(1,0,1), C
5(2,0,1), andD5(3,0,1).
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bulk semiconductors. In particular, the highly excite
Landau-like states can be dealt with accurately. The met
has the advantage of not assuming a form for the wave fu
tions of the impurity states, while at the same time being a
to obtain analytical expressions for these wave functio
Furthermore, impurity wave functions are expressed in
relatively simple form of a linear combination of sine an
cosine functions which will make further calculations easi
for example, the calculation of transition probabilities or t
possible estimation of the polaron correction. Comparing
theoretical results from this approach with those from oth
models, both for hydrogenlike and Landau-like states, a
available experimental data for bulkn-GaAs, the method has
been shown to predict accurately the energies of excited
purity states very well.

The method used for the finite-difference calculati
modeled a bulk sample by a sample of large finite widthL
od
c-
le
s.
e

r;
e
e
r
d

-

along the magnetic-field direction. The model is in fact th
of a very wide quantum well. By reducing the value ofL, the
theoretical approach can therefore be applied to the mode
of impurities in QW structures. It should also be a relative
simple matter to modify the theory to describe impurities
MQW structures. Because the method does not require
assumed form for the impurity wave function, the effect
the varying barrier potential can simply be taken into acco
in the Hamiltonian. For magnetic fields applied perpendi
larly to the barriers, onlyf Nm(z) needs to be modified, an
this simply affects the equation to be solved by the fin
difference method.
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