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Mesoscopic charge quantization
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We study the Coulomb blockade in a chaotic quantum dot connected to a lead by a single channel at nearly
perfect transmission. We take into account quantum fluctuations of the dot charge and a finite level spacing for
electron states within the dot. Mesoscopic fluctuations of thermodynamic and transport properties in the
Coulomb blockade regime exist at any transmission coefficient. In contrast to the previous theories, we show
that by virtue of these mesoscopic fluctuations, the Coulomb blockade is not destroyed completely even at
perfect transmission. The oscillatory dependence of all the observable characteristics on the gate voltage is
preserved, its period is still defined by the charge of a single electron. However, phases of those oscillations at
perfect transmission are random; because of the randomness, the Coulomb blockade shows up not in the
averages but in the correlation functions of the fluctuating observéblgs capacitance or tunneling conduc-
tance. This phenomenon may be callednésoscopic charge quantizatidnS0163-182608)05316-9

[. INTRODUCTION statistics of the peaks can be related to the properties of a
single electron energy and wave functfbso that the distri-
The effect of the Coulomb blockati€ in chaotic quan- bution functions for these quantities can be extracted from
tum dots sets an ideal stage for studying the interplay bethe well-known random matrix theofRMT).8° The trans-
tween the quantum chaos and interaction phenomena in ort in the valleys occurs by virtual transitions of an electron
many-electron system. By tuning the connection between theia excited states of the d&.The statistics of the conduc-
leads and the quantum dot, one can study a rich variety dince in this case was recently obtained in Ref. 11 and was
nontrivial effects. In the weak tunneling limit, discrete charg-confirmed experimentally in Ref. 12.
ing of the dot results in a sequence of sharp conductance All the aforementioned results were obtained neglecting
peaks, which carry information about the chaotic motion ofquantum fluctuations of the charge of the cavity. These fluc-
noninteracting electrons confined inside an almost closetbations grow with the increase of the coupling between the
dot* In the opposite limit of wide channels, charge quanti-dot and lead? Then, the difference between the peaks and
zation does not occur, and quantum chaos of free electrons iralleys becomes less pronounced and eventually instead of
an open billiard may be studi€din a broad intermediate the peak structure, one observes only a weak periodic
region, the charge quantization is gradually destroyed, anthodulation'* Clearly, this modulation can be described nei-
the chaotic electron motion is affected by fluctuations ofther by the properties of the single-electron wave function
charge of the cavity. The modern experimental techriffle nor by the lowest-order virtual transitions via the excited

allows one to continuously traverse these regimes. states.
The effect of charging is conventionally described by the The case of almost perfect transmission of a one-channel
Hamiltoniarf point contact connecting the quantum dot with the lések
A , Fig. 1) was analyzed by Matve&tand Flensbery in the
. E¢[Q e? framework of an effective one-dimensional Hamiltonian.
chf(g_/\[) . Ec= (1D Employing the bosonization technique, they showed that the

Coulomb blockade disappears completely if the transmission
whereC is the total capacitance of the dot, the dimensionless
parameterV is related to the gate voltagé,, and gate ca-

pacitanceCq by N=V,/eCy, andQ is the dot charge. Usu-
ally, charging energ¥ is much larger than the one-electron
mean level spacing of the dd, If the connection of the dot
with the leads is weak and temperatdraés small, T<E(,

the charge is well quantized for almost All except narrow
vicinities of the charge degeneracy poirkslf-integer\).
The behavior of the differential capacitance of the cavity,
d(Q)/dVy, and of the conductance through the cavity is
quite different for the system tuned to the immediate vicinity  FIG. 1. Schematic view of a quantum dot connected to a lead.
of charge degeneracy point€oulomb blockade peaksor  Periodic orbitA encounters the entrance to the dot omge= 1, and
away from those pointg§Coulomb blockade valleys The  periodic orbitB does not encounter the entranog=0.
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coefficient of the point contact is exactly unity=0 andA Il. QUALITATIVE DISCUSSION
=0. The explicit dependence of the differential capacitance
of the system onV, and on the small reflection coefficient =0). In the limitA— 0, the electron charge of the dot varies

0<|r|?<1 was obtained by MatveeV.It is important t0 i e gate voltage a€Q)= e\, to assure the minimum of
emphasize that the Coulomb blockade in this situation igpe electrostatic energy. The interaction(1.1) depends only
nonperturbative in charging energy effect and it cannot bg, the number of electrons crossing the dot-channel bound-
revealed in the standard Hartree-Fock or random phase agy Therefore, the properties of the ground state can be char-
proximations. . . acterized by the asymptotic behavior of the wave functions
The properties of a quantum dot connected to reservoir by,r from the entrance to the dot. This behavior is described
a channel were analyzed in a series of papers dfi&w and 1, the scattering phase, and at low energies can be under-

6,17 i . s
collaboratorg®’ They have used the random phase approXisinad from the following qualitative argument.

mation to calculate the frequency dependence o_f the tIinear Entrance of an additional electron with energyall the
response of the curremtthrough the channel to biade"  gnergies will be measured from the Fermi Iduato the dot
applied to the reservoirt=G(w)V. In this approach, the (o ires energf.. Therefore, the electron may spend in the
admittanceC= —Im(dG/dw)|,_o coincides by construc- ot time of the order ofi/E¢, and then the extra charge of
tion with the thermodynamic capacitance of the noninteracty,e got has to relax. There are two processes that lead to the

ing _eIectrons._The quz_intum corrections and mesoscopic fluGejaxation of the chargeli) the elastic process where the
tuations of this quantity then can be analyzed by using thgame electron leaves the dot; afiid the inelastic process

distribution of the Wigner delay times of the noninteracting,yhere some other electron is emitted from the dot. At low
7 . . . .
systent.” This approach is perfectly valid for a large NUMDEr gnergies the probability of the inelastic process is as small as

of channels, but for a single channel, there is no paramete(rE/EC)z, by virtue of the smallness of the phase volume.
justifying it. We will see below that the results obtained by a The jast statement assumes the Fermi liquid behavior at low
well-controlled procedure are significantly differesee  onergies and, as we will see later, is valid only for a spinless
Secs. V and VI one-channel caseTherefore, we may consider only the elas-
In this paper, we account for both the strong quantumjc process. The same consideration is applicable also to an
charge fluctuations, and the chaotic electron motion within,|actron leaving the dot. Thus we conclude that the low-
the dot. We will show that backscattering of electrons fromenergy properties of the system can be mapped onto the dot
the walls of the dot into the channel connecting it to the 'eadeffectively decoupled from the channel, and the phase of the
results in residual Coulomb blockade oscillations of Observ'scattering amplitude from the entrance of the dot is given by
ables with the gate voltage. In the limit of perfect channel,o Friedel sum rule
transmission, the relative magnitude of the differential ca-
pacitance oscillations is/A/Ec and (A/Ec)In?(Ec/A) for S=m(Q)e=7N. (2.1
the spinless and for spin-1/2 cases, respectively. If the sec- ) _ o )
ond lead is attached to the cavity by a weak tunnel junctiofEquation(2.1) can be applied to electrons incident from in-
with conductanceG,<e?/4%, the two-terminal conductance Side the dot, as well as to electrons incident from the chan-
G can be measured. The average value of the conductancen§!- The outlined description resembles closely the Nozieres
suppressed by the Coulomb blockade, but it remains finitél€scription of the unitary limit in the one-channel Kondo
even at zero temperaturéG)=GoA/E. Fluctuations of ~Problem:= o _
the conductance are of the order of its average. This re- 'he outlined above qualitative picture based on the intro-
sembles the result for the elastic co-tunneling in the weakluction of scattering phaskis somewnhat intuitive; it will be
coupling regime®1! However, the dependence of the con- Verified by a calculation in Sec. IV. Here instead of rigorous
ductance of the gate voltage is no longer a sequence of de@00f, we demonstrate that this scheme reproduces the result
vall nd shar k rather a weakl illating func-
tisn(.aysa d sharp peaks, but rather a weakly oscillating func Ey(M)=|r|Ec cos 2rAf 2.2

For a finite reflection coefficient in the channdr|  optained by Matvee¥’ for the ground-state energgy(A\) of
#0), we found a new contribution, in addition to the aver- spinjess electrons in the limit of zero level spacing in the dot.
aged differential capacitance calculated in Ref. 14. This conThen we apply the scheme to find the corrections to the
tribution is fluctuating and provides, in particular, the depe”'ground-state energy arising from a finite Those correc-

dence of the differential capacitance on the magnetic field. tions will result in the mesoscopic fluctuations of the ground-
The paper is organized as follows. In Sec. Il, we qualita-gtate energy.

tively discuss the mesoscopic fluctuations of the differential \ye start with considering the limiA =0. First, we put

capacitance for spinless electrons. Section Il is devoted tﬁlso|r|:0 and calculate the density of electrons in the chan-

the formulation of the model and derivation of the effective g p(x). Then we take into account the scattering potential
action representation. We will also discuss the conditions Of/(x) that generates+0, in the first order of perturbation
applicability of the model. Section IV describes the theory

bosonization procedure. Calculation of the ground-state en-

ergy and differential capacitance is performed in Sec. V. The

tunneling conductance in a strongly asymmetric setupe Eg(N):f dxp(X)V(X). 2.3
channel is reflectionless, and the other junction is of conduc-

tanceGy<e?/#) is studied in Sec. VI. Our findings are sum- As we discussed, the Coulomb interaction leads to the per-
marized in the Conclusion. fect reflection of an electron at low energies; wave functions

Let us consider first a completely opened chanrel (
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& Eg(8)=Eg4(6+m)+0(A). (2.7
As we will see below, the amplitude of the oscillation of the
* me ground-state energy witld is much larger than the mean
3 V/\v Nid level spacing and we will neglect the last term in E2.7).
N v\/\/\__ In order to estimate the amplitude of the oscillations, we
2 \/\/\/\/%:z recall that the correlation function of the level velocities is
ISEE N N\ i 9
iven b
N 7
=N A 2(A\?
\// ' (ds€)= put (9s5€195€)) = & /—3(;) ; (2.9

0 Phase shift. § T whergﬁzl,z for the orthogonal and unitary ensem_bles, re-
’ spectively, and---) stands for the ensemble averaging. For-
FIG. 2. Evolution of the energy levels of the quantum dot with Mula(2.8) can be easily understood from the first-order per-
the scattering phasé turbation theory. At 6<1, we have ¢(0)~¢(0)
+(8/7v)|¥2(0)|. For a chaotic system the exact wave func-
have the formy,(x) =coskx|— 6), with phase shifis given  tions ¢; can be presented in the form
by Eq.(2.1). It leads to the Friedel oscillation of the electron

; 1+b;
density p(X) =2, _ji k1= #x(X)|?, whereve and ke are |44(0)]2= P
the Fermi velocity and Fermi wave vector, respectively. We A
obtain

where the area of the dot appears due to the normalization
£ condition, andb; characterizes the fluctuations of the chaotic
—< cog 2ke|x| —28), |X|<vgl/Ec wave fL.Jncftsions. In accordance with the Porter-Thomas
UF distribution;
P(X)=1 sin(2kg|x| —24) x|>0e/E (2.4
|X| F C-

2
’ (bi)=0; <bibj>=E5ij-
Here we omitted the irrelevant constant part of the electron Estimating the mesoscopic fluctuations of the ground-

density. Substituting Eq(2.4) into Eq. (2.3, assuming the state energy2.5) with the help of Eq.(2.8), we obtain for
magnitude of the potential aroumd=0 smaller thaw ¢ /E., o<1

and using the standard expressjop=|V(2kg)|/vg, we ob-

2
tain formula(2.2). HereV(k) is the Fourier transform of the ([Eq(8)— Eg(O)]Z)zAZ(E) 35” ~AE:8%
potential V(x). T -EcZE <0 B
Having verified the suggested scheme for the dasd, (2.9

we proceed with evaluation of the ground-state energy of &s we have already explained, ener®.5) is a periodic
finite dot connected to a reservoir by a perfect channel. Acfunction of & with period 7. On the other hand, fos<1,
cording to the above discussion, the channel is effectivelyeq. (2.9) is valid. Therefore the characteristic amplitude of
decoupled from the dot due to the charging effect evenne oscillations is of the order afEcA, and it is plausible to
thoughr=0. Therefore, we have to relate the ground-stateassume that the correlation function of energies at two dif-
energy of a closed dot to the scattering phas# Eq. (2.1).  ferent parametera/;, N, takes the form

For a chaotic dot, this problem is equivalent to finding a

variation of the eigenenergies by introduction of impurity (Eg(N1)E4(N2))~AEc cos 21(N;—N7), (2.10
potential V(r) = (1/mv) (r)tans, where v is the averaged where we use Eq(2.1). It is important to notice that the

density of states per unit area. The relevant contribution to_ .~ = X
A variation of the energy of the ground state is much larger
the ground-state energy is given by

than the mean level spacirg This observation enabled us

not to consider in particular the variation of the chemical
Eg= 2 [&(8)+ u], (2.5 potential with changing’, because it would generate a cor-

~Ec=6i<0 rection of the order of the level spacing only.

where & are the eigenenergies measured from the Fermj [N order to explain the functional form of the correlation

level . As soon as the scattering phase changes-pgne  function(2.10 and make our argumentation more precise, it

energy levels with changing is shown schematically in Fig. ng from the Gutzwiller trace formul& The energy of the

2. The position of the levef, () satisfies the gluing condi- 9round state is given by

tion 0

E =—j deN(e)K(€e/Ep), (2.11
§i(o+m)=¢§i41(9). (2.9 ’ o
From Eg.(2.5 and Eq.(2.6) we see that the ground-state where e is measured from the Fermi level, ah{¢) is the
energy depends almost periodically é6n integrated density of stateN(e) =X;0(e— ¢;). HereK(x) is
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some function that decays rapidly>at-1, so only the states The classical probability?,(t) differs from P(t) by satisfy-
that can be described within the Fermi liquid theory contrib-ing an additional constraint: the corresponding periodic or-
ute into thes-dependent part of the ground-state endigfy  bits are reflected from the dot entrance exactlytimes;

Eq. (2.5]. SPa(t)=P(1).
The integrated density of states can be expressed as a sumin general P,(t) depends on a particular shape of the dot.
over the classical periodic orbifS: However, if the motion is chaotid®?, (t) becomes universal,
i , n
N(e,d)= Re; Rj(e)ex;{gsj(ewzmja . (212 P ()= (tAn/Iﬁ) s 2.17

Here R; is the weight associated witfth orbit, S; is the ) o

reduced action for this orbit. The last term in the exponent irfor the periodst much larger than the ergodic tinfg/Er .

Eq. (2.12) characterizes the reflection from the entrance ofEN€rgyEr associated with the time scale at which the clas-
the cavity, anch; is the number of such reflections fpth sical dynamics becomes ergod|p is the counterpart of the
orbit; see Fig. 1. We have omitted the mean valudlgg), ~ 1houless energy for the diffusive system. TypicaB
which is independent of the phase sti#t1). =Ec, therefore we adopt the approximati@y>Ec>A.

Integrated density of stat¢8.12 is a strongly oscillating According to Eq.(2.14, the characteristic period of the

function of energy, which vanishes upon ensemale en- semiclassical trajectory is qf the order BfE., which is
ergy) averaging. However, it contributes to the fluctuationsmuch smaller than the Heisenberg tinié¢A. Therefore,

of the density of states: when calculating the oscillatory part of the correlation func-
tion of the ground-state energies, it suffices to keep in Eq.
(N(€1,61)N(€3,85)) (2.16 only the contribution of the trajectories reaching the

] entrance only once. As the result, we obtain an expression
I . similar to our estimatg2.10),

=2ReY) |Rj|2exp[%(s,-(el)—sj(ez))+2mj(51— 52)}, ©.10

(213) <EQ(N1)EQ(N2)>:C¥AEC CcOos ZT(Nl_Nz), (21&

and we neglected the energy dependence of the prevhere we have used E.1). The numerical coefficient
exponential factor&; because it occurs on the energy scale:(l/wz)fgdx"}{(x) depends on the particular form of func-

of the order of the Fermi energy. In the double sum over th(?ion K, and cannot be found within the simple consideration.

pgriodic orbi:% arising in !Eq(2.13), one can re.tain only Let us now discuss the correlation of the ground-state
diagonal ter because different orbits have different ac- energies as a function of magnetic field. The magnetic flux

tions; the nondiagonal terms oscillate strongly and vanish ; - . _
upon averaging. The factor of 2 in EQ.13 originates from threading a periodic orbit adds a phagp=A;H/®, to the

. ; . X action in each ternj in the Gutzwiller formula2.12), where
the fact tha_t the electron traject.oryand the trajectory time A, is the directed area under the trajectdryjs the applied
reversed tg have the same action.

. : magnetic field, an@ is the flux quantum. Correspondingly,
In order to calculate the correlation function of mesos_formula(z 14) is modified to
copic fluctuations of ground-state energi2sll), we use Eq. '
(2.13 and expand the action asj(e;)—Sj(e)=(€;

—€)t;, with t; being the period ofth orbit. After integra- E (8 HOEA(S, Ho))=2E2 R. ZK( c 1)
tion over energieg, ,, we find (Eqg(01,H1)Bq(02,Hz) C; IRl h

—oE2 2 Ecl X cO HuA co HaA, cog2n(8,—8,)]. (2.19
(Eq(01)Eg(8))=2E8 2 [Rj|K| 7= |cog2n;(6, - 6,)] D g (8-8)].  (2
(2.14 .
In analogy with Eq(2.16), we transform Eq(2.19 to
where K(y)=|/°.dxK(x)e™|? is a function decaying
aty>1.

E2 =dt
Coefficients|R;|? have a very simple physical meaning, (Eq(81,H1)Ey(8,Hp))= _22 j dAJ —P,(t;A)
and are related to the classical probabil{t)dt to find a 7T n ot
periodic orbit with a period within the intervat;t+dt]:

~[Ect H,A HoA
X K| ——|cog ——|cog ——|cog 2n(51— 5)]1,
E 2 1 ocdt ﬁ (I)O (DO
In the same fashion, we obtain from HG.14): where P,(t;A)dA differs from probability P,(t) by one
more constraint; the directed area swept by a trajectory lies
(Eg(61)E4(82)) within the interval[ A;: A+ dA].
) In a chaotic system, the probabiliB,(t;A) factorizes:
—ECE fwdti{ Ectlp 2n(6,— 6 2.1
s Jo T T | Prlteoazniam 2l (248 Po(t;A) = Po(DP(LA). (2.2
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Here P,(t) is defined by Eq.2.17), and the distribution sidered on the basis of a one-dimensional HamiltoAfdn.
function of the areas is Gaussian: However, the original problem was at least two dimensional,
so backscattering of the electrons by the walls of the dot
O(tA) 1 exp| cannot be accounted for by the one-dimensional Hamil-
L N T VITENN - 2 ' tonian. Instead, of an effective Hamiltonian, we were able to
2Nm(AN() HATD) (2.22  find an effective action that depends only on the electron
Ext variables of the one-dimensional channel. If there was no
<A2(t)>:_TA2_ interaction, such an approach would have no advantage;
h however, in the presence of interaction it becomes very pow-

The formula for(A%(t)) shows that the typical area under the erful. The_z int_eraction will be exactly accounted for by means
electron trajectory differs from the area of the déf and ~ ©Of Posonization, see Sec. IV.

grows as\t. This law is applicable at the time scale exceed- Electrons are back_scattered into the chan_nel by the. wa_IIs
ing the ergodic timéi/E-, and reflects the time dependence of the dot at random times, therefore the action we derive in
of r.m.s. of the random winding number for the trajectory of S€¢- Il A has a nonlocal in time, random term. This term,
an electron bouncing off the walls of the dot. however, can be treat_ed perturbatively by v_|rtue of the ;mall

As we already discussed, the characteristic time an ele@arameterA/E.<1. With the help of the action, calculation

tron spends in the dot &/E¢ . The characteristic area accu- of the correlation functions of energies and differential ca-
mulated during this time is/Ex/Ec. A magnetic field pro- pacitances can be performed by the standard diagrammatic

9 .
duces an appreciable effect if a flux penetrating through thiénethOdsl' Al energies Ieg,s. thafty the averages become
area is of the order ofb,. Thus, the correlation magnetic universal. In this regime, it is also possible to formulate the
field is controlled by the chargin'g energy: model starting from the random matrix HamiltoniZnsee

Sec. Il B.
® E The applicability of the description of the interaction by
HC=—O c (2.23 Eqg. (1.1, i.e., of the constant-interaction model, is discussed
A N 2mE; in Sec. Il C. We will show that the corrections to this de-

Using Egs.(2.20—(2.22, we find the correlation function ~ scription are of the order of 4/ whereg>1 is the dimen-
sionless conductance of the dot.

AZ

2
<Eg(N1aH1)Eg(N2,H2)>: EcA 2 Ag H_;) Cos 2rn, A. “Conventional” formulation
5T
¢ (2.24 We start with the Hamiltonian of the system,
where we introduced the shorthand notatidn=H;*+H, A=A+ |:|C , (3.1

andn=N;—A\5. Calculation of the exact form of the dimen- A

sionless functionA g(x)= fgdy e K(y), and of the nu- WhereHg is the Hamiltonian of noninteracting electrons,

merical coefficient in Eq.2.23, requires more involved 1

treatment, which is a subject of the following sections. ':'F:f dr[—V¢*V¢+[—,u+U(r)]¢*¢ . 32
Equationg2.18 and(2.24) constitute the main qualitative 2m

result of this section. We were able to demonstrate the OSC'LThe potentiall(r) describes the confinement of electrons to

lations of the ground-state energy with the applied gate VOItihe dot and channel.

age. The phase of those oscillations is random, so that the _ . LA
oscillations can be revealed only in the correlation functions, The interaction Hamiltoniaf ¢ is given by Eq(1.1), and

Unfortunately, these simple qualitative arguments are nothe charge of the dot is

sufficient for finding the precise form of the correlation func- N

tions. Moreover, the assumption of the Fermi-liquid behavior 9: J dr ¢ty (3.3
is valid only for the spinless electrons. It is known that the e dot '

low-energy behavior of the=1/2 electrons is equivaleit

to that of the two-channel Kondo problem in its strong-
coupling fixed point displaying a non-Fermi-liquid behavior.
Quantitative study of the system in this case will be pre-
sented later; see Sec. V B.

where the integration is performed within the dot. Of course,
the boundary separating the dot from the lead is not defined.
However, this ambiguity can be absorbed into the definition
of dimensionless gate voltag¥.

For the purpose of the evaluation it is more convenient,
however, to change the definition of the charge. Noticing that
the total number of particles in the system is an integer num-

The main difficulty of the problem is in the nonperturba- ber that can be added to the parametéwithout affecting
tive nature of the Coulomb blockade effect. Derivation of an@ny periodic in\” observables, we write
effective one-dimensional model is our first step in overcom-
ing this difficulty. The interaction energil.1) depends only
on the total number of electrons in the dot. The change of
this number is associated with electrons propagating through
the channel. Because the dynamics of the channel is one To calculate the ground-state energy, we start with the
dimensional, the charging effects of the system can be corthermodynamic potential,

Ill. THE MODEL

o | O

=—f dr ¢y (3.4

channel



57 MESOSCOPIC CHARGE QUANTIZATION 9613

O=— %In(Tre_ﬁH), (3.5 <|:|12(7'1)|:|12(7'2)>2:<|:|12(7'1)|:|12(7'2)>2
—2§(71;0)§(75;0)L(r1— 7)), (3.9
where temperaturé =1/3. where kernelL is given by

We evaluate the trace in two steps,  Fe=TrTr, -,
where 1 and 2 indicate the fermionic operators belonging to 1
t_he qhann_el and dot, respectively. Because all of the l_nterac- L(7)= _zj dy dy &(y) ¢(y/)‘9§x/g( nrr’). (3.9
tion is attributed to the channfdee Eq(3.4)], the charging 4m
energy operator is not affected by the summation in the dot i )
and can be omitted in the intermediate formulas. The non©ne can check by a direct calculation that

interacting Hamiltonian(3.2) can be presented d$:=H;

. By (Bar Bt T T _ g
+H,+Hy,, whereH, andH, are the noninteracting Hamil- e~ AT e fodnlodralid miMud 2 zec Tr_ e~ Ao,

. . - 3.1
tonians of the channel and of the dot, respectively, nrgl (3.10
connects the dot with the channel. Thus, we write where Tr. stands for the trace of the one-dimensional fermi-

onic operators on the positive half axis, and
Trye Ale=Tre AH1tHat ) » 1
: : : Hm=f dX S Vy'Vy—uyly| (31D
— e ARITy e AR2T e~ /GdTH1AN] - m
:e_ﬁ%e_ﬁngTe(m) 187y 15 dra(Ryp(r)Fas 7))z is the one-dimensional Hamiltonian defined on the whole

real axis. The proportionality coefficient in E(8.10 does
(3.6 not contribute to any observable quantity and we omit it. We
substitute Eq(3.8) into Eq.(3.6), use Eq.(3.10, restore the

" A, B, 0 ST T . . charging energysee Eq(3.4)], and obtain
Here Hyy(7)=e"M1tH2H e~ (H17H2) is the interaction ging o¥ a(3-4]

representation of the Hamiltonian connecting the dot and e s _3
lead, T, stands for the chronological ordering, afit,= Tre PocTr(e 77T 5). 312
—T In Trye” P2 is the thermodynamic potential of noninter- The one-dimensional effective Hamiltonian is given by
acting electrons in the dot. Averagig--), over the elec-
tronic variables of the dot is defined by the relatipn-), o
=ef%Tr, (e PH2-..). The thermodynamic potentifl, does Ho=Hip+Ec
not depend onV, and it will be omitted.

The operator Eq(3.6) depends only on the electron vari- \ypere ;... stands for the normal ordering. The effective ac-
ables of the channel. The evaluation of the last factor in Eq,. - .
(3.6) is performed in Appendix A. This yields tion S in Eq. (3.1,

2
N+ f_ow:z/ﬁw:dx) , (3.13

~ B —
1 . A _ S:J'O dridrol (71— 72)h(74;0)4h(72;0), (3.14
§<H12(71)H12(Tz)>2:_lﬂ(Tl;O)lﬁ(TziO)
has kerneL defined by Eq(3.9). If the electrons with spin
1 2 o, are considered, the summation over spin indices is implied in
ij dy dy ¢(y)d(y") 3 G(m— 211", the above formulas.
As we are interested in the dynamics of the system at
3.7 energies much smaller than the Fermi energy, we can linear-
ize the spectrum of one-dimensional fermions. Writing
P(x)=e KXy (x) +e*F¥yr(X), wherey, and gy are the
nI_eft- and right-moving fermions, respectively, we obtain
from Eqgs.(3.11) and(3.13:

wherey(7;x) =e™1y(x)e” 1 are the one-dimensional fer-
mionic operators of the channel in the interaction represe

tation, E(r)z #'(— 1), andG is the exact Matsubara Green
function of the closed dot subjected to the zero boundary

condition. The wave functiob(y) describes the transverse I:|O=ivpf dx{z,b[axz//L— z/fTRaXz,//R}
motion in the single-mode channel, and the coordinates -
in the derivative of the Green functian are set tot+0. Ec

0 2
The detailed behavior of the Green functigrlepends on + = f dx: o g+ ytyr:+N| . (3.19

the particular shape of the dot. It is convenient to separate the 2
fluctuating part of the Green functiofi=G+¢, and to com- wherev is the Fermi velocity in the channel. In E.15

bine the sample-independent proportional Gopart of  the fermionic fields are assumed to be smooth on the scale of
(Hyx(71)H15( 7)), with the HamiltonianH; in Eq. (3.6). the Fermi wavelength. The action has the following form in
We rewrite Eq.(3.7) in the form terms of the left- and right-movers:
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whereJy(x) is the zeroth Bessel function, =R;+r;/2, and

ke is the Fermi wave vector. PoifRr is the coordinate of
o o the image charge created by the charge in the poist that
X[ () + yr(T) [ (72) + ¢Yr( 1) ]. (3.16  the propagator$3.21) satisfy proper zero boundary condi-
tions. Green functions here are taken at different values of
Finite reflection in the channel can be taken into account bynagnetic fieldH,,H,. In Egs.(3.21), v=m/27 is the den-
adding to the Hamiltonia3.15 one more term: sity of states per unit area. Equatiof®21) are valid if the
arguments of the Green functions are close to each other
N + t pairwise:|r; J must be much smaller than the elastic mean
Hos=Iroel 1 (Q)yr(0)+ g0y (0], (3.17 free path for a diffusive dot, and much smaller than the dot
size for a ballistic dot. The boundary is assumed to be
smooth on the scale of the Fermi wavelength.
Retarded classical propagators in the diffusive dot satisfy
diffusionlike equation®’

o B
S= f drdml(7—75)
0

where |r|?<1 is the reflection coefficient. The thermody-
namic potentiak) () can be found from

QN)=—T In Tr(e Ao AIT 75 (319

i i i , J ie( Ai—Az\ %] (PP
The differential capacitanc€y(N) of the system is then ——D|V+— e =38(R1—Ry),
given by ot clA;+A,
(3.22
1 520 whereD is the diffusion coefficient, and the vector potentials
Cair(M)=C| 1- Ec aN2 | (3.19 A, , are defined so thad XA, ,=H, ,. For a ballistic dot,
Egs.(3.22 should be substituted by the corresponding Liou-
Equations(3.15 and(3.17) were first suggested in Refs. 14 ville (or, to be more precise, Perron-Frobenieguation, and

Eq. (3.21) should be somewhat chang&dHowever, in the

and 15. . - . s . .
(gmversal limit considered in this paper, there is no difference

So far we succeeded in reducing the original problem t oW the ballisti d diffusive dot
the effective one-dimensional problem, where all the feature etween the balistic and diffusive dots.

of the chaotic motion of electrons in the dot are incorporated '_I'he unlvers_al I|m|t corresponds o a large time sca_le at
into the nonlocal in time action. The action quctuatesWh'Ch the semiclassical electron orbit covers all the available

strongly from sample to sample, and we should study thé;)hase space. At such a time scale, the classical probabilities
statistics of these fluctuations ' no longer depend on the coordinate and acquire the form

1. Statistics of I(7) PD'C=£ G(t)e_"TB'C, (3.23
It is convenient to use the Lehmann representation for the A
functionL(7) of Eq. (3.9: whered(x) is the step functiond is the area of the dot, and
the decay times associated with the magnetic field are given
L _f‘” dt LRt — LAt el by
R I A i Ea i EaEaI
(320 ! (q>1:<1>2)2 (3.24
TB’C T (I)O . .

where the retarded and advanced kernél$' are given by
Eq. (3.9, with G replaced by the exact advanced and re-Here ®,=e/c# is the flux quantum®, ,=AH, , are the
tarded Green function§™*, respectively. It is well known fluxes through the dot corresponding to the fiettisandH,,
that the averaged products of the t@&GR and G*G* van- and the Thouless enerdy; is of the order ofiD/.A for a

ish, and the products of the retarded and advanced Gredfiffusive dot, and of the order dfve /A for a ballistic dot.
functions can be expressed in terms of the classical The correlation functions of the retarded and advanced

ropagators—diffuson®° and CooperongF, parts of the kerr_1eIL can be exprgssed, with the help of Egs.
propag P (3.9 and(3.2)), in terms of the diffuson and Cooperon. The
kernel L [see Eq.(3.9] depends on the Green function at

aﬁl(tl?ff ,rg)aﬁz(tz;rg 1) =2mvé(t+1y) coinciding spatial arguments. Therefore, both pairings lead-
. . -5 ing to the diffuson and Cooperon upon averaging should be
XF(ry 1) F(ry )P (t1;R1,R), (3213  taken into account. In the universal regifsee Eq.(3.23]

integrals in the transverse direction in E§.9) can be cal-
culated using the normalization conditigdy ¢2(y)=1. As
a result, we find

G, (43T 1) G (toir T 15) = 27wty + )

XF(ry F)Fr 1) PE(tiRLR,), (3219 24
(LR, (t)LE (1) = — 8t 1) 6(ty)

A

G .
F(r1,ra)= |m?:Jo(kF|r1_r2|)_~]o(kF|r1_Rr2|)y x{et/Mie ity (3.2
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whereA=1/(v.A) is the mean level spacing of the dot. Av- 1 e |2

erages of the typeRLR vanish. Because we are interested in ple)=Tro(e—H)= Regy/1- (m) . (832
times smaller than the Heisenberg tifi&\, the higher mo-

ments can be decoupled by using the Wick theorem and thé/e will need only properties of the system at energies

pair correlation functions are defined by E§.25. much smaller than the width of the baddN/ 7, and we will
neglect the energy dependence of the averaged density of
B. Random matrix formulation states. The average of the Green functighs'(e) = (e—H

. . . +i0)~?! has the form
We start by dividing the entire system into two parts, the

leads and the dot. In general, the Hamiltonfarof the sys- “RA_ —. 1
tem can be represented as ap= T oapiy - (3.33
A=A, +Ap+H . (3.2  Random matrix counterparts of the diffusion and Cooperon

propagator$3.21) can be written as
The Hamiltonian of the leads is of the form

2
A GR e+ )G 5(€)= T [PP(0) 84585, + PE(@) 80y 5],
Ai=ve S koo, (3.27 g PO MA ’ ’

1
—iw+0’

(3.39

where we linearized the electron spectrum in the leads, and PP(w)=P(w)= i
measured all the energies from the Fermi level. Inklexthe

longitudinal momentum in a mode.propagating along th%here?z G-G. Averages of the typ&<CR andGAG* van-
channel connected o the dot, e_mq mdexl_, N labels g, Formulas(3.32—(3.39 have the accuracy-1/M and
thesg modessummanon OVer spin |nd!ces.|s., implied when- they neglect the oscillatory dependences on the scale of
ever it is necessajyFor the sake of simplicity, we assume the order ofA. This accuracy, however, is sufficient for us

the sbamedFerrgltvelleC'tg |nbalihthe modes, Ejh_e genera}! Ca8Sfecause, as we already discussed, the relevant results are
can be reduced to E8.27) by the corresponding rescaling. contributed by the energy strip of the widHr>A.

HamiltonianHp=H,+Hc of the dot consists of the nonin-  our purpose now is to derive the effective action theory
teracting part similar to Eqs(3.15—(3.18 starting from the random matrix
model. Before doing so, let us review some useful properties
|:|n=2 M, ﬁl/lelfﬁ' (3.29 of the sygtem(3.26) in the absenqe pf the intergctioEC
ap =0. In this case, electron transmission at enesgg com-

. ) - pletely characterized b X N scattering matrixS(e):
and the interaction ternHs, which is described by the

Hamiltonian(1.1) with the chargeQ given by S(e)=1-2mivW'e~H+imvWW ] W, (3.35

3 wherev=1/(2mvg) is the one-dimensional density of states
E:E szzpa. (3.29 :cgrme leads. Coupling matridV can be represented in the

(In this subsection, we reserve greek and latin letters for AM
labeling the fermionic states in the dot and in the leads, re- W= \/—UOW, (3.36
spectively) For definiteness, we restrict the discussion to the Ty
case of the orthogonal ensemble; generalization to other _ o
cases is straightforward. Elemerits, 4 in Eq. (3.29 form a  WhereU is an orthogonaM X M matrix, W is a realN XN
real random Hermitian matrig{ of size MXM, (M—ce), ~ Matrix, andO is anMXN matriX, Oj= 6., 1<a<N. Be-
belonging to the Gaussian ensemble cause the distribution functio(®.26 is invariant under rota-
tions H—UHU', matrix U in Eq. (3.36 can be omitted.
Substituting Eq.(3.36 into Eqg. (3.35 and performing en-
, (3.30 semble averaging with the help of E@.33, we obtain for
the average scattering matrix

77_2

P(H)xexp — TrH?
70 p( 4A’M

where A is the mean level spacing near the center of the 1— W

band. Finally, HamiltoniarH, 5 in Eq. (3.26) describes the S= — 3.39
coupling of the dot to the leads, and has the form 1+W'w

R At W'W=1 the average scattering matrix vanishes; see Eq.
Hip= E (Wa,jwzwk,j"’H-C-), (3.3)  (3.37. It indicates that matrixS belongs to the circular en-
oj.a semble(corresponding to the regime of “ideal contac}s”

where the coupling constai¥,, ; is a realM X N matrix W. Deviation of W'W from a unit matrix can be attributed to the
Let us list the needed averaged quantities correspondingcattering on the contacts between the leads and the dot. This

to the Gaussian ensemble E8.30. The averaged density scattering is described by a unitary symmetrid>22N ma-

of states is given by the semicircle law trix
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rotf The first term in the right-hand side of E(.44 does not
Scz(t r’) (3.38 contain any information about the dot, and its frequency de-
pendence is the same as of the Green function of free chiral
with NX N matricesr,r’,t being defined by fermions. It is, therefore, possibland very convenientto
transform this part of the action to the Hamiltonian form by
-ww - _1-Ww introducing fictitious fermionic fieldsby;,j=1,... N.
r= 1w r= _me , Then, Eq.(3.41) acquires the form
(3.39 . R .
Trpe Ao Tr (e AHeiT e 5); (3.45
tzwm- the omitted \-independent proportionality coefficient is ir-

relevant. The effective Hamiltoniaﬁeﬁ is given by
The explicit relations between the coupling matrié®sand
the scattering matrix in the contact8.38 were first ob- N t +
tained by Brouwef® He“_vF% KW e+ Pi b )

Now we turn to the derivation of the effective action. For

technical reasonfsee discussion above E@.4)], we re- 1 ;
place the charge operat@.29 with + ;klvkglvjz [bkl,]-1lej2¢k2,j2wL H.c]
Q + 2
== kE, e i - (3.40 +E¢ kZJ Wi+ N (3.46

After this replacement, the Hamiltonian of the system be'wherew-  are the elements of the Hermitian matixde-
comes quadratic in fermionic operators of the dot, so that thi?ined asJ 2

part of the system can be integrated out:
Troe = Trye AL+ Ac+Fintfiip) w=(W'w)2 (3.47)

. 1.5 . . Action S has the form
=g AHLTHC @™ BT g7 /0dmdm(Hip(T)HLD(72))D,

B —
(3.41) S=4 > f dryd 7oy . (71)
R ky.Kaij1.i2 JO
HereH | p(7) is the interaction representation of the coupling
. : P ; XL (Ti=72) ¥, . (72), (3.48
operatorH, , and averaging over Hamiltonian of the dot is 12 202

defined ai-~~)D=eBQDTrp(e‘5Hn~~~). The thermodynamic where the kernel is aNXN matrix given by
potentialQp=T In Tre”#"n of the closed dot is independent
of the gate voltageV and it will be omitted.

The average in the last factor in E@.41) is calculated

with the help of Eq(3.31) and of the definition of the Mat- ) ) ) .
subara Green function for the closed dot: Equation(3.45 can be easily checked by tracing out fermi-
onsb and using the relation

WG(r)W. (3.49

L) AM
)=
47y

Gap(1)= —(Toho( 7) 5(0))p= 2 €'“n7|: } , _ _ |
wp Iwn_H af 2 <TTbk1,j1(T)bk2,jz(O)>:lWyéjljzz e'w”TSgnwn.
(3.42 kika n
where ¢ (r)=e"ye (N =y(—7), and o, Hamiltonian Ho¢ can be rewritten in a more familiar
=wT(2n+1) is the fermionic Matsubara frequency. The re-form. Introducing the Fourier transform of the fermionic
sult is fields y;(x) ==xe~ **y; « and bj(x)=Ze b, \, we ob-
. " tain from Eq.(3.46
<HLD(7'1)HLD(7'2)>2
— Hep=iveY, f dx(¢l o +bTa,b)
=— > i, i, (T1) DR S SRS
ISHCNENP
t — o ) 1
X[W'G(r, 7-2)\/\/]11121'0"2vlz(TZ)' (343 + ;j%z [bL(O)lejzlﬁjz(o)-FH.C-]

We separate the averaged part of the Green fungioy

+G, use Egs(3.33 and(3.36), and obtain the Fourier trans- » + 2
form of the kernel in Eq(3.44), +Ec Ej: L dxyjg+N| .
_ foSgnope o AM o (3.50
WG (i wn) W=~ TV WW+ 772,,‘N Gliwn)W. We are interested in the case of almost open ideal contacts,

(3.44  |w—1||<1. In this case, it is natural to change the variables
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and reveal the small parameter of the perturbation theorynatural question arises: what is the accuracy of this approxi-

Introducing left- and right-moving fermions, mation? One may even think that the effects considered in
this paper are completely washed out by remaining interac-
i (X) =g j(X) 6(—X) + g j(—= %) B(x), tion terms that we neglected.
) The purpose of this subsection is to show that the simple
bj(X) =i[¢rj(—X)0(—=X) = ¢ ;(X) 6(X)] model (1.1) of interactions in the dot leaves out only small,

(the ambiguity of this definition at the origin should be re- =1/g, effects, whergg=E/A is the dimensionless conduc-
solved asy(0)=[¢(+0)+ ¢(—0)]/2), we obtain from Eq. tance of the cavity By is the Thouless energyFor a diffu-

(3.50 sive dot in the metallic regime, and for a ballistic noninte-
grable dot the conductance is largg>1. Mesoscopic
Heg=Ho+ Hps, (3.51a  charge quantization is adequately described by the model of

interaction(1.1), as long agy>1, and the number of modes

. 0 T N propagating to the lead is much smaller thgnin other
Ho:'UFE f_xdx(‘ﬂL,iaX‘ﬁL,J_ YR ,OxPR,j) words, ergodic time of the dat/E; should be much larger
. than the escape time of the electron from the dot.
2 The electrons in the dot are described by the Hamiltonian
+Ec 2 f de3 UL kRN H=H,+H,,, where the noninteracting part of the Hamil-

(3.51b tonian,l3|n, is given by Eq.(3.25. The validity of the ran-
dom matrix theory foiH, for the energy scale smaller than

N . T the Thouless energy was proven in Ref. 21 for chaotic sys-

Hps= _'; Mj¥u,idej+HC, (3.510 tems and in Ref. 30 for diffusive systems.

The general form of the interaction Hamiltonian is

~ B
S:Z d’TldeLij(Tl_’Tz) ~ 1
T Jo Ain=52 Vepyslloo, Uh.o,Vroplisoy (353

X[ i(71;0) + ri(71;0) ][4 j(72;0) + g j(72;0)]. In this subsection, we will write explicitly the spin indices
(3.510 for the fermionic operators. The interaction Hamiltonian
Here we neglected the terms related to the discontinuities dfL-1) corresponds to the approximation of the mawiby
the fermionic field at the origin, which induces higher-order
terms inr, and approximated reflection matnix=1—w, as V~Ecd,50py- (3.59
follows from Egs.(3.47) and(3.39 for |r<1. Within the Our goal now is to show that all the other matrix elements as

same approximation we can pt=1 in Eq.(3.49. Formu- || 55 the mesoscopic fluctuations of matrix eleméas4)
las (3.51) are analogous to Eq3.15—(3.18 derived in @ 416 small. Some of these calculations already appeared in the

previous subsection. - literature®>32 however, we will present brief derivation to
Finally, we have to study the statistics of the kernel ke this paper self-contained.

(3.49, which can be expressed in terms of its advanced and e easiest way to study the statistics of the one-electron
retarded counterparts by Lehmann form@20. Perform-\4ve functiong,(r) is to relate them to the Green function
ing time Fourier transform of Eq(3.34, and usingv  anqg then use Eq3.21). By definition of the retarded and
=1/(27vg), we obtain advanced Green functions we have

2

UF
(L)Ll =5 ot ) 0Lty GAr1.r) = GR(r1,r2) =271 S b(ri)balr)dle—e,),
(3.59

X{c‘)‘isﬁjr-i- 5”5]5}. (3.52
For the one-mode lead this result agrees with the zero mag/ere we assumed no magnetic field for simplicity. At given
netic field version of Eq(3.25. energye only one function contributes into the sum in Eq.

The statistics of the kernel at different magnetic fields car{3-29: SO that the statistics of the Green functions is related
be obtained by adding a purely imaginary Hermitian matrix© that_ of the wave fgnctlons. Furthermore, _|t is known that
to the original matrix in Eq. (3.28.%2° This would lead to there. is no correlation betyveen level statistics and wave
the result analogous to the exponential decay in @®9.  function in the lowest order in @/ see, e.g., Ref. 30, so we
We will not describe details of such calculation here, and®@n nNeglect the level correlations and averagenction in
refer the reader to the extensive literature on parametri€d- (3-59 independently. As a result, we can estimate

correlation€®2°
A A R
Da(r1) Po(ra)~ > [Ge (r1,r2)—G¢ (ri.ra)].

3.5
So far, we were using a very simple model of the inter- (359
action (1.1), which ascribes all the interaction effects to the Now we can use EdJ3.55 and(3.2]) to study the average of
variation of the number of particles in the dot. However, adifferent momenta of the matrix elements:

C. Applicability of the model
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number particles, and all the other modes describe the relax-
Vaﬁyﬁzf drydroV(ri—rp) @a(ry) dp(ri) d,(ra) ds(rs). ation of any initial inhomogeneous distribution function by

_ _ _ _ _ virtue of classical chaotic dynamics, Rg>0. If the system
Averaging this matrix element itself with the help of Eq. is integrable, or there are some additional symmetries of the

(3.56, we obtain system, other zero modes appear, however, we disregard
— \O) (1) such a possibility and consider only diffusive or classically
Vapys=VapysT Vagys- (3.57 chaotic systems.

Using Egs.(3.21), (3.56), and(3.59, and taking into ac-
count that all the energies are smaller than the Thouless en-
ergy (or, in other words, the lowest nonzero eigenvalue of
IMGA(ry 1) = m(ek—r2)) o diffusion or Perron-Frobenius operakofe,| <y;, we find

The first term in Eq.(3.57 comes from the product of the
averaged Green functions

and it is given by (1lg) A
VaB75:§[2F15a55By+(F2+Fl)(ﬁayé‘ﬁé‘_F 5{1[353/6)]’

0 —
V6= EcOaspy+ FA(80ySps5t 8apdys), (3.60
1 where the dimensionless conductance of the system is de-
Eczﬁj dl’lerV(l‘l—l’z), (35& fined as
Y1
g=Re+, (3.61

F=1(V(K))es. A

Here A is the area of the dof; --)rs Stands for the averaging and is assumed to be much larger than unity. Dimensionless
over directions of the wave vector on the Fermi surfacis, ~ coefficients in Eq(3.60 are given by
the averaged density of states per unit area and per one spin

o
in the dot, andV(k) is the Fourier transform of the two- Fi:Reyl > F_' i=12,
particle interactiorv(r). T v,70 Yu
Charging energyEc in Eq. (3.58 is related to the zero _
mode of the interaction potential. This mode cannot redis- Fi=v(V(K))es, (3.62

tribute the electrons within the dot and that is why it is not

screenedthe redistribution of the electrons between the dot n_ *

and the leads is taken into account by the mpdab the FZ_VJ drydraV(ry—ra)f,(ry)f(ra).
result,E¢ is much larger than the mean level spacing. On th . . . . B
other hand, coefficienE includes only nonzero modes thate':Or the screened interaction potential, coefficigffs=1/2

_ d, thereforel, , are of the order of unity for chaotic sys-
are perfectly screened/(k) =Vo(K)/[1+2vVy(K)], where " 12 e

Vo(k) is the bare potentialThe use of the static screening tems an_d of the_ order of (1%””("/!) for the diffusive dOtZ
here is possible because the screening is established durilﬁkfre L is the size of the dot antlis the transport ela§t|c
the characteristic time of the plasmon propagation throug ean free path. T_hus, we have shown that th‘? corrections to
the dot, which is much smaller tha/E;.) Therefore, we the average matrix elemef8.54 are parametrically small

estimateF<1/2, so that the last two terms introduce a cor—for the metalllp regime. . .
rection only of the order of level spacing, and may be ne- Now, we wish to show that 'ghe fluctuations of the matrix
glected [We will not consider here the case of the attractivee'em_ents are small_. !ndeed_, with the_ h‘?'p of EQZJ_), we
interaction when the third term in E¢3.58 renormalizes to obtal_n for a ggnerm.e., with no pairwise equal indicks
infinity due to the interaction in the Cooper chanhel. matrix element:

The second term in E¢3.57) originates from the product 2
of the retarded and advanced Green functions; see Egs. (Vaﬁ75)2=c<—) . (3.63
(3.23). In the absence of magnetic field, diffuson and Coop- 9

eron propagators coincide, and their spectral expansion for Bhe numerical coefficiert for the diffusive system is given
diffusive system is by

1 frr)fLu(ra)
(miwt0) A Ho —iwty,

(359 [where coefficient§ 4, are defined in Eq(3.62] and it is of
wherey,, andf,(r) are the corresponding eigenvalues andthe order of unity, so that the matrix elements are small at
eigenfunctions. For a diffusive system,=DQ?, whereD  g>1. For chaotic systems, the expressiondds more cum-
is the diffusion constant, and wave vect@s depend onthe bersome, but still have a similar structure. In the case of
shape of the system. For a rectangular diffusive dot of the/diagonal” [in the sense of Eq3.60] matrix elements, the
sizeLyxLy, one findsQ?=7?(ng/LZ+n7/L%) with n,,n,  average in Eq(3.63 should be replaced by the correspond-
>0 being integer numbers. For chaotic systemsare the ing variance.
eigenvalues of the Perron-Frobenius operator. The zero The main conclusion of this section is contained in Egs.
mode in Eq.(3.59 corresponds to the conservation of the (3.60 and(3.63. These equations clearly show that the Cou-

2

Pw(rl7r2):

c=(33)222 {2<F“)2+<F“F}(Rei-
aw 7M#0 1 2 y#
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lomb blockade type interactiofl.l) is a parametrically jus- . up (® ((9(’,\D|_ 2 (angR)z
tified description for the dynamics of the system at energies Hoy=— dx{ | —| +|—
smaller than the Thouless energy. 4m) X X

Closing this subsection, let usﬁ%nfellntmn numerical works
that have been performed recently:” These papers ad- C .~ -
dressed either dirty diffusive systems with a small number of + ﬁ[‘PL(O) +¢r(0)+2mN2. (4.4
electrons® g=1, or classically localized stat¥sand are not
relevant for the metallic regimg>1 we are dealing with. The relationg4.2a and(4.2b ensure the fermionic com-
We believe that the large quantum dots studied in Refs. 5—#utation relations within the specieg and ¢/z. The com-
belong to the metallic regime. mutation relation(4.2¢ guarantees the anticommutation re-

lation of ¢ with g and the commutation relations
IV. BOSONIZATION PROCEDURE 0

Equations(3.15—(3.18 reduce the initial system consist- jﬁxlpTRl//R_F Ylydxyl (W |=vk (v o(—y).
ing of a dot and a single-mode channel to the effective one-
dimensional model. To treat the interaction in the mdthet The backscattering Hamiltonia8.17 takes the form
second term in Eq3.15], we follow Ref. 14, and use the
bosonization technique. In the bosonic variables, the entire . rlve
Hamiltonian (3.15 becomes quadratic. The price for this Hos=— cog ¢ (0)+ @r(0)]. (4.9

convenience is a strongly nonlinear form that the back- _ _ _ _ _
scattering terms acquirgn the language of left and right The bosonized version of the effective action Ej16) is

movers, those are the termsd{sz in Egs. (3.16 and

: . . 1 - -
(3.17]. Fortunately, the typical value of the kern@.9) is §=5— dTldeL(Tl 70) (1) 7(75)
small (~A/E¢), and this enables us to use the perturbation A
theory, which will be presented in Secs. V and VI. In this . . . .
section we present a bosonization procedure in a form most X[+ eTier(T @ TeL(72) 4 l9r(7)] (4.6

suitable for our purposes.

where bosonic operators are taken at the ongirD. Majo-

A. Spinless electrons rana fermiony does not enter the effective Hamiltonian, and
One-dimensional fermionic fields can be presented in théherefore it is not a dynamical field. Its role in the effective
form®® action is to take care of the difference in the definition of the

operation of chronological ordering for the fermionic and
;7 X - A bosonic operator. The equality
eiqu(x), PL(X)= e*iwL(X), 4.2

Yr(X)= o
(Ton(71) n(72))=5gn( 71— 72), 4.7
where is the high-energy cutoff of the order of the Fermi and Wick’s theorem, preserves the definition of chronologi-
wavelength, andy= 7', 7?=1 is the Majorana fermion; its cal ordering for fermions in E¢(3.18.
significance will be discussed later. One-dimensional It is convenient to separate the part of the bosonic sector
bosonic fieldsp, r(x) satisfy the following commutation re- not affected by the Coulomb interaction and introduce a new

lations: field ¢, ,¢_ ,® with the commutation relations
[oL(X),oL(y)]=—imsgrix—y), (4.23 [0+ (x),04(y)]=—imsgrix—y), (4.89
[6r(X), 3rY)I=imsgrix-y), (420 [o-().o-(y)]=—imsgrix=y), (48
[or(X).oL(y)]= — (4.2 [P0~ (0]=[¢+(x),¢-()]=0, (489

It is easy to check, using Eqgt.2), that the fermionic fields [D,0. (x)]=im. (4.80

(4.2) obey the standard commutation relations. The expres- . '
sions for the densities of left and right movers are Swe express operato(d.2) in terms of new field¢4.8) as

e+ (X)+d

1 ¢ = —
L0 YL (x):= XQDL(X) eL(X)= 7z 7\,
4.3 (4.9
1 . ¢ (—x)—p (=)
HIR(X) PR(X): = 5 dxpr(X). PR(X) = 5 C AN

With the help of Eq.(4.3), Hamiltonian (3.19 can be wherec numberm A is incorporated into the definition of the
bosonized as field. It is easy to see that the commutation relatighg) are
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preserved. In the new variables, the Hamilton{dr)) is in- =0 (no backscattering in the chanpeHowever, if return

dependent on the gate voltagee., on\): trajectories(i.e., a finite value ofA/E.) are taken into ac-
~ i S count, the Coulomb blockade oscillations exist, even if

~ Vg (* Jp, do_ Cnp r=0. The NV dependence of the actio@.12 and Hamil-
HO:E _wdx IX ) IX + 47724’+(0)' tonian(4.11) clearly shows that the period of the oscillations

(4.10 does not depend on the details of the system. This periodic
) dependence is a direct consequence of the discreteness of the
All the V dependence is transferred now to the backscattefglectron charge.

ing term in the Hamiltonian: We are going to develop perturbation theory Snand
. rlve R H,s. Every order of the perturbation theory is expressed in
bs= 5 CO% V2¢.(0)—27M], (4.1)  terms of the correlators of the bosonic field governed by the

quadratic Hamiltonian(4.10. The necessary correlation

and to the actior5, which is contributed to by the return functions are
trajectories of electrons after multiple scattering within the

dot: D_(1)=(T,o_(1)e_(0)), (4.133
.1 (# A o
S= mfo dridrol (73— 72) 9(71) 7(72) (4.12 D (1)=(T,0+(1)¢(0)), (4.13h
(=g (m)| | P(r)—D(7p) Dy(71)=(T,D(7)d(0)), (4.139
X exg i exp i
V2 V2 ..
) ) D+ () =(T,B()¢(0)), (4.139
ei(m) ei(1) . I
X co A + Z—WN co 2 + Z—w/\f . vAvhere averages are calculated with respect to Hamiltonian
Ho and all the bosonic fields are takenxat 0.
If one neglects such trajectories altogetHethen the Cou- Standard calculation presented in Appendix B yields for

lomb blockade oscillations apparently vanish in the limit T<Ec andr=Nvg=1/eg:

1 (= B SiN(i2mx/Ec+ 7) 7T sin(—i2aX/Ec+ 1) 7T

Dap(r)—Dap(O):—Ef dxe *In 52Ty , (4.143

° sinhz( )

Ec
_ ( aT
D_(1)—=D_(0)=In v [snaTd)’ (4.14h
D (0)—|n(ﬂ) (4.140
U NEeS)” '

Dy(7)=D.(0)=[D-(7)=D-(0)]=[Dg(7) = Dg(0)], (4.149

i 27T 27X - 2mX
'D(D+(T)—§JO dx e Ee cotl i E +7|aT+cotl —i E +7|7T|, (4.14¢

whereC~0.577 is the Euler constant.
To conclude this subsection, let us prove the assumption of Sec. Il about the Fermi-liquid behavior of the system at low

energies. In order to do this, we will calculate the fermionic Green functiofS(7) ¢, (0)) and(L(7) ¢ (0)), using the
definitions(4.2), (4.9), and the result$4.14). Averaging over the bosonic fields similar to the well-known calculation of the
Debye-Waller factor, yields

1 1 1 1
<w[<r>wL<0)>=mexp{E[D_m—D_(on]exp[g[mw—m(on]exp{z[Dq)(r)—D@(on

Xexpil’%[Dq,+(7-)+D¢+(—T)]] (4.153
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éZmN

1
(IR (0)= mexp[ =3[P (1 +D.(0)]

1 1 1
XeXP{E[D(T)_D(0)]}9XP[§[D¢(T)_D¢(O)]]eXP{E[DcDJr(T)_DqH(_T)] . (4.15b

Substituting Egs(4.14) into Eq. (4.15, we obtain where indexa= *1 denotes the spin projections, and the
Majorana fermionsz., satisfy the anticommutation rela-
tions {7,1,7-1}=0. Boson fields¢{ x and ¢{ z corre-

27 sinaTr’ (4.163 sponding to the charge and spin degrees of freedom, respec-
tively, satisfy the following commutation relations:

(Y (1) g (0))=

i2aN ~ ~
(R(T)$(0)) = ;m K(7), (4.16b [oL(X), oL(Y)]= —imsgnx—y)q;,  (4.183
F
[Rr(X),ek(Y)]=imsgrix—y)&;,  (4.18b
il ks 21y _ _ _
K(r)= sn WTTeXpl’ _fo dx e (Ec/2m°T) coth(x+imT) 1. [QAD'R(X),:p{_(y)]: _i775ij ij=p.o. (4.180

The Green functiorf4.164 is not affected by interactions at AS in the case of spinlessi fermions, it is convenient to intro-
all. The reason is that it is taken at coinciding argumentgluce even and odd moded'“ for the charge and spin sec-
(x;=%,=0), e.g., outside the interaction region. Becausdors, and twox-independent fieldsp”“ analogous to Eq.
<¢I(r) . (0)) describes propagation of a chiral particle, the (4.9):

information about interaction is never carried back to the

observation poink=0. The Green functiod.16h acquires (APL(X)JF(;JL(X)JF@_&’JWN

the free-fermion form at>Ec*, which corresponds to the o (x)= . i=p,o
energies below the charging ener@yte thatT<E(). In N \[i .

this energy range|i5(7) ¢ (0)) corresponds to a free fer- ~ PL(—X)— @ (=x) = D' =6, 7N

mion completely reflected from the dot. The phase factor Pr(X)= 2 - (419

expi2mN) in Eq. (4.16h represents the scattering phase . _ i o
7N, which agrees with the Friedel sum ru1). Thus, our The commutation relations for the new fields within the

intuitive picture of Sec. Il is proven by explicit calculation of charge and spin sectors coincide with E¢&8); fields of
the fermionic propagators. different sectors commute with each other. In terms of the

new fields, Hamiltonian3.15 acquires the form indepen-

B. Electrons with spin dent of dimensionless gate voltagé

2

Similarly to the spinless case, we start here with the . vf = (g, Ec .
. . —__ p 2
bosonization of electron operators: 0 4m:2M ygﬁ f_wdx el s 2W2[<P+(0)] :
YR o(X) = 7 exp i ERO) + a¢R(X) The backscattering Hamiltonigi3.17) takes the fomg4-20)
R 2mn 2 ' J -

~ 2|r|U|: ~ ~
Alos= = cog % (0) ~ mAlcos ¢4 (0), (4.2

. np “
e exp(—i—qDL(X)erL(X) . (4.1

I o(X)= \/ﬁ 2

and the effective actiof3.16) can be rewritten as

~ 1 (8 “ " ) ~ ~o ) - s
S= _)\f drdrL(7— 1) 2 Da(71) My Tz)e(I/Z)a[m(Tl)*<p,(rz)]e(ll2)a[<1> (11)—@(7)]
m 0 a==*1

R R R R ~p +Ap ~o +AU
% e(i/2)[<Pp(7'1)@p(rg)]e(iIZ)[le(Tl)CIJP(Tz)][ CO{ e (1) > ¢ (72) +a #(7) > #+(r) — 7N
(1) =@ (12)  @T (1) = @T(72)

2 @ 2

} . (4.22
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Slmllarly to Eq.(4.13), we introduce the relevant bosonic Diq)+(7):<-|-f®i(7)€0i+(o)>' (4.230
correlation functions

i . i~ : where indexi = p,o labels charge and spin sectors, respec-
D_(1)=(T,¢-(7)'¢-(0)"), (4.233 tively, bosonic fields are taken at=0, and averaging is
performed over the Hamiltoniaﬁo given by Eq.(4.20.
; A ~ The calculation of these propagators can be performed
D (1 =(T,¢ (1)¢(0)), (4.23b immediately by noticing that the spin sector of the Hamil-
tonian (4.20 corresponds to the free bosons, and the charge

i A sector differs from Eq.(4.10 only by replacementE;
Dy(7)=(TD'(7)P'(0)), (4230 _2E.. Thus, we obtain

Sin(imx/Ec+ 7) 7T sin(—iaX/Ec+ ) 7T
Diy(7)—D4(0)= f dxe *In > , o=0, (4.243
] T TX
sml‘?(
Cc
D (7)—DP (0) =D ()~ D%(0) =In| - — 1 (4.24b
" (7)=D2(0)=D(n) = DUO=n| = .
% (0)=In| — (4.240
=In| ——=|, .
i NEe®
DE(7)=D5(0)=[D? (1) =D’ (0)]-[Dg(7) —Dg(0)], (4.249
X X i
D (7 j dxe” X— t(|—+r 7-rT+cot(—|—+~r WT}, Dg.(1)= sgnr (4.249
Ec Ec Ec
|
whereC~0.577 is the Euler constant. (T [P (7)+DP(1)— " (0)_@),0(0)]2)
As we will see below(see also Ref. 14the main contri- T -
bution to the observable quantities is associated with the time A =T \2
scaler=1/E. . At this time scale the effective theory can be =—-21In -
Lo Ay . veE~eC\sinaTr
further simplified. The modep’, is “pinned” due to the F=C

charging energy, see E(.20. Therefore, the amplitude of which means that such correlation function will be preserved
quantum fluctuations of this mode is finitsee Eq(4.240] if we introduce another free bosonic fiefg,(x), with com-

and the correlation functio®”, (7) decreases rapidly at  tation relatiod{op(x);c}p(y)]=—iw sgni—y), and sub-
= 1/E., as it follows from Eqs(4.240, (4.240, and(4.243.  stitute

The decrease of correlations means that the average of a

product, (e"P+(Tl) "P+(Tn)> can be replaced by the product ¢* (x=0)+DP—2¢,(x=0). (4.26
of averages(e'*t (")--(¢/#: (), if the intervals between After substitutions(4.25 and (4.26), Hamiltonian (4.20)
the timesry, . .. ,7, exceed ¢ In other words, the opera- hecomes just a Hamiltonian of three free bosonic fields
tor functions Of(p in Eq. (4.22 can be substituted with
numbers, according the rule . w 09, 3201)2 (ago”)z
A . Ho= J;de W + W + X (4.2
ei¢t e 2P0, (4.29

backscattering term acquires the fdfm

c 112
On the other hand, it follows from Eq§.248 and (4.24b A _@( ECe~UF) cos N cosgoi(O) (4.28

that at=> 1/E¢ R
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and the effective action is given by

3= édeTldeL(Tl_Tz) S 5u(71) D7) €12l (7= 6T (72) (1120 al D7) = () gi/12) (1) = 0 (72)]
mANJo a=*1

@7 (1) + @7 (72) 7 @UT)—@5(7)
X3 co af—w/\f +co Z—i—af

] . (4.29

Correlation functions of the free bosonic fields are given bysacond order ifl,.. in the spin-1/2 case. Electron scattering
_ from inside the dot leads to the capacitance fluctuations su-
p p A T perimposed on this modulation. The two contributions to the
DP(T)_Dp(o)_Di(T)_Di(o)_m(; |sin 7rT7-|)’ capacitance are not additive: the nonzero result appears only
(430  in the second-order in perturbations to the Hamiltorfta

~ . when one expands E@3.18. In the domain of a relatively
where the cutoffA is of the order ofv:/E- because the strong backscattering in the channel?=A/Ec, the lead-

charging ener is the largest energy scale, which can be. . . . . ~
cons?de?ed wi?rft%e help ongamiIton?gn.ZD. It is easy to ing term in fluctuations is proportional to the productttf

check also by an explicit calculation that at time differences?ndS. We address the capacitance fluctuations at finjtén
larger thanE* correlation functions of the electron opera- the end of this section.

tors evaluated with the help of the Hamiltonia@s20 and

(4.27) respectively coincide. A. Spinless fermions

1. Reflectionless contact
V. THERMODYNAMICS OF THE “OPEN” DOT

Coulomb blockade can be investigated experimentaffy The first-order expansion of E3.18) in S yields

by measuring the differential capacitance of a dot, see Eq.

(3.19. In the regime of a developed blocka@eeak tunnel- 5Q:T<TT§>_ (5.2)
ing between the dot and the electron resepy@y;; (N) ex-
hibits sharp peaks at half-integer values\ofin the opposite
limit of no backscattering, the differential capacitance is al
N-independent constang i (N) =C. It was shown in Ref.
14 that weak reflection from a scatterer in the channel leads

to the capacitance oscillations with a phase depending on the 1
exact position of the scatterer. In this section we demonstrate 60 f
that even ar =0, the differential capacitance still depends

on A due to the electron backscatterings from inside the dot,

. . P where functionK(7) is defined in Eq.(4.16H. To perform
which are d_escrlbed by the ac_tnSn The randomness of the the integration overr, we use the Lehmann representation
backscattering events results in the randomness of the pha 20 of the kernelL:
of the capacitance oscillations. We will relate the statistics of " '
Cgiii(N) with the one of kerneL (7).

The starting point for the calculation of the capacitance is = dt o A
Eq. (3.18 for the thermodynamic potential. In principle, Eq.  92= ZWUFLOCE[L (O —L2(1)]
(3.18 enables one to consider the backscattering off a barrier
in the channel .= 0), as well as off the dot§# 0). In the
limit of weak backscattering, the perturbation theoryi:l[;)S
andS can be used to calcula@y;(N). The case 05=0
was considered by Matveé¥He has shown that for spinless The integration over here can be now performed with the
fermions, a nonvanishing result appears in the first-order pehelp of analytic properties of functiok(7). As it follows
turbation theory, whereas for the spin-1/2 electrons this ordefrom Eq. (4.16b), the functionK(7) is analytic in the lower
gives zero result. Similarly, it is sufficient to account for the semiplane Imr<0. To calculate the integral of the first term
Scatterings from inside the cavity in the first order of them the brackets, we deform the contour of integration over
perturbation theory for spinless fermions, but in the case ofs shown in Fig. 3.
spin-1/2 electrons we have to expand the thermodynamic Because of the periodicity of the integrand, the integrals
potential(3.18 up to the second order i8, if Hp=0. over the parts of the contour running parallel to the imagi-

Backscattering in the channel leads to a finite modulatiomary axis cancel out. As the result, only the pole contribution
of the average differential capacitance. The modulation amat r=it remains at<<0. At t>0 the pole contribution dis-
plitude can be estimatétiby expansion of Eq(3.18 to the  appears. The second term in E§.3) is integrated by using

We substitute Eq.(4.12 into Eg. (5.1), retain only
r‘/\/—dependent terms, and obtain with the help of Edsl4):

BdTL(T)[eiZWNK(T)-i—C.C.], (5.2)

27TU|: 0

B il )
i27N|
xfo olr—sim[ﬂ(HiT)][e2 K(r)+c.c]. (5.3
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FIG. 3. The integration contour used in the evaluatio®Qf in
the spinless case, see H§.3). Branch cuts oK(r) are shown by
thick lines.

K(7)*=—K(—17) for the realr. With the help of the ex-
plicit expression(4.16h for the functionK(7), we find

1 e 7T
SN = 2WiUFj0 dtsinf‘(ﬂ'Tt) (5.4
® 27%T 21X
X ex —f dxe * coth —+t |« T
0 Ec Ec

X[LR(t)e—iZ'n'./\/_ LA(_t)eiZTrN].

Finally, at low temperature$ <E., the A-dependent cor-

rection takes the form:
focdt J'wd e
0 Tex 0 XX+(EC/2’7T)t

< [LR(t)eZﬂ'iN_ LA( _t)e—ZwiN].

X

SQUN) =

27TiU|:

(5.9

Equation(5.5) relates the Coulomb blockade oscillation to

the exact free-electron Green function in the dot. The variaL
tion of 5Q) with the gate voltage is harmonic, however, its
phase and amplitude are random quantities. To reveal th

oscillatory dependence in the average quantities, one has
find the correlation functioQ(N;) 8Q(N5). At low tem-
peratures, Eqgs(5.5 and (3.25 lead directly to the result
(2.24) with the dimensionless functioNg given by

1
Ag(x)= A(X),
2 4
(2m) (5.6)
=dy :
A(x)=f —2ex;{—xy+2eyE|(—y)],
o0y
where Ei(x)=/*_e'dt/t is the exponential integral

function®® The correlation function of the differential ca-
pacitance$3.19 for different values of the gate voltage and

magnetic field is given by
H2
HC

H2

0Cqir(1) 6Cyir(2)  2A

=— +
c? Ec A

> CosSs 2mrn,
HC

(5.7
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FIG. 4. FunctionA(x) determining correlation of differential
capacitances at different values of magnetic fields, see (Gd8.
and Eq.(5.6).

where we use the shorthand notatiorsN;,H;, n=MN;
— N>, andH.=H;*H,. Correlation magnetic fieldH. is
controlled by the charging energy and it is given by Eqg.
(2.23.

The variance of the capacitance fluctuationdHat 0 is
two times larger than in the unitary limiH{>H;). The di-
mensionless crossover functidn(x) is plotted in Fig. 4.

Correlation between the capacitances at different mag-
netic fields is suppressedhf _ exceedd.. In our approxi-
mation, the correlation “length”n; in the dimensionless
gate voltage is infinite. To findh,, one should take into
account that varying the gate voltage affects the chemical
potential of electrons in the dot by the level spacing each
time N changes by one. If the chemical potential is shifted
by Ec, a completely new set of levels determines the kernel
, thus suppressing the correlations. This results in the esti-
maten.=E-/A. Another effect that leads to the decrease of

e correlation function at large is the variation of the dot
%ape with the gate voltage.

2. Finite reflection in the contact

At finite backscattering in the contact# 0, Hamiltonian
(4.11) should be taken into account:

SQ(N)=(Hpg.

Calculating this average with the help of E@.149, and
using Eq.(3.19, we arrive at the result for the oscillating
contribution of the averaged capacitance,

SC(N)
C

=2¢eC|r|cos 2T \. (5.9
This result was first obtained in Ref. 14.

Average of the action Ed5.1) simply adds to this result.
Thus, we conclude that finite reflection in this order of per-
turbation theory does not affect the mesoscopic fluctuations
of the capacitance; see E&.7). We will see below that this
is qualitatively different from the electrons with spin where
finite reflection in the contact leads to the increase of the
mesoscopic fluctuations of the differential capacitance.
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B. Electrons with spin N-dependent part of the thermodynamic potential, we have
1. Reflectionless contact to expand() up to the second order i&:
80 =—1T(T,&%. (5.9

In the case of spin-1/2 fermions, the charging energy pingjnon the substitution of Eq4.29 into Eq.(5.9), we use the

only one out of four. modes. Fluctuations in the_ spin mOdeexpressions{4.30) to perform the averaging oveﬁio. This
are not suppressed; see £4.27). These fluctuations aver- cymbersome albeit straightforward calculation yields for the
age action(4.29 to zero. To obtain a finite result for the N-dependent part of the thermodynamic potential:

so=— 1 f L dridrydrl(r)L(ry) S e 120 il
(2mwvg)?Jo y==1 [sin 7T (1, +iy0)sin 7T(7,+i7y0)]2

« aT
[sin 7 T(7,+ 73+iy0)sin 7 T(7,— 73+i90)]%%

(5.10

As in Sec. V A, it is convenient to use the Lehmann representg8@0 for the kernelL:

-t detldtz LR(ty)— LAt TILR(ty) — LA(t fﬁd dr,d il il
(2m0p)? 2w 2t (W T =LA | dmad el s Gt S Sinh T (i)
i T T
X > ez — — — ——— . (5.1
y==1 [sin #T(r+iy0)sin wT(7,+iy0)]"°[sin #T(7+ 73+iy0)sin #T(7,— 13+i7y0)]

The evaluation of the integrals over and 7, here is similar  In the derivation of Eq(5.13, we have utilized the reduced

to the procedure employed for the evaluation of the integralersion of actionsee Eq.(4.29], which is valid only on a

over 7 in Sec. V A. Upon the integration, we find relatively long time scale larger thanEl{. Now, we average
the product of two thermodynamic potentials with the help of
Eqg. (3.295. As we will see shortly, the result of the averaging

50— 1 fw % %(LR(t JLR(t,)e~ 127V is logarithmically divergent at large The divergence should
(2mvg)?) =27 27 1 2 be cut off att, ;= 1/Ec . Without violating the logarithmical
accuracy, we can use also asymptotic expansion of the ellip-
LA LA()e2™) T tic integral K (k)= —In \/1—k?. We obtain
[sinh( 7 Tty)sinh(7Tt,)]Y?
f aT 2
X | drg— . - - . _
o “[sinh @ T(t;—irg)sinh wT(t,+i7rs)]"? 50(1)60(2)= 2m Cos 27n
aa
(5.12
S dt,dt,72T?
Integral overr; can be easily evaluated with the help of the f . _
formula 1ESINh 7Tty sinh 7Tt
1 2
X IN0———
T 2 2
J dé _ e HiK (e, T?(t1+1y)
o [sinh(x—i ¢)sinh(y+i¢)]*? x[e 11/ 4 et /rc][e t2 !0 1 g t2/7c],
where K(k) is the complete elliptic integral of the first (5.14

kind.*® We find for 6Q:

Here, as in Eq.(5.7, we use the shorthand notatidn
=H;,N;, andn=N;—N,. The diffuson and Cooperon de-
o [sinh( @ Tt;)sinh(7Tty) ]2 cay timesrp and 7¢ are related to the magnetic field values
X [LR(t)LR(ty) e 127V4 c.c e~ "M+t Hq, Hy l_Jy Eq.(3._24). Now we can use Eq3.19} to find the

correlation function of the differential capacitances. In the
XK (e mTtatta)), (5.13 leading logarithmic approximation we obtain

60 =

1 fx dtldtz’ﬂ'T

(WUF)Z
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8C (1) 5C i (2) 8 A2 Ec fields larger than th.e magnetic figld_determined by the charg-
> === 4(?) COS 2mrn ing energy(2.23. Finally, in the limit of a strong fieldH;
c 37" Ec =H,=H, (unitary limit), the varianceSC3 of the differen-
In max(1;[H,/H]?)\3 (5.19 tial capacitance becomes four times smaller thaH &t0.
[ - ( sy ¢ ) } Our results for the correlation functions diverge logarith-
In(Ec/T) mically at T—0. At lower temperatures the pinning of the
spin mode described by actid® should be taken into ac-
count. A variational estimatéshows thafl at low tempera-
tures should be replaced iy In(E:/A) in the above results
(%or H¢ and for the correlation function. We will elaborate on
his point more in the end of the following subsection.

x >

y==

where the fieldH ..=H;*+H, are assumed to be small com-
pared to the correlation fielt, given by Eq.(2.23. The
new temperature-dependent correlation field appearing in E
(5.19 is given by
2. Finite reflection in the contact
®, T The main effect of the backscattering in the channel is
=— that the Coulomb blockade appears already in the averaged

capacitancé® Taking into account backscattering Hamil-
tonian(4.28 in the second-order perturbation theory, we ob-

with &4, A, andE+ being the flux quantum, the geometrical tain from Eq.(3.19
area of the dot, and the Thouless energy, respectively. Unlike

< —
HC A 27TET, (516)

the scaleH,, the characteristic fiel#HS is independent on 8eC E

the charging energy. This smaller field scale appears due to SC(N)=—1r|? cos 27TN|I’](?C . (5.19
the existence of the “free” excitation mode? , which is 4

not pinned by the effect of charging. Due to the finite level spacing, this result acquires meso-

With the increase of the number of channels in the dotscopic fluctuations. As we already mentioned in the introduc-
lead junction, the number of free modes also increases. THigon to this section, at+ 0 the leading term in fluctuations of
role of chargingwhich still pins only one modeand there-  the thermodynamic potential is first order in bdihs andS,
fore of the fieldH, in the correlation functions should van-
ish gradually. The dependence of the correlation functions on

the magnetic field aH<<H_ becomes a power law rather _ B~ &

than logarithmic; however, this power law is still nontrivial, N=-T{T, 0 dTHpd7)S). (5.18

and approaches Fermi-liquid results only in the limit of an

infinite number of channels. To calculate the average over the unperturbed state, we use

If H.=H,, [the charging correlation fielll. is given by  the bosonized representation Hf,. and S given by Egs.
Eq. (2.23], the correlation function of the fluctuation starts (4.28 and (4.29, respectively, and then the expressions
decreasing much fastecrc,l/Hi. Therefore, in order to get (4.30 for the correlation functions of the boson fields. Then,
the representative statistics of the capacitance fluctuationsjmilar to Sec. V A, we switch to the Lehmann representa-
averaging should be performed in the interval of magnetidion (3.20 for the kernelL(7) to obtain

2e%|r|VEc = dt B drdry(7T)2
N=—-——""— —[LR(t)-LA
N cosmA) ,wzw[L (O-LA0)] o sinf #Tt+inT(r— ) [SiN(7Try)sin(7T7,) ]2

(7TT)1/2
y==1[sin 7 T(7,— 7 +i70)]"?

e I TYN=14) (5.19

Here only theN-dependent part of the thermodynamic potential is taken into account. IntegralrpuerEg. (5.19 is
determined by the contribution of the polegt= 7,—it, which can be easily calculated:

2eC|r|VE = dt(aT)2 . .
50 = M COi’JT./\/) - .(77 ) ; [LA(t)elw(NflM)_{_ LR(t)eflTr(/\FlM)]
772\/;v,: —<[ —isinh(7Tt)]2

X f dry— m_ (5.20
o “[sin#Try)sin(#Tr+it)]"?

Integration overr, is now very similar to the one we performed over the variatlén Eq. (5.12, and we find for6Q:
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2\e"r|VEc = (7 T)Y2 In(UT?t?)dt _ _
N))=——— A iTN R 7|7'r_/\/'. .
m\moe ) [—i sinh(#Tt)]"? (LA e LA (te T (5.2

From Eq.(5.21), with the help of Eqs(3.295 and (3.19, we find the correlation function of mesoscopic fluctuation of the
capacitances:

6Citi(1) 8Cairr(2) _ 32 |r|’A ,[Ec " ma)(l;[Hy/Hs]Z))T’ (5.22

3| > _
c? 3?2 Ec '”(T)COSZ””;[l ( In(Ec/T)

wherei=H;,N;, n=N;—N,, andH.=H;*=H,. Correla- dot, spends there a time#/E-, and then leaves the dot.
tion field HZ is defined in Eq(5.16). The amplitude of fluc-  Without interaction, this electron would be able to spend a
tuations at a partial transmission of the channel is parametriime of the order ofi/A. As the result, the conductance in
cally larger than at =0, cf. Eq.(5.15. Furthermore, in the the Coulomb blockade valleys is suppressed by a factor of
unitary limit the variance of the differential capacitance isA/E¢. During theinelastic cotunneling proces¥, an elec-
suppressed only by a half of its zero-field value. This simi-tron enters the dot, spends there a timé&/Ec, and then
larity with the case of spinless fermions is due to the backanother electron leaves the dot. In this case, the final state
scattering in the channel, which leads to pinning of the spircontains an extra, in comparison with the initial state, two-
mode. particle excitation. This means that the phase volume of the
Result(5.22 is valid at relatively high temperatures. As final state is small a3?; therefore, the elastic contribution
shown by Matvee* the divergences should be cut at energydominates aff<(EcA)*2
€* =|r|?E¢ cog mN, which corresponds to the pinning en-  Conductance of the dot connected to each reservoir by an
ergy of the spin mode. The higher-order corrections inalmost perfect channel was studied, in the lidditEc— O,
backscatterinf show that atT<|r|?Ec the logarithmic by Furusaki and Matvee¥/. They concluded that even small
growth of fluctuations saturates. Simultaneously, the correlareflection in any of the channels leads to a dramatic suppres-
tion functions start to depend not only on the differeég  sion of the conductance of the system. At any gate voltage,
— N>, but also on each of these arguments separately. Thigxcept the discrete points of charge degeneracy, they ob-
weaker logarithmic dependence is beyond the scope of thigined aT? law that closely resembles the behavior of inelas-
paper. For an estimate of the differential capacitance varitic cotunneling in the weak tunneling regime. Pursuing the
ance at low temperature, one may replaceEgiT) by  analogy with the weak tunneling regime further, it is natural
In(1/r|?) in Eq. (5.22. to expect that there should be another nonvanishing at
Finally, we elaborate on the estimate of the characteristie=0 contribution from a counterpart of the elastic cotunnel-
energy scale that controls the low-temperature cutoff for théng mechanism. Studying this contribution is the goal of this
reflectionless contact. Comparing E§.17 with Eq. (5.20),  section®
or Eg.(5.21) with Eq. (5.15, we observe that the reflection-  Similar to Ref. 27, two limiting cases may be distin-
less case results can be obtained from formulas with finitguished. In the first case both channels are either open or
reflection coefficient by puttingr|?—(A/Ec)In(EcA). It have the same reflection coefficient. This case is technically
would correspond to the energy of pinning of the spin moddlifficult to consider. Instead, we concentrate on the proper-
e*=A In(Ec/A), which agrees with our variational ties of the strongly asymmetric setup; one point contiadt
estimate® in Fig. 5 has the transparency close to unity and the other
contact(right in Fig. 5 has a very small conductan€eg
<e?/7h. This case can be realized experimentally by a cor-
VI. TUNNELING CONDUCTANCE OF THE “OPEN” DOT responding adjustment of the voltages on the gates forming

In the previous section, we considered in detail the ther-
modynamics of the dot with one almost open channel, and
studied mesoscopic effects related to the discreteness of the
charge. However, the majority of experimental work deals G,
not with thermodynamics, but rather with transport through a
dot. The Coulomb blockade shows up as an oscillatory gate
voltage dependence of the conductance of the dot connected
with two leads.

The case of small transparency of the channels connecting |G, 5. Schematic view of the asymmetric two-terminal setup.
the dot with leads is well studied'>*The conductance in  The left point contact has one channel almost open and the conduc-
the valleys can be represented as the sum of two physicallance of the right point conta&g is much smaller thae?/27#.
different contributions—elastic and inelastic cotunneffig. One of the electron trajectories contributing to the elastic cotunnel-
During theelasticcotunneling process, an electron enters theng is also shown.
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point contactd® Moreover, it follows from the scaling a) ©) b) @
argument¥’ that the asymmetry of contacts is a relevant per-
turbation. In the casé =0, the strongly asymmetric limit T |
corresponds to the fixed point of a system with an infinitesi- 0 B 0 8
mally small initial asymmetry. Therefore we can expect that | | l T
atA/E-<1, this limit adequately describes dots with a finite

FIG. 6. The integration contour used in the evaluation of the
conductance, see E@6.10 for (a) Q,<0, and(b) for Q,>0.
Branch cuts of the analytic continuationldf 7) are shown by thick

initial degree of asymmetry.
For calculation of such tunneling conductance, we have tdnes.
modify derivation of Secs. Ill A and Ill B in order to take .

into account the tunneling between the dot and the seconf9: We choose to introduce into Eg. (6.4) and into defi-

lead. In comparison with Hamiltonia3.1), the total Hamil- nition (6.6) to make functionlI(7) have dimensionality of

A. General formalism

tonian of the system acquires two additional terms, energy. , _
In the absence of the interactidggz =0, propagatofI(7)
A :|:|F+ |:|C+ |:|M+|:|T_ (6. is nothing but the Green function of the noninteracting sys-

A tem; its ensemble average has a form analogous td6=),
Here Hg describes the electron motion in the dot and in the

left lead and is given by Eq3.2), interaction Hamiltonian m| _ T 6.9

Hc is given by Eq(1.1), andH,, is the Hamiltonian of free Fe=0 sin 7Tt

electrons in the right lead Then, substitution of Eqg6.6) and (6.8) into Eq. (6.5 and
analytic continuation(6.4) give the tunneling current

Hy= E gpé;gép_ (6.2 =sGRV (s is the spin degeneragywhere the tunneling con-
P ductance of the contact per one spin is
Tunneling HamiltoniarH ; describes the weak coupling be- 2me?
tween the right lead and the dot, GR:TU'[ZVM v. (6.9

With the help of Eq(6.9) we can rewrite Eq(6.5) in terms
(6.3 .
of the bare conductance of the point contact:

Gr fﬁ aTe 107
0

ﬁTzvti\bT(rt)Ep ép+ H.C.,

wherer, is the coordinate of the tunneling contagf(r) is
the electron wave function in the lead, ands the coupling
constant which will be later related to the tunneling conduc-
tance of the contadbg. As we will see below, functiodI(7) can be analytically
BecauseGgr<e?/(27h), we can consider the tunneling continued from the real axis to the complex plane, so that the
currentl as the function of applied voltagé in the second result is analytic in a strip @Re 7<g, and has branch cuts
order of perturbation theory in tunneling Hamiltoniéh3).  along Rer=0,8 lines. It allows one to deform the contour
This gives us the standard reéfilt of integration as shown in Fig. 6, and to obtain

JiQ,)= (7). (6.10

T n
2me sinwTr

(eV)=i[I(Q,—eV+i0)—I(iQ,—eV—i0)], 64 J(iQn):%fm 6™ B 0 t)— B B~ 1)]

whereQ,=2#Tn is the bosonic Matsubara frequency, and ) )
Matsubara currend is defined as « Iit+0)  M(it-0)
sinf #T(t—i0)] sinH#T(t+i0)]/"
; 2 (P, i (6.1
JiQ)=eviv| dre "Gy (n)Il(7). (6.5
0 Now the analytic continuationi6.4) can be performed, be-

Here v is the one-electron density of states per unit area an§2Us€ the periodicity of the Matsubara Green functions was
per one spin in the dotG,, is the Green function of the already taken into account. This gives

electrons in the leads,

'GRT * —ieVt
I(e\/)—lz—efiwdte

Gu=— 2 (T.a,(1a} (0)=ryz—, (6.6
0, Py p sinaTr TI(it+0) I1(it—0)

SMAT(t—i0)]  sni{aT(t+i0)]” 12

with vy, being the one-electron density of states per one spin
in the lead, and functiohl(7) is given by

— T . Next, we use the analyticity dfl(7) in the strip 0<Re 7
(7 =v" (T A(mr)$(0iry). (6.9 _ 5 "and shift the integration variabte-t—i /2 in the first
Averages in Eqs(6.6) and(6.7) are performed with respect term in brackets in Eq6.12), andt—t+i3/2 in the second
to the equilibrium distribution of the system without tunnel- term. Bearing in mind thakl(7) = —II(7+ B), we find



57 MESOSCOPIC CHARGE QUANTIZATION 9629

I1(it+ B2 [n,ET1=E". (6.15

eV o :
I=(T sinhZ—)GRJ dte™®Vt———— (6.13
T o cosharTt We can definitely choose Hilbert subspace in a way such that

Linear conductancé is therefore given by operatorn has integer eigenvalues. Finally, these operators
. ) commute with all the fermionic degrees of freedom. Then,
_ 1(it+p/2) we can change the definition of the charge operatbrEqg.
G=Gg| dt . (6.19
—» 2coshwTt (3.9] to

Let us turn now to the actual calculation of the function
II(7). It was shown in Ref. 27 that the interaction drastically
affects the form of the functiof6.7), however, some contri-
butions were not taken into account. Our purpose is to CoNynq rewrite Eq(6.7) as
struct an effective action theory, similar to that of Sec. Il
for calculation oflI( 7). Once again, we wish to get rid of the e e )
fermionic degrees of freedom of the dot. Similar to Ej4), () =v" XTF(DYTrIF0)k(Oiry).  (6.17
it is convenient to rewrite the charge operator in terms of thet js easy to see from Eq$6.16) and (6.15 that operators
variables of the channel. However, here we have to keep iET E in Eq. (6.17) change the charge by e and —e, re-
mind :fhe fact that the tunneling events described by Opera's'pectively, in accordance with the initial definition of charge.
tors7(ry) andy(r,) chan_ge the charge n the Sys_tembye After this manipulation, the Hamiltonian of the system
and —e. It can be taken mtg.accmfﬁtbx introducing three 5 correlation functiori6.17 become quadratic in the fer-
additional operators: Hermitian operatoy and unitary op-  mionic operators of the dot, so that part of the system can be
eratorsF,F ' with the following commutation relations: integrated out. We use the identity similar to £8.6):

o|O

=—J dr yty+n, (6.16

channel

Try{e  BRET (1) th(0)y =€ BT [ e AH2T (1) gr(0) @~ 160712 D]

— - B B ~ N "
= P%(T (1) (0)) 6 AT &1 f dry f d7y(H i m)Hio(m2))o+ €7 P27 P
0 0

B (F . . P,
XJ dTaj dT4TT<TT¢2(T)H12(7'3)>2<TT¢2(0)H12(7'3)>231/2Igd71f dreHaa M),
0 0

0

(6.18

where aIIz/fZ,L,/;Z are the fermionic operators of the dot, and Here,G is the exact Matsubara Green function of the closed
the rest of the notation is the same as that in Bcf). dot subjected to the zero boundary condition. The wave
The calculation of the prOquﬂ:ilz(Tl)le(Tz))z was function ¢(y) describes the transverse motion in the single-
performed in Sec. Il A[see Eq.(3.7)], and all the steps Mode channel, and the coordinates the derivative of the
leading to the derivation of the effective actith14 can be ~ Green functiong is set to+0. o
repeated here. Calculation of the remaining operator prod- KernelR(7) is the random quantity with the zero aver-
ucts can be performed along the lines of Appendix A. This2ges. In the universal regime, products of ret.arBB(t) and
yields advancedRA(t) counterparts oR(7) entering into the Leh-
mann representatiof3.20 have the following nonvanishing

. averages:
(T,p(11r)H1A72)) 2= — (72,00 R* (71— 73),

(6.19
C
— . — —(RR (t)RA (t)))=Avpd(ty+t,)0(t)e /™,
(Top(r1r)H1A72))2= — P(72,0)R(72— 71), V< H, ()R, (t2)) PR
(6.21a9
where, similar to Eq(3.7), ¢(7;x)=e™1y(x)e” 1 are the
one-dimensional fermionic operators of the channel in the 1
interaction representationy(7)=y'(— 7). Kernel R de- —(RE (t)[RB (1) 1*)=Avpd(t;—ty) g(tl)e—tﬂfﬁ,
scribes the motion of an electron from the tunnel contact to ¥ ! 2
the entrance of the single mode channel, and it is given by (6.21h

where the decay timeﬂﬁ'D associated with applied magnetic

1 i fields H, , are given by Eq(3.24). All the higher momenta
R(T)_ﬁj dy ¢(Y) HG(T 110 (6.20 can be found by using the Wick theorémDeriving Eqg.
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(6.21h we use Egs.(3.21), (3.23, and the identity promotes an electron from the tunneling contact to the chan-
GR(t;r 1) =[GN(—t;r,,r)]*. nel. Because the very same tunneling electron is introduced

To complete the derivation of the effective theory, we useto and then removed from the dot, there is no need in the
Egs.(6.18 and(6.19, introduce left and right moving fer- redistribution of other electrons, so no orthogonality catas-
mions similarly to Sec. Ill A, and thus obtain the effective trophe occurs. As a result, the elastic contribution survives at

action representation fdd (r) from Eq.(6.17): T—0, analogously to the elastic cotunneling contribution for
the weak coupling regime.
(1) =Ijn(7) + g(7), (6.223 In what follows, we will be interested in the low-

temperature behavior of the system, so we will retain elastic

B G(—=7ire,ry) contribution (6.220 only. Similarly to Sec. IV results for

_ ~8F \E
1Ly = wWT.e 5 (T-e“F(1)F(0)), (622D electrons with spin and spinless electrons differ significantly,
T and we will consider those two cases separately.
1 B .
P i —— f drdmR(7— 7)R*(—72)
wW(T.e =)o B. Spinless electrons
X(T eiASr:_(T)l’i(o)[%_(Tl)"'JR( )] We follow the lines of Sec. IV A in the bosonization of
! the chiral fermionic fields. In order to account for the appear-
X[(72)+ ¢r(72)]). (6.220  ance of the operaton in the Hamiltonian[compare Egs.
Here the averaging is performed with respect to the Hamil{3.19 with Eq. (6.23], we change slightly the transforma-
tonian tion (4.9):
N o . 0. (X)+o_(X)+d .
Hozlva dx{ i i — Wkt oL(X)= e+(X)+ o (x) —aN+an,
o 2
i Jod W+ o vy : ; i
- X: L R —-nj, - —X)—p_(—x)—D “
2 —» L R (PR(X):(P+( ) \‘75( ) —77/\/+7Tn, (6.24)

(6.23

and actiond is given by Eq.(3.16. The difference between Where operaton commutes with the bosonic ﬁ?'dAﬁi .
Eg. (6.23 and Eq.(3.15), is caused by the different defini- In order to preserve the commutation relat[cmT,ch,R]=0,

tions of the charge operator in Eq8.4) and (6.16). we change the operatér’ as
Two contributions can be distinguished in the correlation
function (6.22. The inelastic contributiort6.22h was con- Efsfle V20 B FeiV2® (6.25

sidered in Ref. 27 in the approximation correspondingto R ~

=0, and with the Green function of the détreplaced by its  The fact that=" commutes with bosonic fields, g is obvi-
averaged valug. The obtained results vanish at low tem- ous from Egs(6.19 and Eq.(4.80.

peratures. The reason for the vanishing is that this term does Substitution of Egs(4.1), (6.24, and (6.29 into Egs.
not allow the introduced electron to leave the dot; the chargéb.22b yields

of the dot at the moment of tunneling suddenly changes by

+e and all the other electrons have to redistribute them- ATy &~ .= | 21D(0)— ()]
selves to accommodate this charge. The logarithmic diver- in(7)=— wW(T,e S (T “F(7)F(0)e )
gence of the imaginary time action corresponding to such T (6.263

evolution (orthogonality catastrophecompletely suppresses
this contribution affT—0. Conversely, the second contribu- for the inelastic part of the cotunneling; see also Ref. 27. For
tion, I, from Eq. (6.220, contains the kerndR(7), which  the elastic contribution, we find

2

Mg(7)= ———
(7) mvN(T,e”S)

B
f drdmR(m—7)R*(—75)
0
X < T.e SF(n)E(0)e1112128(0)-20(n) + &(r0) = (7] 3 7Y ( 7) (— 1) N7 +1(72)

~ ~ 2 ~
e (T1)—@_(72) ()
Xexgi————— co +——aN| ). 6.26

’{ 7 { 7 aT D (6:260
Averaging in Eqs(6.26) is performed over the Hamiltonian given by E¢g.10), finite backscattering is described B4.11),
and action(4.12 is modified as
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2 ) )| | D)= D(1y)
S= —j dryd 7L (73— 1) 7(72) 7(75)(— )7 Tl)*”(fz)exp{ e-(m \/; (72 ]exr{l (71\/5 (7
(;’+(7'1) ™ "I\3+(72) m
XCOﬁ{ 3 +Z—7-r/\/'cos{ 5 +Z_7T

We will consider only the elastic contributiq®.26h because it does not vanish at low temperatures.

1. Reflectionless contact

In the lowest inA/E approximation we can neglect actirin Eq. (6.26h completely. Then averaging over bosonic fields
can be performed with the help of Ed4.13 and(4.14), average of the product Majorana fermions operator is given by Eq.

(4.7, and the relevant correlation function of the operatfs,F' is given by

(TE(1)E(0)(— 1))y = sqr( 7— 1) sQN( 7— 7). 6.27)

Equation(6.27) follows from Eq.(6.15 and from the fact that operato?sf: commute with Hamiltoniari4.11) and thus do
not have their own dynamics. We obtain

2m|K(7)|?

VUE Eéezc

My(7)= f dridmR(r1— DR (— 1)

K( 7)K(71—7)

aT K(m)K(m1—7) ) e tecl.
1 2

X sin wT(71— 1) K(7)K(75—17) 6.28

+ ei ZﬂNK( T1—

where functionK(7) is defined by Eq(4.16bh, andC is the Euler constant.
Before performing the analytic continuatipsee Eq.(6.14] we have to transform integrals over imaginary times in Eq.
(6.29 to the integrals over real time. In order to do so, we use Lehmann represerigafionfor the kernelR(7):

2K (7)|?
eI(T)_ 2 2C
UFE

dt dt
f ! f SRRty ~ RA(t) J[RR(t)— RA(t) I

T K(m)K(71—17)
sin 7 T(7,— 75) K(7)K(75—17)

[Yand
X o OO G ATt 17— 7 [ 7T (Gt 1 7)]

K(—7)K(1—17)
K(r)K(7—13)

(6.29

+ei277NK(Tl_ ’7'2)

Integration can be now performed in a manner similar to Sec.V A. Using the fact that fukdtigh is analytical within the
lower complex semiplane Im; <0, we deform the contour of integration as shown in Fig. 7.

Because of the periodicity of the integrand, the integrals over the parts of the contour running parallel to the imaginary axis
cancel out. As the result, only the pole contributiorrgtit,+ 7 remains at;<0. At t,;>0 the pole contribution disappears.
Analogously, the complex conjugated terms are contributed bymqetét; + 7 att;>0. As a result, we obtain from E¢6.29

27|K(7)|? dtldtz T

ar
R —=yeT (Rt~ R | At

y aT
sin wT(7— 1o+ity)

RA(ty)K(— 1) K(ity)
K(it;+nK(7—75)

RA(ty) K () K(ity) RR(tl)K(_TZ)K(_itl))
K(it;+nK(7,— 1) K(—=it;—nK(7—7y)

‘ RR(tl)K(Tz)K( ity)
T i K (= 1)

: (6.30

—i2
—e " 7"NK(1,— 7

+ei27TNK(T— Totity)

where we wrote explicit expressions for all the terms. Integration eyean be now easily performed by deformation of the
integration contours shown in Fig. 8, and we obtain
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2m|K(7)[?
He(7)=
voeEge

X f dt,dt,

+e2™VK (r—ity+ity)

—e 2™ NK (ity—ity— 1)

One can see from Eq6.31) that functionIlg(7) is indeed
analytic in the strip 8<Re 7<<B, which justifies the steps
leading to Eq.(6.14).

Finally, we substitute Eq(6.31) into Eq. (6.14). For
small temperaturesT<E., we have from Eq.4.16b
K(B/2+it)==nT/cosh#Tt. As a result, the first term in Eq.
(6.31) produces a contribution: T2 and can be neglected.
The remainder can be recast into the formula

_ 27TGR

2 ,2C
Ce

0 | ,
= Lwdt K(t[RADEZ™V+RR(—1)]|

(6.32

K(—it,— N K(ity—
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* . T ZﬂﬂK(THZ

e SRR RN+ R RN iy e gacse

7T RA(t)[RA(t) T*K(itp)K(ity)  RR(t)[RR(t) ¥ K(—it)K(—ity)
sin wT(7—it,+ity) K(it;+ n)K(ity—17) K(—it;—1)K(7—ity)
RA(t)[RR(t) I* K(—ity)K(ity)
K(it;+nK(7—ity)

RR(t)[RA(t2) T*K(it) K(—ity) 6.3

7)

where C~0.577 is the Euler constant, and(0)~1.398 is
given by Eq.(5.6). This expression is analogous to the elastic
cotunneling for the case of weak couplity:!

For the correlation function of the mesoscopic fluctua-
tions of the conductance, we find with the help of E@s21)

H:
(6.39

where we use again the shorthand notatioasV; ,H;, n
=N;—N,, andH . =H;*H,. Correlation magnetic fielth

is defined in Eq(2.23, and the dimensionless functidn(x)

is given by Eq.(5.6) and is plotted in Fig. 4. Once again, we
see that even though the averaged conductance does not any

H2
‘"2
HC

2

5G(1)8G(2) _(cosm)2
G2 1 A0)

which gives nonaveraged conductance of the dot. Here Wpynger oscillate with the gate voltage, the discreteness of
used the fact that the characteristic scale of the integratioaharge manifests itself in the Osci”atory behavior of the con-
overty,t,=1/Ec is much smaller tha. Equation(6.32 is  ductance correlation function. It is also noteworthy that the
reminiscent of the Landauer formula. However, the form fac-mesoscopic conductance fluctuations are of the order of the

tor K(It) entering into this formula indicates that a Iarge average, Simi|ar|y to the weak Coup"ng regiﬂﬁe_
number of states in the dot participate in the transport, unlike

the case of noninteracting electrons.

Now, we are prepared to study the statistics of the con-

ductance. Using the explicit expressioh16b for function
K and formula(6.21b, we find the average conductance

—_2A
G:GRE—e—2CA(0), (6.33
C
a) @ b) @
| L]
0 T~ p 0 T T,
it1i it1+[3 0 if1o if1+B *

FIG. 7. The integration contour used in the evaluation of the

conductance in the spinless case, for the figstand the second

term (b) in Eqg. (6.29. Branch cuts of the integrand are shown by

thick lines. Contribution of the semipole af= 5, in the first term

in brackets in Eq(6.29 is canceled by the term complex conju-

gated to it.

2. Finite reflection in the contact

So far, we have shown that the conductance in the tunnel-
ing setup is nonvanishing a— 0, which is analogous to the
elastic cotunneling in the weak tunneling regime. However,
the oscillatory dependence of the conductance showed up not
in the average conductance but rather in the correlation func-
tion of mesoscopic fluctuations. On the other hand, as we
saw in Sec. V finite backscattering leads to the oscillatory
dependence in the averaged quantities. The purpose of this
subsection is to study how the finite reflection in the contact

(1) (T ittt

a) b) O
| . it2 i+BC
0 T B
. . 0 T Bl
N

FIG. 8. The integration contours used in the evaluation of the
integral overr, in Eq. (6.30 for (a) the first and third terms in
brackets, andb) for the second and fourth term. Only first and
second terms have poles gt= 7+it;.
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affects the elastic cotunneling, and to demonstrate that it inexpand the denominator and numerator in §q26b up to

deed leads to the oscillatory dependence of the averaged cattie first order in the backscattering Hamiltoni@nl1). Per-

ductance on the gate voltage. forming averaging over the bosonic fields, we obtain with
To treat the finite reflection in the contact, we have tothe help of Eqs(4.14), (4.8), (6.27), and(4.16b:

IK(n[* (8
)=~ Ir| - — [ "dr,dr,rR(r,— DR (-7,
2mvueEceCJo

7T
sin wT(1y—75)

K(m)K(7i—7) eiiZﬂ-NK(T3)K(T— 73) SIN TT (79— 73)K(75— 73)
K(1)K (12— 7) K(—13)K(13—7) sinaT(r;— 13)K(7,— 73)
eiZWNK(_Tg)K(Tg—T) sin wT(71— m3)K(71— 73)
K(m3)K(7—73) sin wT(1o— 13)K(15— 73)

—2cos ZrN; +c.c.l. (6.35

Here we retained only the terms that do not vanish after ensemble averaging. Then, we can use the Lehmann representation for
the kernelR(7) and perform the integration ove , in the manner of the previous subsection. It yields

B [K(7)[? B 7T RAt)[RA(t2) I* K(itp)K(ity)
Hel(T)__|r|2wquECeCf dtldtzfode*‘sin aT(1—ity+ity) K(it,+ n)K(it,— 1) 6.39
e 2"MK(7g)K(7—13)  sin wT(it,— 75)K(it,— 73)
K(_Tg)K(Tg_’T) Sil"l 7TT(T+it1_7'3)K(T+it1_T3)
e'2™VK (= 13)K(73— 7) sin 7 T(7+ity— 73)K(7+it;— 73)
K(7)K(7— 73) SN Tt r)K(it,—ry) 2 COSZN|Fec). (6.39

We deform the integration contour oves, as shown in  with Ei(x) being the exponential-integral functiéh.
Fig. 9, and substitute the result into E@.14). Then, we Equation (6.38 confirms our expectation that the finite
average the product of the Green functid®y R*]* using  backscattering leads to the oscillatory dependence of the av-
Eq. (6.21h. As a result, we find the oscillating part of the eraged conductance on the gate voltage. Although the ampli-
ensemble averaged conductance tude of oscillationg6.38 is small compared to the average
value of the conductano®.33), it still exceeds at low tem-

[r|A peratures the contribution of the inelastic cotunnéiing the
G=a;Gg Eo ) °°s 2N (6.3 conductance oscillations.
Here a4 is the numerical coefficient given by C. Electrons with spin
_c We use formulas of Sec. IV B to bosonize the chiral fer-
. :4e fdedyezexE‘("‘)sin(we‘y) mionic fields. In order to account for the appearance of the
Yom o Jo w2 operatom in the Hamiltoniar{compare Eqs(3.15 with Eq.

) ) ) . (6.23], we change the transformatiga.19):
xsinfe YEi(y)+e*"YEi(—x—y)—e'Ei(—Yy)] = N N A
¢ (X)+ e (X)+ D' = 6,m(N—n)
2 1
@ _ . V2 (6.39
PO i T
R \/E )
wherei=p,o, and operaton commutes with the bosonic
0 T B fields ¢%7,®"7. To preserve the commutation relation

[FT,¢{"%2]1=0, we change the operatd¥s,F similarly to Eg.
6.25

~1.458, P ()=

Y

J

Ef L ETa—i®? B L Eai®?
FIG. 9. The integration contour used in the evaluation of the F'—F'e , FFe™. (6.40

integral overr; in Eq. (6.36). Integral along the part of the contour Substitution of Egs.(4.17), (6.39, and (6.40 into Egs.
parallel to the real axis cancels out the 2 cas\2term. (6.22b results in the formulas similar to E¢6.26):
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2G(—T;ri,ry)

Mi(7)=— = 2T e SF(nF(0)ell? 020, (6.413
w(T.e 5
1 P * -85 E(O) 2 - i[DP(0)—DP(7)]
He(7)= ————% | dndnR(r—7)R* (= 1) 2 |\ T SF(DF(0) (1) 7a(T2)€
avN(T,e >)Jo a==1

% gi12ale? (1)~ ¢ (r)]g(i12)al (1) = D () 1g(112)[ ¢ (1)~ ¢ (1) 1g(i/2[ PP (1) = DP(75)]

x{sin

~p ~p "o ~ T
_Cos{m(n);%(v) +a<p+(71)42r¢+(72) +g[ﬁ(71)+ﬁ(72)]_m\[H>' (6.410

()= @"(1)  @L(r1)— 9(T2) . .
©1(T1 2€D+ 72 +a<P+ T1 290+ 72 +g[n(71)—n(72)]

for the inelastic and the elastic cotunneling, respectively. However, for the calculation it is more convenient to proceed directly
to the low-energy effective theori4.28), because the main contribution to the conductance comes from the energy scale

smaller than the charging ener@ . First, we integrate out the symmetric charge méde. Then, we wish to use the
substitution(4.26). The important difference brought into the problem by accounting for the second junction is thé.Edjs.

contain the charged field” itself, and not only the combinatio®”— ¢” (x=0), as we had before. Fortunately, the corre-
sponding change can be simply accounted for by the introduction of one more chirap fistithat we have

o (x=0)+dP—2¢,(x=0), (6.42

dr— P (x=0)—2¢(x=0)

instead of Eq.(4.26. The field ¢ enters neither the effective action, nor the backscattering Hamiltonian, so it can be
immediately integrated out, and we find the low-energy representation

. . . N . . 172 .
e [P P(0)),, (il 4(7) = H O ) gl [¢(1) = O 2 E” . \/%( Sinﬂ:’—TT) il #F(1—&P(O)1\Z (6.43
cé

The prefactor in the last formula can be found by requiring the averages calculated with the help of the effective theory and
the initial theory to coincide. Using Eq&.42 and(6.43, we obtain from Eq(6.41)

2G(—T:ry, T 1/2 - . A ‘
M, (7)=— G(—mre,ry) m \/l;\‘z( w ) (-I—TefSF(T)F(O)el[qvp(f)*@p(O)]/\J?>, (6.443

v(TTe‘S> Ecec sinwTr

Mo(r)=———g = \F( Gl )llzfﬁd drR(n =R (=) 2 <T “SE(nF(0)
= = == - - £
el T 7Ty<TTe73> ECeC )\3 sinaTr 0 T107oR(7T1— 7 Ty e T

X Dol 71) Ml 7)€L~ 6 O 2g(i120al e (71) = ¢ (7) ] g((12)al D7 (7) = D7 (7))

[ E{ P (r)+ ¢ (72)
X co O‘f

+ S LACTy) + ()] A

)

where the averaging is performed with respect to the Hamilto@a2V). The effective actiorf4.29 acquires the form

PUr)=T(r) . .
roog T o P T
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szi,, fﬁdndrzL(rl—rz) S 5u(71) D7) 2l ()= ¢ (72) ({12l D7 (ry) = Do) g1/ 2) (1) = 0p(72)]
A Jo a=*1

x[coz{aMJr g[ﬁ(ﬁwﬁ(fz)]—m/ +COE{%+aM+ g[ﬁ(n)—ﬁ(rz)]

|

(6.495

and the backscattering Hamiltoni&h, is given by’ where the di\(ergence(as we will see, Ioggrithm)cshould_
be cut off at times of the order of Bf . Notice that there is

EceCur 12 . . no N dependence of the nonaveraged conductance. The rea-
———| (—1)" cosmN cos¢f(0), son is similar to the absence of the oscillations of the capaci-
(S tance in the first order in level spacifg—the oscillations
(6.46 are washed out by th tum fluctuati f th i d
y the quantum fluctuations of the spin mode,
cf. Eq. (4.29. The cutoffX in Eqgs. (6.43—(6.46 should be which is not pinned. We_ will see later that thel oscillatory_
of the order ofvr/Ec, because the charging enerBy. is term in the conductance is smaller than the leading nonoscil-
the largest energy scale that can be considered with the he\ﬁtory cl:gntrlbutlon to the conductance by a factor
of Hamiltonian(4.27. IT) ] o )
In the following subsections we will apply effective de- Let.us now proceed with the statistics of the glastlc co-
scription (6.44—(6.46 and (6.14) to find the tunneling con- tunneling conductance6.49. Ensemble averaging per-

. 2|r]
H -

bs T

ductance of the dot in the asymmetric setup. formed with the help of Eq(6.213 gives for the average
conductance
1. Reflectionless contact
Let us consider first the elastic contributiof.44b (we 2Ae C [Ec
will see below that inelastic contribution should be taken into G= Ggr E In( T ) (6.50
account in order to obtain the correct temperature depen- ¢
dencg. In the lowest-order approximation we neglect the
actionS, and obtain with the help of Eq$4.30: whereC~0.577 is the Euler constant. At very low tempera-
tures,T should be substituted b In(E-/A), see discussion
©) in Sec. V B. _ _ _
I’ (7)= c = f drd7y Equation(6.50 deserves some discussion. Firstly, we no-
vv,:ECe sinwTr . . . L .
tice the presence of the large logarithmic factor in compari-
T son with Eq.(6.33. It can be understood using the argu-

XR(71—1)R*(— 1)

DsinaT(r—15) ments of the orthogonality catastroffesimilar to those

applied in Ref. 27 for the inelastic cotunneling. Consider the
sin 7T 7ysin 7T(7,— 7+i90) |12 elastic cotunneling process where an electron is introduced at
y=*1 (sin 7Trsin wT(7y— 7+i 70)) ftimet=0., and then taken away at tinie Egl. Because the
introduction of an electron costs extra energ¥c, all the
(6.47) other electrons tend to redistribute themselves by moving
When deriving Eq(6.47), we used an expression similar to one electrpn charge through the left point contact, Fig 5. One
Eq. (6.2, can desc_n_be s_uch a tendency as sudden change of the bound-
ary condition in each of the spin channels. Because all the
spin channels are symmetric, each spin mode should transfer
> chargee/2. According to the Friedel sum rule, it corresponds
to the additional scattering phase sléift = 77/2 in each spin
mode. It is knowf’ that such a sudden change causes cre-
(6.489  ation of a large number of electron-hole excitations, so that
the resulting state is orthogonal to the ground-state. The
All the further manipulations with Eq6.47) are absolutely probability for the system to retain its initial state during
analogous to the steps of Sec. VI A in the derivation of Eqtimet is P(t)=1/(tE:)X, where the index is related to the
(6.32 from Eq.(6.28. Instead of Eq(6.32, here we find phase shift in all channelg,==(48/)?. In our case we have
four spin modedtwo in the dot and two in the reservir
Ggr o T thereforexy=1. In order to find the total conductance, we
G= —CfEcldtldtz(sinh 7Tt, sinh 7 Tt,) 2 have to sum over all possible times that the electron spends

VUFECe . B . . .
in the dot: Gee [L-1dt/(Ect), which results in the logarith-
C

<Tﬁr)ﬁmcos{g(ﬁ(m—ﬁm))

=Co{g[6( T—71)— (17— 15)]].

Al _ A _ * R R *
XARA )R 1) 1" + REt)[RA(t) ", mic temperature dependen¢@.50. The similar argument

(6.49  for the spinless electrons gives the phase shiftr in each
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of the two channels. Thug=2, all the relevant dynamics Here the correlation fieldH; is defined by Eq(5.16), and
occurs during the times smaller tharEg/, and the divergent the field combinationsH.=H,;*H, are assumed to be
factor disappears. _ o “much smaller thard [the charging correlation field, is
Secondly, even though the elastic contribution is domi-given by Eq.(2.23)]. The correlation function of the conduc-
nant in the value of the conductance, in order to find th§znce fluctuations starts to decrease fast & 1only at
Femperature c!epgndence, one has. to take into account tlﬂSIdsH+2H . Similarly to the case of capaciténce fluctua-
inelastic contributior(6.443, which yield4® : o o - . .
tions discussed in the previous section, to obtain a represen-
m3Te C tative statistics of the conductance, the magnetic field should
‘”ZGRT (6.5)  Dbe varied in a range wider that, .
¢ Equation(6.52 shows that the amplitude of conductance
We see that this term has a stronger temperature dependerfiigctuations is of the order of its average value, as in the case
than Eg.(6.50 and, therefore, the resulting conductarige of the spinless fermions. However, unlike E®.34), the

G

+G;, always grows as the temperature increases. correlation function(6.52 does not reveal any oscillations
Mesoscopic fluctuations of the contributig6.49 to the  with the gate voltageV.
conductance can be obtained with the help of @GR, In order to reveal this oscillatory dependence./dnone
- ol 2 has to expandly(7) from Eq.(6.44D up to the first order in
6G(H1)6G(Hy) 1 1- Inmax(1;[H,/H] )) action (6.45. The procedure of averaging over all the rel-
G2 2,74 IN(Ec/T) evant operators is absolutely similar to the derivation of Eq.
(6.5  (6.47, and we obtain
|
M (r)= — —— il fﬂd drR R*(— )L
ol (7)= vo2EeC sin 7T 7)o 71 d7R(7 = T)R* (= 1) L(73— 74)

«S g2 sin 7T 78N 7T(7,— 7—i90) sin wT(7,— 7—iy0)sin 7w T73| 2
y==1 € sin wT7,sin wT(7y— 7+ivy0) sin 7 T7,sin wT(13— 7+170)
7T2T2

X .
[sin 7 T(7— 7, +iy0)sin wT(73— 74+iy0)sin wT(73— 7+iy0)sin #T (71— 7,+i70)]*2

(6.53

Integration over imaginary times in Eq6.53 is rather straightforward, and technically very close to that in the Sec. VI B 2.
Unlike Eq.(6.49, here the result for the nonaveraged conductangé dependent. We obtain for the oscillating contribution:

3 172
Gr a, J‘“ T .
Gos= dtj| =———=-| [{ie "2™RR(t)[RA(ty) ]*LR(t5) +c.c}, 6.5
5 TE o (2m2T P et 11 .(Smhﬂti) { (t)[RA(t) ]*LR(tg) + c.c} (6.54
wherea, is a numerical coefficient:
—fw dxdy 11.31 (6.55
—=|sinhy|Y3(coshx)¥q cosiy—x)]"2 ~~ '

Ensemble averaging of E¢6.54) is then performed with the help of Eq®&.25 and(6.21), and the final result is

$Cord 1)0Gd?) _ A[A|7 L [Ec
~eatlig) Wl

| — 2 2
G% =asy Ee T)cos2:-rn(./\++A_)(A++A),

(6.56
I max 1;[H./HS1?)
As=1- IN(Ec/T) ’

where the shorthand notation for the conductance argumeintsA$,H,, H.=H;*H,, n=A;— A\, correlation magnetic
field H; is given by Eq.(5.16), and the numerical coefficient; is given bya3=a§e‘2C/(274)~0.207.

The variance of the conductance fluctuatiéh$6) in the unitary limit H=H_) is suppressed by a factor of four compared
to its zero-field value.

2. Finite reflection in the contact

For the spinless electrons, finite reflection leads to the oscillations in the averaged conductance already in the first order of
perturbation theory im<<1. On the contrary, for the electrons with spin, backscattering leads only to the enhancement of the
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TABLE I. The ensemble-averaged differential capacitatiRef. 149 and the correlation function of the

mesoscopic fluctuations in the Coulomb blockade

regime; only the contributions oscillating with the gate

voltage\V are presented in this table. Her¢?<1 is the reflection coefficient in an almost open channel, and
B=1,2 for the orthogonal and unitary ensembles, respectively. For more details s&6.B¢$5.9), (5.17),

and(5.22.
SCqir(N)/C 8Cifr(N1) 8C i (N)/C?
s=0 3.56r|cos 27\ 5.59/ A
—(—) cos 21(N1—N5)
B \Ec
s=1/2 E 054/ A\ [EC\[[A) (E
2 =< T2 as =S 2y =€ 2 _
4.53r| coserNIn(T) 3 (EC)In (T)[(Ec)ln T +7.13r|%|cos 2r(N1—N>)

oscillating part of the correlation function of the mesoscopic fluctuations. In order to demonstrate this, we expgént¥Bq.
up to the first order in the backscattering Hamiltoni{@m6). We obtain

1 Ece® #T (8 _
(b) \_ _ c _ *(_ i2myN
He| (T) VUFECeC o sin WTTJO dTl T3R( T1 T)R ( Tz) ),:2;1 e
" ( sin wT7ysin 7T (71— 7—i 70)) 12 (7T)%?
sin 7T 7psin 7 T(7,—7+1y0)]  [sin #T(7y— 7p+iy0)sin 7T(3— ro+iy0)sin 7T(7;— rg+iy0)]¥?

(6.57

Performing the contour deformation for the integration overwhere we use the same shorthand notation as in(@&g6).

712, as we did before, and the analytic continuatiéril4),

we find
Ggr a,|r|VEce®
mvveEce® (27%T)Y2

X dt,dt
Jecl Y2 (sinh Tty

X {ie T 2™MRR(t)[RA(t)]* +c.c},

G=

T
sinh 7 Tt,)Y?

(6.58

where the numerical coefficient, is given by Eq.(6.55.
Average of Eq(6.58 obviously vanishes, and for the meso-
scopic fluctuations we obtain with the help of E¢8.21)

6G(1)8G(2)  |r|?A?
Gz “YECT

E
Inz(?c) (A2 +A?%)cos 2mn,
(6.59

TABLE Il. Conductance of the quantum dot in a strongly asymmetric setup, see Fig. 5, and the correlation function of its mesoscopic

The numerical coefficientr, in Eq. (6.59 is given by a,
=ade CI7*~0.737.

Calculation of the contribution of the backscattering into
the average conductance requires accounting of@&46) in
the second-order perturbation theory. On dimensional
grounds we expect this contribution to be

r]?

T cos 2r\N.

gosc(-/\/) =Gg

The low-temperature power-law divergence in this formula
and in Eq.(6.58 should be cut off at the energfy e*
=|r|?E¢ cog mN. Calculation of the precise behavior of the
conductance @< *, which can be performed with the help

of refermionization technique of Ref. 27 is beyond the scope
of the present paper. However, the perturbation theory results
indicate that the modulation of the conductarfgg(N) at

low temperature should be of the order of the average con-

ductanceG.

fluctuations, oscillating with gate voltage. Tunneling conductanc&g is much smaller thae?/(2+%). For the detailed results, see Egs.

(6.33, (6.34), (6.38), (6.50—(6.52, (6.56), and(6.59.

G(M)/Gg 5G(N7) 6G(N2)/GE
s=0 A 0.78/ A \?
E—C(O.63+1.4ar|cos2n/\/) 7(E_c) cos 2m(N1—N5)
s=1/2 11A[ (Ec T 5 A? Ec|[0.83/ A\ [Ec\ 1.49r|?
Ee In T +7.75K+O(|r| )} (E_C'I')lnz(T) ?(E_C)IH(T)JF 3 cos 27(N1—N3)
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VIlI. CONCLUSION APPENDIX A: DERIVATION OF EQ. (3.7

In this paper, we considered mesoscopic effects in the Let us discretize the space in the direction along the chan-

Coulomb blockad€CB) regime. The emphasis was put on pe| axis. The fermionic HamiltoniaRl- acquires the form
the case when the quantum dot is connected to a lead by a

perfectly transparent single-mode channel. We have demon- _ (=l D) (= 1) .
strated that the earlier conclusion that the CB vanishes under Hr= f dr, > >ma TayH ¥n,
this conditiort* is only an approximation, which resulted (A1)

from neglecting the electron trajectories returning to the

channel after traversing the dot. We have shown that the CR/here the transverse part of the motion is described by the

persists, and its period is still determined by a single electroperator

charge. However, CB oscillations in all the observable quan-

tities acquire a random phase and therefore it is revealed in

the correlation functions of mesoscopic fluctuations. We

constructed an analytic, well-controlled theory describing

those fluctuations. anda is the discretization step. Fermionic operators in Eq.
Our results are substantially different from the known re-(Al) sat|sfy the anticommutation relatiofy(r) ¢/ (r')}

sults in noninteracting models of mesoscopic systems. Thea 18,,8(r, —r|). The continuous limit oa— 0, which

correlated ground state involves all the one-electron wavavill be taken in the end of the calculation, corresponds to the

functions in the energy strip of the order of the chargingusual Schrdinger equation. Let us separate the space into

energyE-. The number of states in this strip is large, two regions; region “1” includes all the lattice sites with

~Ec/A>1 (hereA is the level spacing Therefore, the am- =<0 and region “2” includes sites witm>0. The terms

plitude of the differential capacitance fluctuations exceedntering into decomposition of the Hamiltonigsee also Eq.

parametrically the estimateobtained in the noninteracting (3.6, He=H;+H,+H,,, have the form

model. The correlation magnetic flux for the mesoscopic

fluctuations ® = ®,E7/Ec is controlled by the energy . (=l D) (U= thns1)

scaleE., rather than by level spaciny. The large number Hy=| dr, E 2ma

of states in the relevant energy strip leads to the robustness

of the oscillatory dependence over ab&igt/A peaks, which

is yet another difference from a noninteracting model. +al/fn
We obtained the closed analytic expression for some ex-

perimentally relevant characteristics. Final results are sum-

marized in Table | for the thermodynamic quantit{dgfer- |2|2:f

ential capacitance of an almost open)dand in Table Il for

the transport quantitiegunneling conductance of an almost

open dot. + az//n
Up to now, only one experiment studying the effect of the

opening of the channel on the Coulomb blockade was

published® It was found that at the quantized value of the - Wi+ Pl

channel conductance, the Coulomb blockade oscillations dis- Hao= - f dr, " 2ma

appeared completely, in disagreement with our predictions.

We attribute this finding to a relatively simple geometry of We obtain the average in E¢3.6) using Eq.(A3c):

the dot? allowing for an adiabatiorather than chaotjc

propagation of an electron through the entire confined re- E{T £ YAI( )

gion. Quantum chaos of electron states in dots of sufficiently 2 12T 72)/2

complicated geometries was studied previously in the re-

gimes of strong Coulomb blockade and of ballistic dr,d

transpor~"2 These dots have the right parameters for the _f ama?

observation of mesoscopic charge quantization. The first ex-

periments on the dot conductance in a strongly asymmetric XTrlpl(r,iTZ)%(riTl)- (A4)

setup(considered above in Sec. Mare under way now?

VZ

S+ UN(r)— (A2)

== am

n<0

& L=, (A3a)

2ma

2ma

t_ ot _
dugirwntmﬂx%1wﬁﬂ
HL+

Il (A3b)

2ma

(A3c)

<Trlﬁo(r ) Po(r', 7))

Using the definition of the Matsubara Green function
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9731756 . we rewrite Eq.(A4) in the form

(A5)

T 2lam

and the low-energy representation for the fermionic operator
Tonly one transverse modg(r, ) in the channdl



57 MESOSCOPIC CHARGE QUANTIZATION 9639

1 . - d,ivgd)D_(7;x,y)=—imwd(7)sgnx—y); (B3a
E(TTHlZ(Tl)H(TZ»Z ( °F (7 TSIy
. o Ec
([?T+IUF§X)D+(TIX1y)_Isgnxzp+(77o7y)

_ 1
=_Tr¢o(7’1)¢o(7'2)TJ drodrié(r)e(r)
4m-a —im8(r)sgnx—y), (B3b)

X Gry(Ty— T2ir LT ). (A6)

As it follows from Egs.(A3) and (A5), the Green function 9. De(7) =1 EDM(T;O), (B30)
satisfies the equation T 27

25 1_5 I+1_5 r—1
nn nn nn gn,m

|(a,—ﬂl)5nn,— aTD¢+(T;x)=iw5(r)—iZE—;m(r;o,x). (B3d)

2ma?
=a 16,md(ri—ry), n>1; (A7a) _ o , _
Performing imaginary time Fourier transformD(7)
=TZg e '*""D(Q,) (hereQ,=2mnT is the bosonic Mat-
(0.—H,) 80— 200 ~ Snn' -1 . subara frequengywe find the solution of Eq(B3by):
T 2ma?
=a 16,md(r1—ry), n=1. (A7b) D+ (Qp;Xy)
: aw
We see that the difference between EA7a) and Eq.(A7b) = Q—{sgr(x—y)+20[Qn(y—x)]e(Qn’”FW*V)}
can be described by the boundary condition n
— _ E
Gon=0,  Gno=0. (A8) 5D (Q;0y){sgnx-+26(— Qpx)e e,
Now, we introduce coordinate=an, and take the continu- (B4)
ous limit a—0. Substituting gllzazaix,g(x,x')|x,x,:+0
into Eq. (A6), we obtain Eq(3.7). Substitutingx=0 in the both sides of EqB4), we find

D, (Q,;0y) and, then Eq(B2) yields:

APPENDIX B: DERIVATION OF EQS. (4.14 T | QN
We introduce correlation functions more general than Eq. | Q| +Ecl2m UF
(4.13:
PropagatorD_ is found by puttinge-=0 in Eq. (B5a),
D_(7;x1.%)=(T,0 (1:X1)9-(0;%)),  (Bla)
D_(Q)= — f('ﬂ”“‘) (B5b)
R R o |Qn| ve )’
Do (7%1,%2) =(T .04 (7;X1) 4(0;X2)), (B1b)
and remaining propagators are found from the time Fourier
. . transform of Eqs(B3c)—(B3d) and Eq.(B5a):
Do(7)=(T, D(7)D(0)), (Blo
Do+ (70 =(T, ()¢, (0X)). (B1d) __Eec i
Do) =5 [0 TE2m  (B%9
Correlation functions(4.13 are related to those from Eq.
(B1) by
Do (0= wsgn, (B50)
» dx ND.(7,0X) CEEITIO |+ B2

Di(T):fﬂ“T T2 Dg+(7)=Dg+(7,0),
(B2) In Egs. (B5), the cutoff functionf(x) is defined as

where the high momenta cutoff is introduced consistently =2dy e~ XY
with Egs. (4.1). Equations of motion for propagato(81) f(x):f <dy _ (B6)
follow from Egs.(4.8) and(4.10 and they are given by o T 1+y?
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Inverse Fourier transform of Eq&B5) gives Eqs.(4.14).
Let us write here for completeness the result for the propa- D+(0)=In(

gatorD, (0) at arbitrary temperatures:

2’7TU|: *

D, (0)=In + f dx
NEce® 0 ; hiah f 2rTIEc Thi
(B7) tion at high temperature by a actor e T 'tc. This
clearly indicates that the effects considered in this paper and

At small temperaturesT<E., Eqg. (B7) reduces to Eq. in Refs. 14 and 27 cannot be obtained in any order of per-
(4.140. At large temperature§;>E_, we obtain turbation theory in charging enerdg .

Vg 27T
+

27TT)\ EC

All the results associated with the Coulomb blockadee,

e.g., Eq.(4.15h] contain exponential terms of the form

_ 2 . ] . .
e~ XEc/2mT, e~ P+ This gives the suppression of the charge quantiza-

1
cotx— —
X
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