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Mesoscopic charge quantization
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We study the Coulomb blockade in a chaotic quantum dot connected to a lead by a single channel at nearly
perfect transmission. We take into account quantum fluctuations of the dot charge and a finite level spacing for
electron states within the dot. Mesoscopic fluctuations of thermodynamic and transport properties in the
Coulomb blockade regime exist at any transmission coefficient. In contrast to the previous theories, we show
that by virtue of these mesoscopic fluctuations, the Coulomb blockade is not destroyed completely even at
perfect transmission. The oscillatory dependence of all the observable characteristics on the gate voltage is
preserved, its period is still defined by the charge of a single electron. However, phases of those oscillations at
perfect transmission are random; because of the randomness, the Coulomb blockade shows up not in the
averages but in the correlation functions of the fluctuating observables~e.g., capacitance or tunneling conduc-
tance!. This phenomenon may be called ‘‘mesoscopic charge quantization.’’ @S0163-1829~98!05316-8#
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I. INTRODUCTION

The effect of the Coulomb blockade1–3 in chaotic quan-
tum dots sets an ideal stage for studying the interplay
tween the quantum chaos and interaction phenomena
many-electron system. By tuning the connection between
leads and the quantum dot, one can study a rich variet
nontrivial effects. In the weak tunneling limit, discrete char
ing of the dot results in a sequence of sharp conducta
peaks, which carry information about the chaotic motion
noninteracting electrons confined inside an almost clo
dot.4 In the opposite limit of wide channels, charge quan
zation does not occur, and quantum chaos of free electron
an open billiard may be studied.5 In a broad intermediate
region, the charge quantization is gradually destroyed,
the chaotic electron motion is affected by fluctuations
charge of the cavity. The modern experimental technique3,6,7

allows one to continuously traverse these regimes.
The effect of charging is conventionally described by t

Hamiltonian2

ĤC5
EC

2
S Q̂

e
2ND 2

, EC5
e2

C
, ~1.1!

whereC is the total capacitance of the dot, the dimensionl
parameterN is related to the gate voltageVg , and gate ca-
pacitanceCg byN5Vg /eCg , andQ̂ is the dot charge. Usu
ally, charging energyEC is much larger than the one-electro
mean level spacing of the dot,D. If the connection of the do
with the leads is weak and temperatureT is small,T!EC ,
the charge is well quantized for almost allN except narrow
vicinities of the charge degeneracy points~half-integerN).
The behavior of the differential capacitance of the cav
d^Q&/dVg , and of the conductance through the cavity
quite different for the system tuned to the immediate vicin
of charge degeneracy points~Coulomb blockade peaks!, or
away from those points~Coulomb blockade valleys!. The
570163-1829/98/57~16!/9608~34!/$15.00
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statistics of the peaks can be related to the properties
single electron energy and wave function,4 so that the distri-
bution functions for these quantities can be extracted fr
the well-known random matrix theory~RMT!.8,9 The trans-
port in the valleys occurs by virtual transitions of an electr
via excited states of the dot.10 The statistics of the conduc
tance in this case was recently obtained in Ref. 11 and
confirmed experimentally in Ref. 12.

All the aforementioned results were obtained neglect
quantum fluctuations of the charge of the cavity. These fl
tuations grow with the increase of the coupling between
dot and lead.13 Then, the difference between the peaks a
valleys becomes less pronounced and eventually instea
the peak structure, one observes only a weak perio
modulation.14 Clearly, this modulation can be described ne
ther by the properties of the single-electron wave funct
nor by the lowest-order virtual transitions via the excit
states.

The case of almost perfect transmission of a one-chan
point contact connecting the quantum dot with the lead~see
Fig. 1! was analyzed by Matveev14 and Flensberg15 in the
framework of an effective one-dimensional Hamiltonia
Employing the bosonization technique, they showed that
Coulomb blockade disappears completely if the transmiss

FIG. 1. Schematic view of a quantum dot connected to a le
Periodic orbitA encounters the entrance to the dot once,nA51, and
periodic orbitB does not encounter the entrance,nB50.
9608 © 1998 The American Physical Society
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57 9609MESOSCOPIC CHARGE QUANTIZATION
coefficient of the point contact is exactly unityr 50 andD
50. The explicit dependence of the differential capacitan
of the system onN, and on the small reflection coefficien
0,ur u2!1 was obtained by Matveev.14 It is important to
emphasize that the Coulomb blockade in this situation
nonperturbative in charging energy effect and it cannot
revealed in the standard Hartree-Fock or random phase
proximations.

The properties of a quantum dot connected to reservoi
a channel were analyzed in a series of papers of Bu¨ttiker and
collaborators.16,17They have used the random phase appro
mation to calculate the frequency dependence of the lin
response of the currentI through the channel to biasVeivt

applied to the reservoir:I 5G(v)V. In this approach, the
admittanceC52Im(dG/dv)uv→0 coincides by construc
tion with the thermodynamic capacitance of the nonintera
ing electrons. The quantum corrections and mesoscopic
tuations of this quantity then can be analyzed by using
distribution of the Wigner delay times of the noninteracti
system.17 This approach is perfectly valid for a large numb
of channels, but for a single channel, there is no param
justifying it. We will see below that the results obtained by
well-controlled procedure are significantly different~see
Secs. V and VI!.

In this paper, we account for both the strong quant
charge fluctuations, and the chaotic electron motion wit
the dot. We will show that backscattering of electrons fro
the walls of the dot into the channel connecting it to the le
results in residual Coulomb blockade oscillations of obse
ables with the gate voltage. In the limit of perfect chann
transmission, the relative magnitude of the differential
pacitance oscillations isAD/EC and (D/EC)ln2(EC /D) for
the spinless and for spin-1/2 cases, respectively. If the
ond lead is attached to the cavity by a weak tunnel junct
with conductanceG0!e2/\, the two-terminal conductanc
G can be measured. The average value of the conductan
suppressed by the Coulomb blockade, but it remains fi
even at zero temperature,^G&.G0D/EC . Fluctuations of
the conductance are of the order of its average. This
sembles the result for the elastic co-tunneling in the w
coupling regime.10,11 However, the dependence of the co
ductance of the gate voltage is no longer a sequence of
valleys and sharp peaks, but rather a weakly oscillating fu
tion.

For a finite reflection coefficient in the channel (ur u2
Þ0), we found a new contribution, in addition to the ave
aged differential capacitance calculated in Ref. 14. This c
tribution is fluctuating and provides, in particular, the depe
dence of the differential capacitance on the magnetic fie

The paper is organized as follows. In Sec. II, we quali
tively discuss the mesoscopic fluctuations of the differen
capacitance for spinless electrons. Section III is devoted
the formulation of the model and derivation of the effecti
action representation. We will also discuss the conditions
applicability of the model. Section IV describes th
bosonization procedure. Calculation of the ground-state
ergy and differential capacitance is performed in Sec. V. T
tunneling conductance in a strongly asymmetric setup~one
channel is reflectionless, and the other junction is of cond
tanceG0!e2/\) is studied in Sec. VI. Our findings are sum
marized in the Conclusion.
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II. QUALITATIVE DISCUSSION

Let us consider first a completely opened channelr
50). In the limitD→0, the electron charge of the dot varie
with the gate voltage aŝQ&5eN, to assure the minimum o
the electrostatic energy.14 The interaction~1.1! depends only
on the number of electrons crossing the dot-channel bou
ary. Therefore, the properties of the ground state can be c
acterized by the asymptotic behavior of the wave functio
far from the entrance to the dot. This behavior is describ
by the scattering phase, and at low energies can be un
stood from the following qualitative argument.

Entrance of an additional electron with energye ~all the
energies will be measured from the Fermi level! into the dot
requires energyEC . Therefore, the electron may spend in t
dot time of the order of\/EC , and then the extra charge o
the dot has to relax. There are two processes that lead to
relaxation of the charge:~i! the elastic process where th
same electron leaves the dot; and~ii ! the inelastic process
where some other electron is emitted from the dot. At lo
energies the probability of the inelastic process is as sma
(e/EC)2, by virtue of the smallness of the phase volum
~The last statement assumes the Fermi liquid behavior at
energies and, as we will see later, is valid only for a spinl
one-channel case.! Therefore, we may consider only the ela
tic process. The same consideration is applicable also to
electron leaving the dot. Thus we conclude that the lo
energy properties of the system can be mapped onto the
effectively decoupled from the channel, and the phase of
scattering amplitude from the entrance of the dot is given
the Friedel sum rule

d5p^Q&/e5pN. ~2.1!

Equation~2.1! can be applied to electrons incident from i
side the dot, as well as to electrons incident from the ch
nel. The outlined description resembles closely the Nozie
description of the unitary limit in the one-channel Kond
problem.18

The outlined above qualitative picture based on the int
duction of scattering phased is somewhat intuitive; it will be
verified by a calculation in Sec. IV. Here instead of rigoro
proof, we demonstrate that this scheme reproduces the r

Eg~N!.ur uEC cos 2pN ~2.2!

obtained by Matveev14 for the ground-state energyEg(N) of
spinless electrons in the limit of zero level spacing in the d
Then, we apply the scheme to find the corrections to
ground-state energy arising from a finiteD. Those correc-
tions will result in the mesoscopic fluctuations of the groun
state energy.

We start with considering the limitD50. First, we put
alsour u50 and calculate the density of electrons in the ch
nel r(x). Then we take into account the scattering poten
V(x) that generatesrÞ0, in the first order of perturbation
theory,

Eg~N!5E dxr~x!V~x!. ~2.3!

As we discussed, the Coulomb interaction leads to the p
fect reflection of an electron at low energies; wave functio
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9610 57I. L. ALEINER AND L. I. GLAZMAN
have the formck(x)5cos(kuxu2d), with phase shiftd given
by Eq.~2.1!. It leads to the Friedel oscillation of the electro
density r(x)5(vFuk2kF] &EC

uck(x)u2, wherevF and kF are
the Fermi velocity and Fermi wave vector, respectively. W
obtain

r~x!55
EC

vF
cos~2kFuxu22d!, uxu,vF /EC

sin~2kFuxu22d!

uxu
, uxu.vF /EC .

~2.4!

Here we omitted the irrelevant constant part of the elect
density. Substituting Eq.~2.4! into Eq. ~2.3!, assuming the
magnitude of the potential aroundx50 smaller thanvF /EC ,
and using the standard expressionur u5uṼ(2kF)u/vF , we ob-
tain formula~2.2!. HereṼ(k) is the Fourier transform of the
potentialV(x).

Having verified the suggested scheme for the caseD50,
we proceed with evaluation of the ground-state energy o
finite dot connected to a reservoir by a perfect channel.
cording to the above discussion, the channel is effectiv
decoupled from the dot due to the charging effect ev
though r 50. Therefore, we have to relate the ground-st
energy of a closed dot to the scattering phased of Eq. ~2.1!.
For a chaotic dot, this problem is equivalent to finding
variation of the eigenenergies by introduction of impur
potential V(r )5(1/pn)d(r )tand, where n is the averaged
density of states per unit area. The relevant contribution
the ground-state energy is given by

Eg5 (
2EC&j i,0

@j i~d!1m#, ~2.5!

where j i are the eigenenergies measured from the Fe
level m. As soon as the scattering phase changes byp, one
more level enters under the Fermi level. Evolution of t
energy levels with changingd is shown schematically in Fig
2. The position of the levelj i(d) satisfies the gluing condi
tion

j i~d1p!5j i 11~d!. ~2.6!

From Eq. ~2.5! and Eq.~2.6! we see that the ground-sta
energy depends almost periodically ond:

FIG. 2. Evolution of the energy levels of the quantum dot w
the scattering phased.
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Eg~d!5Eg~d1p!1O~D!. ~2.7!

As we will see below, the amplitude of the oscillation of th
ground-state energy withd is much larger than the mea
level spacing and we will neglect the last term in Eq.~2.7!.

In order to estimate the amplitude of the oscillations,
recall that the correlation function of the level velocities
given by19

^]de i&5
D

p
, ^]de i]de j&5d i j

2

bS D

p D 2

, ~2.8!

whereb51,2 for the orthogonal and unitary ensembles,
spectively, and̂¯& stands for the ensemble averaging. Fo
mula ~2.8! can be easily understood from the first-order p
turbation theory. At d!1, we have e i(d)'e i(0)
1(d/pn)uc i

2(0)u. For a chaotic system the exact wave fun
tions c i can be presented in the form

uc i~0!u25
11bi

A ,

where the area of the dotA appears due to the normalizatio
condition, andbi characterizes the fluctuations of the chao
wave functions. In accordance with the Porter-Thom
distribution,8

^bi&50; ^bibj&5
2

b
d i j .

Estimating the mesoscopic fluctuations of the groun
state energy~2.5! with the help of Eq.~2.8!, we obtain for
d!1

^@Eg~d!2Eg~0!#2&5D2S d

p D 2

(
2EC&j i ,j j ,0

2

b
d i j 'DECd2.

~2.9!

As we have already explained, energy~2.5! is a periodic
function of d with period p. On the other hand, ford&1,
Eq. ~2.9! is valid. Therefore the characteristic amplitude
the oscillations is of the order ofAECD, and it is plausible to
assume that the correlation function of energies at two
ferent parametersN1 ,N2 takes the form

^Eg~N1!Eg~N2!&'DEC cos 2p~N12N2!, ~2.10!

where we use Eq.~2.1!. It is important to notice that the
variation of the energy of the ground state is much lar
than the mean level spacingD. This observation enabled u
not to consider in particular the variation of the chemic
potential with changingd, because it would generate a co
rection of the order of the level spacing only.

In order to explain the functional form of the correlatio
function ~2.10! and make our argumentation more precise
is instructive to evaluate the shift of the energy levels sta
ing from the Gutzwiller trace formula.20 The energy of the
ground state is given by

Eg52E
2`

0

de N~e!K~e/EC!, ~2.11!

wheree is measured from the Fermi level, andN(e) is the
integrated density of states,N(e)5( iu(e2e i). HereK(x) is
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57 9611MESOSCOPIC CHARGE QUANTIZATION
some function that decays rapidly atx.1, so only the states
that can be described within the Fermi liquid theory contr
ute into thed-dependent part of the ground-state energy@cf.
Eq. ~2.5!#.

The integrated density of states can be expressed as a
over the classical periodic orbits:20

N~e,d!5Re(
j

Rj~e!expF i

\
Sj~e!12in jdG . ~2.12!

Here Rj is the weight associated withj th orbit, Sj is the
reduced action for this orbit. The last term in the exponen
Eq. ~2.12! characterizes the reflection from the entrance
the cavity, andnj is the number of such reflections forj th
orbit; see Fig. 1. We have omitted the mean value ofN(e),
which is independent of the phase shift~2.1!.

Integrated density of states~2.12! is a strongly oscillating
function of energy, which vanishes upon ensemble~or en-
ergy! averaging. However, it contributes to the fluctuatio
of the density of states:

^N~e1 ,d1!N~e2 ,d2!&

52 Re(
j

uRj u2expF i

\
„Sj~e1!2Sj~e2!…12in j~d12d2!G ,

~2.13!

and we neglected the energy dependence of the
exponential factorsRj because it occurs on the energy sc
of the order of the Fermi energy. In the double sum over
periodic orbits, arising in Eq.~2.13!, one can retain only
diagonal terms21 because different orbits have different a
tions; the nondiagonal terms oscillate strongly and van
upon averaging. The factor of 2 in Eq.~2.13! originates from
the fact that the electron trajectoryj and the trajectory time
reversed toj have the same action.

In order to calculate the correlation function of meso
copic fluctuations of ground-state energies~2.11!, we use Eq.
~2.13! and expand the action asSj (e1)2Sj (e2)5(e1
2e2)t j , with t j being the period ofj th orbit. After integra-
tion over energiese1,2, we find

^Eg~d1!Eg~d2!&52EC
2 (

j
uRj u2K̃S ECt j

\ D cos@2nj~d12d2!#,

~2.14!

where K̃(y)5u*2`
0 dx K(x)eixyu2 is a function decaying

at y.1.
CoefficientsuRj u2 have a very simple physical meanin

and are related to the classical probabilityP(t)dt to find a
periodic orbit with a period within the interval@ t;t1dt#:

(
j

uRj u2¯→
1

2p2E0

`dt

t
P~ t !¯ . ~2.15!

In the same fashion, we obtain from Eq.~2.14!:

^Eg~d1!Eg~d2!&

5
EC

2

p2(n
E

0

`dt

t
K̃S ECt

\ D Pn~ t !cos@2n~d12d2!#. ~2.16!
-

um

n
f

e-

e

h

-

The classical probabilityPn(t) differs from P(t) by satisfy-
ing an additional constraint: the corresponding periodic
bits are reflected from the dot entrance exactlyn times;
(nPn(t)5P(t).

In general,Pn(t) depends on a particular shape of the d
However, if the motion is chaotic,Pn(t) becomes universal

Pn~ t !5
~ tD/\!n

n!
e2tD/\, ~2.17!

for the periodst much larger than the ergodic time\/ET .
EnergyET associated with the time scale at which the cla
sical dynamics becomes ergodic is the counterpart of
Thouless energy for the diffusive system. TypicallyET
*EC , therefore we adopt the approximationET@EC@D.
According to Eq. ~2.14!, the characteristic period of th
semiclassical trajectory is of the order of\/EC , which is
much smaller than the Heisenberg time\/D. Therefore,
when calculating the oscillatory part of the correlation fun
tion of the ground-state energies, it suffices to keep in
~2.16! only the contribution of the trajectories reaching t
entrance only once. As the result, we obtain an expres
similar to our estimate~2.10!,

^Eg~N1!Eg~N2!&5aDEC cos 2p~N12N2!, ~2.18!

where we have used Eq.~2.1!. The numerical coefficienta
5(1/p2)*0

`dx K̃(x) depends on the particular form of func

tion K̃, and cannot be found within the simple consideratio
Let us now discuss the correlation of the ground-st

energies as a function of magnetic field. The magnetic fl
threading a periodic orbit adds a phasef j5AjH/F0 to the
action in each termj in the Gutzwiller formula~2.12!, where
Aj is the directed area under the trajectory,H is the applied
magnetic field, andF0 is the flux quantum. Correspondingly
formula ~2.14! is modified to

^Eg~d1 ,H1!Eg~d2 ,H2!&52EC
2 (

j
uRj u2K̃S ECt j

\ D
3cosS H1Aj

F0
D cosS H2Aj

F0
D cos@2nj~d12d2!#. ~2.19!

In analogy with Eq.~2.16!, we transform Eq.~2.19! to

^Eg~d1 ,H1!Eg~d2 ,H2!&5
EC

2

p2(n
E dAE

0

`dt

t
Pn~ t;A!

3K̃S ECt

\ D cosS H1A

F0
D cosS H2A

F0
D cos@2n~d12d2!#,

~2.20!

where Pn(t;A)dA differs from probability Pn(t) by one
more constraint: the directed area swept by a trajectory
within the interval@A;A1dA#.

In a chaotic system, the probabilityPn(t;A) factorizes:

Pn~ t;A!5Pn~ t !p~ t;A!. ~2.21!
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Here Pn(t) is defined by Eq.~2.17!, and the distribution
function of the areas is Gaussian:

p~ t;A!5
1

2Ap^A2~ t !&
expH 2

A2

4^A2~ t !&
J ,

~2.22!

^A2~ t !&5
ETt

\
A2.

The formula for̂ A2(t)& shows that the typical area under th
electron trajectory differs from the area of the dotA, and
grows asAt. This law is applicable at the time scale excee
ing the ergodic time\/ET , and reflects the time dependen
of r.m.s. of the random winding number for the trajectory
an electron bouncing off the walls of the dot.

As we already discussed, the characteristic time an e
tron spends in the dot is\/EC . The characteristic area accu
mulated during this time isAET /EC. A magnetic field pro-
duces an appreciable effect if a flux penetrating through
area is of the order ofF0. Thus, the correlation magneti
field is controlled by the charging energy:

Hc5
F0

AA
EC

2pET
. ~2.23!

Using Eqs.~2.20!–~2.22!, we find the correlation function

^Eg~N1 ,H1!Eg~N2 ,H2!&5ECD (
g51,2

LES Hg
2

Hc
2D cos 2pn,

~2.24!

where we introduced the shorthand notationH65H16H2
andn5N12N2. Calculation of the exact form of the dimen
sionless functionLE(x)5*0

`dy e2xyK̃(y), and of the nu-
merical coefficient in Eq.~2.23!, requires more involved
treatment, which is a subject of the following sections.

Equations~2.18! and~2.24! constitute the main qualitative
result of this section. We were able to demonstrate the os
lations of the ground-state energy with the applied gate v
age. The phase of those oscillations is random, so that
oscillations can be revealed only in the correlation functio
Unfortunately, these simple qualitative arguments are
sufficient for finding the precise form of the correlation fun
tions. Moreover, the assumption of the Fermi-liquid behav
is valid only for the spinless electrons. It is known that t
low-energy behavior of thes51/2 electrons is equivalent14

to that of the two-channel Kondo problem in its stron
coupling fixed point displaying a non-Fermi-liquid behavio
Quantitative study of the system in this case will be p
sented later; see Sec. V B.

III. THE MODEL

The main difficulty of the problem is in the nonperturb
tive nature of the Coulomb blockade effect. Derivation of
effective one-dimensional model is our first step in overco
ing this difficulty. The interaction energy~1.1! depends only
on the total number of electrons in the dot. The change
this number is associated with electrons propagating thro
the channel. Because the dynamics of the channel is
dimensional, the charging effects of the system can be c
-

f

c-

is

il-
t-
he
.

ot

r

-

-

f
h

ne
n-

sidered on the basis of a one-dimensional Hamiltonian.14,15

However, the original problem was at least two dimension
so backscattering of the electrons by the walls of the
cannot be accounted for by the one-dimensional Ham
tonian. Instead, of an effective Hamiltonian, we were able
find an effective action that depends only on the elect
variables of the one-dimensional channel. If there was
interaction, such an approach would have no advanta
however, in the presence of interaction it becomes very p
erful. The interaction will be exactly accounted for by mea
of bosonization, see Sec. IV.

Electrons are backscattered into the channel by the w
of the dot at random times, therefore the action we derive
Sec. III A has a nonlocal in time, random term. This ter
however, can be treated perturbatively by virtue of the sm
parameter,D/Ec!1. With the help of the action, calculatio
of the correlation functions of energies and differential c
pacitances can be performed by the standard diagramm
methods.19 At energies less thanET the averages becom
universal. In this regime, it is also possible to formulate t
model starting from the random matrix Hamiltonian,22 see
Sec. III B.

The applicability of the description of the interaction b
Eq. ~1.1!, i.e., of the constant-interaction model, is discuss
in Sec. III C. We will show that the corrections to this d
scription are of the order of 1/g, whereg@1 is the dimen-
sionless conductance of the dot.

A. ‘‘Conventional’’ formulation

We start with the Hamiltonian of the system,

Ĥ5ĤF1ĤC , ~3.1!

whereĤF is the Hamiltonian of noninteracting electrons,

ĤF5E dr F 1

2m
¹c†¹c1@2m1U~r !#c†cG . ~3.2!

The potentialU(r ) describes the confinement of electrons
the dot and channel.

The interaction HamiltonianĤC is given by Eq.~1.1!, and
the charge of the dot is

Q̂

e
5E

dot
dr c†c, ~3.3!

where the integration is performed within the dot. Of cour
the boundary separating the dot from the lead is not defin
However, this ambiguity can be absorbed into the definit
of dimensionless gate voltageN.

For the purpose of the evaluation it is more convenie
however, to change the definition of the charge. Noticing t
the total number of particles in the system is an integer nu
ber that can be added to the parameterN without affecting
any periodic inN observables, we write

Q̂

e
52E

channel
dr c†c. ~3.4!

To calculate the ground-state energy, we start with
thermodynamic potential,
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V52
1

b
ln~Tre2bĤ!, ~3.5!

where temperatureT51/b.
We evaluate the trace in two steps, Tr¯5Tr1Tr2¯,

where 1 and 2 indicate the fermionic operators belonging
the channel and dot, respectively. Because all of the inte
tion is attributed to the channel@see Eq.~3.4!#, the charging
energy operator is not affected by the summation in the
and can be omitted in the intermediate formulas. The n
interacting Hamiltonian~3.2! can be presented asĤF5Ĥ1

1Ĥ21Ĥ12, whereĤ1 andĤ2 are the noninteracting Hamil
tonians of the channel and of the dot, respectively, andĤ12
connects the dot with the channel. Thus, we write

Tr2e2bĤF5Tr2e2b~Ĥ11Ĥ21Ĥ12!

5e2bĤ1Tr2@e2bĤ2Tte
2*0

bdtĤ12~t!#

5e2bV2e2bĤ1Tte
~1/2! *0

bdt1 *0
b dt2^Ĥ12~t1!Ĥ12~t2!&2.

~3.6!

Here Ĥ12(t)5et(Ĥ11Ĥ2)Ĥ12e
2t(Ĥ11Ĥ2) is the interaction

representation of the Hamiltonian connecting the dot a
lead, Tt stands for the chronological ordering, andV25

2T ln Tr2e
2bĤ2 is the thermodynamic potential of noninte

acting electrons in the dot. Averaging^¯&2 over the elec-
tronic variables of the dot is defined by the relation^¯&2

5ebV2Tr2(e
2bĤ2

¯). The thermodynamic potentialV2 does
not depend onN, and it will be omitted.

The operator Eq.~3.6! depends only on the electron var
ables of the channel. The evaluation of the last factor in
~3.6! is performed in Appendix A. This yields

1

2
^Ĥ12~t1!Ĥ12~t2!&252c̄~t1 ;0!c~t2 ;0!

3
1

4m2E dy dy8f~y!f~y8!]xx8
2 G~t12t2 ;r ,r 8!,

~3.7!

wherec(t;x)5etĤ1c(x)e2tĤ1 are the one-dimensional fer
mionic operators of the channel in the interaction repres
tation, c̄(t)5c†(2t), andG is the exact Matsubara Gree
function of the closed dot subjected to the zero bound
condition. The wave functionf(y) describes the transvers
motion in the single-mode channel, and the coordinatesx, x8
in the derivative of the Green functionG are set to10.

The detailed behavior of the Green functionG depends on
the particular shape of the dot. It is convenient to separate
fluctuating part of the Green function,G5Ḡ1 G̃, and to com-
bine the sample-independent proportional toḠ part of

^Ĥ12(t1)Ĥ12(t2)&2 with the HamiltonianH1 in Eq. ~3.6!.
We rewrite Eq.~3.7! in the form
to
c-

t,
-

d

q.

n-

y

he

^Ĥ12~t1!Ĥ12~t2!&25^Ĥ12~t1!Ĥ12~t2!&2

22c̄~t1 ;0!c~t2 ;0!L~t12t2!, ~3.8!

where kernelL is given by

L~t!5
1

4m2E dy dy8f~y!f~y8!]xx8
2 G̃~t;r ,r 8!. ~3.9!

One can check by a direct calculation that

e2bĤ1Tte
~1/2! *0

bdt1*0
bdt2^Ĥ12~t1!Ĥ12~t2!&2}Tr.e2bĤ1D,

~3.10!

where Tr. stands for the trace of the one-dimensional ferm
onic operators on the positive half axis, and

Ĥ1D5E
2`

`

dxF 1

2m
¹c†¹c2mc†cG ~3.11!

is the one-dimensional Hamiltonian defined on the wh
real axis. The proportionality coefficient in Eq.~3.10! does
not contribute to any observable quantity and we omit it. W
substitute Eq.~3.8! into Eq. ~3.6!, use Eq.~3.10!, restore the
charging energy@see Eq.~3.4!#, and obtain

Tre2bĤ}Tr~e2bĤ0Tte
2Ŝ!. ~3.12!

The one-dimensional effective Hamiltonian is given by

Ĥ05Ĥ1D1ECSN1E
2`

0

:c†c:dxD 2

, ~3.13!

where :̄ : stands for the normal ordering. The effective a
tion Ŝ in Eq. ~3.12!,

Ŝ5E
0

b

dt1dt2L~t12t2!c̄~t1 ;0!c~t2 ;0!, ~3.14!

has kernelL defined by Eq.~3.9!. If the electrons with spin
are considered, the summation over spin indices is implie
the above formulas.

As we are interested in the dynamics of the system
energies much smaller than the Fermi energy, we can lin
ize the spectrum of one-dimensional fermions. Writi
c(x)5e2 ikFxcL(x)1eikFxcR(x), wherecL and cR are the
left- and right-moving fermions, respectively, we obta
from Eqs.~3.11! and ~3.13!:

Ĥ05 ivFE
2`

`

dx$cL
†]xcL2cR

†]xcR%

1
EC

2 S E
2`

0

dx:cL
†cL1cR

†cR :1ND 2

, ~3.15!

wherevF is the Fermi velocity in the channel. In Eq.~3.15!
the fermionic fields are assumed to be smooth on the sca
the Fermi wavelength. The action has the following form
terms of the left- and right-movers:
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Ŝ5E
0

b

dt1dt2L~t12t2!

3@c̄L~t1!1c̄R~t1!#@cL~t2!1cR~t2!#. ~3.16!

Finite reflection in the channel can be taken into account
adding to the Hamiltonian~3.15! one more term:

Ĥbs5ur uvF@cL
†~0!cR~0!1cR

†~0!cL~0!#, ~3.17!

where ur u2!1 is the reflection coefficient. The thermod
namic potentialV(N) can be found from

V~N!52T ln Tr~e2b~Ĥ01Ĥbs!Tte
2Ŝ!. ~3.18!

The differential capacitanceCdiff(N) of the system is then
given by

Cdiff~N!5CS 12
1

EC

]2V

]N2D . ~3.19!

Equations~3.15! and ~3.17! were first suggested in Refs. 1
and 15.

So far we succeeded in reducing the original problem
the effective one-dimensional problem, where all the featu
of the chaotic motion of electrons in the dot are incorpora
into the nonlocal in time action. The action fluctuat
strongly from sample to sample, and we should study
statistics of these fluctuations.

1. Statistics of L„t…

It is convenient to use the Lehmann representation for
function L(t) of Eq. ~3.9!:

L~t!5E
2`

` dt

2p
@LR~ t !2LA~ t !#

pT

sinh@pT~ t1 i t!#
,

~3.20!

where the retarded and advanced kernelsLR,A are given by
Eq. ~3.9!, with G̃ replaced by the exact advanced and
tarded Green functionsG̃R,A, respectively. It is well known

that the averaged products of the typeG̃RG̃R and G̃AG̃A van-
ish, and the products of the retarded and advanced G
functions can be expressed in terms of the class
propagators—diffusonsPD and CooperonsPC,

G̃H1

R ~ t1 ;r1
1 ,r2

1!G̃H2

A ~ t2 ;r2
2 ,r1

2!52pnd~ t11t2!

3F~r1
1 ,r1

2!F~r2
1 ,r2

2!PD~ t1 ;R1 ,R2!, ~3.21a!

G̃H1

R ~ t1 ;r1
1 ,r2

1!G̃H2

A ~ t2 ;r1
2 ,r2

2!52pnd~ t11t2!

3F~r1
1 ,r1

2!F~r2
1 ,r2

2!PC~ t1 ;R1 ,R2!, ~3.21b!

F~r1 ,r2!5Im
GA

p
5J0~kFur12r2u!2J0~kFur12R̂r2u!,
y

o
s
d

e

e

-

en
al

whereJ0(x) is the zeroth Bessel function,r i
65Ri6r i /2, and

kF is the Fermi wave vector. PointR̂r is the coordinate of
the image charge created by the charge in the pointr , so that
the propagators~3.21! satisfy proper zero boundary cond
tions. Green functions here are taken at different values
magnetic fieldsH1 ,H2. In Eqs.~3.21!, n5m/2p is the den-
sity of states per unit area. Equations~3.21! are valid if the
arguments of the Green functions are close to each o
pairwise: ur 1,2u must be much smaller than the elastic me
free path for a diffusive dot, and much smaller than the
size for a ballistic dot. The boundary is assumed to
smooth on the scale of the Fermi wavelength.

Retarded classical propagators in the diffusive dot sat
diffusionlike equations23

H ]

]t
2DF¹1

ie

c S A12A2

A11A2
D G2J HPD

PCJ 5d~R12R2!,

~3.22!

whereD is the diffusion coefficient, and the vector potentia
A1,2 are defined so that¹3A1,25H1,2. For a ballistic dot,
Eqs.~3.22! should be substituted by the corresponding Lio
ville ~or, to be more precise, Perron-Frobenius! equation, and
Eq. ~3.21! should be somewhat changed.24 However, in the
universal limit considered in this paper, there is no differen
between the ballistic and diffusive dots.

The universal limit corresponds to a large time scale
which the semiclassical electron orbit covers all the availa
phase space. At such a time scale, the classical probabi
no longer depend on the coordinate and acquire the form

PD,C5
1

A u~ t !e2t/tH
D,C

, ~3.23!

whereu(x) is the step function,A is the area of the dot, and
the decay times associated with the magnetic field are g
by

1

tH
D,C

5ETS F17F2

F0
D 2

. ~3.24!

Here F05e/c\ is the flux quantum,F1,25AH1,2 are the
fluxes through the dot corresponding to the fieldsH1 andH2,
and the Thouless energyET is of the order of\D/A for a
diffusive dot, and of the order of\vF /AA for a ballistic dot.

The correlation functions of the retarded and advan
parts of the kernelL can be expressed, with the help of Eq
~3.9! and~3.21!, in terms of the diffuson and Cooperon. Th
kernel L @see Eq.~3.9!# depends on the Green function
coinciding spatial arguments. Therefore, both pairings le
ing to the diffuson and Cooperon upon averaging should
taken into account. In the universal regime@see Eq.~3.23!#
integrals in the transverse direction in Eq.~3.9! can be cal-
culated using the normalization condition*dyf2(y)51. As
a result, we find

^LH1

R ~ t1!LH2

A ~ t2!&5
vF

2D

2p
d~ t11t2!u~ t1!

3$e2t1 /tH
D
1e2t1 /tH

C
%, ~3.25!
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whereD51/(nA) is the mean level spacing of the dot. Av
erages of the typeLRLR vanish. Because we are interested
times smaller than the Heisenberg time\/D, the higher mo-
ments can be decoupled by using the Wick theorem and
pair correlation functions are defined by Eq.~3.25!.

B. Random matrix formulation

We start by dividing the entire system into two parts, t
leads and the dot. In general, the HamiltonianĤ of the sys-
tem can be represented as

Ĥ5ĤL1ĤD1ĤLD . ~3.26!

The Hamiltonian of the leads is of the form

ĤL5vF(
k, j

kck, j
† ck, j , ~3.27!

where we linearized the electron spectrum in the leads,
measured all the energies from the Fermi level. Indexk is the
longitudinal momentum in a mode propagating along
channel connected to the dot, and indexj 51, . . . ,N labels
these modes~summation over spin indices is implied whe
ever it is necessary!. For the sake of simplicity, we assum
the same Fermi velocity in all the modes, the general c
can be reduced to Eq.~3.27! by the corresponding rescaling
HamiltonianĤD5Ĥn1ĤC of the dot consists of the nonin
teracting part

Ĥn5(
a,b
Ha,bca

†cb , ~3.28!

and the interaction termĤC , which is described by the
Hamiltonian~1.1! with the chargeQ̂ given by

Q̂

e
5(

a
ca

†ca . ~3.29!

~In this subsection, we reserve greek and latin letters
labeling the fermionic states in the dot and in the leads,
spectively.! For definiteness, we restrict the discussion to
case of the orthogonal ensemble; generalization to o
cases is straightforward. ElementsHa,b in Eq. ~3.28! form a
real random Hermitian matrixH of size M3M , (M→`),
belonging to the Gaussian ensemble

P~H!}expS 2
p2

4D2M
TrH2D , ~3.30!

where D is the mean level spacing near the center of
band. Finally, HamiltonianĤLD in Eq. ~3.26! describes the
coupling of the dot to the leads, and has the form

ĤLD5 (
k, j ,a

~Wa, jca
†ck, j1H.c.!, ~3.31!

where the coupling constantWa, j is a realM3N matrix W.
Let us list the needed averaged quantities correspon

to the Gaussian ensemble Eq.~3.30!. The averaged densit
of states is given by the semicircle law
he

nd

e

se

r
-

e
er

e

ng

r~e!5Trd~e2H!5Re
1

D
A12S pe

DM D 2

. ~3.32!

We will need only properties of the system at energiese
much smaller than the width of the bandDN/p, and we will
neglect the energy dependence of the averaged densi
states. The average of the Green functionsGR,A(e)5(e2H
6 i0)21 has the form

Ga,b
R,A57 ipdab

1

MD
. ~3.33!

Random matrix counterparts of the diffusion and Coope
propagators~3.21! can be written as

Ga,b
R ~e1v!Gg,d

A ~e!5
2p

MD
@PD~v!daddbg1PC~v!dagdbd#,

PD~v!5PC~v!5
1

M

1

2 iv10
, ~3.34!

whereG̃5G2G. Averages of the typeG̃RG̃R and G̃AG̃A van-
ish. Formulas~3.32!–~3.34! have the accuracy;1/M and
they neglect the oscillatoryv dependences on the scale
the order ofD. This accuracy, however, is sufficient for u
because, as we already discussed, the relevant result
contributed by the energy strip of the widthEC@D.

Our purpose now is to derive the effective action theo
similar to Eqs.~3.15!–~3.18! starting from the random matrix
model. Before doing so, let us review some useful proper
of the system~3.26! in the absence of the interaction,EC
50. In this case, electron transmission at energye is com-
pletely characterized byN3N scattering matrixS(e):

S~e!5122p inW†@e2H1 ipnWW†#21W, ~3.35!

wheren51/(2pvF) is the one-dimensional density of stat
in the leads. Coupling matrixW can be represented in th
form

W5ADM

p2n
UOW̃, ~3.36!

whereU is an orthogonalM3M matrix, W̃ is a realN3N
matrix, andO is anM3N matrix, Oa j5da j ,1<a<N. Be-
cause the distribution function~3.26! is invariant under rota-
tions H→UHU†, matrix U in Eq. ~3.36! can be omitted.
Substituting Eq.~3.36! into Eq. ~3.35! and performing en-
semble averaging with the help of Eq.~3.33!, we obtain for
the average scattering matrix

S̄5
12W̃†W̃

11W̃†W̃
. ~3.37!

At W̃†W̃51 the average scattering matrix vanishes; see
~3.37!. It indicates that matrixS belongs to the circular en
semble~corresponding to the regime of ‘‘ideal contacts’’!.
Deviation ofW̃†W̃ from a unit matrix can be attributed to th
scattering on the contacts between the leads and the dot.
scattering is described by a unitary symmetric 2N32N ma-
trix
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Sc5S r t †

t r 8
D ~3.38!

with N3N matricesr ,r 8,t being defined by

r 5
12W̃†W̃

11W̃†W̃
, r 852W̃

12W̃†W̃

11W̃†W̃
W̃21,

~3.39!

t5W̃
2

11W̃†W̃
.

The explicit relations between the coupling matricesW and
the scattering matrix in the contacts~3.38! were first ob-
tained by Brouwer.25

Now we turn to the derivation of the effective action. F
technical reasons@see discussion above Eq.~3.4!#, we re-
place the charge operator~3.29! with

Q̂

e
52(

k, j
ck, j

† ck, j . ~3.40!

After this replacement, the Hamiltonian of the system b
comes quadratic in fermionic operators of the dot, so that
part of the system can be integrated out:

TrDe2bĤ5TrDe2b~ĤL1ĤC1Ĥn1ĤLD!

5e2b~ĤL1ĤC!e2bVnTte
1
2 *0

bdt1dt2^ĤLD~t1!ĤLD~t2!&D.

~3.41!

HereĤLD(t) is the interaction representation of the coupli
operatorĤLD and averaging over Hamiltonian of the dot
defined aŝ ¯&D5ebVDTrD(e2bĤn

¯). The thermodynamic
potentialVD5T ln Tre2bĤn of the closed dot is independen
of the gate voltageN and it will be omitted.

The average in the last factor in Eq.~3.41! is calculated
with the help of Eq.~3.31! and of the definition of the Mat-
subara Green function for the closed dot:

Gab~t!52^Ttca~t!c̄b~0!&D5(
vn

eivntF 1

ivn2HG
ab

,

~3.42!

where ca(t)5eĤntcae2Ĥnt,c̄(t)5c†(2t), and vn
5pT(2n11) is the fermionic Matsubara frequency. The r
sult is

^ĤLD~t1!ĤLD~t2!&2

52 (
k1 ,k2 , j 1 , j 2

c̄k1 , j 1
~t1!

3@W†G~t12t2!W# j 1 j 2
ck2 , j 2

~t2!. ~3.43!

We separate the averaged part of the Green functionG5G
1 G̃, use Eqs.~3.33! and~3.36!, and obtain the Fourier trans
form of the kernel in Eq.~3.44!,

WG~ ivn!W†52 i
sgnvn

pn
W̃†W̃1

DM

p2n
W̃†G̃~ ivn!W̃.

~3.44!
-
is

-

The first term in the right-hand side of Eq.~3.44! does not
contain any information about the dot, and its frequency
pendence is the same as of the Green function of free ch
fermions. It is, therefore, possible~and very convenient! to
transform this part of the action to the Hamiltonian form
introducing fictitious fermionic fieldsbk, j , j 51, . . . ,N.
Then, Eq.~3.41! acquires the form

TrDe2bĤ}Trb~e2bĤeffTte
2Ŝ!; ~3.45!

the omittedN-independent proportionality coefficient is ir
relevant. The effective HamiltonianĤeff is given by

Ĥeff5vF(
j ,k

k~ck, j
† ck, j1bk, j

† bk, j !

1
1

pn (
k1 ,k2 ; j 1 , j 2

@bk1 , j 1

† wj 1 j 2
ck2 , j 2

1H.c.#

1ECS (
k, j

ck, j
† ck, j1ND 2

, ~3.46!

wherewj 1 j 2
are the elements of the Hermitian matrixw de-

fined as

w5~W̃†W!1/2. ~3.47!

Action S has the form

S54 (
k1 ,k2 ; j 1 , j 2

E
0

b

dt1dt2c̄k1 , j 1
~t1!

3L j 1 j 2
~t12t2!ck2 , j 2

~t2!, ~3.48!

where the kernelL is a N3N matrix given by

L~t!5
DM

4p2n
W̃†G̃~t!W̃. ~3.49!

Equation~3.45! can be easily checked by tracing out ferm
onsb and using the relation

(
k1 ,k2

^Ttbk1 , j 1
~t!b̄k2 , j 2

~0!&5 ipnd j 1 j 2(vn

eivntsgnvn .

Hamiltonian Ĥeff can be rewritten in a more familia
form. Introducing the Fourier transform of the fermion
fields c j (x)5(ke

2 ikxc j ,k and bj (x)5(ke
2 ikxbj ,k , we ob-

tain from Eq.~3.46!

Ĥeff5 ivF(
j
E

2`

`

dx~c j
†]xc j1bj

†]xbj !

1
1

pn (
j 1 , j 2

@bj 1

† ~0!wj 1 j 2
c j 2

~0!1H.c.#

1ECS (
j
È`

dxc j
†c j1ND 2

.

~3.50!

We are interested in the case of almost open ideal conta
iw21i!1. In this case, it is natural to change the variab
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and reveal the small parameter of the perturbation the
Introducing left- and right-moving fermions,

c j~x!5cL, j~x!u~2x!1cR, j~2x!u~x!,

bj~x!5 i @cR, j~2x!u~2x!2cL, j~x!u~x!#

„the ambiguity of this definition at the origin should be r
solved asc(0)5@c(10)1c(20)#/2…, we obtain from Eq.
~3.50!

Ĥeff5Ĥ01Ĥbs , ~3.51a!

Ĥ05 ivF(
j
E

2`

`

dx~cL, j
† ]xcL, j2cR, j

† ]xcR, j !

1ECS (
j
E

2`
dx:cL, j

† cL, j1cR, j
† cR, j :1ND 2

,

~3.51b!

Ĥbs52 i(
i j

r i j cL,i
† cR, j1H.c., ~3.51c!

Ŝ5(
i j

E
0

b

dt1dt2Li j ~t12t2!

3@c̄L,i~t1 ;0!1c̄R,i~t1 ;0!#@cL, j~t2 ;0!1cR, j~t2 ;0!#.

~3.51d!
Here we neglected the terms related to the discontinuitie
the fermionic field at the origin, which induces higher-ord
terms inr , and approximated reflection matrixr'12w, as
follows from Eqs.~3.47! and ~3.39! for ir i!1. Within the
same approximation we can putW̃51 in Eq.~3.49!. Formu-
las ~3.51! are analogous to Eqs.~3.15!–~3.18! derived in a
previous subsection.

Finally, we have to study the statistics of the kern
~3.49!, which can be expressed in terms of its advanced
retarded counterparts by Lehmann formula~3.20!. Perform-
ing time Fourier transform of Eq.~3.34!, and using n
51/(2pvF), we obtain

^Li j
R~ t1!Lrs

A ~ t2!&5
vF

2D

2p
d~ t11t2!u~ t1!

3$d isd j r 1d ir d js%. ~3.52!

For the one-mode lead this result agrees with the zero m
netic field version of Eq.~3.25!.

The statistics of the kernel at different magnetic fields c
be obtained by adding a purely imaginary Hermitian mat
to the original matrixH in Eq. ~3.28!.9,26 This would lead to
the result analogous to the exponential decay in Eq.~3.25!.
We will not describe details of such calculation here, a
refer the reader to the extensive literature on parame
correlations.28,29

C. Applicability of the model

So far, we were using a very simple model of the int
action ~1.1!, which ascribes all the interaction effects to t
variation of the number of particles in the dot. However
y.

of
r

l
d

g-

n

d
ic

-

natural question arises: what is the accuracy of this appr
mation? One may even think that the effects considered
this paper are completely washed out by remaining inter
tion terms that we neglected.

The purpose of this subsection is to show that the sim
model ~1.1! of interactions in the dot leaves out only sma
}1/g, effects, whereg5ET /D is the dimensionless conduc
tance of the cavity (ET is the Thouless energy!. For a diffu-
sive dot in the metallic regime, and for a ballistic nonint
grable dot the conductance is large,g@1. Mesoscopic
charge quantization is adequately described by the mode
interaction~1.1!, as long asg@1, and the number of mode
propagating to the lead is much smaller thang. In other
words, ergodic time of the dot\/ET should be much large
than the escape time of the electron from the dot.

The electrons in the dot are described by the Hamilton
Ĥ5Ĥn1Ĥ int , where the noninteracting part of the Ham
tonian, Ĥn , is given by Eq.~3.25!. The validity of the ran-
dom matrix theory forĤn for the energy scale smaller tha
the Thouless energy was proven in Ref. 21 for chaotic s
tems and in Ref. 30 for diffusive systems.

The general form of the interaction Hamiltonian is

Ĥ int5
1

2( Vabgdca,s1

† cb,s2

† cg,s2
cd,s1

. ~3.53!

In this subsection, we will write explicitly the spin indicess
for the fermionic operators. The interaction Hamiltonia
~1.1! corresponds to the approximation of the matrixV by

V'ECdaddbg . ~3.54!

Our goal now is to show that all the other matrix elements
well as the mesoscopic fluctuations of matrix elements~3.54!
are small. Some of these calculations already appeared in
literature,31,32 however, we will present brief derivation t
make this paper self-contained.

The easiest way to study the statistics of the one-elec
wave functionfa(r ) is to relate them to the Green functio
and then use Eq.~3.21!. By definition of the retarded and
advanced Green functions we have

Ge
A~r1 ,r2!2Ge

R~r1 ,r2!52p i(
a

fa~r1!fa~r2!d~e2ea!,

~3.55!

where we assumed no magnetic field for simplicity. At giv
energye only one function contributes into the sum in E
~3.55!, so that the statistics of the Green functions is rela
to that of the wave functions. Furthermore, it is known th
there is no correlation between level statistics and w
function in the lowest order in 1/g, see, e.g., Ref. 30, so w
can neglect the level correlations and averaged function in
Eq. ~3.55! independently. As a result, we can estimate

fa~r1!fa~r2!'
D

2p i
@Gea

A ~r1 ,r2!2Gea

R ~r1 ,r2!#.

~3.56!

Now we can use Eq.~3.55! and~3.21! to study the average o
different momenta of the matrix elements:
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Vabgd5E dr1dr2V~r12r2!fa~r1!fb~r1!fg~r2!fd~r2!.

Averaging this matrix element itself with the help of E
~3.56!, we obtain

Vabgd5Vabgd
~0! 1Vabgd

~1/g! . ~3.57!

The first term in Eq.~3.57! comes from the product of th
averaged Green functions

ImGA~r1 ,r2!5pn^eik~r12r2!&FS,

and it is given by

Vabgd
~0! 5ECdaddbg1FD~dagdbd1dabdgd!,

EC5
1

A2E dr1dr2V~r12r2!, ~3.58!

F5n^Ṽ~k!&FS.

HereA is the area of the dot,^¯&FS stands for the averagin
over directions of the wave vector on the Fermi surface,n is
the averaged density of states per unit area and per one
in the dot, andṼ(k) is the Fourier transform of the two
particle interactionV(r ).

Charging energyEC in Eq. ~3.58! is related to the zero
mode of the interaction potential. This mode cannot red
tribute the electrons within the dot and that is why it is n
screened~the redistribution of the electrons between the d
and the leads is taken into account by the model!. As the
result,EC is much larger than the mean level spacing. On
other hand, coefficientF includes only nonzero modes th
are perfectly screened,V(k)5V0(k)/@112nV0(k)#, where
V0(k) is the bare potential.~The use of the static screenin
here is possible because the screening is established d
the characteristic time of the plasmon propagation thro
the dot, which is much smaller than\/ET .) Therefore, we
estimateF<1/2, so that the last two terms introduce a co
rection only of the order of level spacing, and may be n
glected.@We will not consider here the case of the attract
interaction when the third term in Eq.~3.58! renormalizes to
infinity due to the interaction in the Cooper channel.#

The second term in Eq.~3.57! originates from the produc
of the retarded and advanced Green functions; see
~3.21!. In the absence of magnetic field, diffuson and Coo
eron propagators coincide, and their spectral expansion f
diffusive system is

Pv~r1 ,r2!5
1

~2 iv10!A1 (
gmÞ0

f m* ~r1! f m~r2!

2 iv1gm
,

~3.59!

wheregm and f m(r ) are the corresponding eigenvalues a
eigenfunctions. For a diffusive system,gm5DQm

2 , whereD
is the diffusion constant, and wave vectorsQm depend on the
shape of the system. For a rectangular diffusive dot of
size Lx3Ly , one findsQ25p2(nx

2/Lx
21ny

2/Ly
2) with nx ,ny

.0 being integer numbers. For chaotic systems,gm are the
eigenvalues of the Perron-Frobenius operator. The z
mode in Eq.~3.59! corresponds to the conservation of t
pin

-
t
t

e

ing
h

-
-

s.
-
r a

e

ro

number particles, and all the other modes describe the re
ation of any initial inhomogeneous distribution function b
virtue of classical chaotic dynamics, Regm.0. If the system
is integrable, or there are some additional symmetries of
system, other zero modes appear, however, we disre
such a possibility and consider only diffusive or classica
chaotic systems.

Using Eqs.~3.21!, ~3.56!, and~3.59!, and taking into ac-
count that all the energies are smaller than the Thouless
ergy ~or, in other words, the lowest nonzero eigenvalue
diffusion or Perron-Frobenius operator!, ueau!g1, we find

Vabgd
~1/g! 5

D

g
@2F1daddbg1~F21F1!~dagdbd1dabdgd!#,

~3.60!

where the dimensionless conductance of the system is
fined as

g5Re
g1

D
, ~3.61!

and is assumed to be much larger than unity. Dimension
coefficients in Eq.~3.60! are given by

Fi5
Reg1

p (
gmÞ0

Fi
m

gm
, i 51,2,

F1
m5n^Ṽ~k!&FS, ~3.62!

F2
m5nE dr1dr2V~r12r2! f m* ~r1! f m~r2!.

For the screened interaction potential, coefficientsF1,2
m 51/2

and, therefore,F1,2 are of the order of unity for chaotic sys
tems and of the order of (1/4p2)ln(L/l) for the diffusive dot.
Here L is the size of the dot andl is the transport elastic
mean free path. Thus, we have shown that the correction
the average matrix element~3.54! are parametrically smal
for the metallic regime.

Now, we wish to show that the fluctuations of the matr
elements are small. Indeed, with the help of Eq.~3.21!, we
obtain for a generic~i.e., with no pairwise equal indices!
matrix element:

~Vabgd!25cS D

g D 2

. ~3.63!

The numerical coefficientc for the diffusive system is given
by

c5S g1

p D 2

(
gmÞ0

$2~F1
m!21~F2

m!2%S Re
1

gm
D 2

@where coefficientsF1,2
m are defined in Eq.~3.62!# and it is of

the order of unity, so that the matrix elements are smal
g@1. For chaotic systems, the expression forc is more cum-
bersome, but still have a similar structure. In the case
‘‘diagonal’’ @in the sense of Eq.~3.60!# matrix elements, the
average in Eq.~3.63! should be replaced by the correspon
ing variance.

The main conclusion of this section is contained in E
~3.60! and~3.63!. These equations clearly show that the Co
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57 9619MESOSCOPIC CHARGE QUANTIZATION
lomb blockade type interaction~1.1! is a parametrically jus-
tified description for the dynamics of the system at energ
smaller than the Thouless energy.

Closing this subsection, let us mention numerical wo
that have been performed recently.33,34 These papers ad
dressed either dirty diffusive systems with a small numbe
electrons,33 g.1, or classically localized states34 and are not
relevant for the metallic regimeg@1 we are dealing with.
We believe that the large quantum dots studied in Refs.
belong to the metallic regime.

IV. BOSONIZATION PROCEDURE

Equations~3.15!–~3.18! reduce the initial system consis
ing of a dot and a single-mode channel to the effective o
dimensional model. To treat the interaction in the model@the
second term in Eq.~3.15!#, we follow Ref. 14, and use the
bosonization technique. In the bosonic variables, the en
Hamiltonian ~3.15! becomes quadratic. The price for th
convenience is a strongly nonlinear form that the ba
scattering terms acquire@in the language of left and righ
movers, those are the terms}cL

†cR in Eqs. ~3.16! and
~3.17!#. Fortunately, the typical value of the kernel~3.9! is
small (;D/EC), and this enables us to use the perturbat
theory, which will be presented in Secs. V and VI. In th
section we present a bosonization procedure in a form m
suitable for our purposes.

A. Spinless electrons

One-dimensional fermionic fields can be presented in
form35

cR~x!5
ĥ

A2pl
ei ŵR~x!, cL~x!5

ĥ

A2pl
e2 i ŵL~x!, ~4.1!

wherel is the high-energy cutoff of the order of the Ferm
wavelength, andĥ5ĥ†,ĥ251 is the Majorana fermion; its
significance will be discussed later. One-dimensio
bosonic fieldsŵL,R(x) satisfy the following commutation re
lations:

@ŵL~x!,ŵL~y!#52 ipsgn~x2y!, ~4.2a!

@ŵR~x!,ŵR~y!#5 ipsgn~x2y!, ~4.2b!

@ŵR~x!,ŵL~y!#52 ip. ~4.2c!

It is easy to check, using Eqs.~4.2!, that the fermionic fields
~4.1! obey the standard commutation relations. The exp
sions for the densities of left and right movers are

:cL
†~x!cL~x!:5

1

2p
]xwL~x!,

~4.3!

:cR
†~x!cR~x!:5

1

2p
]xwR~x!.

With the help of Eq. ~4.3!, Hamiltonian ~3.15! can be
bosonized as
s

s

f

7

e-

re

-

n

st

e

l

s-

Ĥ05
vF

4pE2`

`

dxF S ]ŵL

]x
D 2

1S ]ŵR

]x
D 2G

1
EC

8p2
@ŵL~0!1ŵR~0!12pN#2. ~4.4!

The relations~4.2a! and~4.2b! ensure the fermionic com
mutation relations within the speciescL andcR . The com-
mutation relation~4.2c! guarantees the anticommutation r
lation of cL with cR and the commutation relations

F E
2`

0

cR
†cR1cL

†cLdx;cR,L
† ~y!G5cR,L

† ~y!u~2y!.

The backscattering Hamiltonian~3.17! takes the form

Ĥbs5
ur uvF

pl
cos@ŵL~0!1ŵR~0!#. ~4.5!

The bosonized version of the effective action Eq.~3.16! is

Ŝ5
1

2plE0

b

dt1dt2L~t12t2!ĥ~t1!ĥ~t2!

3@ei ŵL~t1!1e2 i ŵR~t1!#@e2 i ŵL~t2!1ei ŵR~t2!#, ~4.6!

where bosonic operators are taken at the originx50. Majo-
rana fermionh does not enter the effective Hamiltonian, an
therefore it is not a dynamical field. Its role in the effectiv
action is to take care of the difference in the definition of t
operation of chronological ordering for the fermionic an
bosonic operator. The equality

^Ttĥ~t1!ĥ~t2!&5sgn~t12t2!, ~4.7!

and Wick’s theorem, preserves the definition of chronolo
cal ordering for fermions in Eq.~3.18!.

It is convenient to separate the part of the bosonic se
not affected by the Coulomb interaction and introduce a n
field ŵ1 ,ŵ2 ,F̂ with the commutation relations

@ŵ1~x!,ŵ1~y!#52 ipsgn~x2y!, ~4.8a!

@ŵ2~x!,ŵ2~y!#52 ipsgn~x2y!, ~4.8b!

@F̂,ŵ2~x!#5@ŵ1~x!,ŵ2~y!#50, ~4.8c!

@F̂,ŵ1~x!#5 ip. ~4.8d!

We express operators~4.2! in terms of new fields~4.8! as

ŵL~x!5
ŵ1~x!1ŵ2~x!1F̂

A2
2pN,

~4.9!

ŵR~x!5
ŵ1~2x!2ŵ2~2x!2F̂

A2
2pN,

wherec numberpN is incorporated into the definition of th
field. It is easy to see that the commutation relations~4.2! are
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preserved. In the new variables, the Hamiltonian~4.4! is in-
dependent on the gate voltage~i.e., onN):

Ĥ05
vF

4pE2`

`

dxF S ]ŵ1

]x
D 2

1S ]ŵ2

]x
D 2G1

EC

4p2
ŵ1

2 ~0!.

~4.10!

All the N dependence is transferred now to the backsca
ing term in the Hamiltonian:

Ĥbs5
ur uvF

pl
cos@A2ŵ1~0!22pN#, ~4.11!

and to the actionŜ, which is contributed to by the retur
trajectories of electrons after multiple scattering within t
dot:

Ŝ5
1

2plE0

b

dt1dt2L~t12t2!ĥ~t1!ĥ~t2! ~4.12!

3 expF i
ŵ2~t1!2ŵ2~t2!

A2
GexpF i

F̂~t1!2F̂~t2!

A2
G

3cosF ŵ1~t1!

A2
1

p

4
2pNGcosF ŵ1~t2!

A2
1

p

4
2pNG .

If one neglects such trajectories altogether,14 then the Cou-
lomb blockade oscillations apparently vanish in the limitr
r-

50 ~no backscattering in the channel!. However, if return
trajectories~i.e., a finite value ofD/EC) are taken into ac-
count, the Coulomb blockade oscillations exist, even
r 50. TheN dependence of the action~4.12! and Hamil-
tonian~4.11! clearly shows that the period of the oscillation
does not depend on the details of the system. This perio
dependence is a direct consequence of the discreteness
electron charge.

We are going to develop perturbation theory inŜ and
Ĥbs. Every order of the perturbation theory is expressed
terms of the correlators of the bosonic field governed by
quadratic Hamiltonian~4.10!. The necessary correlatio
functions are

D2~t!5^Ttŵ2~t!ŵ2~0!&, ~4.13a!

D1~t!5^Ttŵ1~t!ŵ1~0!&, ~4.13b!

DF~t!5^TtF̂~t!F̂~0!&, ~4.13c!

DF1~t!5^TtF̂~t!ŵ1~0!&, ~4.13d!

where averages are calculated with respect to Hamilton
Ĥ0 and all the bosonic fields are taken atx50.

Standard calculation presented in Appendix B yields
T!EC andt*l/vF.1/eF :
at low

the
DF~t!2DF~0!52
1

2E0

`

dx e2x lnF sin~ i2px/Ec1t!pT sin~2 i2px/Ec1t!pT

sinh2S 2p2Tx

Ec
D G , ~4.14a!

D2~t!2D2~0!5 lnS l

vF

pT

usin pTtu D , ~4.14b!

D1~0!5 lnS 2pvF

lECeCD , ~4.14c!

D1~t!2D1~0!5@D2~t!2D2~0!#2@DF~t!2DF~0!#, ~4.14d!

DF1~t!5
i

2E0

`

dx e2x
2p2T

EC
FcotS i

2px

Ec
1t DpT1cotS 2 i

2px

Ec
1t DpTG , ~4.14e!

whereC'0.577 is the Euler constant.
To conclude this subsection, let us prove the assumption of Sec. II about the Fermi-liquid behavior of the system

energies. In order to do this, we will calculate the fermionic Green functions,^cL
†(t)cL(0)& and ^cR

†(t)cL(0)&, using the
definitions~4.1!, ~4.9!, and the results~4.14!. Averaging over the bosonic fields similar to the well-known calculation of
Debye-Waller factor, yields

^cL
†~t!cL~0!&5

1

2pl
expH 1

2
@D2~t!2D2~0!#J expH 1

2
@D1~t!2D1~0!#J expH 1

2
@DF~t!2DF~0!#J

3expH 1

2
@DF1~t!1DF1~2t!#J ~4.15a!
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^cR
†~t!cL~0!&5

ei2pN

2pl
expH 2

1

2
@D1~t!1D1~0!#J

3expH 1

2
@D2~t!2D2~0!#J expH 1

2
@DF~t!2DF~0!#J expH 1

2
@DF1~t!2DF1~2t!#J . ~4.15b!
t
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Substituting Eqs.~4.14! into Eq. ~4.15!, we obtain

^cL
†~t!cL~0!&5

1

2pvF

pT

sin pTt
, ~4.16a!

^cR
†~t!cL~0!&5

ei2pN

2pvF
K~t!, ~4.16b!

K~t!5
pT

sin pTt
expH 2E

0

`

dx e2~EC/2p2T!xcoth~x1 iptT!J .

The Green function~4.16a! is not affected by interactions a
all. The reason is that it is taken at coinciding argume
(x15x250), e.g., outside the interaction region. Becau
^cL

†(t)cL(0)& describes propagation of a chiral particle, t
information about interaction is never carried back to
observation pointx50. The Green function~4.16b! acquires
the free-fermion form att.EC

21 , which corresponds to the
energies below the charging energy~note thatT!EC). In
this energy range,̂cR

†(t)cL(0)& corresponds to a free fer
mion completely reflected from the dot. The phase fac
exp(i2pN) in Eq. ~4.16b! represents the scattering pha
pN, which agrees with the Friedel sum rule~2.1!. Thus, our
intuitive picture of Sec. II is proven by explicit calculation o
the fermionic propagators.

B. Electrons with spin

Similarly to the spinless case, we start here with
bosonization of electron operators:

cR,a~x!5
ĥa

A2pl
expS i

ŵR
r ~x!1aŵR

s~x!

A2
D ,

cL,a~x!5
ĥa

A2pl
expS 2 i

ŵL
r~x!1aŵL

s~x!

A2
D , ~4.17!
s
e

e

r

e

where indexa561 denotes the spin projections, and t
Majorana fermionsh61 satisfy the anticommutation rela
tions $h11 ,h21%50. Boson fieldsŵL,R

r and ŵL,R
s corre-

sponding to the charge and spin degrees of freedom, res
tively, satisfy the following commutation relations:

@ŵL
i ~x!,ŵL

j ~y!#52 ipsgn~x2y!d i j , ~4.18a!

@ŵR
i ~x!,ŵR

j ~y!#5 ipsgn~x2y!d i j , ~4.18b!

@ŵR
i ~x!,ŵL

j ~y!#52 ipd i j , i , j 5r,s. ~4.18c!

As in the case of spinless fermions, it is convenient to int
duce even and odd modesŵ6

r,s for the charge and spin sec
tors, and twox-independent fields,Fr,s analogous to Eq.
~4.9!:

ŵL
i ~x!5

ŵ1
i ~x!1ŵ2

i ~x!1F̂ i2d irpN
A2

, i 5r,s

ŵR
i ~x!5

ŵ1
i ~2x!2ŵ2

i ~2x!2F̂ i2d irpN
A2

. ~4.19!

The commutation relations for the new fields within th
charge and spin sectors coincide with Eqs.~4.8!; fields of
different sectors commute with each other. In terms of
new fields, Hamiltonian~3.15! acquires the form indepen
dent of dimensionless gate voltageN:

Ĥ05
vF

4p (
i 5r,s

(
g56

E
2`

`

dxS ]ŵg
i

]x
D 2

1
EC

2p2
@ŵ1

r ~0!#2.

~4.20!

The backscattering Hamiltonian~3.17! takes the form

Ĥbs5
2ur uvF

pl
cos@ŵ1

r ~0!2pN#cos ŵ1
s ~0!, ~4.21!

and the effective action~3.16! can be rewritten as
Ŝ5
1

plE0

b

dt1dt2L~t12t2! (
a561

ĥa~t1!ĥa~t2!e~ i /2!a@ŵ2
s

~t1!2ŵ2
s

~t2!#e~ i /2!a@F̂s~t1!2F̂s~t2!#

3e~ i /2!@ŵ2
r

~t1!2ŵ2
r

~t2!#e~ i /2!@F̂r~t1!2F̂r~t2!#H cosF ŵ1
r ~t1!1ŵ1

r ~t2!

2
1a

ŵ1
s ~t1!1ŵ1

s ~t2!

2
2pNG

2sinF ŵ1
r ~t1!2ŵ1

r ~t2!

2
1a

ŵ1
s ~t1!2ŵ1

s ~t2!

2
G J . ~4.22!
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Similarly to Eq. ~4.13!, we introduce the relevant boson
correlation functions

D2
i ~t!5^Ttŵ2~t! i ŵ2~0! i&, ~4.23a!

D1
i ~t!5^Ttŵ1

i ~t!ŵ1
i ~0!&, ~4.23b!

DF
i ~t!5^TtF̂

i~t!F̂ i~0!&, ~4.23c!
im
e

f

o

ct

-

DF1
i ~t!5^TtF̂

i~t!ŵ1
i ~0!&, ~4.23d!

where indexi 5r,s labels charge and spin sectors, resp
tively, bosonic fields are taken atx50, and averaging is

performed over the HamiltonianĤ0 given by Eq.~4.20!.
The calculation of these propagators can be perform

immediately by noticing that the spin sector of the Ham
tonian ~4.20! corresponds to the free bosons, and the cha
sector differs from Eq.~4.10! only by replacementEC
→2EC . Thus, we obtain
DF
r ~t!2DF

r ~0!52
1

2E0

`

dx e2x lnF sin~ ipx/Ec1t!pT sin~2 ipx/Ec1t!pT

sinh2S p2Tx

Ec
D G , DF

s 50, ~4.24a!

D2
r ~t!2D2

r ~0!5D6
s ~t!2D6

s ~0!5 lnS l

vF

pT

usin pTtu D , ~4.24b!

D1
r ~0!5 lnS pvF

lECeCD , ~4.24c!

D1
r ~t!2D1

r ~0!5@D2
r ~t!2D2

r ~0!#2@DF
r ~t!2DF

r ~0!#, ~4.24d!

DF1
r ~t!5

i

2E0

`

dx e2x
p2T

EC
FcotS i

px

Ec
1t DpT1cotS 2 i

px

Ec
1t DpTG , DF1

s ~t!5
ip

2
sgnt, ~4.24e!
ed
whereC'0.577 is the Euler constant.
As we will see below~see also Ref. 14! the main contri-

bution to the observable quantities is associated with the t
scalet*1/EC . At this time scale the effective theory can b

further simplified. The modeŵ1
r is ‘‘pinned’’ due to the

charging energy, see Eq.~4.20!. Therefore, the amplitude o
quantum fluctuations of this mode is finite@see Eq.~4.24c!#
and the correlation functionD1

r (t) decreases rapidly att
*1/EC , as it follows from Eqs.~4.24d!, ~4.24b!, and~4.24a!.
The decrease of correlations means that the average

product,^ei ŵ1
r (t1)

¯ei ŵ1
r (tn)&, can be replaced by the produ

of averages,̂ ei ŵ1
r (t1)&¯^ei ŵ1

r (tn)&, if the intervals between
the timest1 , . . . ,tn exceed 1/EC . In other words, the opera

tor functions ofŵ1
r in Eq. ~4.22! can be substituted withc

numbers, according the rule

ei ŵ1
r
→e2

1
2D1

r
~0!. ~4.25!

On the other hand, it follows from Eqs.~4.24a! and ~4.24b!
that att.1/EC
e

f a

^Tt@ŵ2
r ~t!1F̂r~t!2ŵ2

r ~0!2F̂r~0!#2&

522 lnF pl

vFECeC S pT

sin pTt D 2G ,

which means that such correlation function will be preserv
if we introduce another free bosonic fieldŵr(x), with com-
mutation relation@ŵr(x);ŵr(y)#52 ip sgn(x2y), and sub-
stitute

ŵ2
r ~x50!1F̂r→A2ŵr~x50!. ~4.26!

After substitutions~4.25! and ~4.26!, Hamiltonian~4.20!
becomes just a Hamiltonian of three free bosonic fields

Ĥ05E
2`

`

dxF S ]ŵr

]x
D 2

1S ]ŵ1
s

]x
D 2

1S ]ŵ2
s

]x
D 2G , ~4.27!

backscattering term acquires the form14

Ĥbs5
2ur u
p S ECeCvF

pl̃
D 1/2

cospN cos ŵ1
s ~0!, ~4.28!
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and the effective action is given by

Ŝ5
1

pl̃
E

0

b

dt1dt2L~t12t2! (
a561

ĥa~t1!ĥa~t2!e~ i /2!a@ŵ2
s

~t1!2ŵ2
s

~t2!#e~ i /2!a@F̂s~t1!2F̂s~t2!#e~ i /A2!@ŵr~t1!2ŵr~t2!#

3H cosFa
ŵ1

s ~t1!1ŵ1
s ~t2!

2
2pNG1cosFp

4
1a

ŵ1
s ~t1!2ŵ1

s ~t2!

2
G J . ~4.29!
b
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Correlation functions of the free bosonic fields are given

Dr~t!2Dr~0!5D6
s ~t!2D6

s ~0!5 lnS l̃

vF

pT

usin pTtu D ,

~4.30!

where the cutoffl̃ is of the order ofvF /EC because the
charging energyEC is the largest energy scale, which can
considered with the help of Hamiltonian~4.27!. It is easy to
check also by an explicit calculation that at time differenc
larger thanEC

21 correlation functions of the electron oper
tors evaluated with the help of the Hamiltonians~4.20! and
~4.27! respectively coincide.

V. THERMODYNAMICS OF THE ‘‘OPEN’’ DOT

Coulomb blockade can be investigated experimentally37,38

by measuring the differential capacitance of a dot, see
~3.19!. In the regime of a developed blockade~weak tunnel-
ing between the dot and the electron reservoir!, Cdiff(N) ex-
hibits sharp peaks at half-integer values ofN. In the opposite
limit of no backscattering, the differential capacitance is
N-independent constant,Cdiff(N)5C. It was shown in Ref.
14 that weak reflection from a scatterer in the channel le
to the capacitance oscillations with a phase depending on
exact position of the scatterer. In this section we demonst
that even atr 50, the differential capacitance still depen
onN due to the electron backscatterings from inside the d
which are described by the actionŜ. The randomness of th
backscattering events results in the randomness of the p
of the capacitance oscillations. We will relate the statistics
Cdiff(N) with the one of kernelL(t).

The starting point for the calculation of the capacitance
Eq. ~3.18! for the thermodynamic potential. In principle, E
~3.18! enables one to consider the backscattering off a ba
in the channel (ĤbsÞ0), as well as off the dot (ŜÞ0). In the
limit of weak backscattering, the perturbation theory inĤbs

and Ŝ can be used to calculateCdiff(N). The case ofŜ50
was considered by Matveev.14 He has shown that for spinles
fermions, a nonvanishing result appears in the first-order
turbation theory, whereas for the spin-1/2 electrons this or
gives zero result. Similarly, it is sufficient to account for t
scatterings from inside the cavity in the first order of t
perturbation theory for spinless fermions, but in the case
spin-1/2 electrons we have to expand the thermodyna
potential~3.18! up to the second order inŜ, if Ĥbs50.

Backscattering in the channel leads to a finite modulat
of the average differential capacitance. The modulation a
plitude can be estimated14 by expansion of Eq.~3.18! to the
y

s

q.

n

ds
he
te

t,

se
f

s

er

r-
er

f
ic

n
-

second order inĤbs in the spin-1/2 case. Electron scatterin
from inside the dot leads to the capacitance fluctuations
perimposed on this modulation. The two contributions to
capacitance are not additive: the nonzero result appears
in the second-order in perturbations to the HamiltonianĤ0,
when one expands Eq.~3.18!. In the domain of a relatively
strong backscattering in the channel,ur u2*D/EC , the lead-
ing term in fluctuations is proportional to the product ofĤbs

andŜ. We address the capacitance fluctuations at finiteur u in
the end of this section.

A. Spinless fermions

1. Reflectionless contact

The first-order expansion of Eq.~3.18! in Ŝ yields

dV5T^TtŜ&. ~5.1!

We substitute Eq. ~4.12! into Eq. ~5.1!, retain only
N-dependent terms, and obtain with the help of Eqs.~4.14!:

dV5
1

2pvF
E

0

b

dt L~t!@ei2pNK~t!1c.c.#, ~5.2!

where functionK(t) is defined in Eq.~4.16b!. To perform
the integration overt, we use the Lehmann representati
~3.20! of the kernelL:

dV5
1

2pvF
E

2`

` dt

2p
@LR~ t !2LA~ t !#

3E
0

b

dt
pT

sinh@pT~ t1 i t!#
@ei2pNK~t!1c.c.#. ~5.3!

The integration overt here can be now performed with th
help of analytic properties of functionK(t). As it follows
from Eq. ~4.16b!, the functionK(t) is analytic in the lower
semiplane Imt,0. To calculate the integral of the first term
in the brackets, we deform the contour of integration ovet
as shown in Fig. 3.

Because of the periodicity of the integrand, the integr
over the parts of the contour running parallel to the ima
nary axis cancel out. As the result, only the pole contribut
at t5 i t remains att,0. At t.0 the pole contribution dis-
appears. The second term in Eq.~5.3! is integrated by using
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K(t)* 52K(2t) for the realt. With the help of the ex-
plicit expression~4.16b! for the functionK(t), we find

dV~N!5
1

2p ivF
E

0

`

dt
pT

sinh~pTt!
~5.4!

3expF2E
0

`

dx e2x
2p2T

EC
cothS 2px

EC
1t DpTG

3@LR~ t !e2 i2pN2LA~2t !ei2pN#.

Finally, at low temperaturesT!EC , theN-dependent cor-
rection takes the form:

dV~N!5
1

2p ivF
E

0

`dt

t
expF2E

0

`

dx
e2x

x1~EC/2p!tG
3@LR~ t !e2p iN2LA~2t !e22p iN#. ~5.5!

Equation~5.5! relates the Coulomb blockade oscillation
the exact free-electron Green function in the dot. The va
tion of dV with the gate voltage is harmonic, however,
phase and amplitude are random quantities. To reveal
oscillatory dependence in the average quantities, one ha
find the correlation functiondV(N1)dV(N2). At low tem-
peratures, Eqs.~5.5! and ~3.25! lead directly to the resul
~2.24! with the dimensionless functionLE given by

LE~x!5
1

~2p!4
L~x!,

~5.6!

L~x!5E
0

`dy

y2
exp@2xy12eyEi~2y!#,

where Ei(x)5*2`
x etdt/t is the exponential integra

function.40 The correlation function of the differential ca
pacitances~3.19! for different values of the gate voltage an
magnetic field is given by

dCdiff~1!dCdiff~2!

C2
5

2D

EC
FLS H2

2

Hc
2 D 1LS H1

2

Hc
2 D Gcos 2pn,

~5.7!

FIG. 3. The integration contour used in the evaluation ofdV in
the spinless case, see Eq.~5.3!. Branch cuts ofK(t) are shown by
thick lines.
-

is
to

where we use the shorthand notationsi[Ni ,Hi , n5N1
2N2, and H65H16H2. Correlation magnetic fieldHc is
controlled by the charging energy and it is given by E
~2.23!.

The variance of the capacitance fluctuations atH50 is
two times larger than in the unitary limit (H@Hc). The di-
mensionless crossover functionL(x) is plotted in Fig. 4.

Correlation between the capacitances at different m
netic fields is suppressed ifH2 exceedsHc . In our approxi-
mation, the correlation ‘‘length’’nc in the dimensionless
gate voltage is infinite. To findnc , one should take into
account that varying the gate voltage affects the chem
potential of electrons in the dot by the level spacing ea
time N changes by one. If the chemical potential is shift
by EC , a completely new set of levels determines the ker
L, thus suppressing the correlations. This results in the e
matenc.EC /D. Another effect that leads to the decrease
the correlation function at largen is the variation of the dot
shape with the gate voltage.

2. Finite reflection in the contact

At finite backscattering in the contact,rÞ0, Hamiltonian
~4.11! should be taken into account:

dV~N!5^Ĥbs&.

Calculating this average with the help of Eq.~4.14c!, and
using Eq.~3.19!, we arrive at the result for the oscillatin
contribution of the averaged capacitance,

dC~N!

C
52eCur ucos 2pN. ~5.8!

This result was first obtained in Ref. 14.
Average of the action Eq.~5.1! simply adds to this result

Thus, we conclude that finite reflection in this order of pe
turbation theory does not affect the mesoscopic fluctuati
of the capacitance; see Eq.~5.7!. We will see below that this
is qualitatively different from the electrons with spin whe
finite reflection in the contact leads to the increase of
mesoscopic fluctuations of the differential capacitance.

FIG. 4. FunctionL(x) determining correlation of differentia
capacitances at different values of magnetic fields, see Eqs.~5.7!
and Eq.~5.6!.
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B. Electrons with spin

1. Reflectionless contact

In the case of spin-1/2 fermions, the charging energy p
only one out of four modes. Fluctuations in the spin mo
are not suppressed; see Eq.~4.27!. These fluctuations aver
age action~4.29! to zero. To obtain a finite result for th
r

he

t

s
e

N-dependent part of the thermodynamic potential, we h
to expandV up to the second order inŜ:

dV52 1
2 T^TtŜ

2&. ~5.9!

Upon the substitution of Eq.~4.29! into Eq.~5.9!, we use the
expressions~4.30! to perform the averaging overĤ0. This
cumbersome albeit straightforward calculation yields for
N-dependent part of the thermodynamic potential:
dV5
1

~2pvF!2E0

b

dt1dt2dt3L~t1!L~t2! (
g561

e2 i2pgN pT

@sin pT~t11 ig0!sin pT~t21 ig0!#1/2

3
pT

@sin pT~t11t31 ig0!sin pT~t22t31 ig0!#1/2
. ~5.10!

As in Sec. V A, it is convenient to use the Lehmann representation~3.20! for the kernelL:

dV5
1

~2pvF!2E2`

` dt1
2p

dt2
2p

@LR~ t1!2LA~ t1!#@LR~ t2!2LA~ t2!#E
0

b

dt1dt2dt3

pT

sinh pT~ t11 i t1!

pT

sinh pT~ t21 i t2!

3 (
g561

e2 i2pgN pT

@sin pT~t11 ig0!sin pT~t21 ig0!#1/2

pT

@sin pT~t11t31 ig0!sin pT~t22t31 ig0!#1/2
. ~5.11!
d

of
g

llip-

-
s

he
The evaluation of the integrals overt1 andt2 here is similar
to the procedure employed for the evaluation of the integ
over t in Sec. V A. Upon the integration, we find

dV5
1

~2pvF!2E2`

` dt1
2p

dt2
2p

„LR~ t1!LR~ t2!e2 i2pN

1LA~ t1!LA~ t2!ei2pN
…

pT

@sinh~pTt1!sinh~pTt2!#1/2

3E
0

b

dt3

pT

@sinh pT~ t12 i t3!sinh pT~ t21 i t3!#1/2
.

~5.12!

Integral overt3 can be easily evaluated with the help of t
formula

E
0

p df

@sinh~x2 if!sinh~y1 if!#1/2
54e2ux1yuK ~e2ux1yu!,

where K (k) is the complete elliptic integral of the firs
kind.40 We find for dV:

dV5
1

~pvF!2E0

` dt1dt2pT

@sinh~pTt1!sinh~pTt2!#1/2

3@LR~ t1!LR~ t2!e2 i2pN1c.c.#e2pT~ t11t2!

3K ~e2pT~ t11t2!!. ~5.13!
al
In the derivation of Eq.~5.13!, we have utilized the reduce
version of action@see Eq.~4.29!#, which is valid only on a
relatively long time scale larger than 1/EC . Now, we average
the product of two thermodynamic potentials with the help
Eq. ~3.25!. As we will see shortly, the result of the averagin
is logarithmically divergent at larget. The divergence should
be cut off att1,2*1/EC . Without violating the logarithmical
accuracy, we can use also asymptotic expansion of the e
tic integralK (k)52 ln A12k2. We obtain

dV~1!dV~2!5
2D2

~2p!6
cos 2pn

3E
1/EC

` dt1dt2p2T2

sinh pTt1 sinh pTt2

3F ln
1

T2~ t11t2!2G 2

3@e2t1 /tD1e2t1 /tC#@e2t2 /tD1e2t2 /tC#.

~5.14!

Here, as in Eq.~5.7!, we use the shorthand notationi
5Hi ,Ni , andn5N12N2. The diffuson and Cooperon de
cay timestD andtC are related to the magnetic field value
H1, H2 by Eq.~3.24!. Now we can use Eq.~3.19! to find the
correlation function of the differential capacitances. In t
leading logarithmic approximation we obtain
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dCdiff~1!dCdiff~2!

C2
5

8

3p2

D2

EC
2

ln4S EC

T D cos 2pn

3 (
g56

F124S ln max~1;@Hg /Hc
,#2!

ln~EC /T!
D 3

1¯G ,
~5.15!

where the fieldsH65H16H2 are assumed to be small com
pared to the correlation fieldHc given by Eq.~2.23!. The
new temperature-dependent correlation field appearing in
~5.15! is given by

Hc
,5

F0

AA
T

2pET
, ~5.16!

with F0, A, andET being the flux quantum, the geometric
area of the dot, and the Thouless energy, respectively. Un
the scaleHc , the characteristic fieldHc

, is independent on
the charging energy. This smaller field scale appears du
the existence of the ‘‘free’’ excitation modew1

s , which is
not pinned by the effect of charging.

With the increase of the number of channels in the d
lead junction, the number of free modes also increases.
role of charging~which still pins only one mode!, and there-
fore of the fieldHc , in the correlation functions should van
ish gradually. The dependence of the correlation functions
the magnetic field atH,Hc becomes a power law rathe
than logarithmic; however, this power law is still nontrivia
and approaches Fermi-liquid results only in the limit of
infinite number of channels.

If H6*Hc , @the charging correlation fieldHc is given by
Eq. ~2.23!#, the correlation function of the fluctuation star
decreasing much faster,}1/H6

4 . Therefore, in order to ge
the representative statistics of the capacitance fluctuati
averaging should be performed in the interval of magne
q.

ke

to

t-
he

n

s,
c

fields larger than the magnetic field determined by the cha
ing energy~2.23!. Finally, in the limit of a strong field,H1

5H2*Hc ~unitary limit!, the variancedCdiff
2 of the differen-

tial capacitance becomes four times smaller than atH50.
Our results for the correlation functions diverge logarit

mically at T→0. At lower temperatures the pinning of th
spin mode described by actionŜ should be taken into ac
count. A variational estimate39 shows thatT at low tempera-
tures should be replaced byD ln(EC /D) in the above results
for Hc

, and for the correlation function. We will elaborate o
this point more in the end of the following subsection.

2. Finite reflection in the contact

The main effect of the backscattering in the channe
that the Coulomb blockade appears already in the avera
capacitance.14 Taking into account backscattering Ham
tonian~4.28! in the second-order perturbation theory, we o
tain from Eq.~3.19!

dC~N!5
8eC

p
ur u2 cos 2pN lnS EC

T D . ~5.17!

Due to the finite level spacingD, this result acquires meso
scopic fluctuations. As we already mentioned in the introd
tion to this section, atrÞ0 the leading term in fluctuations o
the thermodynamic potential is first order in bothĤbs andŜ,

dV52TK TtE
0

b

dt Ĥbs~t!ŜL . ~5.18!

To calculate the average over the unperturbed state, we
the bosonized representation ofĤbs and Ŝ given by Eqs.
~4.28! and ~4.29!, respectively, and then the expressio
~4.30! for the correlation functions of the boson fields. The
similar to Sec. V A, we switch to the Lehmann represen
tion ~3.20! for the kernelL(t) to obtain
dV5
2AeCur uAEC

p2ApvF

cos~pN!E
2`

` dt

2p
@LR~ t !2LA~ t !#E

0

b dt1dt2~pT!2

sinh@pTt1 ipT~t12t2!#@sin~pTt1!sin~pTt2!#1/2

3 (
g561

~pT!1/2

@sin pT~t22t11 ig0!#1/2
e2 ipg~N21/4!. ~5.19!

Here only theN-dependent part of the thermodynamic potential is taken into account. Integral overt1 in Eq. ~5.19! is
determined by the contribution of the pole att15t22 i t , which can be easily calculated:

dV5
2AeCur uAEC

p2ApvF

cos~pN!E
2`

` dt~pT!1/2

@2 isinh~pTt!#1/2
@LA~ t !eip~N21/4!1LR~ t !e2 ip~N21/4!#

3E
0

b

dt2

pT

@sin~pTt2!sin~pTt21 i t !#1/2
. ~5.20!

Integration overt2 is now very similar to the one we performed over the variablet3 in Eq. ~5.12!, and we find fordV:
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dV5
2AeCur uAEC

p2ApvF

cos~pN!E
2`

` ~pT!1/2 ln~1/T2t2!dt

@2 i sinh~pTt!#1/2
@LA~ t !eipN1LR~ t !e2 ipN#. ~5.21!

From Eq.~5.21!, with the help of Eqs.~3.25! and ~3.19!, we find the correlation function of mesoscopic fluctuation of t
capacitances:

dCdiff~1!dCdiff~2!

C2
5

32eC

3p2

ur u2D

EC
ln3S EC

T D cos 2pn (
g56

F12S ln max~1;@Hg /Hc
,#2!

ln~EC /T!
D 3G , ~5.22!
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where i 5Hi ,Ni , n5N12N2, and H65H16H2. Correla-
tion field Hc

, is defined in Eq.~5.16!. The amplitude of fluc-
tuations at a partial transmission of the channel is param
cally larger than atr 50, cf. Eq.~5.15!. Furthermore, in the
unitary limit the variance of the differential capacitance
suppressed only by a half of its zero-field value. This sim
larity with the case of spinless fermions is due to the ba
scattering in the channel, which leads to pinning of the s
mode.

Result~5.22! is valid at relatively high temperatures. A
shown by Matveev,14 the divergences should be cut at ener
e* .ur u2EC cos2 pN, which corresponds to the pinning en
ergy of the spin mode. The higher-order corrections
backscattering14 show that atT&ur u2EC the logarithmic
growth of fluctuations saturates. Simultaneously, the corr
tion functions start to depend not only on the differenceN1
2N2, but also on each of these arguments separately.
weaker logarithmic dependence is beyond the scope of
paper. For an estimate of the differential capacitance v
ance at low temperature, one may replace ln(EC /T) by
ln(1/ur u2) in Eq. ~5.22!.

Finally, we elaborate on the estimate of the characteri
energy scale that controls the low-temperature cutoff for
reflectionless contact. Comparing Eq.~5.17! with Eq. ~5.21!,
or Eq. ~5.21! with Eq. ~5.15!, we observe that the reflection
less case results can be obtained from formulas with fi
reflection coefficient by puttingur u2°(D/EC)ln(ECD). It
would correspond to the energy of pinning of the spin mo
e* .D ln(EC /D), which agrees with our variationa
estimate.39

VI. TUNNELING CONDUCTANCE OF THE ‘‘OPEN’’ DOT

In the previous section, we considered in detail the th
modynamics of the dot with one almost open channel,
studied mesoscopic effects related to the discreteness o
charge. However, the majority of experimental work de
not with thermodynamics, but rather with transport throug
dot. The Coulomb blockade shows up as an oscillatory g
voltage dependence of the conductance of the dot conne
with two leads.

The case of small transparency of the channels connec
the dot with leads is well studied.2,4,10,11The conductance in
the valleys can be represented as the sum of two physic
different contributions—elastic and inelastic cotunneling10

During theelasticcotunneling process, an electron enters
ri-
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dot, spends there a time.\/EC , and then leaves the do
Without interaction, this electron would be able to spend
time of the order of\/D. As the result, the conductance
the Coulomb blockade valleys is suppressed by a facto
D/EC . During the inelastic cotunneling process,36 an elec-
tron enters the dot, spends there a time.\/EC , and then
another electron leaves the dot. In this case, the final s
contains an extra, in comparison with the initial state, tw
particle excitation. This means that the phase volume of
final state is small asT2; therefore, the elastic contributio
dominates atT<(ECD)1/2.

Conductance of the dot connected to each reservoir by
almost perfect channel was studied, in the limitD/EC→0,
by Furusaki and Matveev.27 They concluded that even sma
reflection in any of the channels leads to a dramatic supp
sion of the conductance of the system. At any gate volta
except the discrete points of charge degeneracy, they
tained aT2 law that closely resembles the behavior of inela
tic cotunneling in the weak tunneling regime. Pursuing t
analogy with the weak tunneling regime further, it is natu
to expect that there should be another nonvanishing aT
→0 contribution from a counterpart of the elastic cotunn
ing mechanism. Studying this contribution is the goal of th
section.41

Similar to Ref. 27, two limiting cases may be distin
guished. In the first case both channels are either ope
have the same reflection coefficient. This case is technic
difficult to consider. Instead, we concentrate on the prop
ties of the strongly asymmetric setup; one point contact~left
in Fig. 5! has the transparency close to unity and the ot
contact~right in Fig. 5! has a very small conductanceGR
!e2/p\. This case can be realized experimentally by a c
responding adjustment of the voltages on the gates form

FIG. 5. Schematic view of the asymmetric two-terminal setu
The left point contact has one channel almost open and the con
tance of the right point contactGR is much smaller thane2/2p\.
One of the electron trajectories contributing to the elastic cotun
ing is also shown.
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point contacts.43 Moreover, it follows from the scaling
arguments27 that the asymmetry of contacts is a relevant p
turbation. In the caseD50, the strongly asymmetric limi
corresponds to the fixed point of a system with an infinite
mally small initial asymmetry. Therefore we can expect th
at D/EC!1, this limit adequately describes dots with a fin
initial degree of asymmetry.

A. General formalism

For calculation of such tunneling conductance, we hav
modify derivation of Secs. III A and III B in order to tak
into account the tunneling between the dot and the sec
lead. In comparison with Hamiltonian~3.1!, the total Hamil-
tonian of the system acquires two additional terms,

Ĥ5ĤF1ĤC1ĤM1ĤT . ~6.1!

HereĤF describes the electron motion in the dot and in
left lead and is given by Eq.~3.2!, interaction Hamiltonian
ĤC is given by Eq.~1.1!, andĤM is the Hamiltonian of free
electrons in the right lead

ĤM5(
p

jpâp
†âp . ~6.2!

Tunneling HamiltonianĤT describes the weak coupling be
tween the right lead and the dot,

ĤT5v tĉ
†~r t!(

p
âp1H.c., ~6.3!

wherer t is the coordinate of the tunneling contact,ĉ†(r ) is
the electron wave function in the lead, andv t is the coupling
constant which will be later related to the tunneling cond
tance of the contactGR .

BecauseGR!e2/(2p\), we can consider the tunnelin
currentI as the function of applied voltageV in the second
order of perturbation theory in tunneling Hamiltonian~6.3!.
This gives us the standard result44

I ~eV!5 i @J~ iVn→eV1 i0!2J~ iVn→eV2 i0!#,
~6.4!

whereVn52pTn is the bosonic Matsubara frequency, a
Matsubara currentJ is defined as

J~ iVn!5ev t
2nE

0

b

dt e2 iVntGM~t!P~t!. ~6.5!

Heren is the one-electron density of states per unit area
per one spin in the dot,GM is the Green function of the
electrons in the leads,

GM[2 (
p1 ,p2

^Ttâp1
~t!âp2

† ~0!&5nM

pT

sin pTt
, ~6.6!

with nM being the one-electron density of states per one s
in the lead, and functionP(t) is given by

P~t!5n21^Ttc̄~t;r t!c~0;r t!&. ~6.7!

Averages in Eqs.~6.6! and ~6.7! are performed with respec
to the equilibrium distribution of the system without tunne
-

i-
t

to

nd

e

-

d

in

ing. We choose to introducen into Eq. ~6.4! and into defi-
nition ~6.6! to make functionP(t) have dimensionality of
energy.

In the absence of the interaction,EC50, propagatorP(t)
is nothing but the Green function of the noninteracting s
tem; its ensemble average has a form analogous to Eq.~6.6!,

P~t!uEC505
pT

sin pTt
. ~6.8!

Then, substitution of Eqs.~6.6! and ~6.8! into Eq. ~6.5! and
analytic continuation~6.4! give the tunneling currentI
5sGRV (s is the spin degeneracy!, where the tunneling con
ductance of the contact per one spin is

GR5
2pe2

\
v t

2nMn. ~6.9!

With the help of Eq.~6.9! we can rewrite Eq.~6.5! in terms
of the bare conductance of the point contact:

J~ iVn!5
GR

2peE0

b

dt
pTe2 iVnt

sin pTt
P~t!. ~6.10!

As we will see below, functionP(t) can be analytically
continued from the real axis to the complex plane, so that
result is analytic in a strip 0,Re t,b, and has branch cut
along Ret50,b lines. It allows one to deform the contou
of integration as shown in Fig. 6, and to obtain

J~ iVn!5
GRT

2e E
2`

`

dt eVnt@u~2Vn!u~ t !2u~Vn!u~2t !#

3S P~ i t 10!

sinh@pT~ t2 i0!#
2

P~ i t 20!

sinh@pT~ t1 i0!# D .

~6.11!

Now the analytic continuation~6.4! can be performed, be
cause the periodicity of the Matsubara Green functions w
already taken into account. This gives

I ~eV!5 i
GRT

2e E
2`

`

dt e2 ieVt

3F P~ i t 10!

sinh@pT~ t2 i0!#
2

P~ i t 20!

sinh@pT~ t1 i0!#G . ~6.12!

Next, we use the analyticity ofP(t) in the strip 0,Re t
,b, and shift the integration variablet→t2 ib/2 in the first
term in brackets in Eq.~6.12!, andt→t1 ib/2 in the second
term. Bearing in mind thatP(t)52P(t1b), we find

FIG. 6. The integration contour used in the evaluation of
conductance, see Eq.~6.10! for ~a! Vn,0, and ~b! for Vn.0.
Branch cuts of the analytic continuation ofP(t) are shown by thick
lines.



on
lly
-
o
II
e

th
p
er

that
ors
n,

e.
m
-
be

57 9629MESOSCOPIC CHARGE QUANTIZATION
I 5S T sinh
eV

2TDGRE
2`

`

dt e2 ieVt
P~ i t 1b/2!

coshpTt
. ~6.13!

Linear conductanceG is therefore given by

G5GRE
2`

`

dt
P~ i t 1b/2!

2 coshpTt
. ~6.14!

Let us turn now to the actual calculation of the functi
P(t). It was shown in Ref. 27 that the interaction drastica
affects the form of the function~6.7!, however, some contri
butions were not taken into account. Our purpose is to c
struct an effective action theory, similar to that of Sec. I
for calculation ofP(t). Once again, we wish to get rid of th
fermionic degrees of freedom of the dot. Similar to Eq.~3.4!,
it is convenient to rewrite the charge operator in terms of
variables of the channel. However, here we have to kee
mind the fact that the tunneling events described by op
torsc†(r t) andc(r t) change the charge in the system by1e
and2e. It can be taken into account27 by introducing three
additional operators: Hermitian operatorn̂, and unitary op-
eratorsF̂,F̂† with the following commutation relations:
d

o
hi

th

t t
by
n-
,

e
in
a-

@ n̂,F̂†#5F̂†. ~6.15!

We can definitely choose Hilbert subspace in a way such
operatorn̂ has integer eigenvalues. Finally, these operat
commute with all the fermionic degrees of freedom. The
we can change the definition of the charge operator@cf. Eq.
~3.4!# to

Q̂

e
52E

channel
dr c†c1n̂, ~6.16!

and rewrite Eq.~6.7! as

P~t!5n21^TtF̂̄~t!c̄~t;r t!F̂~0!c~0;r t!&. ~6.17!

It is easy to see from Eqs.~6.16! and ~6.15! that operators
F̂†,F̂ in Eq. ~6.17! change the charge by1e and 2e, re-
spectively, in accordance with the initial definition of charg

After this manipulation, the Hamiltonian of the syste
and correlation function~6.17! become quadratic in the fer
mionic operators of the dot, so that part of the system can
integrated out. We use the identity similar to Eq.~3.6!:
Tr2$e
2bĤFTtc̄2~t!c2~0!%5e2bĤ1Tr2@e2bĤ2Ttc̄2~t!c2~0!e2*0

bdtĤ12~t!#

5e2bV2^Ttc̄2~t!c2~0!&2e2bĤ1Tte
1/2E

0

b

dt1E
0

b

dt2^Ĥ12~t1!Ĥ12~t2!&21e2bV2e2bĤ1

3E
0

b

dt3E
0

b

dt4Tt^Ttc̄2~t!Ĥ12~t3!&2^Ttc2~0!Ĥ12~t3!&2e1/2 *0
bdt1E

0

b

dt2^Ĥ12~t1!Ĥ12~t2!&2,

~6.18!
ed
ve
le-

r-

ic
where allc2
† ,c2 are the fermionic operators of the dot, an

the rest of the notation is the same as that in Eq.~3.6!.
The calculation of the product̂Ĥ12(t1)Ĥ12(t2)&2 was

performed in Sec. III A@see Eq.~3.7!#, and all the steps
leading to the derivation of the effective action~3.14! can be
repeated here. Calculation of the remaining operator pr
ucts can be performed along the lines of Appendix A. T
yields

^Ttc~t1 ;r t!Ĥ12~t2!&252c~t2,0!R* ~t12t2!,
~6.19!

^Ttc̄~t1 ;r t!Ĥ12~t2!&252c̄~t2,0!R~t22t1!,

where, similar to Eq.~3.7!, c(t;x)5etĤ1c(x)e2tĤ1 are the
one-dimensional fermionic operators of the channel in
interaction representation,c̄(t)5c†(2t). Kernel R de-
scribes the motion of an electron from the tunnel contac
the entrance of the single mode channel, and it is given

R~t!5
1

2mE dyf~y!]xG~t;r ,r t!. ~6.20!
d-
s

e

o

Here,G is the exact Matsubara Green function of the clos
dot subjected to the zero boundary condition. The wa
function f(y) describes the transverse motion in the sing
mode channel, and the coordinatesx in the derivative of the
Green functionG is set to10.

Kernel R(t) is the random quantity with the zero ave
ages. In the universal regime, products of retardedRR(t) and
advancedRA(t) counterparts ofR(t) entering into the Leh-
mann representation~3.20! have the following nonvanishing
averages:

1

n
^RH1

R ~ t1!RH2

A ~ t2!&5DvFd~ t11t2!u~ t1!e2t1 /tH
C
,

~6.21a!

1

n
^RH1

R ~ t1!@RH2

R ~ t2!#* &5DvFd~ t12t2!u~ t1!e2t1 /tH
D
,

~6.21b!

where the decay timestH
C,D associated with applied magnet

fields H1,2 are given by Eq.~3.24!. All the higher momenta
can be found by using the Wick theorem.45 Deriving Eq.
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~6.21b! we use Eqs. ~3.21!, ~3.23!, and the identity
GR(t;r 1 ,r 2)5@GA(2t;r 2 ,r 1)#* .

To complete the derivation of the effective theory, we u
Eqs. ~6.18! and ~6.19!, introduce left and right moving fer
mions similarly to Sec. III A, and thus obtain the effectiv
action representation forP(t) from Eq. ~6.17!:

P~t!5P in~t!1Pel~t!, ~6.22a!

P in52
G~2t;r t ,r t!

n^Tte
2Ŝ&

^Tte
2ŜF̂̄~t!F̂~0!&, ~6.22b!

Pel5
1

n^Tte
2Ŝ&

E
0

b

dt1dt2R~t12t!R* ~2t2!

3^Tte
2ŜF̂̄~t!F̂~0!@c̄L~t1!1c̄R~t1!#

3@cL~t2!1cR~t2!#&. ~6.22c!

Here the averaging is performed with respect to the Ham
tonian

Ĥ05 ivFE
2`

`

dx$cL
†]xcL2cR

†]xcR%

1
EC

2 S E
2`

0

dx:cL
†cL1cR

†cR :1N2n̂D 2

,

~6.23!

and actionŜ is given by Eq.~3.16!. The difference between
Eq. ~6.23! and Eq.~3.15!, is caused by the different defin
tions of the charge operator in Eqs.~3.4! and ~6.16!.

Two contributions can be distinguished in the correlat
function ~6.22!. The inelastic contribution~6.22b! was con-
sidered in Ref. 27 in the approximation corresponding toŜ
50, and with the Green function of the dotG replaced by its
averaged valueG. The obtained results vanish at low tem
peratures. The reason for the vanishing is that this term d
not allow the introduced electron to leave the dot; the cha
of the dot at the moment of tunneling suddenly changes
1e and all the other electrons have to redistribute the
selves to accommodate this charge. The logarithmic div
gence of the imaginary time action corresponding to s
evolution ~orthogonality catastrophe! completely suppresse
this contribution atT→0. Conversely, the second contrib
tion, Pel from Eq. ~6.22c!, contains the kernelR(t), which
e

l-

es
e
y
-
r-
h

promotes an electron from the tunneling contact to the ch
nel. Because the very same tunneling electron is introdu
to and then removed from the dot, there is no need in
redistribution of other electrons, so no orthogonality cat
trophe occurs. As a result, the elastic contribution survive
T→0, analogously to the elastic cotunneling contribution
the weak coupling regime.

In what follows, we will be interested in the low
temperature behavior of the system, so we will retain ela
contribution ~6.22c! only. Similarly to Sec. IV results for
electrons with spin and spinless electrons differ significan
and we will consider those two cases separately.

B. Spinless electrons

We follow the lines of Sec. IV A in the bosonization o
the chiral fermionic fields. In order to account for the appe
ance of the operatorn̂ in the Hamiltonian@compare Eqs.
~3.15! with Eq. ~6.23!#, we change slightly the transforma
tion ~4.9!:

ŵL~x!5
ŵ1~x!1ŵ2~x!1F̂

A2
2pN1pn̂,

ŵR~x!5
ŵ1~2x!2ŵ2~2x!2F̂

A2
2pN1pn̂, ~6.24!

where operatorn̂ commutes with the bosonic fieldsŵ6 ,F̂.
In order to preserve the commutation relation@ F̂†,ŵL,R#50,
we change the operatorF̂† as

F̂†°F̂†e2 iA2F̂, F̂°F̂eiA2F̂, ~6.25!

The fact thatF̂† commutes with bosonic fieldsŵL,R is obvi-
ous from Eqs.~6.15! and Eq.~4.8d!.

Substitution of Eqs.~4.1!, ~6.24!, and ~6.25! into Eqs.
~6.22b! yields

P in~t!52
G~2t;r t ,r t!

n^Tte
2Ŝ&

^Tte
2ŜF̂̄~t!F̂~0!eiA2[F̂~0!2F̂~t!]&

~6.26a!

for the inelastic part of the cotunneling; see also Ref. 27.
the elastic contribution, we find
Pel~t!5
2

pnl^Tte
2Ŝ&

E
0

b

dt1dt2R~t12t!R* ~2t2!

3K Tte
2ŜF̂̄~t!F̂~0!e~ i /A2!@2F̂~0!22F̂~t!1F̂~t1!2F̂~t2!] ĥ~t1!ĥ~t2!~21! n̂~t1!1n̂~t2!

3expF i
ŵ2~t1!2ŵ2~t2!

A2
G)

i 51

2

cosF ŵ1~t i !

A2
1

p

4
2pNG L . ~6.26b!

Averaging in Eqs.~6.26! is performed over the Hamiltonian given by Eq.~4.10!, finite backscattering is described by~4.11!,
and action~4.12! is modified as
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Ŝ5
1

2plE0

b

dt1dt2L~t12t2!ĥ~t1!ĥ~t2!~21! n̂~t1!1n̂~t2!expF i
ŵ2~t1!2ŵ2~t2!

A2
GexpF i

F̂~t1!2F̂~t2!

A2
G

3cosF ŵ1~t1!

A2
1

p

4
2pNGcosF ŵ1~t2!

A2
1

p

4
2pNG .

We will consider only the elastic contribution~6.26b! because it does not vanish at low temperatures.

1. Reflectionless contact

In the lowest inD/EC approximation we can neglect actionŜ in Eq. ~6.26b! completely. Then averaging over bosonic fiel
can be performed with the help of Eqs.~4.13! and~4.14!, average of the product Majorana fermions operator is given by
~4.7!, and the relevant correlation function of the operatorsn̂,F̂,F̂† is given by

^TtF̂̄~t!F̂~0!~21! n̂~t1!1n̂~t2!&5sgn~t2t1!sgn~t2t2!. ~6.27!

Equation~6.27! follows from Eq.~6.15! and from the fact that operatorsn̂,F̂ commute with Hamiltonian~4.11! and thus do
not have their own dynamics. We obtain

Pel~t!5
2puK~t!u2

nvFEC
2 e2CE0

b

dt1dt2R~t12t!R* ~2t2!

3F pT

sin pT~t12t2!

K~t2!K~t12t!

K~t1!K~t22t!
1ei2pNK~t12t2!

K~2t2!K~t12t!

K~t1!K~t2t2!
1c.c.G , ~6.28!

where functionK(t) is defined by Eq.~4.16b!, andC is the Euler constant.
Before performing the analytic continuation@see Eq.~6.14!# we have to transform integrals over imaginary times in E

~6.28! to the integrals over real time. In order to do so, we use Lehmann representation~3.20! for the kernelR(t):

Pel~t!5
2puK~t!u2

nvFEC
2 e2CE dt1

2pE dt2
2p

@RR~ t1!2RA~ t1!#@RR~ t2!2RA~ t2!#*

3E
0

b

dt1dt2

p2T2

sinh@pT~ t11 i t12 i t!#sinh@pT~ t21 i t2!# F pT

sin pT~t12t2!

K~t2!K~t12t!

K~t1!K~t22t!

1ei2pNK~t12t2!
K~2t2!K~t12t!

K~t1!K~t2t2!
1c.c.G . ~6.29!

Integration can be now performed in a manner similar to Sec.V A. Using the fact that functionK(t1) is analytical within the
lower complex semiplane Imt1,0, we deform the contour of integration as shown in Fig. 7.

Because of the periodicity of the integrand, the integrals over the parts of the contour running parallel to the imagin
cancel out. As the result, only the pole contribution att15 i t 11t remains att1,0. At t1.0 the pole contribution disappear
Analogously, the complex conjugated terms are contributed by polet15 i t 11t at t1.0. As a result, we obtain from Eq.~6.29!

Pel~t!5
2puK~t!u2

nvFEC
2 e2CE dt1dt2

2p
@RR~ t2!2RA~ t2!#* E

0

b

dt2

pT

sinh@pT~ t22 i t2!#

3F pT

sin pT~t2t21 i t 1! S RA~ t1!K~t2!K~ i t 1!

K~ i t 11t!K~t22t!
1

RR~ t1!K~2t2!K~2 i t 1!

K~2 i t 12t!K~t2t2! D
1ei2pNK~t2t21 i t 1!

RA~ t1!K~2t2!K~ i t 1!

K~ i t 11t!K~t2t2!
2e2 i2pNK~t22t2 i t 1!

RR~ t1!K~t2!K~2 i t 1!

K~2 i t 12t!K~t22t!G , ~6.30!

where we wrote explicit expressions for all the terms. Integration overt2 can be now easily performed by deformation of t
integration contours shown in Fig. 8, and we obtain



9632 57I. L. ALEINER AND L. I. GLAZMAN
Pel~t!5
2puK~t!u2

nvFEC
2 e2CE dt1dt2@RR~ t1!@RR~ t2!#* 1RA~ t1!@RA~ t2!#* %

pT

sin@pT~ i t 22 i t 12t!#
2

2puK~t!u2

nvFEC
2 e2C

3E dt1dt2F pT

sin pT~t2 i t 21 i t 1! S RA~ t1!@RA~ t2!#* K~ i t 2!K~ i t 1!

K~ i t 11t!K~ i t 22t!
1

RR~ t1!@RR~ t2!#* K~2 i t 2!K~2 i t 1!

K~2 i t 12t!K~t2 i t 2! D
1ei2pNK~t2 i t 21 i t 1!

RA~ t1!@RR~ t2!#* K~2 i t 2!K~ i t 1!

K~ i t 11t!K~t2 i t 2!

2e2 i2pNK~ i t 22 i t 12t!
RR~ t1!@RA~ t2!#* K~ i t 2!K~2 i t 1!

K~2 i t 12t!K~ i t 22t! G . ~6.31!
.
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One can see from Eq.~6.31! that functionPel(t) is indeed
analytic in the strip 0,Re t,b, which justifies the steps
leading to Eq.~6.14!.

Finally, we substitute Eq.~6.31! into Eq. ~6.14!. For
small temperaturesT!EC , we have from Eq.~4.16b!
K(b/21 i t )5pT/coshpTt. As a result, the first term in Eq
~6.31! produces a contribution}T2 and can be neglected
The remainder can be recast into the formula

G5
2pGR

nvFEC
2 e2CU E2`

0

dt K~ i t !@RA~ t !ei2pN1RR~2t !#U2

,

~6.32!

which gives nonaveraged conductance of the dot. Here
used the fact that the characteristic scale of the integra
over t1 ,t2.1/EC is much smaller thanb. Equation~6.32! is
reminiscent of the Landauer formula. However, the form f
tor K( i t ) entering into this formula indicates that a larg
number of states in the dot participate in the transport, un
the case of noninteracting electrons.

Now, we are prepared to study the statistics of the c
ductance. Using the explicit expression~4.16b! for function
K and formula~6.21b!, we find the average conductance

Ḡ5GR

2D

EC
e22CL~0!, ~6.33!

FIG. 7. The integration contour used in the evaluation of
conductance in the spinless case, for the first~a! and the second
term ~b! in Eq. ~6.29!. Branch cuts of the integrand are shown
thick lines. Contribution of the semipole att15t2 in the first term
in brackets in Eq.~6.29! is canceled by the term complex conju
gated to it.
e
n

-

e

-

whereC'0.577 is the Euler constant, andL(0)'1.398 is
given by Eq.~5.6!. This expression is analogous to the elas
cotunneling for the case of weak coupling.10,11

For the correlation function of the mesoscopic fluctu
tions of the conductance, we find with the help of Eqs.~6.21!

dG~1!dG~2!

Ḡ2
5S cospn

L~0! D 2FL2S H2
2

Hc
2 D 1L2S H1

2

Hc
2 D G ,

~6.34!
where we use again the shorthand notationsi[Ni ,Hi , n
5N12N2, andH65H16H2. Correlation magnetic fieldHc
is defined in Eq.~2.23!, and the dimensionless functionL(x)
is given by Eq.~5.6! and is plotted in Fig. 4. Once again, w
see that even though the averaged conductance does no
longer oscillate with the gate voltage, the discreteness
charge manifests itself in the oscillatory behavior of the co
ductance correlation function. It is also noteworthy that t
mesoscopic conductance fluctuations are of the order of
average, similarly to the weak coupling regime.11

2. Finite reflection in the contact

So far, we have shown that the conductance in the tun
ing setup is nonvanishing atT→0, which is analogous to the
elastic cotunneling in the weak tunneling regime. Howev
the oscillatory dependence of the conductance showed up
in the average conductance but rather in the correlation fu
tion of mesoscopic fluctuations. On the other hand, as
saw in Sec. V finite backscattering leads to the oscillat
dependence in the averaged quantities. The purpose of
subsection is to study how the finite reflection in the cont

e

FIG. 8. The integration contours used in the evaluation of
integral overt2 in Eq. ~6.30! for ~a! the first and third terms in
brackets, and~b! for the second and fourth term. Only first an
second terms have poles att25t1 i t 1.
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affects the elastic cotunneling, and to demonstrate that i
deed leads to the oscillatory dependence of the averaged
ductance on the gate voltage.

To treat the finite reflection in the contact, we have
e

th
r

n-
on-
expand the denominator and numerator in Eq.~6.26b! up to
the first order in the backscattering Hamiltonian~4.11!. Per-
forming averaging over the bosonic fields, we obtain w
the help of Eqs.~4.14!, ~4.8!, ~6.27!, and~4.16b!:
ntation for
Pel~t!52ur u
uK~t!u2

2pnvFECeCE0

b

dt1dt2dt3R~t12t!R* ~2t2!
pT

sin pT~t12t2!

3FK~t2!K~t12t!

K~t1!K~t22t! H e2 i2pNK~t3!K~t2t3!

K~2t3!K~t32t!

sin pT~t22t3!K~t22t3!

sin pT~t12t3!K~t12t3!

1
ei2pNK~2t3!K~t32t!

K~t3!K~t2t3!

sin pT~t12t3!K~t12t3!

sin pT~t22t3!K~t22t3!
22 cos 2pNJ 1c.c.G . ~6.35!

Here we retained only the terms that do not vanish after ensemble averaging. Then, we can use the Lehmann represe
the kernelR(t) and perform the integration overt1,2 in the manner of the previous subsection. It yields

Pel~t!52ur u
uK~t!u2

2pnvFECeCE dt1dt2E
0

b

dt3

pT

sin pT~t2 i t 21 i t 1! F RA~ t1!@RA~ t2!#* K~ i t 2!K~ i t 1!

K~ i t 11t!K~ i t 22t!
~6.36!

3H e2 i2pNK~t3!K~t2t3!

K~2t3!K~t32t!

sin pT~ i t 22t3!K~ i t 22t3!

sin pT~t1 i t 12t3!K~t1 i t 12t3!

1
ei2pNK~2t3!K~t32t!

K~t3!K~t2t3!

sin pT~t1 i t 12t3!K~t1 i t 12t3!

sin pT~ i t 22t3!K~ i t 22t3!
22 cos 2pNJ 1c.c.G . ~6.37!
e
av-
pli-
e

r-
the

n

We deform the integration contour overt3, as shown in
Fig. 9, and substitute the result into Eq.~6.14!. Then, we
average the product of the Green functionsRA@RA#* using
Eq. ~6.21b!. As a result, we find the oscillating part of th
ensemble averaged conductance

G5a1GRS ur uD
EC

D cos 2pN. ~6.38!

Herea1 is the numerical coefficient given by

a15
4e2C

p E
0

`dxdy

x2
e2exEi~2x!sin~pe2y!

3sinh@e2yEi~y!1ex1yEi~2x2y!2eyEi~2y!#

'1.458,

FIG. 9. The integration contour used in the evaluation of
integral overt3 in Eq. ~6.36!. Integral along the part of the contou
parallel to the real axis cancels out the 2 cos 2pN term.
with Ei(x) being the exponential-integral function.40

Equation ~6.38! confirms our expectation that the finit
backscattering leads to the oscillatory dependence of the
eraged conductance on the gate voltage. Although the am
tude of oscillations~6.38! is small compared to the averag
value of the conductance~6.33!, it still exceeds at low tem-
peratures the contribution of the inelastic cotunneling27 to the
conductance oscillations.

C. Electrons with spin

We use formulas of Sec. IV B to bosonize the chiral fe
mionic fields. In order to account for the appearance of
operatorn̂ in the Hamiltonian@compare Eqs.~3.15! with Eq.
~6.23!#, we change the transformation~4.19!:

ŵL
i ~x!5

ŵ1
i ~x!1ŵ2

i ~x!1F̂ i2d irp~N2n̂!

A2
,

~6.39!

ŵR
i ~x!5

ŵ1
i ~2x!2ŵ2

i ~2x!2F̂ i2d irp~N2n̂!

A2
,

where i 5r,s, and operatorn̂ commutes with the bosonic
fields ŵ6

r,s ,F̂r,s. To preserve the commutation relatio
@ F̂†,ŵL,R

r,s#50, we change the operatorsF̂†,F̂ similarly to Eq.
~6.25!

F̂†°F̂†e2 i F̂r
, F̂°F̂ei F̂r

. ~6.40!

Substitution of Eqs.~4.17!, ~6.39!, and ~6.40! into Eqs.
~6.22b! results in the formulas similar to Eq.~6.26!:

e
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P in~t!52
2G~2t;r t ,r t!

n^Tte
2Ŝ&

^Tte
2ŜF̂̄~t!F̂~0!ei [ F̂~0!2F̂~t!]&, ~6.41a!

Pel~t!5
1

pnl^Tte
2Ŝ&

E
0

b

dt1dt2R~t12t!R* ~2t2! (
a561

K Tte
2ŜF̂̄~t!F̂~0!ĥa~t1!ĥa~t2!ei @F̂r~0!2F̂r~t!]

3e~ i /2!a@ŵ2
s

~t1!2ŵ2
s

~t2!#e~ i /2!a@F̂s~t1!2F̂s~t2!#e~ i /2!@ŵ2
r

~t1!2ŵ2
r

~t2!#e~ i /2!@F̂r~t1!2F̂r~t2!#

3H sinF ŵ1
r ~t1!2ŵ1

r ~t2!

2
1a

ŵ1
s ~t1!2ŵ1

s ~t2!

2
1

p

2
@ n̂~t1!2n̂~t2!#G

2cosF ŵ1
r ~t1!1ŵ1

r ~t2!

2
1a

ŵ1
s ~t1!1ŵ1

s ~t2!

2
1

p

2
@ n̂~t1!1n̂~t2!#2pNG J L , ~6.41b!

for the inelastic and the elastic cotunneling, respectively. However, for the calculation it is more convenient to proceed
to the low-energy effective theory~4.28!, because the main contribution to the conductance comes from the energy
smaller than the charging energyEC . First, we integrate out the symmetric charge modeŵ1

r . Then, we wish to use the
substitution~4.26!. The important difference brought into the problem by accounting for the second junction is that Eqs.~6.41!
contain the charged fieldF̂r itself, and not only the combinationF̂r2f2

r (x50), as we had before. Fortunately, the corr

sponding change can be simply accounted for by the introduction of one more chiral fieldf̂, so that we have

ŵ2
r ~x50!1F̂r→A2ŵr~x50!,

~6.42!

F̂r2ŵ2
r ~x50!→A2f̂~x50!

instead of Eq.~4.26!. The field f̂ enters neither the effective action, nor the backscattering Hamiltonian, so it ca
immediately integrated out, and we find the low-energy representation

ei [ F̂~t!2F̂~0!]°^ei [ f̂~t!2f̂~0!]/A2&ei [ ŵr~t!2ŵr~0!]/A25
p

ECeCAvF

l̃
S pT

sin pTt D 1/2

ei [ ŵr~t!2ŵr~0!]/A2. ~6.43!

The prefactor in the last formula can be found by requiring the averages calculated with the help of the effective the
the initial theory to coincide. Using Eqs.~6.42! and ~6.43!, we obtain from Eq.~6.41!

P in~t!52
2G~2t;r t ,r t!

n^Tte
2Ŝ&

p

ECeCAvF

l̃
S pT

sin pTt D 1/2

^Tte
2ŜF̂̄~t!F̂~0!ei [ ŵr~t!2ŵr~0!]/A2&, ~6.44a!

Pel~t!5
1

pn^Tte
2Ŝ&

p

ECeCAvF

l̃3S pT

sin pTt D 1/2E
0

b

dt1dt2R~t12t!R* ~2t2! (
a561

K Tte
2ŜF̂̄~t!F̂~0!

3ĥa~t1!ĥa~t2!ei [ ŵr~t!2ŵr~0!]/A2e~ i /2!a@ŵ2
s

~t1!2ŵ2
s

~t2!#e~ i /2!a@F̂s~t1!2F̂s~t2!#

3H cosFa
ŵ1

s ~t1!1ŵ1
s ~t2!

2
1

p

2
@ n̂~t1!1n̂~t2!#2pNG

1cosFp

4
1a

ŵ1
s ~t1!2ŵ1

s ~t2!

2
1

p

2
@ n̂~t1!2n̂~t2!#G J L , ~6.44b!

where the averaging is performed with respect to the Hamiltonian~4.27!. The effective action~4.29! acquires the form



57 9635MESOSCOPIC CHARGE QUANTIZATION
Ŝ5
1

pl̃
E

0

b

dt1dt2L~t12t2! (
a561

ĥa~t1!ĥa~t2!e~ i /2!a@ŵ2
s

~t1!2ŵ2
s

~t2!#e~ i /2!a@F̂s~t1!2F̂s~t2!#e~ i /A2!@ŵr~t1!2ŵr~t2!#

3H cosFa
ŵ1

s ~t1!1ŵ1
s ~t2!

2
1

p

2
@ n̂~t1!1n̂~t2!#2pNG1cosFp

4
1a

ŵ1
s ~t1!2ŵ1

s ~t2!

2
1

p

2
@ n̂~t1!2n̂~t2!#G J ,

~6.45!
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and the backscattering HamiltonianĤbs is given by27

Ĥbs5
2ur u
p S ECeCvF

pl̃
D 1/2

~21! n̂ cospN cos ŵ1
s ~0!,

~6.46!

cf. Eq. ~4.28!. The cutoff l̃ in Eqs.~6.43!–~6.46! should be
of the order ofvF /EC , because the charging energyEC is
the largest energy scale that can be considered with the
of Hamiltonian~4.27!.

In the following subsections we will apply effective de
scription ~6.44!–~6.46! and ~6.14! to find the tunneling con-
ductance of the dot in the asymmetric setup.

1. Reflectionless contact

Let us consider first the elastic contribution~6.44b! ~we
will see below that inelastic contribution should be taken in
account in order to obtain the correct temperature dep
dence!. In the lowest-order approximation we neglect t
action Ŝ, and obtain with the help of Eqs.~4.30!:

Pel
~0!~t !5

1

nvFECeC

pT

sin pTtE0

b

dt1dt2

3R~t12t!R* ~2t2!
pT

sin pT~t12t2!

3 (
g561

S sin pTt1sin pT~t22t1 ig0!

sin pTt2sin pT~t12t1 ig0! D
1/2

.

~6.47!

When deriving Eq.~6.47!, we used an expression similar
Eq. ~6.27!,

K TtF̂̄~t!F̂~0!cosFp2 „n̂~t1!2n̂~t2!…G L
5cosFp2 @u~t2t1!2u~t2t2!#G . ~6.48!

All the further manipulations with Eq.~6.47! are absolutely
analogous to the steps of Sec. VI A in the derivation of E
~6.32! from Eq. ~6.28!. Instead of Eq.~6.32!, here we find

G5
GR

nvFECeCEEC
21

`

dt1dt2
pT

~sinh pTt1 sinh pTt1!1/2

3$RA~2t1!@RA~2t2!#* 1RR~ t1!@RR~ t2!#* %,

~6.49!
elp

n-

.

where the divergences~as we will see, logarithmic! should
be cut off at times of the order of 1/EC . Notice that there is
noN dependence of the nonaveraged conductance. The
son is similar to the absence of the oscillations of the cap
tance in the first order in level spacingD—the oscillations
are washed out by the quantum fluctuations of the spin mo
which is not pinned. We will see later that the oscillato
term in the conductance is smaller than the leading nonos
latory contribution to the conductance by a fact
.(D/T)1/2.

Let us now proceed with the statistics of the elastic c
tunneling conductance~6.49!. Ensemble averaging per
formed with the help of Eq.~6.21a! gives for the average
conductance

Ḡ5GR

2De2C

EC
lnS EC

T D , ~6.50!

whereC'0.577 is the Euler constant. At very low temper
tures,T should be substituted byD ln(EC /D), see discussion
in Sec. V B.

Equation~6.50! deserves some discussion. Firstly, we n
tice the presence of the large logarithmic factor in compa
son with Eq.~6.33!. It can be understood using the arg
ments of the orthogonality catastrophe46 similar to those
applied in Ref. 27 for the inelastic cotunneling. Consider
elastic cotunneling process where an electron is introduce
time t50, and then taken away at timet*EC

21 . Because the
introduction of an electron costs extra energy.EC , all the
other electrons tend to redistribute themselves by mov
one electron charge through the left point contact, Fig 5. O
can describe such a tendency as sudden change of the bo
ary condition in each of the spin channels. Because all
spin channels are symmetric, each spin mode should tran
chargee/2. According to the Friedel sum rule, it correspon
to the additional scattering phase shiftd56p/2 in each spin
mode. It is known47 that such a sudden change causes c
ation of a large number of electron-hole excitations, so t
the resulting state is orthogonal to the ground-state. T
probability for the system to retain its initial state durin
time t is P(t).1/(tEC)x, where the indexx is related to the
phase shift in all channels,x5((d/p)2. In our case we have
four spin modes~two in the dot and two in the reservoir!,
thereforex51. In order to find the total conductance, w
have to sum over all possible times that the electron spe
in the dot:G}*E

C
21

b
dt/(ECt), which results in the logarith-

mic temperature dependence~6.50!. The similar argument
for the spinless electrons gives the phase shiftd5p in each
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of the two channels. Thus,x52, all the relevant dynamics
occurs during the times smaller than 1/EC , and the divergent
factor disappears.

Secondly, even though the elastic contribution is dom
nant in the value of the conductance, in order to find
temperature dependence, one has to take into accoun
inelastic contribution~6.44a!, which yields48

Gin5GR

p3Te2C

2EC
. ~6.51!

We see that this term has a stronger temperature depend
than Eq.~6.50! and, therefore, the resulting conductanceḠ
1Gin always grows as the temperature increases.

Mesoscopic fluctuations of the contribution~6.49! to the
conductance can be obtained with the help of Eq.~6.21!,

dG~H1!dG~H2!

Ḡ2
5

1

2 (
g56

S 12
ln max~1;@Hg /Hc

,#2!

ln~EC /T!
D 2

.

~6.52!
i-
e
the

nce

Here the correlation fieldHc
, is defined by Eq.~5.16!, and

the field combinationsH65H16H2 are assumed to be
much smaller thanHc @the charging correlation fieldHc is
given by Eq.~2.23!#. The correlation function of the conduc
tance fluctuations starts to decrease fast, as 1/H6

4 , only at
fieldsH6*Hc . Similarly to the case of capacitance fluctu
tions discussed in the previous section, to obtain a repre
tative statistics of the conductance, the magnetic field sho
be varied in a range wider thanHc .

Equation~6.52! shows that the amplitude of conductan
fluctuations is of the order of its average value, as in the c
of the spinless fermions. However, unlike Eq.~6.34!, the
correlation function~6.52! does not reveal any oscillation
with the gate voltageN.

In order to reveal this oscillatory dependence onN, one
has to expandPel(t) from Eq.~6.44b! up to the first order in
action ~6.45!. The procedure of averaging over all the re
evant operators is absolutely similar to the derivation of E
~6.47!, and we obtain
B 2.
n:

ed

t order of
t of the
Pel
~1!~t !52

1

nvF
2ECeC

pT

sin pTtE0

b

dt1¯dt4R~t12t!R* ~2t2!L~t32t4!

3 (
g561

ei2pgNS sin pTt1sin pT~t22t2 ig0!

sin pTt2sin pT~t12t1 ig0!

sin pT~t42t2 ig0!sin pTt3

sin pTt4sin pT~t32t1 ig0! D
1/2

3
p2T2

@sin pT~t12t21 ig0!sin pT~t32t41 ig0!sin pT~t32t21 ig0!sin pT~t12t41 ig0!#1/2
. ~6.53!

Integration over imaginary times in Eq.~6.53! is rather straightforward, and technically very close to that in the Sec. VI
Unlike Eq.~6.49!, here the result for the nonaveraged conductance isN dependent. We obtain for the oscillating contributio

Gosc5
GR

nvF
2ECeC

a2

~2p2T!1/2EEC
21

` F)
i 51

3

dtiS pT

sinh pTti
D 1/2G $ ie2 i2pNRR~ t1!@RA~ t2!#* LR~ t3!1c.c.%, ~6.54!

wherea2 is a numerical coefficient:

a25E
2`

` dx dy

usinh yu1/2~coshx!3/2@cosh~y2x!#1/2
'11.31. ~6.55!

Ensemble averaging of Eq.~6.54! is then performed with the help of Eqs.~3.25! and ~6.21!, and the final result is

dGosc~1!dGosc~2!

GR
2

5a3

D

TS D

EC
D 2

ln3S EC

T D cos 2pn~L11L2!~L1
2 1L2

2 !,

~6.56!

L6512
ln max~1;@H6 /Hc

,#2!

ln~EC /T!
,

where the shorthand notation for the conductance arguments isi 5Ni ,Hi , H65H16H2, n5N12N2, correlation magnetic
field Hc

, is given by Eq.~5.16!, and the numerical coefficienta3 is given bya35a2
2e22C/(2p4)'0.207.

The variance of the conductance fluctuations~6.56! in the unitary limit (H*Hc) is suppressed by a factor of four compar
to its zero-field value.

2. Finite reflection in the contact

For the spinless electrons, finite reflection leads to the oscillations in the averaged conductance already in the firs
perturbation theory inr !1. On the contrary, for the electrons with spin, backscattering leads only to the enhancemen
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oscillating part of the correlation function of the mesoscopic fluctuations. In order to demonstrate this, we expand Eq.~6.44b!
up to the first order in the backscattering Hamiltonian~6.46!. We obtain

Pel
~b!~t !52

1

nvFECeC
AECeC

p

pT

sin pTtE0

b

dt1¯t3R~t12t!R* ~2t2! (
g561

ei2pgN

3S sin pTt1sin pT~t22t2 ig0!

sin pTt2sin pT~t12t1 ig0! D
1/2 ~pT!3/2

@sin pT~t12t21 ig0!sin pT~t32t21 ig0!sin pT~t12t31 ig0!#1/2
.

~6.57!

TABLE I. The ensemble-averaged differential capacitance~Ref. 14! and the correlation function of the
mesoscopic fluctuations in the Coulomb blockade regime; only the contributions oscillating with the gate
voltageN are presented in this table. Hereur u2!1 is the reflection coefficient in an almost open channel, and
b51,2 for the orthogonal and unitary ensembles, respectively. For more details see Eqs.~5.7!, ~5.9!, ~5.17!,
and ~5.22!.

dCdiff(N)/C dCdiff(N1)dCdiff(N2)/C2

s50 3.56ur ucos 2pN 5.59

b S D

EC
D cos 2p~N12N2!

s51/2
4.53ur u2 cos 2pN lnSEC

T D 0.54

b S D

EC
D ln3SEC

T DFS D

EC
DlnSEC

T D17.12ur u2Gcos 2p~N12N2!
e

o-

to

nal

la

e
p
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ults

on-
Performing the contour deformation for the integration ov
t1,2, as we did before, and the analytic continuation~6.14!,
we find

G5
GR

pnvFECeC

a2ur uAECeC

~2p2T!1/2

3E
EC

21

`

dt1dt2
pT

~sinh pTt1 sinh pTt2!1/2

3$ ie2 i2pNRR~ t1!@RA~ t2!#* 1c.c.%, ~6.58!

where the numerical coefficienta2 is given by Eq.~6.55!.
Average of Eq.~6.58! obviously vanishes, and for the mes
scopic fluctuations we obtain with the help of Eqs.~6.21!

dG~1!dG~2!

GR
2

5a4

ur u2D2

ECT
ln2S EC

T D ~L1
2 1L2

2 !cos 2pn,

~6.59!
rwhere we use the same shorthand notation as in Eq.~6.56!.
The numerical coefficienta4 in Eq. ~6.59! is given bya4

5a2
2e2C/p4'0.737.

Calculation of the contribution of the backscattering in
the average conductance requires accounting of Eq.~6.46! in
the second-order perturbation theory. On dimensio
grounds we expect this contribution to be

Ḡosc~N!.GR

ur u2D

T
cos 2pN.

The low-temperature power-law divergence in this formu
and in Eq. ~6.58! should be cut off at the energy27 e*
.ur u2EC cos2 pN. Calculation of the precise behavior of th
conductance atT&e* , which can be performed with the hel
of refermionization technique of Ref. 27 is beyond the sco
of the present paper. However, the perturbation theory res
indicate that the modulation of the conductanceḠosc(N) at
low temperature should be of the order of the average c
ductanceḠ.
oscopic
s.
TABLE II. Conductance of the quantum dot in a strongly asymmetric setup, see Fig. 5, and the correlation function of its mes
fluctuations, oscillating with gate voltageN. Tunneling conductanceGR is much smaller thane2/(2p\). For the detailed results, see Eq
~6.33!, ~6.34!, ~6.38!, ~6.50!–~6.52!, ~6.56!, and~6.59!.

G(N)/GR dG(N1)dG(N2)/GR
2

s50 D

EC
(0.6311.46ur ucos 2pN)

0.78

b S D

EC
D 2

cos 2p~N12N2!

s51/2 1.12D

EC
F lnSEC

T D17.75
T

D
1O~ ur u2!G S D2

ECTD ln2SEC

T D F0.83

b2 S D

EC
D lnSEC

T D1 1.48ur u2

b Gcos 2p~N12N2!
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VII. CONCLUSION

In this paper, we considered mesoscopic effects in
Coulomb blockade~CB! regime. The emphasis was put o
the case when the quantum dot is connected to a lead
perfectly transparent single-mode channel. We have dem
strated that the earlier conclusion that the CB vanishes u
this condition14 is only an approximation, which resulte
from neglecting the electron trajectories returning to
channel after traversing the dot. We have shown that the
persists, and its period is still determined by a single elect
charge. However, CB oscillations in all the observable qu
tities acquire a random phase and therefore it is reveale
the correlation functions of mesoscopic fluctuations. W
constructed an analytic, well-controlled theory describ
those fluctuations.

Our results are substantially different from the known
sults in noninteracting models of mesoscopic systems.
correlated ground state involves all the one-electron w
functions in the energy strip of the order of the chargi
energyEC . The number of states in this strip is large,n
;EC /D@1 ~hereD is the level spacing!. Therefore, the am-
plitude of the differential capacitance fluctuations exce
parametrically the estimate17 obtained in the noninteractin
model. The correlation magnetic flux for the mesosco
fluctuations F5F0AET /EC is controlled by the energy
scaleEC , rather than by level spacingD. The large number
of states in the relevant energy strip leads to the robust
of the oscillatory dependence over aboutEC /D peaks, which
is yet another difference from a noninteracting model.

We obtained the closed analytic expression for some
perimentally relevant characteristics. Final results are s
marized in Table I for the thermodynamic quantities~differ-
ential capacitance of an almost open dot!, and in Table II for
the transport quantities~tunneling conductance of an almo
open dot!.

Up to now, only one experiment studying the effect of t
opening of the channel on the Coulomb blockade w
published.49 It was found that at the quantized value of t
channel conductance, the Coulomb blockade oscillations
appeared completely, in disagreement with our predictio
We attribute this finding to a relatively simple geometry
the dot,49 allowing for an adiabatic~rather than chaotic!
propagation of an electron through the entire confined
gion. Quantum chaos of electron states in dots of sufficie
complicated geometries was studied previously in the
gimes of strong Coulomb blockade and of ballis
transport.5–7,12 These dots have the right parameters for
observation of mesoscopic charge quantization. The first
periments on the dot conductance in a strongly asymme
setup~considered above in Sec. VI! are under way now.43
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APPENDIX A: DERIVATION OF EQ. „3.7…

Let us discretize the space in the direction along the ch
nel axis. The fermionic HamiltonianĤF acquires the form

ĤF5E dr'(
n

~cn
†2cn11

† !~cn2cn11!

2ma
1acn

†Ĥ'cn ,

~A1!

where the transverse part of the motion is described by
operator

Ĥ'52
¹ r

2

2m
1Un~r !2m, ~A2!

and a is the discretization step. Fermionic operators in E
~A1! satisfy the anticommutation relation$cn

†(r )cn8(r 8)%
5a21dnn8d(r'2r'8 ). The continuous limit ofa→0, which
will be taken in the end of the calculation, corresponds to
usual Schro¨dinger equation. Let us separate the space i
two regions; region ‘‘1’’ includes all the lattice sites withn
<0 and region ‘‘2’’ includes sites withn.0. The terms
entering into decomposition of the Hamiltonian@see also Eq.
~3.6!#, ĤF5Ĥ11Ĥ21Ĥ12, have the form

Ĥ15E dr' (
n,0

F ~cn
†2cn11

† !~cn2cn11!

2ma

1acn
†S Ĥ'1

d0,n

2maDcnG , ~A3a!

Ĥ25E dr' (
n>1

F ~cn
†2cn11

† !~cn2cn11!

2ma

1acn
†S Ĥ'1

d1,n

2maDcnG , ~A3b!

Ĥ1252E dr'

c0
†c11c1

†c0

2ma
. ~A3c!

We obtain the average in Eq.~3.6! using Eq.~A3c!:

1

2
^TtĤ12~t1!Ĥ~t2!&2

5E dr'dr'8

4m2a2
^Ttc0~r ;t1!c̄0~r 8,t2!&

3Ttc1~r 8,t2!c̄1~r ,t1!. ~A4!

Using the definition of the Matsubara Green function

2^cn~t!c̄m~0!&25Gnm~t!5F 1

]t2Ĥ2
G

nm

~A5!

and the low-energy representation for the fermionic opera
@only one transverse modef(r') in the channel#

c0~r'!5c0f~r'!,

we rewrite Eq.~A4! in the form
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1

2
^TtĤ12~t1!Ĥ~t2!&2

52Ttc0~t1!c̄0~t2!
1

4m2a2E dr'dr'8 f~r'!f~r'8 !

3G11~t12t2 ;r' ,r'8 !. ~A6!

As it follows from Eqs.~A3! and ~A5!, the Green function
satisfies the equation

H ~]t2Ĥ'!dnn82
2dnn82dnn8112dnn821

2ma2 J Gn8m

5a21dnmd~r12r2!, n.1; ~A7a!

H ~]t2Ĥ'!dnn82
2dnn82dnn821

2ma2 J Gn8m

5a21dnmd~r12r2!, n51. ~A7b!

We see that the difference between Eq.~A7a! and Eq.~A7b!
can be described by the boundary condition

G0n50, Gn050. ~A8!

Now, we introduce coordinatex5an, and take the continu
ous limit a→0. Substituting G115a2]xx8

2 G(x,x8)ux,x8510

into Eq. ~A6!, we obtain Eq.~3.7!.

APPENDIX B: DERIVATION OF EQS. „4.14…

We introduce correlation functions more general than
~4.13!:

D2~t;x1 ,x2!5^Ttŵ2~t;x1!ŵ2~0;x2!&, ~B1a!

D1~t;x1 ,x2!5^Ttŵ1~t;x1!ŵ1~0;x2!&, ~B1b!

DF~t!5^TtF̂~t!F̂~0!&, ~B1c!

DF1~t;x!5^TtF̂~t!ŵ1~0,x!&. ~B1d!

Correlation functions~4.13! are related to those from Eq
~B1! by

D6~t!5E
2`

` dx

p

lD6~t;0,x!

l21x2
, DF1~t!5DF1~t;0!,

~B2!

where the high momenta cutoff is introduced consisten
with Eqs. ~4.1!. Equations of motion for propagators~B1!
follow from Eqs.~4.8! and ~4.10! and they are given by
.

y

~]t1 ivF]x!D2~t;x,y!52 ipd~t!sgn~x2y!; ~B3a!

~]t1 ivF]x!D1~t;x,y!5 isgnx
EC

2p
D1~t;0,y!

2 ipd~t!sgn~x2y!, ~B3b!

]tDF~t!5 i
EC

2p
DF1~t;0!, ~B3c!

]tDF1~t;x!5 ipd~t!2 i
EC

2p
D1~t;0,x!. ~B3d!

Performing imaginary time Fourier transformD(t)
5T(Vn

e2 iVntD(Vn) ~hereVn52pnT is the bosonic Mat-
subara frequency! we find the solution of Eq.~B3b!:

D1~Vn ;x,y!

5
p

Vn
$sgn~x2y!12u@Vn~y2x!#e~Vn /vF!~x2y!%

2
EC

2p
D1~Vn ;0,y!$sgnx12u~2Vnx!e~Vn /vF!x%.

~B4!

Substitutingx50 in the both sides of Eq.~B4!, we find
D1(Vn ;0,y) and, then Eq.~B2! yields:

D1~Vn!5
p

uVnu1EC/2p
f S uVnul

vF
D . ~B5a!

PropagatorD2 is found by puttingEC50 in Eq. ~B5a!,

D2~Vn!5
p

uVnu
f S uVnul

vF
D , ~B5b!

and remaining propagators are found from the time Fou
transform of Eqs.~B3c!–~B3d! and Eq.~B5a!:

DF~Vn!5
EC

2puVnu
p

uVnu1EC/2p
, ~B5c!

DF1~Vn!5
psgnVn

uVnu1EC/2p
. ~B5d!

In Eqs.~B5!, the cutoff functionf (x) is defined as

f ~x!5E
0

`2dy

p

e2xy

11y2
. ~B6!
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Inverse Fourier transform of Eqs.~B5! gives Eqs.~4.14!.
Let us write here for completeness the result for the pro
gatorD1(0) at arbitrary temperatures:

D1~0!5 lnS 2pvF

lECeCD 1E
0

`

dxFcotx2
1

xGe2xEC/2p2T.

~B7!

At small temperaturesT!EC , Eq. ~B7! reduces to Eq
~4.14c!. At large temperatures,T@EC , we obtain
s

-

a- D1~0!5 lnS vF

2pTl D1
2p2T

EC
.

All the results associated with the Coulomb blockade@see,
e.g., Eq. ~4.15b!# contain exponential terms of the form
e2D1(0). This gives the suppression of the charge quantiz
tion at high temperature by a factor ofe22p2T/EC. This
clearly indicates that the effects considered in this paper a
in Refs. 14 and 27 cannot be obtained in any order of pe
turbation theory in charging energyEC .
R

n

n

E
t

f
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