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Mean-field theory for the spin-ladder system
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In the present paper, we propose a mean-field approach for spin ladders based upon the Jordan-Wigner
transformation along an elaborately ordered path. We show on the mean-field level that ladders with even-
numbered legs open an energy gap in their low-energy excitation with a magnitude close to the corresponding
experimental values, whereas the low-energy excitation of the odd-numbered-leg ladders are gapless. It sup-
ports the validity of our approach. We then calculate the gap size and the excitation spectra of a two-leg-ladder
system. Our result is in good agreement with both the experimental data and the numerical results.
[S0163-182¢08)09901-9

[. INTRODUCTION number .48 This was also confirmed by recent neutron-
scattering experimerif.

The study of the low-dimensional Heisenberg antiferro- A mean-field treatment of the two-leg Heisenberg ladder
magnetic model is one of the most active research fields iMith the application of a Jordan-V\/llgnel\N)_transformatlon
condensed-matter physics. Haldaneonjectured that for has been proposed by Azzoezal.™ In their approach the
integer-spin one-dimensional antiferromagnetic chains an eniordan-Wigner transformation is introduced to map the spin-
ergy gap exists in the low-energy excitation spectrum, but/2 System to the spinless Fermion system. The gap is ob-
for a half-integer-spin case the excitation spectrum is gapt@ined in their mean-ljleld approach which is aboutl0.un-
less. The spin-1/2 antiferromagnetic chain can be solved exd€r the case ofl=J" which does not fit well with the
actly by the Bethe ansafzThe excitation spectrum is found gxperl_mental value. The eXC|tat|_on spec_trg are also calculated
to be gapless. The measurement of realistic ladder materid their approach, which contains a minimum at the wave
such as SrCiD; (two-leg, SnpCwOs (three-leg, or numberar. But the shape pf the spectra is not consistent with
(VO),P,0, (two-leg?® shows that the spin-excitation gap is the numenca_ll result which predécts the maximum of the
opened in the ladders with an even numbers of legs, whil§Pectra locating between 0 amd2. _
for ladders with an odd numbers of legs, no gap is found in !N the present paper, we propose a mean-field approach
spin excitation. This conclusion was predicted by early nu-2/S0 based on the JW transformatirour mean-field ap-
merical calculatiors and was explained qualitatively by Proach is quite different from the approach used in Ref. 13.
Khveshchenkd.In Khveshchenko's explanation a topologi- YWhen performing a JW transformation in the ladder system,
cal term appears in the effective Hamiltonian of the long-ON€ Must put the sites in a queue. Then the spin operator can
wavelength dynamics in an odd-leg ladder and is absent ibe expressed a8 =c;"e' ™), whered(i) is nothing but
an even-leg ladder. Recently, Siérteas mapped the ladder the summation of number of the sites from= to the
problem onto an effective one-dimensiorfdD) nonlinear (i—1)th site in the particularly ordered queue which are
sigma model. An extra topological term appears in the oddeccupied by spinless fermions. The difference between the
leg system and is absent in the even-ladder system. Thigarticularly elaborated queues used in our approach and
difference between odd- and even-leg ladders is essentialthose of Ref. 13 are shown in Figs(al and 1b). In our
an extension of the difference between the half integer andpproach the sites in the odd number rungs are labeled from
integer Heisenberg chairis. upward to downward but from downward to upward in the

We also have the experience from the 1D quantuneven number rungshown as Fig. ()], whereas in Ref. 13
Heisenberg spin chain, that it is not so trivial to incorporateall rungs are labeled from upward to downwdshown as
the subtle physics of the topological term in a mean-fieldFig. 1(b)].
approach. For a two-leg ladder, the existence of an energy We perform the JW transformation with such a specially
gap in the spin excitation for nonzero interchain coupling ordered queue. The advantages of our approach are the fol-
is confirmed by various methods such as Lanczos, quantutowing. First of all if we replace the phase of the hopping
Monte Carlo*® renormalization group, variational term by its average value, we can easily obtain the mean-
method!® strong-coupling expansidn, spin-liquid mean- field Hamiltonian forn-leg ladders in which the effective
field approach? as well as the mean-field approach based orhopping terms of the spinless fermions have alternative signs
the Jordan-Wigner transformatidhFor J=J’ (J is the ex- along both the chain and rung directions. This mean-field
change coupling along the chajipwhich is the physical pa- Hamiltonian is similar to the one used in Ref. 13 for the
rameter of the real ladder compounds, the energy gap oliwo-leg case. But in their approach a further assumption, i.e.,
tained by numerical calculation is @.5vhich is very close to adding as flux to each plaquette is needed to obtain such a
the experimental value. The spin-wave excitation spectranean-field Hamiltonian, whereas in our approach the mean-
have also been obtained by the numerical calculation whiclield Hamiltonian is obtained directly by replacing the phase
shows the minimum of the spectra is located at the wavéactor in the hopping terms with their average values. We
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(a) In the above Hamiltonian, represents the site position along
the chains ang represents theM sites of different chains
P 5 4 3 ) . coupled by the interchain coupling constdnt As shown in
S . Fig. 1, p is labeled from upward to downward at the even
AN AN AN sites and downward to upward at the odd sites. This is dif-
O N SN SN ferent from that used in the paper of Azzcetzal1* Then we
2 introduce the generalized JW transformation:
(b)
i-1 2™ p—1
FIG. _1. To p(_arform the qudan-ngner transforma_tlon the sites S;,i:C;,ieW 2 2 Cl-t—nCI,n+i7TE Cﬁicl,i: )
are put in a particular queue in our present st(ayand in Ref. 13 n=—o =1 =1

(b).
in which c is the spinless Fermion operator. The summation

can then easily show that the spin gap is only opened i the phase factor is the number of occupied sites before the

even-leg ladders. To a certain degree, it supports the validitith site along the particular queue shown in Fi(g)1Then

of our way of performing the Jordan-Wigner transformationthe quantum spin-1/2 Hamiltonian can be mapped onto a

construction. spinless fermion Hamiltonian as
Secondly we can treat the phase factor in the hopping
terms more carefully by introducing a self-consistent proce- 2M—-1 1
dyre for the two-Igg Iadder_. We find that b'oth the gap mag-py— 3/ . E (__Crpci,p) . (__ Ci+,p+1Ci,p+1)
nitude and the spin-excitation spectra are in good agreement ip=112 2
with the numerical and experimental results in the case of oM
J'=1J which is of the physical parameter for the real ladder | 3 (E—c* . ) (}_ ot c )
compounds. Actually the energy gap is found to be 0.46 62y \2 iRl FiHlMelopritlAMELop

the casel’ = J which is very close to the experimental result

0.47+0.2). The spin-wave excitation spectra obtained by 4

our mean-field calculation is also consistent with the numeri- T % i§1 (Ci\pCi,pr1tH.C)

cal result with the minimum at the wave numberand the '

maximum at the wave number 0.366Compared with the N b

approach used in Ref. 13, our mean-field approach is much + 2 E (G pCi+1,2M+1-p€ PP 1 H.c), (©)

better in the case af’>0.5J. In the weak-coupling regime hP

our approach does not work as well. The energy gap persists
; ' ; ; Where

even in the case af’ =0. In spite of the unsatisfactory as-

pect in the weak coupling regime, our approach is still valu-

gy 2M+L

2M

: : : . 2
able because it works very well in the intermediate- and &)= Em
strong-coupling regimes, which have the experimental corre- (p)= 7T|=p+1 (M Misgam+1-1)-

spondence.
In Sec. I, we calculate the spin-excitation gap of the spin i
ladders with various numbers of legs and show that in the " our mean-field approach, we replagg by (n; ). For

mean-field level the energy gap only exists in ladder systemwe_ pre_sent_study, we _further assume that the finite magnet-
with an even number of legs. In Sec. Ill, we propose a mor&ation in this system is not possible because of the strong

careful treatment of the two-leg spin ladder. The Spin_quantum fluctuation. This is reasonable for systems with a

excitation gap, as well as the excitation spectra is calculated€9 Number much less than the site number of each chain.

Finally, we make concluding remarks in Sec. IV. Then we have (S’ )=(1/2—c{ic;;)=0 which implies
(n; ;)=0.5. Consequently, the phase factor in E).can be

approximated by:®(p)=a(2M —p). Moreover we de-
couple the four-fermion interaction term in the above Hamil-
tonian by the Hartree-Fock approximation. Finally the mean-

We begin with the #1-leg antiferromagnetic Heisenberg field Hamiltonian of the spinless fermions has the
ladder Hamiltonian: expression:

Il. MEAN-FIELD TREATMENT FOR THE SPIN GAP IN
n-LEG LADDERS
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If we introduce a Fourier transformation for the site indices,wherea=(J'/2) y,=—Jsin(k). The Hamiltonian then can
we have be written in a formH=3,C, h(k)C, with h(k)
a iy
0 —iy
0 a a iy
a 0 a —iy
a iy
h(k)=
—iy a
iy a a
—iy a
iy a a
—iy 0

The above matrix contains\2 eigenvalues for a given with the experimental value. Although our approach is quite
wave numberk corresponding to the @ individual bands rough, the result is in good agreement with the experimental
separated by gaps. It can be proved straightforwardly that foralue>*+1.7
a given wave numbek, half of the eigenvalues are less than ~ The spin-excitation spectra can also be obtained from the
zero and other half are greater than zero. Furthermore we c@pove mean-field approach, the spin-wave dispersion is
also prove that zero is not an eigenvalue of the above matrix(J'/2)“+J“sink for the two-leg case. It has two energy
for any nonzera)’. We will prove the two statements in the Minimums, one at 0 and another at The shape of the
Appendix. This result shows clearly that half of the energy

bands of the spinless Fermions are below zero energy and

. . 05 0O —— Calculated in this paper
another half is above zero. The energy gap between them is : Q e Experimental value
nonzero because zero is not the eigenvalue of the above ma- '
trix for nonzeroJ’ and arbitraryk. Assuming there is no 04t

self-magnetization in one-dimensional systems, only the
lower half of the states are occupied by spinless fermions in
the ground state. Therefore a spinless fermion system is very <
similar to the traditional insulator in which the valence band &

is fully occupied and the conductive band is fully empty in 3 0.2

the ground state. So a nonzero minimum energy is needed toﬁ
excite the system from the ground state which indicates a
spin-excitation energy gap. For spin ladders with an odd
number of legs there exist odd numbers of energy bands.
Since only half of the states is occupied in the ground state 0.0
there must exist at least one band which is partially occupied.

This picture is very similar to the traditional conductor in

which there exists at least one partial occupied bauh-

duction bangl Then the low-energy excitations are gapless
for odd-numbered-leg ladders. FIG. 2. The spin gap fon-leg spin ladders calculated in our

Moreover, we calculate the gap size of the 2,4,6,8, anghean-field approach which is compared by the experimental value
10-leg spin ladders, the results are shown in Fig. 2 togethgRefs. 14,17.

0.1}

5 6 7 8 9 10 11

2 3 4
The number of legs



57 MEAN-FIELD THEORY FOR THE SPIN-LADDER SYSTEM 967

spectra is not consistent with the numerical result which has Ill. THE MEAN-FIELD THEORY OF THE TWO-LEG

the spectra minimum located only at wave numbeand the LADDER

maximum is near 0.356. This is because the treatment for

the phase term of E{3) is too rough. In the next section we For the two-leg case, we can introduce two bipartite lat-
will propose a more careful treatment of the phase factor inices labeledr and 8. Following the same procedure shown
Eq. (3). We can then obtain a more improved spin-excitationin the above section, the Hamiltonian for spinless fermions
spectra, which is very close to the numerical results. becomes

+J2 ( aalam)(%—ﬂrﬁi)

H:JE( )(2 BB +32< )(2 BB

J’ J A + J
+5 2 (af BrHHe)+52 [af By A ATt L Hel+ 53 (B i+ H.c). ®

In our mean-field approach, different from the simple treatment used in the previous section, we first replace the phase factor
in Eq. (6) by its average value:

(€A At 1oy = (1- 28 B)(1—2a',1ai11)) = — 4l xal?,

where we define:

x1=(B ais1), x2=(ai Bis1), xo=(Bi aj).

Then the fermion-fermion interacting term (H2y;" a;)(1/2— B;" ;) can be factorized as

1
(112 o ) (1/2= B B) =7~ xoB" @i~ X0 @ Bi+ X3 Xo-

We decouple the other two interacting terms in the same manner and obtain the following mean-field Hamiltonian of spinless
Fermions:

HMF=; Yeay Bt H.C., (7)

where

. - ‘]
+|sm(k)<JX2—JX1—23|X2|2_ 5

’ J
')’kz[(?_JIXO + 5—23|X2|2—3X1—3X2>008(k)

Then the above Hamiltonian can be diagonalized as

HMF=Ek Ev(a, a— By By, ®

in which

2 2

J’ ,
Ek: 7_\] Xo +

J ) _ , 3
5 =23 x2l? = Ix1=Ixz | cos k) | +sir(K)| Ixz—Ix1—2d|x21*~ 5

The three parameterg;, x», and y, are determined self- A/J'—1 whenJ’'/J—o. But in the regimel’'/J<0.5 our
consistently. The gap size obtained within the present apresults deviated from the numerical results, and a nonzero
proach is shown in Fig. 3 and compared with the numericafjap persists even at the ca¥e=0. So our mean-field ap-
results. Our results fit quite well to the numerical results inproach is valid only in the intermediate- and strong-coupling
the parameter regimé&'/J>0.5. For the case al’=J, the  regimes. In the weak-coupling regime our mean-field picture
three parameters are found to pe=—0.188], y,=0.237, breaks down due to the overestimation of the interchain in-
and y,=0.3863, and the gap is found to be 0Jl@vhich is  teraction. Since the phase factor in the hopping term in Eq.
very close to the experimental value (0:40.2)J.% In the  (6) is replaced by its average value, it makes the hopping
strong-coupling limit 0’>J) our result fits well with the term within one chain strongly modified by the motion of
result obtained by strong-coupling expanstdmhich shows  spinless fermions in the other chain, which is not valid for
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FIG. 3. The solid line shows the spin gap obtained by the self- 05 §,f" A
consistent procedure for two-leg ladders as a function of interchain — Lo e ,\:_4
couplingd’. The dashed line is the result of strong-coupling expan- 0‘00.5 1.0 L5 20 25 1.0
sion(Ref. 11). The squares show the numerical result of Ref. 4. The CU/ J

inset shows the results with'/J less than 0.8.
FIG. 5. The spectra of two-magnon excitation wik=0.17

the weak-coupling regime. We believe this approach is valio(doued ling, 0.5m (solid ling),  (dashed ling

when the interchain coupling is on the order of unity, but is
not valid for the weak-coupling case. f dt(S¥(q,t) S —q,0))e ¢,
Another advantage of the present mean-field approach is
that, in the case od’=J, it gives the same spin-wave dis- \hich can be transformed into the density-density correlation
persion predicted by the numerical calculation as shown iRy the spinless fermions by a Jordan-Wigner transformation.
Fig. 4. The minimum of the spectra is at the wave NUMBEr  Thep the two-magnon excitation can be viewed as a particle-
and the maximum is at the wave number 0.858his result o) excitation of the spinless fermions. The spectra of the
is in good agreement with the numerical result which has dwo-magnon excitation with several specificnumbers is
minimum at7 and maximum at 0.8. We can also calculate gpown in Fig. 5. The bottonftop) of the two-magnon con-
the two-magnon continuum from our mean-field theory. The;jn,um is just the minimum(maximum energy of hole-
two magnon continuum is proportional to particle excitation of the spinless fermions for a given wave
number. The result is shown by a dashed libettom) and a
3.0 ‘ , dotted line(top) in Fig. 4 and fits the numerical result quite
’ ' well.*® Compared to numerical methods such as density ma-
trix renormalization group?® quantum Monte Carlo, and the
Lanczos metho&® our mean-field theory based on the
2.5 1 Jordan-Wigner transformation gives a more transparent un-
derstanding of the gap formation in even-number-leg spin
ladders and the low-energy spin excitation.
The spin susceptibility is also obtained by introducing a
magnetic field in the original spinless fermion Hamiltonian,
where this term acts like the chemical potential:

1
H=2 ma Bt Hem g2 (el aict B Boh.

The magnetizatiom then has the expression as

m= %Z (1—<ai+ai>_<ﬁi+ﬁi>)-

And the spin susceptibility could be derived as

0.0 L ‘ om
0.0 2.0 k 4.0 6.0 Xs=
d

We calculate the spin susceptibility in the caselof J in a
FIG. 4. The solid line is the dispersion of the spinless fermionsWide range of temperatures showing the result in Fig. 6. Our
for two-leg ladders calculated in our mean-field approach. Thed€sult explains the temperature behavior of the spin suscep-

dashed(dotted line is the bottom(top) of the two-magnon con- tibility quite well, and it is again in good agreement with the
tinuum. numerical results which give a maximum &t 0.8].
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1.2 ceptibility is also consistent with the numerical results,
Q which predict a maximum af=0.8J.
N’ 1.0
< APPENDIX
>
=08 Here we prove that matrixi(k) in Sec. Il has the two
-E following properties(i) If A is an eigenvalue of the matrix,
= o6l —\ is also an eigenvalue of ifii)) Zero cannot be an eigen-
o value of the matrix with any nonzerd .
8 First we divide the Hermite matrik(k) into its real and
g 04 imaginary parth(k) =A+iB, in which the matrice#\,B are
w2 .
O ) Aj=as j.1+ad -1, Bij=(—1)'"16 a1V
ﬁ § One can easily find that matrik and B satisfy some rela-

00 yi ‘ tions

0.0 0.5 1.0 1.5 20 2.5 3.0 35 4.0

T/T () K-h(k)-K=-h(k),

FIG. 6. The spin susceptibility of the two-leg ladder in the case () AT=A B'=—B B l=y28 B !AB=-A
of J=J'. '
in which K” = 5”(_ 1)' and Kil KIJ = 5” .
IV. CONCLUDING REMARKS Based on the above equations we can prove the two prop-

In this paper we propose a mean-field approach for spir?rtles straightforwardly. Fofi) if we haveh(k)x=Ax, we

. ! n multiply matrixK to both sides of the above equation:
ladders based on the Jordan-Wigner transformation along a N ) _
elaborately chosen path defined above. We show that in th 'E(k) i K'K);_..)\KX' producmgh_(tk)(fol)l— )\IgK)(t)B—O
mean-field level that the spin gap is opened only in the even- or proper y(!')’ We can prove It as foflows. First b=
numbered-leg ladders and vanishes in the odd—numbered—l(%ae qonclu_smn IS obwousl),/ true becau_se the determmant of
ladders. It gives a very simple picture of the formation and at_rlg Ais r;gnzerg ]':.Or&] 7&'0 arz)d I:lhlst mialg;guanon
vanishing of the spin gap in the above-mentioned two typeﬁ‘x_ cannot be satisfied uniess=U. Next, whe we

of spin ladders. The spin ladders with an even number o

legs formed an insulatorlike band for spinless fermions, ; _ ; “Ipy i
whereas in odd-number-leg ladders the band structure of the (A+iB)x=0 orequivalenthB “Ax X
spinless fermions is metal-like. For matrixC=B™ A, we have

Then we make a more careful study of the two-leg ladder. N P _2
Particularly for theJ=J' case, the magnitude of the gap C'=[B "Al"=y “A"B"=—v “AB

found .in our approach is in gooq agreement with both the =—(B~Y(y 2B)AB=(B })A=C.

numerical result and the experimental result. Further the

spin-excitation spectra and the uniform susceptibility are als@hen the matrixC is Hermite, and it cannot have an imagi-
calculated based on our mean-field treatment. The dispersiarary eigenvalue, so the equatioA<iB)-x=0 cannot be
relation of the spin-excitation spectra obtained by our meansatisfied for nonzera.

field theory is very similar to the numerical result, which has In the above proof we used relatigh). Then from the

its maximum locating between 0 and. The uniform sus- above paragraph we prove the two properties used in Sec. Il.
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