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Electron-electron interactions in the nonparabolic conduction band of narrow-gap semiconductors
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The Lindhard dielectric function is evaluated at nonzero temperatures with Fermi-Dirac statistics and a
nonparabolic conduction band for bulk, narrow-gap semiconductors. This is used to study two problems of
current interest(i) inelastic scattering of single, energetic electrons by a system of plasmons, phonons, and
guasiparticle excitations; an@i) cooling of a hot, quasiequilibrium plasma by dynamically screened LO-
phonon emission. Scattering of high-energy electrons injected rirdoped InAs at room temperature is
analyzed and compared to the case where nonparabolicity is neglected. Plasmon losses and a larger density of
states are shown to be more important for electrons in a nonparabolic conduction band with energy above the
Fermi level. The energy-loss rate of a hot-electron—donor ion plasma to a cold lattice via screened LO-phonon
emission in parabolic and nonparabolic bands is also obtained. It is found that even though dynamic screening
of LO phonons is stronger in a nonparabolic band, the cooling rate of hot electrons in InAs can be significantly
faster because of the increased density of conduction-band states.
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[. INTRODUCTION relevant. Scattering of energetic electrons injected into
n-doped InAs, which has implications for room-temperature
The interaction of free electrons in the conduction band obperation of unipolar ballistic electron transistors and
semiconductors is of considerable interest for device appliresonant-tunnel diodes, is examined in Sec. Ill. The effect of
cations as well as understanding fundamental carrienonparabolicity on the cooling of afoptically heated
dynamicst It is especially relevant when dimensions areelectron-donor ion plasma by screened phonon emission is
small and/or carrier concentrations are high. Despite theonsidered in Sec. IV.
technological significance of narrow-gap semiconductors,
however, a finite-temperature treatment of the electronic sus-
ceptibility in a nonparabolic conduction band has not been Il. LINDHARD FUNCTION
available. Dingronget al? considered the electron-electron
interaction in narrow-gap semiconductors at zero tempera- In Kane’s semiconductor band theory, the conduction
ture for two restricted case§) light doping with a parabolic band is reasonably approximated as isotropic but
band, and(i) heavy doping and a linear band. Coupling of nonpgrabolié. The dispersion relation for conduction elec-
longitudinal plasma oscillations to phonons was neglectedfons IS
These limitations are removed here to allow for a more real-
istic description of experiments at elevated temperature
where practical devices operate. A Fermi-Dirac distribution h2k?
of conduction electrongnot necessarily at the lattice tem- Sm =~ Y(E)=E(1+aE), @
perature is used throughout.
The central theme of this paper is assessing the influence
of nonparabolicity compared to the usual parabolic approacwhere a=1/Ey, andm is the band-edge electron effective
for analysis of intraband scattering. Nonparabolicity affectsmass. The effect of nonparabolicity is illustrated in Fig. 1,
the inelastic scattering of electrons in a variety of ways suchvhere the room-temperature dispersion near the center of the
as: (i) increased density of state@, changes to the condi- Brillouin zone is plotted for the narrow-gap semiconductors
tions for energy and momentum conservatifi) reduction  InSb (E;=0.18eV) and InAs E4=0.36 eV), assuming
of Bloch function matrix elements, an@) changes in the both parabolida=0; dashed linesand nonparabolic bands
dynamic interplay between lattice and electronic componentésolid lineg. The bottom of the conduction band is taken as
of the semiconductor susceptibility. These effects tend to beero energy. The insets depict the density of states as a func-
interrelated and can be difficult to isolate. The specific sitution of electron energy for the two different cases. As con-
ations examined here, however, allow some general concluduction electrons acquire energy that is an increasing fraction
sions to be drawn—foremost being that the increased densiyf the band-gap energy, the parabolic approximation be-
of states in a nonparabolic band makes the scatter rate higheomes progressively poorer. From this picture, it is clear that
compared to a parabolic band with equivalent electron denronparabolicity should be accounted for when degenerate
sity and temperature. The other aspects of the problem play@ncentrations and elevated temperatures are encountered—
less important role. exactly the situation found in many types of electronic de-
This paper is organized as follows. The scatter spectrumices withn-doped regions of InAs.
of the coupled plasmon-phonon system is obtained as a func- The random-phase approximation allows the total dielec-
tion of frequency and wave vector. This is used to investigatdric function of the semiconductor to be written as the sum of
inelastic collisions in two situations where nonparabolicity islattice, free carrier, and background contributidns:
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FIG. 1. Conduction bands of InSb and InAs at room temperature assuming parabolic disfiastoed linesand Kane’s nonparabolic
relation(solid ling). Only a small region near the center of the Brillouin zone is shown. The insets depict the density dfirstatbirary
units) as a function of conduction-electron ener@ghashed lines for parabolic; solid lines denote nonparabolic

8(q,0)=Az (0)+Az(q,0) + &, )

ing the wave vector of the scattered particle. When the sum

where the lattice term is

in Eq. (4) is converted to an integral, thzeaxis is fixed in the
direction ofg. The polar integration coordinate becomgs
which is the angle betwednandq. Therefore, the substitu-

Aey(w)= — . @ on
1_(w_l_0 8_0 COS Uy i+ =(7(—Ek))m{1+(ﬂ ﬁwLo)llzcose
” =4 Y(Ekag) 1\ 0o/ |\ Y(Ep)
The bare phonon frequencies are assumed to be disper- (6)

sionless in this paper. Free holes are not included as ths made, where the normalizing parameaggris introduced:
focus is on electron-donor ion plasmas encountered in

single-carrier optical experiments and electronic devices. Qo= Vsz“"LO_ @)
Contributions from the valence bands, which would be im- ° h

portant in optical excitation of electron-hole pairs in lightly The energy of the final state is written

doped material for example, can be incorporated following

Refs. 4—6. The susceptibility of the conduction electrons is _ q\?
obtained from the Lindhard formula for the dielectric keq=5, | “1F| 1+ 4ay(B) F4a a) hoo
function’ ¢
q
1% i iSQVY(Ek)ﬁwLO(%)cose ] 8

A _477'e2 2 ((k
el )=~ 4 | g T F —Re—iAT

integral:

(4) J2m g2 f 1

Aee(G,0)=—— a0 _1d(cos¢9)
g
Go

2
n Ik,k—q
Equ_ Ek+ﬁw+lﬁr

wheref(k) is the Fermi-Dirac function anfl is a phenom-
enological damping term. Wave-function overlap factors ap-
propriate for intraband transitions in a nonparabolic conduc-
tion band are used:

xfde f(E)Vy(E)(1+2aE)
0

|2
k,k*=q

N+ aE ) (1+ @By ) + @ VEEy 2 qCOS Fy ]
- (1+2aE)(1+2aEy.q) '

£ i q(COS 6,E)
" Exrq(COS0,E)—E—fio— AT

12, .(cos6,E)
+ okl . (9
5 Ex_q(COS0,E)—E+fiw+iAl

In Eq. (5), 9 x+q represents the angle between the initial- Following the usual procedure, the radlalcoordinate has
state(k) and final-state K= q) wave vectors, withg denot-

allowing Eqg.(4) to be re-expressed as the following double

been replaced b¥,. The vector nature of the scattering
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collisions has been accounted for at this point, so the sub- 100
script onE, can be dropped. Note that the conduction band is InSbat3ook
taken to be isotropic, she, depends only on the modulusof eV

q

The zeros ok(q,w) belong to plasmons exhibiting oscil- «
lations of frequencywp(q). In infrared reflection experi-
ments, the long-wavelength limitj~0) is measured. In this
limit and neglecting dampingl{=0), Eq.(2) can be written
in general as

e(0,w)=Ag (w)+e,

w2
1- —2) . (10) ) . . .
w

1x10" 2x10" 3x10" axi0"®
electron density (cm®)

Here v, is the modified Langmuir plasma frequency

) Ae?N FIG. 2. Nulls in the infrared reflection spectrum of room-

wp:m, (11) temperaturen-doped InSb as a function of doping. Plotted points
are taken from the data of Spitzer and R&ef. 9, normalized to

where the optical mas®(N) accounts for the nonparabolic the LO-phonon frequency. The curves are obtained from Fresnel

dispersion of a conduction band with electron denNtﬁ reflectivity calculations using the dielectric functiai0,0) for a
nonparabolic(solid line) and parabolic(dashed ling conduction
1 1 d 9°E . band.
m(N)  127°#2N f K2 (E). (12

The emphasis of this paper is on understanding the effect
of band nonparabolicity on the frequency- and momentum-
ay(E) dependent scatter spectrum of the system. This is given by
I —2) the imaginary part of the reciprocal dielectric function,

3 (1+2aE) Im(1/e(q,w)), requiring that Eq(9) be evaluated at all val-
(13 yes ofq.17#The usual procedure is to IBt—0, compute the
The plasma frequency is then easily found by inserting Eqreal part ofAe,, and then obtain the imaginary portion by a
(13) into Eqg. (11). This, of course, reduces to the classicalKramers-Kronig transformation. In this work, is retained,
Drude result wherv= 0. Equation(13) can also be obtained which allows Eq.(9) to be separated into real and imaginary
directly by taking the limitg—0 in Eq.(9). The free carrier components that are integrated independently. Including
density is given by the integral damping is mathematically convenient because it prevents
Amd2 (e singularities at the plasmon pole, but requires that a value of
s J dE f(E)\/ﬁ(lJrzaE)_ (14) I' be specified. For the d'opm.g dengmes considered here,
Th> Jo il <fiw o, il'<hw,, which is manifest by sharp nulls
seen in the reflectivity data in Refs. 9 and 10. To satisfy this

The optical massn(N) describes the dispersion of an jnequality,I" is set at 5 102 s~ in the present calculations.
equivalentparabolic band, which is implicit in the Drude  gjmilar numbers have been used in previous treatmenits of
model. Plasma qscillations involve. el_ectron§ in all regions ofin the complex dielectric functioht~23 This term, however,

k space determined by the Fermi distribution function. Anghqyid not be understood as the collisionally broadened line-
increase ofm(N) with dopéng, as is known from infrared igih of the electron-electron interaction, as pointed out by
reflectivity measurementst® manifests the fact that a higher 14 For the situations analyzed in this paper, plas-

. . Mermin:
percentage of electrons occupy regions of the conductlonnS are largely Landau damped in much of the relevant
region of reciprocal space, making this linewidth a relatively

band with decreasing curvature. Here is an important differ-
minor issue. Decreasinfj by a factor of 5, for example,

For the nonparabolic band considered here, this becomes

1 2m (=
W:m J;) dE f(E)\/'y(E)

N=

ence with the situation in a classicglarabolig band: the

lasma frequency is altered when either the density or tem- .
Eerature ofqthe cgrriers changes y reduces the scatter rates calculated in Sec. Il by less than

In Fig. 2, reflectivity resonances obtained from SpitzerS%' The final point .regardinﬁ is that t_he rgsults discussed
and Fan's room-temperature InSb data are shbWne plot- here are meant to |II_ustrate the relat|v<_e dlfferencg between
ted points are nulls in the spectra that occur when the dieleccattering in parabolic and nonparabolic conduction bands;
tric function makes the normal-incidence Fresnel reflectivitytherefore, the plasmon linewidth is kept the same in both
vanish[i.e., ate(w)=1]. These points are in close proximity Cases.
to (but not identically equal tothe upper-hybrid modes of ~ The function Im(1¢) is calculated fon doped InAs at an
the coupled plasmon-phonon system. The reflectivity nulls irelectron densityN=1.5x 10" cm 3 and temperatureT,

Fig. 2 are seen to agree with a calculatisolid line) using =300 K at various wave vectors. The nonparabolicity coef-
Egs. (10), (11), and (13), and established parameters for ficient is set tow=1/0.36 eV %, and Fermi levels appropriate
room-temperature InStm=0.013n,, E;=0.18 eV,%w o  for room temperature are used. The lattice component of the
=0.023 eV,eg,=17.54, ands,,=15.68. Also shown is the susceptibility described by EJ) is also given a small line-
case where nonparabolicity is neglectedshed ling width (10'* s7%) to facilitate numerical computatiord.Rep-
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FIG. 3. The function Infl/e(qg,w)) describing the inelastic scattering spectrum of room temperature InAs with donor concentration
Np=1.5x 10'® cm™3. Plots(a)—(c) compare the nonparabolic calculatitsolid line) to the parabolic cas@ashed lingat increasing wave

vectors. In(d), the nonparabolic calculation is shown for the case where the reduced overlap of conduction-band wave functions is included

(solid line) and ignoreddash-dotted ling

resentative plots for paraboliglashed linesand nonpara-
bolic bands(solid lineg are presented in Fig. &ote that
there are identical curves at negative frequenciéd q

=0.6259, [Fig. 3(@], a distinct plasma modeupper hybrid

frequencies reflect the nonparabolic nature of Efl).
Strong screening of the phonon madtawer hybrid modg at

injected electrons in GaAs at nonzero temperature with ac-
curate electron and dielectric functiol’s Monoenergetic
electrons, representing &function perturbation of the car-
rier distribution, are injected into am-doped region and al-
mode is evident in both cases, where the different centefowed to interact with the scatter spectrum of the system that
includes phonons, plasmons, and single-particle excitations.
This approach was later refined by Sanbetral. to include

w=w o takes place. With increasing wave vector, the plasall four terms in the Boltzmann collision integrdl.e.,
mon mode enters the regime where single-particle excitascatter-out and scatter-in componerttsat are particularly
tions can be supported and Landau damping of the modiénportant for electrons injected near the Fermi enéfgy.
commence&. The phonon mode simultaneously begins to These efforts assumed a parabolic conduction band, which is
emerge. Band dispersion affects the conditions for momerentirely appropriate for GaAs. For many devices, however,
tum conservation that define the single-particle excitation recollisonless transport is desired in thin layers of InAs, where
gime. Because the dispersion slope is much steeper in tf@mplications from nonparabolicity are likely to occur. Eee
parabolic case, the onset of appreciable Landau damping @nd later Krishnamurthy and co-work&r$®> made allow-
plasmons occurs at smaller wave vectors. This is clearly reances for nonparabolicity in their analysis of ballistic trans-
vealed in the plots a=gq, [Fig. 3b)] and q=2q, [Fig.  Port in various semico_nductor.s including InAs, but negl.ected
3(c)]. Screening of the phonon mode, which is not well re-the electron-electron interaction. It is included here via the
solved in this series of figures, is discussed in Sec. Iv.  Lindhard function developed in Sec. Il. 3

At q=30q, [Fig. 3(d)], the nonparabolic calculatigsolid The calculational framework of Ref. 20 is used, modified
line) is compared to the same calculation except the BlocAOr conduction-band nonparabolicity. The two scatter-in
function overlap factofi.e., Eq.(5)] is set to unity(dash- t€rms are
dotted ling, as was done by Dingrongt al?> The figure
shows that, contrary to the assumption in Ref. 2, the overlap 1

2\2mé

~ d fi wmax
factor can be appreciably less than unity in narrow-gap semi- = _q |ﬁ k+qf d(fw)
conductors, particularly at large wave vectors. Tin(E)  #2mVy(E) Jo a4 "7 Jhomy,
X[1+2a(Exhw)][f(Exhw)
Il INELASTIC SCATTERING 11
The hot-electron transistor has attracted considerable at- X| Ng(w)+ Eii) Im(s(q w)), (153

tention as a potential high-speed devit&he possibility of
ballistic electron transport across ardoped base is known
to depend critically on inelastic scattering processé8Hu
and Das Sarma first considered the inelastic scattering &ind for the scatter-out processes:
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1 2y2me  (=dq , fiomax 200
o E)  #2my(E) Jo ?'“*qj o ) p No=x10 om™

X[1+2a(E+ho)][1-f(Exfhw)] g
(]
11 o ®
x| N +—=%—|Im . 15 =
q(w) 2+2 &(q,) (15b) %

The lattice and electrons are taken to be in thermal equilib- @ _

rium and their common temperature is used in the Planck ol ) . ) , )

distribution functionN,, . The = sign refers to absorption and
emission, respectively. The overlap factors are given by Eq.
(5) with E, replaced byE, the energy of the injected elec- b Np=1.5x10"® cm™
tron. All four terms in Eq.(15) add to give the total scatter
rate. The limits on the inner integral are obtained from mo-
mentum conservation in the golden rule formulation of the
scattering probability. For absorption this gives:

20

scatter rate (ps™)

4C¥ﬁw|_o q

NIt T 2ae2 g, 0

1+2aE
2a

f Omax, min—

01 0z 03 0.4
X[ q . 2( Y(E) ] 1/2) injected electron energy (eV)

(169
9o hoo FIG. 4. Inelastic scatter rates of electrons injected into a bulk,
and for emission the limits are room-temperature InAs at two different doping concentrations. The
solid lines are obtained for a nonparabolic band, and the dashed

1/2

142aE dak lines correspond to the parabolic situation. In all cases, minimum
ho _(1tea ( B B = a scattering occurs in the immediate vicinity of the respective Fermi
max, min 2a (1+2aE)? qq energies.
q Y(E)\ Y2 1/2)
—*2 16b
Qo hoo (160

15% at energies immediately above the Fermi minimum.
where it is understood that the integration range is alway§Vhen the doping increases to %0 cm™2 (lower plof),
positive (iw=0). The procedure used here is to calculatethe Fermi level moves higher in the banB{=0.145 eV),
Im(1/e) separately, and then evaluate the integrals in Eqwhere the nonparabolic density of states is 1.8 times larger
(15). Results obtained for room temperature InAs with thethan at the Fermi level in a parabolic bandEg(
complete nonparabolic treatmefdolid line) and parabolic =0.2055 eV). In this case, the parabolic and nonparabolic
conduction banddashed lingare depicted in Fig. 4 for two scatter rates differ by about a factor of 2 for electrons in-
different donor densities. The InAs material parameters argected above the Fermi level. The increased density of states
taken asm=0.023n,, fiw c=0.03 eV,e;=14.55, ands..  as well as greater plasmon scattering in a nonparabolic con-
=11.8. For all cases considered, a minimum scatter rate iguction band, however, do not significantly degrade the po-
obtained when the injected electrons have energy close to thential for ballistic transport in bulk, room-temperature InAs
Fermi level, in agreement with previous calculatifhand  when compared to GaAs.
measurement$® made with GaAs. Note the shift of Fermi  Room-temperature operation of a unipolar ballistic elec-
level to lower energy that occurs in tieore realistic non-  tron transistor was first demonstrated by Levi and Chiu using
parabolic treatment of the conduction band. It is also founda 100-A n-doped InAs base layer, where quantum confine-
that the minimum scatter rate of 5-7sin InAs is ap-  ment is important’ and such devices continue to be an ac-
proximately two times smaller than calculated by Sanbornive area of researci=3! This paper is restricted to bulk
et al. for comparably doped GaAsN=8x10 cm3).2°  semiconductor scattering; modification to accommodate the
This supports the earlier conclusion reached by leval.  situation found in these devices—transport in the confined
who employed a much simpler model of scattering in InAsdirection—is a difficult problem. In addition to the two-
and GaAs?® They proposed that the inelastic scattering ratedimensional(2D) electron gas, scattering between subbands
would be reduced with semiconductors having a lower denand the possibility of confined phonon modes must be ad-
sity of conduction-band states compared to GaAs. Our caldressed. Whether the 3D results presented here provide an
culations confirm this. upper limit estimate for scattering in strongly confined de-
Figure 4 demonstrates the significance of the density ofices is not clear. The reduced density of 2D states, however,
states in inelastic scattering. At the lighter doping density ofis obviously an advantage in vertical transport, as noted in
5Xx 10 cm ™ (top ploy, the nonparabolic Fermi level re- Ref. 26. Extension of the present analysis to transport in the
sides at a relatively low energy in the conduction bakd ( plane of a quantum well, with the assumptions of 3D
=0.068 eV) where deviations from parabolicity are not pro-phonons and electrons remaining in a single subband, would
nounced(see Fig. 1 The scattering rates differ by roughly appear to be an easier ta¥k.
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FIG. 5. The function Inil/e(q,w)) in the frequency region of the phononlike mode for nonparakistitid lines and parabolid¢dashed
lines treatments of the conduction band at six different values of the momentum wave vector. The calculations are for InAs with a donor
density of 1.5¢ 10" cm™2 and an electron temperature of 300 K. Note that the ordinate scale changes by almost two orders of magnitude in
this sequence of figures. The strong reduction of mode strength that occurs in both calculations at small wave vectors is caused by plasma
screening.

IV. HOT-ELECTRON COOLING electric function with and without the lattice terfhe., Eq.

. . o . 3)], the dynamically screened phonon mode can be obtained
Cooling of hot-carrier distributions has been an mportantéj]simpley subtract)i/on. Resultg of this procedure are dis-

topic in semiconductor physics for decades. Most of the atyiaveq in Fig. 5, where the phonon mode of InAs is shown at
tention, however, has focused on medium and wide-gap M&,ious wave vectors. In this calculation, heavydoping (
terials where conduction-band no_nparaboI|C|ty can be safeIND= 1.5x 1018 cm~3; T,=300 K) provides an illustration of
LO-phonon scattering in a nonparabolic bandut their cal-  (solid line9 conduction bands. The plasmonlike mode occurs
culations did not account for wave-function overlap and dy-at higher frequencycf. Fig. 3, and is not shown for clarity.
namic screening. These factors are included here to provideWwhat is evident is that nonparabolicity causes a distinct re-
more general description of the carrier relaxation process. uction of the phonon modge., increased screeninm the
is important to point out that the problem as formulated hereangeq<3q,. The reason for this is the same as discussed
deals with a quasiequilibrium distribution of hot electronsin Sec. Il: a smaller curvature of the nonparabolic band ex-
losing energy by emission of optical phonons described byends the onset of Landau damping to larger wave vectors.
the Planck function with the temperature of the cold lattice,The electron-electron interaction exhibits collective behavior
as is often encountered in ultrafast optical experimentsoutside this regime, leading to strong screening of the pho-
There is no external field present. Since a thermalized distrinon potential. It is also worth noting that neglecting the over-
bution of electrons is assumeédith temperature greater than lap termsgEq. (5)] causes screening to be overestimated in a
the latticg, cooling via electron-electron interactions is ig- nonparabolic conduction band for wave vectors larger than
nored. The electrons affect the energy-loss rate indirectlyg~1.5q, .
however, by screening the LO-phonon potential and Pauli Figure 5 shows that the frequency of the phononlike mode
blocking. is well approximated by that of the longitudinal-phonon os-
The nature of the random-phase approximation permitgillations (w, o), except at very small wave vectors where
the lattice contribution to be isolated from the total dielectricthe mode is heavily screened and not well defined. The
function given by Eq(2). By comparing the reciprocal di- strength of this phonon mode at each valueyaé obtained
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by integrating Im(14) over its narrow-frequency linewidth and then setting the scatter quanta endigy (o0 This approxi-

mation reduces the double integration needed in Sec. Il to just one, and makes the cooling rate calculations comparatively
simpler. The energy-loss rate for electrons at endtgis obtained from thalifferenceof the following two components
representing phonon absorption and emission:

dE 2\2mhw €% (1
(E) - L0 f d(cos ) Vy(E=foLo)
T -1

abs,emiss

11 1,
[1—f(EiﬁwLo)] Nq(wLo)+§+§ Im m Ik,kiq

Y(E)+ Y(Exfiw o) —2Vy(E) Y(E*fiw, 0)cOS ¥

where cosd is defined by Eq(6); the vector subscripts are omitted here for brevity. Theign denotes phonon emission and
absorption, respectively. The emission term is zero of course, uBlegsw, . As already noted, the reciprocal dielectric
function is computed separately as a functiorgadnd then integrated over frequency. The angular dependence necessary to
integrate Infl/e(q,w o)] in EQ. (17) is obtained from momentum conservation in a nonparabolic band:

X[1+2a(Exhw )] (17

Y(E)+ Y(Exfiw o) — 2V E) Y E+fiw o)cos &)
g=do ﬁwLO ) (18)

where thex sign again represents absorption and emissionributed to the higher density of states available in a nonpa-
of phonons. The cos? dependence in the wave function rabolic conduction band. As was the case in Sec. lll,
overlap terms is explicit in Eq(5). differences in the density of states appear to be the dominant
The electron cooling rate due to dynamically screenedarameter When comparing mel_astlc scattering of _degenerate
LO-phonon emission(and absorptionis now applied to electron distributions in parabolic and nonparabolic conduc-
n-type InAs with conditions corresponding to the experi-tion bands. . _ _
ments of Elsaessat al3* An infrared laser pulse with pho- A complete description of the data in Ref. 34 requires a
ton energy much less then the semiconductor band(yap t|me—dgpendent_analy5|§ that includes .hot phonons as well as
—6.5m, t,=8 ps excites conduction electrons in heavily dyn.amlc screening applied to free-carrier absorption. TheT Igt-
doped, bulk InAs Np=1.5x10"¥cm 3) held at a lattice ;enr d'SrS"u ilzg Eﬁrmclgigfnf;%ﬁ? ;zzeia\?oﬁigogg?r%%d'c'ty
temperature of 70 K. Free-carrier absorptigphoton- g Ping ’ C

. S and is beyond the scope of this paper. It can be concluded,
electron-phonon scatteringpeats the distribution to a tem- y b pap

I ab he latii dis th q however, that even with the more accurate calculation of
perature well above the lattice-(550 K), and is then used t0 qjing in a nonparabolic band presented here, an additional

monitor cooling. Because of the high donor density, compli-mechanism such as phonon reabsorption by the hot electrons
cations from valence-band holes are negligible. A muchyg proposed in Ref. 34 is necessary to explain the relatively

longer decay than expected from screened phonon emissi@ow decay rate the authors observed in their experiments
was observed and suggested the presence of the phonon

bottleneck, which is known to inhibit carrier cooling in

35 =
GaAs. 15x10°{ N, =1.5x10" cm™; T, = 70K e

The cooling calculations used in Ref. 34 assumed a para-
bolic conduction band and Thomas-Fermi screening. In Fig.
6, the energy-loss rate due to LO phonons is plotted for
dynamic screening in a nonparabolic baddsh-dotted ling
dynamic screening in a parabolic bafsdlid line), and static
Thomas-Fermi screening in a parabolic baddshed ling
For purposes of comparison, hot-phonon effects have been
ignored. The plotted loss rates are also averaged over a
Fermi-Dirac distribution, so they can be displayed as a func-
tion of electron temperaturé.As expected, the degenerate
Thomas-Fermi approach provides an excellent representatior
of the full dynamic treatment of a parabolic band at low

electron temperature. When nonparabolicity is included, FiG. 6. Cooling rate of a hot, electron-donor ion plasma in InAs
however, the cooling rate increases by about a factor of Zayeraged over a Fermi-Dirac distribution as a function of electron
This is contrary to expectations from screening considertemperature. The curves correspond to dynamic screening in a non-
ations alone—as revealed by Fig. 5, the phonon mode igarabolic banddash-dotted ling dynamic screening in a parabolic
always weaker in a nonparabolic band at equivalent waveband(solid ling), and static Thomas-Fermi screening in a parabolic
vector positions. The faster cooling rate can be directly atband(dashed ling

1.0x10"

d energy loss rate (eV/sec)

5.0x10° -

average

T T T T T T T
100 200 300 460 560 600
electron temperature (K)
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with InAs. This is clear from Fig. 6, where the cooling rate in cillations of the electron-donor ion plasma—occurs at higher
a nonparabolic banthssuming equilibrium phonon distribu- wave vectors compared to a parabolic band. This changes the

tiong) is faster than the parabolic case. strength of both phonon and plasmon scattering.
A significant finding is that the increased density of states
V. SUMMARY available at high energies in a nonparabolic conduction band

) . ) . . is the primary factor leading to a larger electron scatter rate
The Lindhard dielectric function describing the electron-compared to the parabolic case. Changes to the inelastic scat-
electron interaction was evaluated numerically for narrow-gy spectrum due to nonparabolicity appear to be of lesser

gap semiconductors including nonzero temperature, FerMimportance. Even with an increased probability for deleteri-

Dirac  statistics, and conduction-band nonparaboalicity.oys collisions introduced by nonparabolicity, InAs compares

Coupling to LO phonons was incorporated in the randomyayorably to GaAs in ballistic transport device applications.
phase approximation. The inelastic scatter spectrum

Im(1/e(qg,w)) can be substantially different when comparing
a nonparabolic to parabolic conduction band at the same car-
rier density and temperature. The reduced dispersion of a The authors acknowledge helpful dialogue with Barbara
nonparabolic band dictates that the region of single particl&anborn and Professor David Ferry. M.P.H. was supported
excitations—the Landau damping regime for collective os-by the Alexander von Humboldt Foundation.
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