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Mean-field theory for the spin-ladder system

Xi Dai* and Zhao-bin Su
Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100080, China

~Received 12 May 1997; revised manuscript received 17 September 1997!

In the present paper, we propose a mean-field approach for spin ladders based upon the Jordan-Wigner
transformation along an elaborately ordered path. We show on the mean-field level that ladders with even-
numbered legs open an energy gap in their low-energy excitation with a magnitude close to the corresponding
experimental values, whereas the low-energy excitation of the odd-numbered-leg ladders are gapless. It sup-
ports the validity of our approach. We then calculate the gap size and the excitation spectra of a two-leg-ladder
system. Our result is in good agreement with both the experimental data and the numerical results.
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I. INTRODUCTION

The study of the low-dimensional Heisenberg antifer
magnetic model is one of the most active research field
condensed-matter physics. Haldane1 conjectured that for
integer-spin one-dimensional antiferromagnetic chains an
ergy gap exists in the low-energy excitation spectrum,
for a half-integer-spin case the excitation spectrum is g
less. The spin-1/2 antiferromagnetic chain can be solved
actly by the Bethe ansatz.2 The excitation spectrum is foun
to be gapless. The measurement of realistic ladder mat
such as SrCu2O3 ~two-leg!, Sr2Cu3O5 ~three-leg!, or
(VO)2P2O7 ~two-leg!3 shows that the spin-excitation gap
opened in the ladders with an even numbers of legs, w
for ladders with an odd numbers of legs, no gap is found
spin excitation. This conclusion was predicted by early n
merical calculations4 and was explained qualitatively b
Khveshchenko.5 In Khveshchenko’s explanation a topolog
cal term appears in the effective Hamiltonian of the lon
wavelength dynamics in an odd-leg ladder and is absen
an even-leg ladder. Recently, Sierra6 has mapped the ladde
problem onto an effective one-dimensional~1D! nonlinear
sigma model. An extra topological term appears in the o
leg system and is absent in the even-ladder system.
difference between odd- and even-leg ladders is essent
an extension of the difference between the half integer
integer Heisenberg chains.7

We also have the experience from the 1D quant
Heisenberg spin chain, that it is not so trivial to incorpora
the subtle physics of the topological term in a mean-fi
approach. For a two-leg ladder, the existence of an ene
gap in the spin excitation for nonzero interchain couplingJ8
is confirmed by various methods such as Lanczos, quan
Monte Carlo,4,8 renormalization group,9 variational
method,10 strong-coupling expansion,11 spin-liquid mean-
field approach,12 as well as the mean-field approach based
the Jordan-Wigner transformation.13 For J5J8 (J is the ex-
change coupling along the chains!, which is the physical pa-
rameter of the real ladder compounds, the energy gap
tained by numerical calculation is 0.5J which is very close to
the experimental value. The spin-wave excitation spe
have also been obtained by the numerical calculation wh
shows the minimum of the spectra is located at the w
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number p.4,8 This was also confirmed by recent neutro
scattering experiment.14

A mean-field treatment of the two-leg Heisenberg ladd
with the application of a Jordan-Wigner~JW! transformation
has been proposed by Azzouzet al.13 In their approach the
Jordan-Wigner transformation is introduced to map the sp
1/2 system to the spinless Fermion system. The gap is
tained in their mean-field approach which is about 0.7J8 un-
der the case ofJ5J8 which does not fit well with the
experimental value. The excitation spectra are also calcul
in their approach, which contains a minimum at the wa
numberp. But the shape of the spectra is not consistent w
the numerical result which predicts the maximum of t
spectra locating between 0 andp/2.8

In the present paper, we propose a mean-field appro
also based on the JW transformation.15 Our mean-field ap-
proach is quite different from the approach used in Ref.
When performing a JW transformation in the ladder syste
one must put the sites in a queue. Then the spin operator

be expressed asSi
15ci

1eipF̂( i ), whereF̂( i ) is nothing but
the summation of number of the sites from2` to the
( i 21)th site in the particularly ordered queue which a
occupied by spinless fermions. The difference between
particularly elaborated queues used in our approach
those of Ref. 13 are shown in Figs. 1~a! and 1~b!. In our
approach the sites in the odd number rungs are labeled f
upward to downward but from downward to upward in t
even number rungs@shown as Fig. 1~a!#, whereas in Ref. 13
all rungs are labeled from upward to downward@shown as
Fig. 1~b!#.

We perform the JW transformation with such a specia
ordered queue. The advantages of our approach are the
lowing. First of all if we replace the phase of the hoppin
term by its average value, we can easily obtain the me
field Hamiltonian forn-leg ladders in which the effective
hopping terms of the spinless fermions have alternative s
along both the chain and rung directions. This mean-fi
Hamiltonian is similar to the one used in Ref. 13 for th
two-leg case. But in their approach a further assumption,
adding ap flux to each plaquette is needed to obtain suc
mean-field Hamiltonian, whereas in our approach the me
field Hamiltonian is obtained directly by replacing the pha
factor in the hopping terms with their average values. W
964 © 1998 The American Physical Society
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57 965MEAN-FIELD THEORY FOR THE SPIN-LADDER SYSTEM
can then easily show that the spin gap is only opened
even-leg ladders. To a certain degree, it supports the val
of our way of performing the Jordan-Wigner transformati
construction.

Secondly we can treat the phase factor in the hopp
terms more carefully by introducing a self-consistent pro
dure for the two-leg ladder. We find that both the gap m
nitude and the spin-excitation spectra are in good agreem
with the numerical and experimental results in the case
J85J which is of the physical parameter for the real ladd
compounds. Actually the energy gap is found to be 0.46J in
the caseJ85J which is very close to the experimental resu
0.4760.2J. The spin-wave excitation spectra obtained
our mean-field calculation is also consistent with the num
cal result with the minimum at the wave numberp and the
maximum at the wave number 0.356p. Compared with the
approach used in Ref. 13, our mean-field approach is m
better in the case ofJ8.0.5J. In the weak-coupling regime
our approach does not work as well. The energy gap per
even in the case ofJ850. In spite of the unsatisfactory as
pect in the weak coupling regime, our approach is still va
able because it works very well in the intermediate- a
strong-coupling regimes, which have the experimental co
spondence.

In Sec. II, we calculate the spin-excitation gap of the s
ladders with various numbers of legs and show that in
mean-field level the energy gap only exists in ladder syste
with an even number of legs. In Sec. III, we propose a m
careful treatment of the two-leg spin ladder. The sp
excitation gap, as well as the excitation spectra is calcula
Finally, we make concluding remarks in Sec. IV.

II. MEAN-FIELD TREATMENT FOR THE SPIN GAP IN
n-LEG LADDERS

We begin with the 2M -leg antiferromagnetic Heisenber
ladder Hamiltonian:

FIG. 1. To perform the Jordan-Wigner transformation the s
are put in a particular queue in our present study~a! and in Ref. 13
~b!.
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H5J8(
i

(
p51

2M21

SW i ,p•SW i ,p111J(
i

(
p51

2M

SW i ,p•SW i 11,2M112p

5J8(
i

(
p51

2M21

Si ,p
z

•Si ,p11
z 1J(

i
(
p51

2M

Si ,p
z

•Si 11,2M112p
z

1
J8

2 (
i

(
p51

2M21

Si ,p
1

•Si ,p11
2 1

J

2(i
(
p51

2M

Si ,p
1

•Si 11,2M112p
2

1H.c. ~1!

In the above Hamiltonian,i represents the site position alon
the chains andp represents the 2M sites of different chains
coupled by the interchain coupling constantJ8. As shown in
Fig. 1, p is labeled from upward to downward at the ev
sites and downward to upward at the odd sites. This is
ferent from that used in the paper of Azzouzet al.13 Then we
introduce the generalized JW transformation:

Sp,i
1 5cp,i

1 eip (
n52`

i 21

(
l 51

2M

cl ,n
1 cl ,n1 ip (

l 51

p21

cl ,i
1 cl ,i , ~2!

in which c is the spinless Fermion operator. The summat
in the phase factor is the number of occupied sites before
i th site along the particular queue shown in Fig. 1~a!. Then
the quantum spin-1/2 Hamiltonian can be mapped ont
spinless fermion Hamiltonian as

H5J8 (
i ,p51

2M21 S 1

2
2ci ,p

1 ci ,pD •S 1

2
2ci ,p11

1 ci ,p11D
1J (

i ,p51

2M S 1

2
2ci ,p

1 ci ,pD •S 1

2
2ci 11,2M112p

1 ci 11,2M112pD
1

J8

2 (
i ,p51

2M11

~ci ,p
1 ci ,p111H.c.!

1
J

2 (
i ,p

2M

~ci ,p
1 ci 11,2M112pe2 i F̂~p!1H.c.!, ~3!

where

F̂~p!5p (
l 5p11

2m

~ni ,l1ni 11,2M112 l !.

In our mean-field approach, we replaceni ,l by ^ni ,l&. For
the present study, we further assume that the finite magn
zation in this system is not possible because of the str
quantum fluctuation. This is reasonable for systems wit
leg number much less than the site number of each ch
Then we have ^Si ,l

z &5^1/22ci ,l
1 ci ,l&50 which implies

^ni ,l&50.5. Consequently, the phase factor in Eq.~3! can be
approximated by:F(p)5p(2M2p). Moreover we de-
couple the four-fermion interaction term in the above Ham
tonian by the Hartree-Fock approximation. Finally the mea
field Hamiltonian of the spinless fermions has t
expression:

s
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H5
J8

2 (
i ,p51

2M11

~ci ,p
1 ci ,p111H.c.!

1(
i ,p

2M

@ci ,p
1 ci 11,2M112p~21!p111H.c.#. ~4!

If we introduce a Fourier transformation for the site indice
we have
t f
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tr
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th
,

H5a (
k,p51

2M11

~ck,p
1 ck,p111H.c.!

1
J

2 (
k,p

2M

@ igk~21!pck,p
1 ck11,2M112p1H.c.#, ~5!

wherea5(J8/2) gk52Jsin(k). The Hamiltonian then can
be written in a formH5(kCk

1h(k)Ck with h(k)
h~k!51
0 a .. .. .. .. .. .. .. .. .. .. .. ig

a 0 a 0 .. .. .. .. .. .. .. .. 2 ig ..

0 a 0 a .. .. .. .. .. .. .. ig .. ..

.. .. a 0 a .. .. .. .. .. 2 ig .. .. ..

.. .. .. a .. .. .. .. .. ig .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. 2 ig .. .. .. .. .. a .. .. ..

.. .. .. ig .. .. .. .. .. a 0 a .. ..

.. .. 2 ig .. .. .. .. .. .. .. a 0 a ..

.. ig .. .. .. .. .. .. .. .. .. a 0 a

2 ig .. . . . .. .. .. .. .. .. .. .. .. a 0

2 .
ite
ntal

the
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y

r
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The above matrix contains 2M eigenvalues for a given
wave numberk corresponding to the 2M individual bands
separated by gaps. It can be proved straightforwardly tha
a given wave numberk, half of the eigenvalues are less tha
zero and other half are greater than zero. Furthermore we
also prove that zero is not an eigenvalue of the above ma
for any nonzeroJ8. We will prove the two statements in th
Appendix. This result shows clearly that half of the ener
bands of the spinless Fermions are below zero energy
another half is above zero. The energy gap between the
nonzero because zero is not the eigenvalue of the above
trix for nonzeroJ8 and arbitraryk. Assuming there is no
self-magnetization in one-dimensional systems, only
lower half of the states are occupied by spinless fermion
the ground state. Therefore a spinless fermion system is
similar to the traditional insulator in which the valence ba
is fully occupied and the conductive band is fully empty
the ground state. So a nonzero minimum energy is neede
excite the system from the ground state which indicate
spin-excitation energy gap. For spin ladders with an o
number of legs there exist odd numbers of energy ban
Since only half of the states is occupied in the ground s
there must exist at least one band which is partially occup
This picture is very similar to the traditional conductor
which there exists at least one partial occupied band~con-
duction band!. Then the low-energy excitations are gaple
for odd-numbered-leg ladders.

Moreover, we calculate the gap size of the 2,4,6,8, a
10-leg spin ladders, the results are shown in Fig. 2 toge
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with the experimental value. Although our approach is qu
rough, the result is in good agreement with the experime
value.3,14,16,17

The spin-excitation spectra can also be obtained from
above mean-field approach, the spin-wave dispersion
A(J8/2)21J2sink2 for the two-leg case. It has two energ
minimums, one at 0 and another atp. The shape of the

FIG. 2. The spin gap forn-leg spin ladders calculated in ou
mean-field approach which is compared by the experimental v
~Refs. 14,17!.
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spectra is not consistent with the numerical result which
the spectra minimum located only at wave numberp and the
maximum is near 0.356p. This is because the treatment f
the phase term of Eq.~3! is too rough. In the next section w
will propose a more careful treatment of the phase facto
Eq. ~3!. We can then obtain a more improved spin-excitat
spectra, which is very close to the numerical results.
-
a
ica
in
s

in
n

III. THE MEAN-FIELD THEORY OF THE TWO-LEG
LADDER

For the two-leg case, we can introduce two bipartite l
tices labeleda andb. Following the same procedure show
in the above section, the Hamiltonian for spinless fermio
becomes
se factor

spinless
H5J8(
i

S 1

2
2a i

1a i D S 1

2
2b i

1b i D1J(
i

S 1

2
2a i

1a i D S 1

2
2b i 11

1 b i 11D1J(
i

S 1

2
2a i 11

1 a i 11D S 1

2
2b i

1b i D
1

J8

2 (
i

~a i
1b i1H.c.!1

J

2(i
@a i

1b i 11eip~b i
1b i1a i 11

1 a i 11!1H.c.#1
J

2(i
~b i

1a i 111H.c.!. ~6!

In our mean-field approach, different from the simple treatment used in the previous section, we first replace the pha
in Eq. ~6! by its average value:

^eip~b i
1b i1a i 11

1 a i 11!&5^~122b i
1b i !~122a i 11

1 a i 11!&524ux2u2 ,

where we define:

x15^b i
1a i 11&, x25^a i

1b i 11&, x05^b i
1a i&.

Then the fermion-fermion interacting term (1/22a i
1a i)(1/22b i

1b i) can be factorized as

~1/22a i
1a i !~1/22b i

1b i !5
1

4
2x0b i

1a i2x0
1a i

1b i1x0
1x0 .

We decouple the other two interacting terms in the same manner and obtain the following mean-field Hamiltonian of
Fermions:

HMF5(
k

gkak
1bk1H.c., ~7!

where

gk5F S J8

2
2J8x0D1S J

2
22Jux2u22Jx12Jx2D cos~k!G1 isin~k!S Jx22Jx122Jux2u22

J

2D .

Then the above Hamiltonian can be diagonalized as

HMF5(
k

Ek~ ãk
1ãk2b̃k

1b̃k!, ~8!

in which

Ek5AF S J8

2
2J8x0D1S J

2
22Jux2u22Jx12Jx2D cos~k!G2

1sin2~k!S Jx22Jx122Jux2u22
J

2D 2

.

ero
-
ing
ure
in-
Eq.
ing
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or
The three parametersx1, x2, and x0 are determined self
consistently. The gap size obtained within the present
proach is shown in Fig. 3 and compared with the numer
results. Our results fit quite well to the numerical results
the parameter regimeJ8/J.0.5. For the case ofJ85J, the
three parameters are found to bex1520.188J, x250.237J,
andx050.3867J, and the gap is found to be 0.46J which is
very close to the experimental value (0.4760.2)J.14 In the
strong-coupling limit (J8@J) our result fits well with the
result obtained by strong-coupling expansion,11 which shows
p-
l

D/J8→1 whenJ8/J→`. But in the regimeJ8/J,0.5 our
results deviated from the numerical results, and a nonz
gap persists even at the caseJ850. So our mean-field ap
proach is valid only in the intermediate- and strong-coupl
regimes. In the weak-coupling regime our mean-field pict
breaks down due to the overestimation of the interchain
teraction. Since the phase factor in the hopping term in
~6! is replaced by its average value, it makes the hopp
term within one chain strongly modified by the motion
spinless fermions in the other chain, which is not valid f
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968 57XI DAI AND ZHAO-BIN SU
the weak-coupling regime. We believe this approach is va
when the interchain coupling is on the order of unity, but
not valid for the weak-coupling case.

Another advantage of the present mean-field approac
that, in the case ofJ85J, it gives the same spin-wave dis
persion predicted by the numerical calculation as shown
Fig. 4. The minimum of the spectra is at the wave numberp,
and the maximum is at the wave number 0.356p. This result
is in good agreement with the numerical result which ha
minimum atp and maximum at 0.3p. We can also calculate
the two-magnon continuum from our mean-field theory. T
two magnon continuum is proportional to

FIG. 3. The solid line shows the spin gap obtained by the s
consistent procedure for two-leg ladders as a function of interch
couplingJ8. The dashed line is the result of strong-coupling exp
sion~Ref. 11!. The squares show the numerical result of Ref. 4. T
inset shows the results withJ8/J less than 0.8.

FIG. 4. The solid line is the dispersion of the spinless fermio
for two-leg ladders calculated in our mean-field approach. T
dashed~dotted! line is the bottom~top! of the two-magnon con-
tinuum.
d

is

in

a

e

E dt^Sz~q,t !Sz~2q,0!&e2 ivt,

which can be transformed into the density-density correlat
of the spinless fermions by a Jordan-Wigner transformati
Then the two-magnon excitation can be viewed as a parti
hole excitation of the spinless fermions. The spectra of
two-magnon excitation with several specificq numbers is
shown in Fig. 5. The bottom~top! of the two-magnon con-
tinuum is just the minimum~maximum! energy of hole-
particle excitation of the spinless fermions for a given wa
number. The result is shown by a dashed line~bottom! and a
dotted line~top! in Fig. 4 and fits the numerical result quit
well.4,8 Compared to numerical methods such as density
trix renormalization group,13 quantum Monte Carlo, and th
Lanczos method,4,8 our mean-field theory based on th
Jordan-Wigner transformation gives a more transparent
derstanding of the gap formation in even-number-leg s
ladders and the low-energy spin excitation.

The spin susceptibility is also obtained by introducing
magnetic field in the original spinless fermion Hamiltonia
where this term acts like the chemical potential:

H5(
k

gkak
1bk1H.c.2

1

N(
k

~ak
1ak1bk

1bk!h.

The magnetizationm then has the expression as

m5
1

N(
i

~12^a i
1a i&2^b i

1b i&!.

And the spin susceptibility could be derived as

xs5
]m

]h
.

We calculate the spin susceptibility in the case ofJ85J in a
wide range of temperatures showing the result in Fig. 6. O
result explains the temperature behavior of the spin sus
tibility quite well, and it is again in good agreement with th
numerical results which give a maximum atT50.8J.

f-
in
-
e

s
e

FIG. 5. The spectra of two-magnon excitation withq50.1p
~dotted line!, 0.5p ~solid line!, p ~dashed line!.
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IV. CONCLUDING REMARKS

In this paper we propose a mean-field approach for s
ladders based on the Jordan-Wigner transformation along
elaborately chosen path defined above. We show that in
mean-field level that the spin gap is opened only in the ev
numbered-leg ladders and vanishes in the odd-numbered
ladders. It gives a very simple picture of the formation a
vanishing of the spin gap in the above-mentioned two typ
of spin ladders. The spin ladders with an even number
legs formed an insulatorlike band for spinless fermion
whereas in odd-number-leg ladders the band structure of
spinless fermions is metal-like.

Then we make a more careful study of the two-leg ladd
Particularly for theJ5J8 case, the magnitude of the ga
found in our approach is in good agreement with both t
numerical result and the experimental result. Further
spin-excitation spectra and the uniform susceptibility are a
calculated based on our mean-field treatment. The disper
relation of the spin-excitation spectra obtained by our me
field theory is very similar to the numerical result, which h
its maximum locating between 0 andp. The uniform sus-

FIG. 6. The spin susceptibility of the two-leg ladder in the ca
of J5J8.
in
an

the
n-

-leg
d
es
of
s,
the

r.

e
he
so
ion
n-
s

ceptibility is also consistent with the numerical result
which predict a maximum atT50.8J.

APPENDIX

Here we prove that matrixh(k) in Sec. II has the two
following properties:~i! If l is an eigenvalue of the matrix
2l is also an eigenvalue of it.~ii ! Zero cannot be an eigen
value of the matrix with any nonzeroJ8.

First we divide the Hermite matrixh(k) into its real and
imaginary parth(k)5A1 iB, in which the matricesA,B are

Ai j 5ad i , j 111ad i , j 21 , Bi j 5~21! i 11d i ,2M112 jg.

One can easily find that matrixA and B satisfy some rela-
tions

~ I! K•h~k!•K52h~k!,

~ II ! AT5A BT52B B215g22B B21AB52A,

in which Ki j 5d i j (21)i andKil Kl j 5d i j .
Based on the above equations we can prove the two p

erties straightforwardly. For~i! if we haveh(k)x5lx, we
can multiply matrixK to both sides of the above equation
K•h(k)•K•Kx5lKx, producingh(k)(Kx)52l(Kx).

For property~ii !, we can prove it as follows. First ifB50
the conclusion is obviously true because the determinan
matrix A is nonzero forJ8Þ0 and this means equatio
Ax50 cannot be satisfied unlessx50. Next, whenBÞ0 we
have

~A1 iB !x50 or equivalentlyB21Ax52 ix.

For matrixC5B21A, we have

C15@B21A#15g22A1B152g22AB

52~B21!~g22B!AB5~B21!A5C.

Then the matrixC is Hermite, and it cannot have an imag
nary eigenvalue, so the equation (A1 iB)•x50 cannot be
satisfied for nonzerox.

In the above proof we used relation~II !. Then from the
above paragraph we prove the two properties used in Sec

e

.
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