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High-field calculations of Landau-like shallow donor states: A finite-difference approach
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A theoretical method for calculating the energies and wave functions of an electron bound to a shallow
donor in a semiconductor, subject to an applied magnetic field, is presented. This approach is particularly
useful for describing highly excited Landau-like states, which cannot be dealt with properly using most other
theoretical models. First, an adiabatic high-field approximation is used where mixing between different
Landau-like states is neglected. Solving the one-electron 8itiger equation is then reduced to finding
solutions to a one-dimensional differential equation for motion along the field axis. We present results in which
a finite-difference technique is used to solve this equation numerically. Values for the electron wave function
at discrete points along the field axis are then determined. By calculating the discrete Fourier transform of this
set of values, an analytical form for the wave function in terms of sines and cosines is obtained. These resultant
wave functions are then used to calculate a Hamiltonian matrix in which mixing between different high-field
states is included. Diagonalization of this matrix yields improved values for the energies of the impurity states.
Where previous results exist, our results are compared with those of other theoretical approaches and from
experiments on the donor in GaAs. The advantage of our approach is that it enables both energies and wave
functions to be determined without any prior assumptions of the form of the wave function in the field
direction. This includes expressions for highly excited states which are difficult to obtain by other means. The
results demonstrate the validity of the present method of calculd&i1.63-18208)08315-5

I. INTRODUCTION Solutions to both the donor problefand hence the
intense-field hydrogen problenfall into two categories.
The theoretical description of shallow donor impurities in First, because of the strong similarity with the hydrogen
semiconductor structures has been a major area of interestom, a common approach for weak-field calculations is to
for many years. An exact analytical solution of the Sehro treat the effect of the applied magnetic field starting from the
dinger equation for the donor electron in a magnetic field hadasis of zero-field hydrogenlike states® However, many
not yet been found and so approximate methods must bef the excited electron states observed experimentally in
used. Many different approaches have been employed ilow-temperature bulk donor magneto-spectros¢bpy can-
both bulk and quantum-welQW) systems, of which the not be explained within this basis. An alternative view is to
most common have been perturbation, variational, numerieonsider a strong-field picture in which the Coulomb inter-
cal, and adiabatic methods. A good review of the earliemaction between the donor electron and the impurity ion is
papers on bulk systems has been made by Zawadski. taken to be small. This allows the behavior of the electron
addition, many recent references to work on multi-QW sys-perpendicular to the magnetic-field axis to be described by
tems are given in Ref. 2. Landau wave functions. There is a direct correlation between
In general, the influence of the semiconductor host on theome of the high-field Landau-like states and the low-field
interaction between a donor electron and the donor nucleus hlydrogenlike state¥~>! However, there are in effect an in-
taken into account through the introduction of an “effec- finite number of Landau-like states, generated by the high-
tive” electron mass and the use of the proper dielectric confield method, that do not have a hydrogenlikeero-field
stant of the medium. The problem is then equivalent to thatounterpart.
of an isolated hydrogen atom in a magnetic field, except for In this paper, we will refer to high-field states which cor-
field and energy scaling parameters. The effects ofespond to hydrogenlike states as hydrogenic. The states can
laboratory-strength magnetic fields can be equated to thodee labeled by three quantum numberd, andm by analogy
of the intense magnetic fields that occur in the hydrogen-rictio the hydrogen atom. High-field states which do not corre-
atmospheres of white dwarfs and neutron stars. Many calcuspond to states in the hydrogenlike picture will be referred to
lations performed on hydrogen atoms in intense fields in oras Landau-like. In other papers, these states are also referred
der to understand the optical spectra obtained from thes® as metastable or autoionizing states. The Landau-like
astrophysical objects can also be applied to the donor protstates can be labeled by the quantitidsrg, v), whereN is
lem. A concise discussion of the differences between thé¢he principal Landau index: refers to the number of nodes
hydrogen atom and a donor in a bulk semiconductor hasf the wave function in the field direction, and is introduced
been given by Klaassen. to distinguish between states with the salsiand m.
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It is opviously necessary to adopfc a high-field approach iBohr radii aj and energies are given in units of effective
Landau-like states are to be described. One such approaq;tydbergsR; . These two quantities are defined by the ex-
will be adopted in this paper. As the motion of the electronpressions
perpendicular to the magnetic-field direction is described by

Landau wave functions in these approaches, the calculation N _ﬁ247re d R*— e?
reduces to solving a one-dimensional problem for motion 3=z and Ry “8mear’ 2.2

along the field direction. This equation can be solved ap-
proximately by a variety of variational and related Wheree is the effective permittivity andn* is the effective
methodsh51323-260r by numerical approaché®?226-2°A  mass of an electron in the medium under consideraltigfis
discussion of different variational wave functions was giventhe operator associated with the orbital angular momentum
in Ref. 30. Within manifolds of states with a given symmetry Of an electron about the field axis, ands a dimensionless
and magnetic quantum numbex the Landau-like states are form of the magnitude of the applied field given by

nearly always excited states. As a result, the majority of the

; e : (4me)*h3
theoretical methods do not, or only with difficulty, yield re- y=——5—>B. (2.3
liable data on energies and wave functions of these states. m=-e
Therefore, despite the large amount of work already per-
formed, there is still a continuing interest in formulating a B. High-field approximation
good model for these highly excited states in bulk IlI-V . .
semiconductor&l:12.31,32 If the effect of the Coulomb interaction on the donor elec-

tron is much less than that of the magnetic field in the direc-
tion perpendicular to the field axis, the component of the
Hamiltonian operating on the and ¢ coordinates can be
pproximated taH,, only. Also, the Coulomb interaction
oes not mix together different Landau states. The solution

The model will be developed for shallow donor impurities
in bulk semiconductors, and applied particularly to GaAs in
order to compare with experimental results. The results will
also be compared to those from other theoretical models. B
simple scaling of the magnetic field and energy, the result vt " A >
are directly applicable to donors in other semiconductors an8f th? modified Sghruhng.er'equanor'l in the dlrect|qns per-
to the hydrogen atom as well. Moreover, the method of Calpendlcular to th_e Egld axis is then given by normalized Lan-
culation employed can be extended easily to describe impo!au wave functio
rities in QWs by modifying the wave functions to take the y\Y ni A
confinement effects of the QW potential into account. The CIDNm(p,¢>)=(—) Z[ 2 edf2glmii2 Iml( &) gime,
QW case will not be considered here, because it is important 2m P
that an accurate model for an impurity in the bulk case is 24
formulated first of all. However, the viability of the method where¢ is the dimensionless variablg?p?/2 and n, is the
for QW and multi-QW devices will be discussed at the endnon-negative integel — (m—|m|)/2. Substituting the Lan-
of the paper in the context of future studies. dau wave function into Eq2.1), multiplying by its complex

conjugate and integrating over the@and ¢ directions leads to

1/2

(ny+[m])!

Il. THE THEORETICAL MODEL 1 92
A. The Hamiltonian of the system H=2y| N+ 2/ P+VNm(Z)’
The Hamiltonian for a shallow donor impurity subject to a where
magnetic fieldB along thez axis, can be written in the form
P e e ML P
_ _ o ]l p P
HZHP¢+HZ+H“ VNm(Z) 27 Z[(np+|m|)|} jO (2§+ ,yZZ)l/Z df

(2.5

where . .
The Schrdinger equation then reduces to

J 1 & ’yzp2 Nm/ -\ — E fNm
Hp¢=—;5(p%)—,7a72+ﬂz+7, HEINM(2) = EfNM(2), 2.6
which is a one-dimensional differential equationan The
functionfN™(z) is the(as yet unknownimpurity wave func-

2 ) A . .
Ho=— ‘9_ tion along the magnetic-field axis for giveéth and m.
9%
C. Finite-difference calculation and Fourier transforms
o= 2 2.1) Equation(2.6) can be solved approximately using a num-
T (pP+ A ' ber of different methods. Using a variational approach,

which assumes a specific form f6¥™(z), the values of
Due to the symmetry of this system, a symmetrical form forfor the impurity states can be estimated reaiiy3-25The
the magnetic vector potential has been used and the Hamikdvantage of these methods is thi¥f'(z) obviously has an
tonian expressed in terms of cylindrical coordinates. For thenalytical form, which is useful when using the wave func-
sake of generality, the Hamiltonian is written in dimension-tions in further calculations such as of the polaron effect.
less form such that lengths are given in units of effectiveHowever, as the form is assumed, this is likely to lead to
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inaccuracies in other aspects of the calculations. Another afas analytical forms for the impurity wave function have been
proach is to solve the equation using numerical methodsobtained in this limit, improvements can be made by using
This is likely to give more accurate values for the energieshe states as basis functions for a more complete impurity

than the variational approach but the drawback is that aivave function. Thus a basis state with quantum numbers
analytical form for the wave function is not directly m andw will have the form

obtained!821:26-29
In this paper, we adopt a different approach to the impu- B N
rity problem in which numerical results obtained using Unme =P, 0)F,7(2). 2.8

finite-difference techniques are Fourier transformed to obtain o ) . )

an approximate analytical form for the wave function. NoAS the Hamiltonian mixes Landau states having different
prior assumption of the form of the wave function is made.values forN and v, it is necessary to evaluate matrix ele-
The analytical wave functions are then used as basis fundgnents of the form

tions for an improved calculation in which the limit of no

admixing of Landau states imposed by the high-field limit is 1
lifted. They are also used to obtain transition probabilities. (¥ m, | H| ¥nme) =2y N+ > NINZ
The states are suitable for use as a basis for a calculation of

the magnetopolaron effect, although this is not attempted in 22 0
this paper. . o + 5 > el ™l ™ k2 Sy
The finite-difference approximatiofas described in Ref. L &1

34, for examplgis used to solve the one-dimensional differ-

ential equation(2.6) by dividing thez direction inton dis- _5 L2 J”jw 1

crete points. A set of linear equations involving the values “elo Jo (pP+A)T?

of fN™(z) at each point are deduced. These linear equations

can be solved using matrix methods to obtain a series of ><cp’,;,m(p,¢)(1>Nm(p,¢)[f'y“,'m(z)]
possible values oE and a corresponding set nfvalues of

fNM(z). The finite-difference approach requires knowledge X N™(2)p dp dgp dz. (2.9

of the boundary conditions for the differential equation.

Therefore, for the case of an impurity in a bulk semiconduc4f N=N’, the results from the finite-difference calculation
tor material, we assume a finite widthin the z direction  can be used directly. Also, since the diagonalization proce-
into which the donor electron is confined. The boundary congyre in the finite-difference calculation results in orthogonal
ditions are therefore taken to He'™(z)=0 atz=+*L/2,  gtates, the matrix elements of the Hamiltonian could be re-
taking the impurity to be az=0. This confined case is €x- placed by the original value of the energy of a given state if

peth_id tohbe equivaler}t to tEedbuIl:]ca]}_sg. dif eyl =¥ or zero ifv# ' However, these values for the en-
Ike other numerical methods, the finite-difference calcu-gqiag are not used here for reasons which will be given in

lation described so far only produces discrete numerical VaISec Ill. Therefore expressiof2.9) is used to calculate all
ues forfN”f(z). However, these values can be used to Obtalrlhe matrix elements. A matrix is thus constructed, which
an approximate analytical form for the wave function by tak‘ideally would encompass all valuesand an infinite set of

ing the discrete Fourier transform of the set rofvalues L . i
fNM(2). This in turn allows the wave functions to be written valuesN. However, it is obviously necessary to restrict the

: a{patrix to a reasonable size by carrying out the summation to
forms for thez component of the impurity wave function are SOMe Maximum valudly,. It is a straightforward matter to
thus diagonalize the resulting matrix using computational means.
The resulting impurity wave function is then written as

2\ 122 kar
i =( 2] 7S, atmeod K7

for even-parity states,

‘If:% > Bum®@rm(p,d)FN"(2), (2.10

where theBy,, are coefficients obtained from the diagonal-
) ization procedure.

12 n
k
f';‘m(z)=(f> I(E—:l aEmVsin(TW z

for odd-parity states(2.7) 2. Transition probabilities

where o)™ are the Fourier coefficients obtained from the N order to ascertain which of the many impurity states
transform of then values of the normalized functions Predicted are most likely to be involved in experimental ob-
fN™(z). The quantum number [corresponding to the num- servations, thg probability of transition from the ground state
ber of nodes offN™(z) along thez axig] distinguishes be- _[(O,O,_O)E 1s] is calgulated fo_r ea(_:h of the states using the
tween possible states with the same values for the quantufffiPurity wave functions obtained in E@.10. In the Fara-

numbersN andm. day configuration, where the transition-inducing radiation is
. applied in the same direction as the magnetic field, the tran-
1. Admixing of Landau states sition probability is proportional to(¥’|x|¥)|? (to a first

The method discussed above employed the high-field apggpproximation. For transitions to and from the ground state
proximation, in which the mixing between different Landau of the impurity, for whichm=0, it can be shown that ¥’
states by the Coulomb interaction was neglected. Howeveis an even parity state amd’ =1, then
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N N
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(a) (b)

max

o= & T3

N+1
2y

N+1m’ v’ Nm
X BN+ 1m’ v ¥y " (Bumeg

_,8N+1mva'w+lmv)- (2.13)
If ¥ is an even-parity state amd’=—1, then
Nmax N+ 1 1/2
wrn-¥ 333 (5
N=0 -/ v k Y
0
!y’ 0 50 100 150 200
XBvaBNm’v’aEmva{:‘m ’ k k
N

max N\ 2 FIG. 1. A histogram of the magnitude of the Fourier coefficients
_Nzl 22 24 as a function of the wave numbérfor the two lowestN=0, m

= v v k 'y

=0 states.

X _ , ,avaaN—lm’v’ . 21
PrumyBn- a2 et (12 and the quantum numbebl$ and m denote the behavior of
The transition probability is otherwise zero in this configu-the donor electron perpendicular to this direction, it also fol-
ration. In the Voigt configuration, for which the radiation is lows that only states with large will be affected.
applied perpendicular to the magnetic field, the transition The discrete Fourier transforms of the valuesf () for
probability is proportional to(W’|z|W)|2. Therefore, the each of the low-lying states have been calculated to obtain
transition probability is nonzero W'’ is an odd-parity state the Fourier coefficients™ . The magnitudes of the coef-

andm’=0 such that ficients with wave numbek for the (0,0,0 and(0,0,1) states
N are plotted as histograms in Figgajland Xb) respectively.
2L & It is found that for even-parity states, the values obtained for
’ - Nmy ’
(P']2¥)= 7 & ; 2,,: %,: zk: BrumuBm v @i the Fourier coefficients for whick is even are effectively

zero. This is to be expected since we are imposing the con-
|1 1 o1 dition that f(z)=0 at z=*L/2; this is only satisfied for
(213 even-parity states ik is odd. Similarly, the coefficients for
. _ . ... . odd-parity states are effectively zerokifis even. Therefore,
The relative magnitudes of the transition probabilities iN-only half of the possible value &f need to be considered for
volving each impurity state can be obtained directly fromgpy given wave function. However, it should be noted that
these equations. From these results, the states which are m@sk; it the impurity is positioned away from the center of the
likely to be involved in transitions to and from the ground sample(or well), then odd- and even-parity states will mix

Nm' v _
T W F 2 (k-2

state can be obtained. and the wave functions will be composed of both sine and
cosine terms. However, since we are looking at the problem
Ill. RESULTS AND DISCUSSION of an impurity in a bulk material, it is reasonable to impose

artificial boundary conditions which are symmetric about the
impurity center.

The adiabatic finite-difference calculation described in  As can be seen in Fig. 1, the magnitudes of the Fourier
Sec. Il has been carried out initially for impurity states with coefficients fall off almost to zero with larger values lof
quantum number®l=0 andm=0 in a magnetic field for Therefore, we expect the accuracy of the results to change
which y=1. Although the model is not designed to work only slightly if the number of pointa in the finite-difference
best for these predominantly low-field hydrogenlike statescalculation, and therefore the number of sine/cosine terms in
we can conclude that if it works reasonably well for thesethe wave functiorf(z), is increased above=199. We also
states, it will work much better for the high-field Landau-like expect that for states with higher values gfthe higherk
states. The width of the sample in the calculation was terms will be increasingly less important. This is because
taken to be 108j and the number of points used was chosenthese states are energetically more excited and therefore not
to ben=199. The results show that the ground state has eveas strongly bound to the impurity ion by the Coulomb inter-
parity with no nodes ¥=0) along the field axis, and the action. This will result in less mixing of free-electron states.
next-lowest state is an odd-parity state with=1. These This conclusion is supported by the histogram shown in Fig.
states are therefore label€@,0,0 and (0,0,1), respectively. 1 for the (0,0, state which shows a fall off slightly quicker
It is well known that these states correspond to the hydrowith increasingk than that found with th€0,0,0 state.
genlike 1s and 2p, states, respectivelyAs the wave func- The effect on the energy of th@,0,0 ground state of
tion f(z) has already reduced to zero fayay|=10, it seems varyingn up to 199 is shown in Fig. 2. The figure shows
reasonable to assume that these states will be unaffected bgth the energies obtained directly from the finite-difference
the finite width imposed on the bulk sample. In fact, thiscalculation and the energies obtained using the wave func-
finite width only becomes important for highly excited im- tions from the Fourier transformation to calculate the Hamil-
purity states. Since the confinement is in theirection only  tonian matrix followed by its diagonalization to find the im-

A. Validation of the method
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. . figure also reproduces results of the variational method of

\\W““’e function method Barmbyet all It can be seen that the agreement between the
r » . two approaches is excellent for ti&1,0 and(4,1,0 states.

The ionization energies predicted here for #ig0,1) and
(1,—1,0) states are higher than the variational results: a plot
on an expanded scale shows the differences to be around
0.0ER;‘. However, this means the variational state has a
higher actual energy than that predicted here, so our new
state is a better approximation to the true state than the varia-
tional one. Results obtained up to=1 for the (1,0, and
(1,—1,0) states by Friedrich and CHwsing a standard dis-

S0 R0 120 160 200 cretization technique have also been plotted on the figure.

n They agree very closely with those of the current calcula-
tions.

Experimental magneto-optical data has already been ob-
tained on impurities in bulk GaAY. The experimental data
has been converted to dimensionless units and stripped of its
, i . o i material-specific character by removing the small band non-
purity energies. For simplicity, the Hamiltonian matrix was parabolicity and nonresonant electron-phonon coupling ef-
constructed usind\=0 states only. As can be seen, both ot A correction was also applied to account for the
methods appear to be converging to some definite value fqfhange in effective mass with field and energy. These results
the ground-state energy asincreases. However, the wave- \yere then found to agree well with the results of the varia-
function method appears to approach this value more quicklyona| calculationd! The variational calculations have re-

than the finite-difference method, and to have a smaller degengly peen repeated and extended to higher excited states
pendence om. This is why, when the Hamiltonian matrix 5.4 material-specific  effects  included in  the

elements are calculated as described in Sec. Il C 1, we do nghrametrizatiod® These authors also find excellent agree-
use the energy value directly from the finite-difference nent petween these results and experiment.
method alone. We feel that the wave function result has con-

verged sufficiently byn=199 to render further computation-
ally intensive calculations with higher values mfunneces- C. Hydrogenic states
sary.

Finite difference method

-1t

FIG. 2. Variation of the ground-state energy with the number of
pointsn used as calculated by the finite-difference mett@gand
by the wave-function methodll).

Although our method is not expected to be as accurate for
low-lying hydrogenic states as for the Landau-like states, it
B. lonization energies is instructive to compare our results with those of the many
As the method presented here is essentially a high-fiel@Tevious calculations for these stafe&’ Here, we will con-
approach it can be expected to work best for the Landau-lik€entrate on the results of Makado and McBijecause they
states. They are also the states which have received led&iVe tables of values for fields up tp=5. However, the
attention in the literature. We will therefore concentrate onceIC€ is notimportant as the discrepancies between Makado
these now. Figure 3 shows a plot of the ionization energieé‘”d McGllll’s results and t_ho.se of others is much smaller than
of the(1,0,1, (1,—1,0), (3,1,0, and(4,1,0 metastable states _the expenmental uncertainties on magne.to—opncal results for
calculated using our methodThe scatter on our points is impurities in GaAs. For example, the differences between
due to taking onlyn=199 points in the calculationsThe their predictions for the 4 and % states and those of
Praddaudor Rosneret al?” are at most 2.810 “R} , and

with those of Shiet al!® 0.01&} .

1.0 (1,-1,0) o Figure 4 shows the calculated energies for t0¢0,0,
<200t D/D" 3.1, (0,0,2, and (1,1,0 states, which correspond to hydrogenic
< 08| D/D/O/,O—*’S (4.1,0) 1s, 2s, and 2, states, respectively, together with the re-
? 07 ,,,-ﬂ"o,,oi’_.,—t"' v sults of Ref. 8. The results are given as a function of mag-
& 05 g;,"g/ ,o:’,o—’° netic field both without admixing of different Landau states
§ 0'5 i ;y;io::‘»” and with admixing up tdN,o=7. It can be seen that there is
§ 1 /’Q;:J‘ u_m (10,1) a significant discrepancy between the energy of (he,0
k= 0.4 o e "‘.z;l:‘—"j‘ . ground state excluding admixing and the result of Makado
=031 Q@ 2‘;".’ and McGill® This is because the donor electron in its ground

0.2 i state is tightly bound to the impurity ion by the Coulomb

interaction and so a theoretical meth@dich as ouswhich
does not take into account the effect of the Coulomb inter-
action is unlikely to be accurate. However, when the admix-
FIG. 3. A plot of ionization energy against magnetic field for the INg of Landau states is included, there is much better agree-
Landau-like states(1,0,, (1,—1,0), (3,1,0, and (4,1,0. The  ment for higher values of field. Nevertheless, the method
circles and squares are the results of the current calculations. TH#escribed here is still inaccurate at the lower valuesy.of
dashed lines are the variational results of Barnebyl. (Ref. 1)  Although possibly the problem at these lowevalues could
and the dot-dashed lines the results of Friedrich and ®et. 13. be reduced by taking a larger valueNf,,, the construction

0.1 ! ! ‘ : * ! ! * ! !
0.0 02 04 06 08 10 12 14 1.6 1.8 2.0
¥
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Transition energy (R;‘ )

FIG. 4. Comparison of the energies calculated by Makado and FIG. 5. A plot of the transition probabilities for the=1 states
McGill (Ref. 12 (@) with those derived here for the hydrogenic @S & function of their calculated transition energies. Three different
states(0,0,0, (0,0,2, and (1,1,0. Both sets of results are plotted Plots are given for different values of: A=1.6,B=1.8, andC
without admixing of other stateésolid line) and with admixing =2.0.

included(dashed ling using Egs(2.11), (2.12, and(2.13. A plot of the transition
probabilities form=1 states in the Faraday configuration

of a wave function in terms of Landau states in this regimeagainst their theoretical transition energies for different
remains inappropriate for a situation where the effect of thesalues is given in Fig. 5. Thél,1,0 and(1,1,2 states were
magnetic field is negligible compared to that of the Coulombomitted in order to highlight the peaks belonging to more
interaction. excited Landau-like states, as their transition probabilities

Although the energies of th@,0,2 and(1,1,0 impurity  are much greater than those shown. The results for a given
states neglecting the admixing of Landau levels deviate sigfield have also been joined by a solid line as a guide to the
nificantly from the hydrogenic values, the values including€ye. For the calculation of these transition probabilities, the
admixing are still close to those of hydrogenic methods. Aresent method was used to estimate the form for the
y=0.1, the difference between the energies obtained wit§round-state wave function although the ground-state energy
admixing included and those from the variational calcula-Values of Ref. 8 were used to calculate the transition ener-
tions are 0.0ER;‘ and 0.0R;‘ for the (0,0,2 and (1,1,0 gles._The f_lgur_e shows clear transition peaks, each varying in
states, respectively. For these excited states, the donor el&(—)Sltlon with differenty values.

tron is not as tightly bound to the impurity ion as in the case The theoretical and experimental results for transitions
of the ground state and so the Coulomb interaction is not Sfrom the(0,0,0 ground state have been plotted for a range of

ﬂ_wagnetic fielc_js and impurity states in Fig$a)6_6(d). I\_/Iany

agreement between the results of the present approach aggyies agree very well with the experimental values. They are
those of weak-field models becomes even better towardgost accurate for high-energy states, although the calcula-
higher magnetic field. tions do tend to consistently overestimate the transition en-
ergies at higher fields. This deviation is probably the result of
not correcting for material-specific factors, of which the most
important will be the polaron interaction involving the donor

The energies calculated above can also be used to prediglectron and longitudinal-optical phonons. This is known to
transition energies. These results can then be compared be very important for fields at which anticrossing of impurity
experimental transition energies obtained for impurities intransition energies occurs in the region of 300 émHow-
n-type GaAst'2As our calculations are not accurate for the ever, away from this region, calculatidisndicate that the
ground state, we have calculated our energies relative to theffect induces an energy lowering of the order of 1.5¢m
energy of thg0,0,0 state obtained by Makado and McGlll. As calculations of the polaron effect involve using second-
To express the calculated values for magnetic fields and ef@rder perturbation theory and the et Hamiltonian;® it is

ergies in nondimensionless units appropriate to GaAs, valugiecessary to have an analytical form for the impurity wave
of €=12.5, m*=0.067m a*=98.7A and R* functions. Hence the results of our calculations could be used
— 583 me\=47.0 cmi't were S’sed.o ' Y directly here. Indeed, since the impurity wave function is

When admixing is included, a whole set of impurity en- calculated in terms of sine and cosine functions, such a cal-
ergies is produced: it is not, immediately obvious whichculation will be simpler with this method than with other

states should be considered. Therefore we have examined tith0ds. This is an area for future consideration, especially
magnitudes of the wave-function coefficiertt,,,, from Eq. It the procedure is extended to quantum wells where it is
(2.10 to find the dominant basis state involved in a givenknown that the polaron effect is measurably larger.

admixed state. In this way, a given admixed state can be
labeled (N,m,v) according to its dominant contribution. To
confirm this identification, the transition probability between In this paper, we have put forward a theoretical approach
each selected state and the ground state has been calculatedmodeling the properties of shallow donor impurities in

D. Transition energies

IV. CONCLUSIONS
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FIG. 6. A comparison of calculated transition enerdigdlid lineg and the corresponding experimental val(®s for transitions from
the (0,0,0 ground state to various stated,m,v): (@) A=(1,1,0),B=(2,1,0), C=(3,1,0), andD=(4,1,0), (b) A=(0,—1,0), B=(1,
—-1,0), C=(2,—1,0), andD=(3,—1,0), (c) A=(1,1,2), B=(2,1,2), C=(3,1,2), andD=(4,1,2), (d) A=(0,—1,2), B=(1,0,1), C
=(2,0,1), andD=(3,0,1).

bulk semiconductors. In particular, the highly excitedalong the magnetic-field direction. The model is in fact that
Landau-like states can be dealt with accurately. The methodf a very wide quantum well. By reducing the valuelgfthe

has the advantage of not assuming a form for the wave fundheoretical approach can therefore be applied to the modeling
tions of the impurity states, while at the same time being abl@f impurities in QW structures. It should also be a relatively
to obtain analytical expressions for these wave functionsSimple matter to modify the theory to describe impurities in
Furthermore, impurity wave functions are expressed in thd/QW structures. Because the method does not require an
relatively simple form of a linear combination of sine and @ssumed form for the impurity wave function, the effect of
cosine functions which will make further calculations easier;th€ varying barrier potential can simply be taken into account
for example, the calculation of transition probabilities or thell the Hamiltonian. For magnetic fields applied perpendicu-
possible estimation of the polaron correction. Comparing the1lY 0 the barriers, onlyf ™(z) needs to be modified, and
theoretical results from this approach with those from othef1iS SIMPly affects the equation to be solved by the finite-
models, both for hydrogenlike and Landau-like states, an&hfference method.

available experimenFaI data for butkGaAs, tr_]e method_ has_ ACKNOWLEDGMENTS
been shown to predict accurately the energies of excited im-
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