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We present a microscopic model to understand the magnetoelectric and second-harmonic spegDa of Cr
and the interference effect between the magnati®) @nd electric §€) second-order optical polarizations. The
spin-orbit interaction and the crystalline fields of correct symmetry around thie iGn, i.e., the axial and
twisted crystalline field ofc; symmetry, are treated as perturbation on the trigonal states afthgstem of
Cr’*. By these treatments we attempt to describe the observed phenomena associated with the transitions
between“Azg and 4ng states in CyjOs. It is possible to reproduce the observed spectra of the polarization
rotation and ellipticity, and the second-harmonic generation spectra described by the nonlinear susceptibilities
x™ and x&. The estimated theoretical magnitudes of these quantities are in reasonable agreement with the
observed magnitudepS0163-18208)07415-3

I. INTRODUCTION phase to evaluate them. In order to obtain nonvanishing non-
linear susceptibilities, twisted crystalline fields around the
In the 1960s, magneto-optical effects were studied foICr** ion have to be introduced. The second purpose of the
metal¢ and insulatoré.In the 1990s, ellipsometry and bro- present paper is to evaluate the nonvanishing expressions of
ken time-reversal symmetry were extensively discussegt™ and x® so derived explicitly and to see if the calculated
theoreticallj* as well as experimentaflyfor the high- results are able to explain the observation, i.e., the magni-
temperature superconductors. Reciprocity in reflection antides and the spectra of the susceptibilities and the interfer-
transmission of light was studied by group-theoreticalence effect.
method® Spontaneous nonreciprocal reflection of lighnd In the present paper, we apply the same model both for
its spectrurfi were observed for GO5. Here the interference the magnetoelectric spectrum of the nonreciprocal rotation
between electric dipole and magnetic dipole is possible aand ellipticity of light and the second-harmonic generation
the crystal Igses space-inversion and time-reversal symmetpgsHG) in antiferromagnetic GOs.
below the Nel temperature. First, Krichevtsat al® mea- In Sec. Il we review the magnetic and electronic struc-
sured the spectra of the nonreciprocal rotation and ellipticitytyres of the antiferromagnetic £, crystal, and examine
of light reflected from the antiferromagnetic 03 and  the types of the low-symmetry crystalline field involved, be-
found an ellipticity spectrum of dispersive type and a rota-cause these types are related to the reality of the relevant
tion spectrum of bell shape near 2.1 eV corresponding to theghatrix elements contributing to the magnetoelectric effect
transition from A, to “T,, states. These look opposite to and the second-harmonic generation. In Sec. Il we derive
those expected from the Kramers-Kronig relation. This mysexpressions for the magnetoelectric susceptibilities for the
tery will be solved in this paper. Second, Fieleigal® have  spin-allowed transitions between the quartet states. The spin-
succeeded in observing the antiferromagnetic domains ifprbidden transitions to the doublet states suct?Bg and
Cr,05 through resonant second-harmonic signals due to théT, = |evels are also treated there. The results obtained in
transitions betweeflA, and “T,g states of a Cf" ioninthe  Sec. 111 are compared with the observed spectra of ellipticity
crystal. They also observétithe second-harmonic spectra and rotation in Sec. IV. We find that the observed features of
described by the second-order magnetic and electric suscege magnetoelectric spectra for the transition betvvéégb
tibilities, x™ and x°, separately and the interference effectand *T,, states are well explained. Estimation of the order of
between these contributions below élletemperatureTy  magnitude of these spectra is also made in good agreement
=307.5 K. Muthukumar, Valenti, and Grdgproposed a mi-  with the observation. In contrast to this, we predict the con-
croscopic theory to explain the observed nonreciprocal effecfentional spectra of rotation and ellipticity for the transition
assuming a cluster model witbsy symmetry. Unfortu-  from Ay, to “Ty, states. The theory is also able to explain
nately, their model does not reflect the correct symmetry ofhe observed spectra of spin-forbidden transitions. Contribu-
the cluster in the crystal which is’ 3Besides, in their treat- tions to the second-order susceptibilitig8 and x© that are
ment, only conventional trigonal crystalline fields with evenimportant in the resonance effect are derived explicitly in
and odd symmetry and spin-orbit interaction were assume&ec. V. Their orders of magnitude are also estimated there.
as perturbation on the trigonal states of thé 'Cion. We  In Sec. VI, the second-harmonic spectra describeg®and
have shown, however, in a previous pdpéhat within this  x® are drawn using the results obtained in Sec. V. The agree-
model bothy™ and ¢ vanish belowTy when the contribu- ment is satisfactory. However, it is found that the observed
tions from the four Ct" ions in a unit cell are summed up, interference ofy™ and x® cannot be explained well because
even when each single-site contributiomt® or x€ is finite.  of the small phase difference between them. Two possible
This is due to the fact that the real or imaginary nature of thanechanisms are suggested to overcome this difficulty. Sec-
matrix elements matters seriously in the problems of nonretion VIl is devoted to the conclusion. The Appendix gives
ciprocal optical effects in antiferromagnetic crystals, becaussome relevant reduced matrix elements of operators appear-
we are forced to use complex wave functions in the ordereéhg in x in terms of one-electron integrals together with the

0163-1829/98/5(16)/958622)/$15.00 57 9586 © 1998 The American Physical Society



57 MAGNETOELECTRIC AND SECOND-HARMONIC SPECTRA ... 9587

VilA]=004(n)Wi[Aq]. (2.3

Take, for example, the ions #&; and B; [Eq. (2.1)]. We
may adopt for théth state(which may or may not necessar-

'@ ily be an eigenstajef the ionB; the wave function obtained
é’; by transforming thath state of the iom;, that is, rotating
o the latter by around thex axis and translating it by. Note

Tl’ that Eqs.(2.1)—(2.3) are based on the symmetry of the mag-
- netic group. They simply correlate the wave functions at dif-

ferent sites by the symmetry operations of the group. This
procedure assumes that the molecular field actindpris

y obtained by just rotating by the corresponding field oA;.

This is the symmetry described by the magnetic group. In
this sense, the present treatment, which takes advantage of
the magnetic symmetry throughout, is a mean field theory
which neglects the spin fluctuations.

The matrix elements of an operatdrat different sites are
thus correlated to each other through the equations

(RP|A|RY")=(¥|RAR|¥"), (2.4

(ORY|A|ORY')=(¥|0 R ARO|¥')*, (2.5

FIG. 1. The crystal and magnetic structure of,Qy crystal .
below Neel temperature. Black and white circles represent'Cr where R stands for any of the symmetry operations

and G~ ions, respectively. ThE€; axis of the crystal is chosen as ,CZx(T)' l anday(7). Since both orbital and spin states are
z axis, so theC, axis is chosen as axis. Theyz plane is the mirror ~ iNvolved in the present problem, operaR®ias well as® act

plane. The origin of the coordinates is the inversion center. Thélpon both of them. The matrix elementsxo€omponents of
arrows indicate the directions of the spins. the magnetic- and electric-dipole momenit, and P,, at

B, A,, andB, sites are related to those A by

wave functions for thel® system(in the strong ligand-field
limit). My[B1]=My[A1]l, Py B1]=PyAq], (2.6

= — * — *
I MAGNETOLECTRIC MdAz]= = MJA]*, PA]= =P A, (2.7

AND NONLINEAR SUSCEPTIBILITIES
My[Ba]=—M[A1]*, P Ba]=—PJA]*. (2.8

A. Magnetic and electronic structures of the crystal .
These equations enable us to correlate the values of magne-

Below Neel temperaturdly=307.5K, the crystal GO;  toelectric and second-harmonic susceptibilitiesBat, B,
loses the inversion and time-reversal symmetry and has tl“@quz to that ofA,.
symmetryR3’c’. The unit cell consists of four Cr ions, each  The optical absorption in GD; (Ref. 13 is similar to that
surrounded by six oxygen ions as shown in Fig. 1. Zlais  of ruby* and is characterized by the two wide absorption
is taken along the threefold>g) axis of the crystal, and the bands due to transitions from the ground stéﬁezg of the
x axis is taken along the twofoldd,) axis of the crystal so Cr** ion to the excited cubic-field terméng and 4Tlg.
that theyz plane is the mirror plane, in distinction from the Below these bands, sharp lines are observed and assigned to
choice of Refs. 8 and 11. We call the four ions located on thehe spin-forbidden transitions t?'Eg and 2Tlg 1% These are
C; axis within the unit cell, from the lower to higher, optical transitions between the multiplets with the same con-
B,, A;, B, andA, with down, up, down, and up spin figuration (,)* as the ground stat‘éAzg. On the other hand,
in this order in one of the antiferromagnetic domains. Inthe broad bands are due to the transitions to the states of the
another domain, these spins are reversed simultaneously. \Wenfiguration ,)%e different from the ground states and
take the center of inversion betweBn andA; as the origin.  their energies are nearly proportional to cubic crystalline
Then in the ordered phase described by the magnetic groufield 10Dq. Therefore these bands are broadened by strong
the ion A; with its environment is carried int®, by the electron-phonon interaction while the spin-forbidden levels
operationC,,(7), into B, by ©I and intoA, by ©@o4(7),  2E4 and ?T,4 do not suffer effectively from phonon broad-
where 7 is the displacement vector (0¢02) and® is the enings so that they are much sharper. Taking account of
time-reversal operation. This implies that the wave functionghese facts, we adopt the model of localized electrons on
of the four ions are related to each other by the followingeach C#* ion in analyzing the magnetoelectric as well as the
relations: SHG spectrum.
Besides the cubic field, the €t ion is affected by the
Wi[B1]=Cou(nVi[A{], (2.1)  field of low symmetryV, corresponding to the symmetry
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C; of the environment around the ion. The fialgi, can be  Eq is the excjtation energy t6T 24X, andAE is the split-
written as a sum of the conventional trigonal fialg;, and  fing between™Ta,xq and "Tgx, due to the crystalline field.

the twisted fieldVy,s, as The off-diagonal part oV, and H, put together is re-
garded as an essential perturbation and is denotéd’ as
Virig= Vaxiat Viwist» (2.9  the following treatment.
Vaxia= Vaxialg + Vaxialu= Virigl T2g¥0] + Voad T1u@0], (2.10 B. Magnetoelectric susceptibility
Viist= Viwist g+ Viwistu = Vawistgl T1g80] + Viwistul T2uXo]- The polarization rotatior® and ellipticity € in the reflec-

tion on the crystal surface are described in terms of the mag-

. _ , netoelectric susceptibilityr, a$*®
The Vaiag andVyiqy Will be called conventional trigonal

field in this paper, and denoted &§;,3z°—r% and Voqq _ 1+n,

xz, respectively. They have been assumed to be dominant in O+ie=2a 7~ (2.17)
many previous treatment$*Note that they hav€,, sym- *

metry around the axis. From the real crystalline and spin Wherea, = a,(w)=ay,(w) is the component of the mag-
structures of antiferromagnetic £05, however, we find that netoelectric susceptibility tensor and is the refractive in-
they also are affected by the twisted crystalline fislg;,  dex given byn? =e,,(w)=z,(w), i.e., the dielectric func-
=Viistg+ Viwistu - The newly introduced crystalline field tion in thexy plane. The contribution from &f ions at the
Vuist (Ref. 16 reflects the fact that the layers of three oxy- A; site to the magnetoelectric susceptibility;,(w) is ex-
gen ions above and below a*Crion are twisted from each pressed as

other. These crystalline fields are irreducible tensor operators N (M n)(n|P,i)
with C3 symmetry as denoted in Eq&.10 and (2.11).%7 A p (@)= ( X DX
These fieldsV,,t have the following angular dependence: ot eoChtn | wni—o—ily,
Vtwist,gocyz(sxz_yz) andvtwist,uxy(:gxz_yz)- <| | Px| n><n| Mx|i>
It will be seen in the following sections that,,, and + +—+|I‘] i (2.18
Vwist CONtribute, respectively, to the magnetoelectric and the @niT @ n
second-order susceptibilities. whereN is the number density of the unit celbw,,=E,
The wave functions adapted to tk, andC; symmetry  —E; is the excitation energy from the statégo n, T is

for the ground and excited states will be called trigonal basethe dephasing rate, angl is the population distribution of
and are given in the Appendix for the thrdeslectrons of a  the statd.

Cr** jon in a Cp0O; crystal. They are used to evaluate the We write down expressions similar to EQ.18 for other

matrix elements of operatoR®, andM, . sites in the unit cell and sum up the contributions from the
The spin-orbit interactiort,, four sites. Then we find, by using the relatiof@s6)—(2.8),
that we may replace the numerators of EQ.18 by
HSOZZ ss-li, 2.12 4R (i|M,|n){n|P,|i)] at the A; site simply to obtain the

expression for thétotal) magnetoelectric susceptibilty of the
. . . I crystal. Note that M gives the number density of the Cr
may be put |4n the4foII0\L/1vmg .ffgrm when working within the jon¢ 1t will be needless to say that the result agrees with that
manifold of (Azg,"Tag, T1g): derived previously by a different methdd.
Ho=\S L (2.13 In Sec. Il only the resonance term of EQ.18 will be
S0 ' dealt with, so that the expression to be used hereafter reads
whereS andL are the total spin and the angular momentum
operator, respectively. The paramekeis equal to one-third 4N R M;,Ppi]
of the single 8 electron spin-orbit coupling parametér ay(w)= ooCh & o w—iT . Pi
The effects of the spin-orbit interactidrs, and the crys- o _ o
talline field of low symmetryV,;, will be taken into account The thermal distributiorp; depends on the spin polarization
as perturbation on these states. However, the first-order pe®f the ground statéA, at the siteA;. The base$i) and|n)
turbation energies, i.e., diagonal components of these pertuid  evaluating the matricesM;,=(i|M,|n) and Py,
bations as well as the effects of the internal magnetic field=(n|Py/i) in Eq. (2.19 should be the eigenfunctions which
will be included in the unperturbed energies, e.g., ‘férzg diagonalize the spin-orbit interactidris, and the crystalline

(2.19

and 4ng, as follows: field. Since we start from the cubic-field terms and include
the diagonal elements dfs, and Vg in the unperturbed
E(4A29MS)= —usgMgH;, (2.149 energy of the cubic-field terms as mentioned above, only the
off-diagonal components dfts, and Vg appear in the per-
E(*T2gMeXo) =Eq— AE— ugMeH;, (2.19  turbed expressions of the numerators in E19.
E(4T29M X+)=Eo— usMH, i%)\ Mq, (2.16 C. Second-order susceptibilities

Second-order optical susceptibility(2w;w,w) under
where the nonmagnetic ground state is chosen as the origimearly resonant pumping of th‘éng state of the C¥" ion
of the energyH; is the internal magnetic field at thfg, site, comes from two processes. In one process, two fundamental
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photons excite the ion virtually from the grouﬁAzg state to (pﬁp), i =(Pim (P (P (2.26
the “T,, state through the two successive electric-dipole ML MR T MR - e '
transitions and then the second harmonics are generated b =
the magnetic-dipole transition back to the grounéJ state. Thisy (PPPYikmi= (PPl P mi (2.27)
is described by the susceptibiligf"= xy 20, @,0). Inan-  We have considered here the case where both the fundamen-
other process, the excitation process is the same as thial and second harmonics are linearly polarized along$ye
former case and the second harmonics are generated by thgis. Other components of the tensprare derived by the
electric-dipole transition. This is described bw® symmetry consideration as shown in Sec. VI.
= Xpol20,w,0). The superscriptsn(e) and twoe’s of x On summing up the contributions from the fourCrions
indicate the magneti¢electrio dipole momentM,(P,) for  in the unit cell by using relation&2.6)—(2.8), we havey g,
the second harmonics and the two electric-dipole momentbelow Ty as
P, and P, for the two fundamentals in this order, and sub- )
scriptsx, x, andx denote the polarization directions of the m _ 4NN > i IM(MPP)imyi
dipole moments in the same order, wherandx axes have Xtotal™ mk (0ni—20)(w— )
been chosen along the threefol@4) and twofold C,,)
axes of the GIO; crystal, respectively. Note that the present i IM(PMP)imnyi
choice is different from that of Fiebigt al° >

First, let us write down the expressions fp" and y°

m,m’ (Omit o) (@i~ )

under off-resonant conditions where the damping effect is D i ImM(PPM);xmi
negligible. Thesg's are the contribution from the €t ions + mk (0nit20)(wyt+ o) Pis (2.28
at theA; site(see below. With N the number density of unit
cells andn the refractive index for the fundamentals, respec- AN i Im(PPP)
tively, the expression fox™ is given by e _ imki
Xoal™ ¢ 7 Z % (Oni—20)(wy— o)
Nn (MPP)imi —
M=— i IM(PPP)immi
X €oCh2 (m,k (omi—2w)(wy— ) T 2 e +(w)(w)|mm(|u)
m,m’ mi m'i
PMP)immi —
( L i IM(PPP)jimi 2
mm’ (Omit @) (O~ ) km (0nit2w) (ot o) Pi - (2.29
(PPM)ikmi
+2 (@ _+2w)($m_|+ ®) Pi» (2.20 In the subsequent treatments, we are mainly interested in
kom L @mi ki the resonance effect, so that only the first term of these ex-

pressions will be kept hereafter, and the subscript “total”

where wr,;, for example, is the energy difference betweenwi” be dropped for simplicity when there is no fear of con-

the stategm) and|i) (divided by#) and

fusion:
(M PP)imki:(Mx)im( Px)mk( Px)kia (22]) 4Nn | |m(M PP)imki
x"= Pi (2.30
i ) .
(PMP i = (Pim( Mo (P (222 eochZimi - (0mi— 20) (0~ w)
(PPM)ikmi=(Pic(Pkm(Mumi, (223 oo HIM(PPP)imi 231
and p;=p(*AyyMs) describes thermal distribution in the eohiZimk " (wmi—20) (0~ 0)

ground State4A29_- o _ Probably, it is worth pointing out that these expressions re-
The electric-dipole contribution to the second-harmonic i valid also in the paramagnetic phase, where the space

enerationy® is calculated in a similar way: . . L
g A Y group isR3c and the time-reversal operatiéh is no longer

— involved. This can be seen as follows. First of all, we write
e N 3 (PPP)imki
X eoh? T | mk (0mi—20) (@i~ ) 2i Im(MPP)=(MPP)—(MPP)*, (2.32
(PPP)immi 2i Im(PPP)=(PPP)—(PPP)*. (2.33
mm' (@mit o) (©mni—o) Next, we remember that
(PPP)ixmi (®|0AO|T)* =(0D|A|OT) (2.34
k,Em (mt20) (ot o) | P (2.29

If the suffixi® is defined by

where QD =1, (2.39

(PPP)imki= (Pim(Py) mk P)ki » (2.25 then, we have, for example,
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(MY)im*=—(My)itmt, (Py)im*=(Py)itmt- (2.36)  crystalline fieldVyyy of odd parity, which has been used for
nalysis of the ruby spectrum. The effect of this crystalline
&l is taken into account as perturbation on both states

linked by the electric-dipole moment. The combined effect

of the electric-dipole momer®,=P,[T,a.] and the crys-

—(MPP)* .= (MPP)tmttit, talline fieldvodd=_\/[Tluao] leads to the effective dipole mo-

ment denoted aB, and defined by

<i|Px|j ,><J ,lvodtjn>

These relations enable us to replace the second term on t
right-hand side of Eqg2.32 and(2.33 by the first term but
with daggered suffixes, that is,

—(PPP)%i=— (PPP)itmitit.  (2.37)

Since ®; has the same energy dx+ in the paramagnetic (i|Pny=—> >
phase, it is not difficult to arrive at the expressions i’ AE(j'n)
i|Voadi ) [PyIN
m_ 4NN _ (MPP)im (2.38 _ s {1Voud] ><J [P >, (3.3
X ecntitin Mom—20)(0g-0)" i ARG
with AE(j'n)=E(j’')—E(n). The j’-dependent energy de-
x°=0, (239  nominatorsAE(j'n), etc. may be approximated by an aver-

which are valid in this phase. These equations also followRd€ €xcitation energy to odd statek, . Then the enclosure
from Egs.(2.20 and(2.24 by making use of the equations relation enables us to decompdginto its irreducible com-

ponents as
My[B1]=M,[A1], Py[B1]=Py[A4], (2.40
_ 1 — 1 —
M, [Az]=M,[A1], PJAz]=—Py[A4], (2.4)) Py=— 2\/§m: . M P, [ ToXm] + %mgt MP Eup]
My[B2]=M\[A1], PyBo]=—P,A]l, (242 i -
which follow from the relations + zm; Pd T18ml, @4
Wi[B1]=Cox(n)Wi[A], (243 by the help of the Clebsch-Gordan coefficients. The relevant
matrix elements are evaluated also by means of the Wigner-
Wi[Bo]=1Vi[Aq], (2.44  Eckart theorem and the many-electron wave functions in the
Appendix as
Vi[Az]=og(n)Wi[Aq], (2.49
valid in the paramagnetic phase. =~ i =
paramagnetic p (Tagic Pl Aag) = 5= (‘T P Tull*Azg)
IIl. MAGNETOELECTRIC SPECTRA
i — _
We are interested in the magnetoelectric spectrum under = —(—(Ux|pyXz) F(uz|pulXo))-
nearly resonant pumping from the ground st‘z‘i@qg into (1) V2
the spin-allowed band$T,, and “T;4 and (2) the spin- (3.5
forbidden IevelszEg and 2Tlg. The former processes are . .
analyzed in Sec. Il A and the latter in Sec. Il B. Thus the product of Eq€3.1) and (3.5 is real so that this

channel can contribute te,,. Other components of the
crystalline field in Eq.(2.11) have no contribution to the
esent magnetoelectric susceptibility, .

r
In order to evaluate the magnetoelectric susceptibility otp As to the resonant excitation to the stdﬁ!é’lga+>, we
Eg. (2.19, we need the following matrix elements for the pneed the following matrix elements: N

transition from the ground staté"Angs to the band
*TogM Xy at theA, site’

A. Spin-allowed transitions

_ 1 _
2 ¢ > <4T1ga:|Px|4A2g>:ig<4TlgHPx[T2]||4Azg>
AggM oM, *T oM X

-1 o o
=— %Z (*AgM|L[*TogMX=) = E( F(uz|pxlx) + (U |pylXo))-
e (3.9
== 2\/5'(7)’ @D Here also the Wigner-Eckart theorem and the many-electron

wave functions in the Appendix were used. The one-electron
i orbitals can be expressed in terms of real orbitals so that it is

(*T2gM X< |Py|*ApgM o) = ﬁ(“ng”Px[TﬂH“Azg)- (32 easyto confirm(*Tgx..| Py *Azg) in Eq. (3.5 to be pure
imaginary while(*Ta.|Py|*Azg) in Eq. (3.6) is real. The

Here the electric-dipole mome#m, is accompanied with the matrix eIement(“AzgiMxl“Tlgat) vanishes. Therefore we

crystalline field Vs ,=V[T1480], i.€., the conventional need to take into account the perturbation of spin-orbit inter-
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action working on|4Tlga+) which makes the magnetic-

dipole transition possible to the stdfé’lgaq as follows:
<4A29M s| Mx|4TlgM sat>
MB
:( 2 )2 <4A29 s|Lfm|4T29MsXm>

% < TZQM sXm|Hso|4TlgM sat>
E(4TlgM sat) - E(4T29M sXm)

_(7)(+2@ ZAE \/—AEl (3.7
where
AE;=E(*TyyMX.)—E(*T;gMaa.). (3.9

The matrix elements of spin-orbit interactiéty, are evalu-

ated by using the Wigner-Eckart theorem and Table Il of =

Ref. 20 as

<4T29M sxt|Hso|4TlgM sat>

3 3
—(TogVed o) f< M10>

X(Tox+|T1a+T1ap)

|
M\,

with A=¢/3. The double barred matrix elemeft||vd|t,)
of the spin-orbit interaction for & electron is given by &.

9591

1
Mg,

E(4T2ngXi): 2

Eo* and <MS>E§ Mgp(My),

(3.12
and neglecM ¢ dependence of the energy denominator in Eq.
(3.10 where(My) denotes the magnetization at sublattice
A;. Here and hereaftefSecs. Ill and I we seth=1 for
simplicity. The spin-orbit interaction in Eq3.12) is evalu-
ated in a way similar to Eq.3.9) as follows:

<4T2gM sxt|Hso|4T2gM sxt>

3
2

=(*T, [V J*T LEM M .10
< 29” SJ‘ 29>2\/§ 2 S S

X (ToX+|Tox. Thao)

ff( 0 I\F( if)

Ms
2

==

. (3.13

The magnetoelectric spectrumy’) () at *T4ay, is theoreti-
cally derived to show characteristics different from that of
“T,gX. . Both the matrix elements d%, [Eq. (3.6)] andM
[Eq. (3.7)] are real, resulting in the finite contribution even
after summing over four ions in the unit cell. The magneto-
electric susceptibilityr{?)(w) is expressed as

Now we can evaluate the magnetoelectric susceptibilityery (@)=l (w)

ayy(w) for the spin-allowed transitions. Under nearly reso-
nant pumping 0f4ngxi, ayy(w) is obtained by inserting

Egs.(3.1) and(3.2) into Eq.(2.19 as follows:

(a)(w) a(a)(w)
=—Ao> p(My)
MS

1
X
E(*TogMeXy) —E(*AygMg) — 0w —
1
E(4T29MSX—)_ E(4Ang s)_ w—iFa
{(E* —0)?—T2+2iT(E* — w)
(E* —w)?+T2

ir,

. (310

where

1
E* =2 S{E("TyMex.) —E(*AygMy)},
Ao= - L (T BTl A, and A= AG(M.
\/EGOC gllxL'1 g/ S
(3.1)

Here we include the diagonal components 7@f, in the
eigenenergies, i.e.,

B(Mg)p(Mq
z (Mg)p(Mg)

E( Tlg Qx)— E(4A29 s T W= l_‘b,

(3.19

whereB(Mg)= —ApAM /AE;. First, when we negledi
dependence of energy denominat@ﬁb (w) is proportional

to the sublattice magnetizatiofM). Therefore botha ?)

and a(b) are finite only below Nel temperature in accor-
dance With the fact that the system loses both inversion and
time-reversal symmetry below Metemperature. Second, we
have included the relaxation rat€g andI'y, in Egs.(3.10
and(3.14) in accordance with causality requirement. The real
and imaginary parts of 2a,,(w)(n, +1)/(n, —1) describe

the polarization rotation and ellipticity of light reflected at
the crystal surface, respectively. Usually, as E§.14)
shows, the rotation spectrud(w) is dispersive while the
ellipticity spectrum is of absorptive type. This is the case of
4Tlga+. The spectrum characteristics are reversed for the
case of* TogX+ as Eq (3.10 shows. This comes from the
fact that two levels*T 2gMgX and T2 Mgx_ are split off

by the spin-orbit |nteract|omMS(<Fa) and contribute to
the magnetoelectric spectrum with opposite sign. These fea-
tures of the spectrum appear to be in agreement with the
observed spectfhas will be shown in the next section. On
the other hand, two states CﬁTI’lngai have the contribu-
tion with the same sign so that the magnetoelectric suscepti-
bility is of ordinary type.
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B. Spin-forbidden transition Aol ﬁS{/AEd )2
In this subsection, we will propose a microscopic model @ (®)=— ECE 10 —E(°A 372 T (3.19
to explain the magnetoelectric spectra of the spin-forbidden ("Bg -)mE(Ag3) —w =il
transitions to’E4 and T4 from the ground statéA,.
The magnetic-dipole transition between the le¥€) and  Note  that  the ellipticity ~ spectrum  e(w)=
the grpund fstgté‘Azg _becomes_possib_le with ass_istance 0f—2|m[a(° ()](n, +1)/(n,—1) is of Lorentzian form,
the spin-orbit interactiort{s,. This matrix element is evalu- ie. of );(bsorptive type, and that the rotation spectrum

ated by perturbational method as ()= —2Rd a9 (w)](n, +1)/(n, —1) is of dispersive

XX
(*AggM ¢ M,|2EgM {upy) type in contrast to those &fT 5.
The spin-orbit interaction is smaller than but of the same

:( _ @)2 (*ApgM L= [4T oM X ) order of m_a_gnitude as the in_ternf';ll magr_1etic fie_ld splitting.
2 1= 29 sl=x1 129 shx Therefore it is a better approximation to diagonalize the spin-
orbit interactionH, within the manifold of *T ;M X, The
(*T2gM X+ | Hoo “EgM {U) (3.15 state [*T,g3/2x_) is coupled to [*T,41/2x) and
E(ZEgMéUm)_ E(ATZQMSXi) ' ' |4ng_ 1/2)(+> by the matrix

As long as we discuss the case of such low temperatures as

T<Ty, we may choose the ground stdt&, M =3/2 atthe 3 Ll 3 1. [3 §
A, sublattice and then we have the finitegJ matrix element of 2ueHi+ZK =3 2 \/:)‘ 0
Eqg. (3.15 only for the Ievel|2EgMg=1/2u,>. The matrix L L 1
element of spin-orbit interaction in E43.15 is calculated E\/;)\ —susHi—K 7 A\
by using the Wigner-Eckart theorem and the Wigner and the ’
Clebsch-Gordan coefficients as follo@s: 1 1 1 1

0 \/;)\ 2ugHi+K—3)\

4T,54312X | Hsd *EgLi2u_ L -

(*Tog3/2x¢, [ Hsd “Eq ) (3.20)
1/33 11

~ (Ve - D3 3 313 3)

zallVsdl Ea? 2\22 22 where H; denotes the internal field an=(Xp|vfig|Xm =

— (V213)(*T g V[ TogXoll|*“Tog) is the strength of the con-

X : . . . ey
(Tox: Taa,|Bu-) ventional trigonal field, so thakE in Eq. (2.15 is given by

22 i ( - 1) 1 i 2K. When the lowest eigenstajt‘éTZQBIZX’i) is denoted by
=—@\N2i)| = |—= ——=
3 320|555
> 4T 2g3/2¢* ) = | 3/2x_) + B|1/2Xo) + | — 1I2x.), (3.2
=- \[51: (316
Then Eq.(3.15 is obtained as the statdZEg—1/2u+> is shown to contribute to the magne-
. toelectric susceptibility with the same order of perturbations
(*A24312IM,|EgL/2u_) as from|2E91/2u_).Ihe effective magnetic-dipole moment
5 I\Wx and electric onei?X are evaluated in terms of the coeffi-
:( - %)(—2\@)( - \/;g)/AEdq cientsa, B8, andy as follows:
i 2 4A,43/2M, |2 /
=/2ipg| — \/ 5L/ AEq), (3.17 (*A2g3I2AM,|?Eq—1/2.,)
— /4 4
where AEqq=E(*E41/2u_) — E(*T,43/2x,). The effective =("Azg3/d My| T3/~ )
electric-dipole momenP, is also evaluated in a similar way (*Tog3/2¢* [ Hod Eg—1/2u., )

as E(Eg—1/2u, ) — E(*T,43/2¢* )

= o~ \2i ) | B* (*Tog /2| Hed Eg— 11211, )
+ Y (Tog— 12X, |Hsd *Eg— 120, )} AE

X (4T 24312¢ . | Py| *A23/2) .
=(- ﬁwﬁo( \[gglAEdq)

2 i
- \ﬁglAEdq) —)
3 2y3 X a(B*1\3—27*1{15), (322

X (Tl P T1*Asg).  (3.18

Therefore the magnetoelectric susceptibility?8,1/2u_ is ~ where  the  energy  denominator E(2E9—1/2u+)
finally expressed as - E(4T293/2x’i) is approximated to be equal tbE,, and

(PEgli2u_|Hsd*Tog3/2¢, )
E(PEgl/2u_) —E(*Tp3/2¢4)

(CEgL2u_|P|*A,43/2)=
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2F _ D |4 _
(PEg—1/2u, | Py|*Az43/2) (Y312 V2T 1y 1/280) = MB? ,
(B 120, | H “Tog3/2x*) V6 AE,
E(PEg—1/2u, ) — E(*Tp43/2*)
- (*As43/2M, 2Ty 1/2a >:—\E’LB§
X (4T 5g312¢% | Py *A24312) 29 X ieTeE 3AEY,
i _ 2
= _<4T29||PX[T1]”4A29>( \[gg/ﬁEdq> ) 4 1 §<4ng||Px[T1]||4Azg>
23 (2T 1411280/ Py L N ,
X a* (BI\B—2I\15). (3.23 49
4 4
As a result, the magnetoelectric susceptibilit%ﬁg—llZuQ (2T191/2a |px|4Azg3/2>_ 1L T29||P><[T1]” A29>’
is evaluated as follows: AEdq
(3.28
&) ()= Ao(V2/3L1AEqq)°R with AE4,=E(*T14) —E(*T,). We have another channel

. (3.24

giving rise to the real electric-dipole transition to the state
|2T141/2a5) through the stat¢*T;43/2a_). To evaluate this
with effective electric-dipole moment, we use H.6) and the
following spin-orbit interaction:

E(PEg—12u,)—E(*Ayg3/2) —w—il¢

2
| prm Z (3.25 (2T 1411280 Hed *T143/2a )
V3 V5 1133
— _ /2

It is noted here that the signal E®.24) at|*E,—1/2u., ) has == CTuglVed*Tig 2 \/_< 2 2’2 21 >
the opposite sign from that, E¢3.19), at |2E 1/2u_).

Finally we will discuss the magnetoelectrlc spectrum at X(Tia0|T;a-Tyay)
2Tlg. For this purpose, we need the following matrix ele- )
ments of spin-orbit interaction: —3\2i¢ \/_§§ (3.29

FEE?

(PTigl/2a_|Hed *T2g312 . )

2 4 11 1133
:_< Tlg||VS<J| T29>Eﬁ 55551—1

This channel also gives the real electric dipole as

(*T1gl P T1I1*Agg)

<2T191/2a0| FX|4A293/2> = —

43 AE) ’
X<Tlaf|T2X+Tla+> 49 (3.30
—(\Bio) \F where AEg,=E(°T15) —E(*T1g). Then the magnetoelectric
\/— 2 suscept|b|I|tya(d)(w) at 2Ty, is evaluated at low tempera-
tures as
| { (3.26
=——, ) 2
\/§ (d)(w) Ao ;
23AE/,
(*T1g1/280| Hed *Tog3/2¢_) .
1 1/1133 X -
S <2Tlg||vsc“4T29>E ﬁ< > E‘E 1= 1> E(?Tiql/2a_) —E(*T43/2) —w—ily
X(T1a0| Tox-Tiay) c-1 ,
111 E(?T141/2a0) —E(*T43/2) —w—ily
~(\/6i¢) (3.3)
V612 6
where
! ¢ (3.27
2\/§ . . C=\/§ AEéq <4Tlg||Px[T2]||4A29>
<4T29||PX[T1]||4A29>

The effective magnetic- and electric-dipole moments are ob-
tained by using Eqs(3.26 and (3.27) similarly to Egs. The spin-orbit spllttlng within the muIt|pIet§E and T1g
(3.17 and(3.18. The effective magnetic- and electric-dipole vanishes for the configuration ). The energy sphttmg be-
moments coupled by the spin-orbit interaction through thetween|2T1g1/2a y and |2Tlgl/2ao> comes from the inter-
state“Tzg are both real: play between the spin-orbit interaction and the crystalline
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field. Hybridization of the muItipIel“Tlngam) by the spin-
orbit interaction can also be taken into account by

N

|*T1g3/2a* ) = a|3/2a_)+ B|1/2a0) + y| — 1/2a, ),

(3.32
with the same coefficients as E3.21). Then the state
|2Tlg— 1/2a.) can contribute tay,,(w) with the same order
of perturbations as fotZTlgl/2a,). The magnetic-dipole
momentM, is evaluated as

My = (*Agg3/2|M,|*T,43/2¢* )
y (*T2g3/2X¢* [Hed ?T1g— 1/2a, )
E(?Tyg—1/2a,) — E(*Tpq3/2*)

__ (Rt
= \@AEéq 2\/€> (3.33

and the electric-dipole moment is

 (PTyg— 128, [He Tog3/2¢)

Absorption [arb. units] Rotation [rad, 10‘4] Ellipticity [rad, 10'4]

PX_ 2 4 * 0 1 x N . N
E( Tlg_ 1/2a+) - E( T293/Z(7) 2 2_4 2.8
_ Energy [eV]
X (AT 4312¢* |Py| *A243/2)
FIG. 2. The spectra of linear absorptigRef. 13, polarization
<2Tlg—1/2a+|Hso|4T193/2a"i) rotation, and ellipticity at the spin-allowed transitior‘*?.’zg and

4T,,. White circles describe the observed dé®ef. 8 and solid

2 _ _ 4 * 19

E("T1g—1/2a,) —E("T143/287) lines theoretical curves.

X (*T1g3/2a% [Py *“Agg3/2) o .
4T29 states of CJO5 crystal in this section. We also predict

a* Bl = 4 these spectra &tT,.
T 12\3AE; ("Togl P T1][*Azg) We start from the spectra at the spin-allowed transition at
dq 4T2g. Krichevtsovet al® assigned thépositive) peak of el-
o* BL lipticity at 2.17 eV andnegative bottom at 2.05 eV, respec-

(*T1g P T1I1*Agg). (3.34 tively, to the absorptive-type spectrum of ellipticity due to
the transitions td'T,gx. and *T,gXo. Here they assumed the
Therefore the magnetoelectric susceptibilit)l'zﬁtlg—l/ZaQ same magnitude of oscillator strengths and the opposite sign

120E),

is evaluated as follows: fpr these two tre_m.sitions. However, both of these assump-
tions look very difficult to accept. These two characteristics,

r 2 i.e., the positive ellipticity peak at 2.17 eV and the negative
a;?(,)(w)ZA()(— bottom at 2.05 eV with the same magnitude, can be ex-
2\/§AEéq plained very naturally in our model. The present model in

fact gives us good agreement with the observed spectra of
% R’ both ellipticity and rotation by using the material constants
E(?Tq—1/2a,) —E(*Ay3/2 —w—iTy’ obtained from other experiments as has been shown in Fig.
2. We chooseE* in Eq. (3.10 at 90 K to be 2.12 eV, the
(3:39  splitting E(“T43/2x,) — E(“T43/2x_) =3\/2 by the spin-
with R’ =|aB*|2(1+C)/(242) at sufficiently low tem- Orbit interaction to be 15 meV, and the relaxation raté,
. 13,21 _ H
peratures. These magnetoelectric spectra are compared with0-1€V->“"The value A(n, +1)/(n, —1) is chosen as an
the observed ondén Sec. IV. These contributions are, how- adjustable parameter in drawing Fig. 2 and will be found to
ever, also shown to vanish above théeNesmperature be- be reasonable from numerical estimation as will be shown
cause the equal thermal distribution in the ground stat@elow. The essential features of the observed spectra are well

“ApM¢= +3/2 and+ 1/2 cancels Outey,(w). reproducible by these theoretical curved) the positive
peak on the high-energy side and the negative valley on the
o it v Ih same absqie valles a7 e opposte sin
WITH MAGNETOELECTRIC EXPERIMENTS pucity sp 29 b

spectrum of rotation with negative signals on both tails, in
The theoretical results obtained in Sec. Il are comparegigreement with both observed spectra. This comes from the
with the observed spectra of ellipticity and polarization rota-fact that two levels of'T,gx. have the contribution to the

tion around the transition frequency to tﬁEg, 2Tlg, and magnetoelectric spectrum&i)(w) with the same magnitude
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but with the opposite sign as E(B.10 shows. A small de-

viation of both tail parts may come from rather strong g 6l
electron-phonon coupling},as the present model is trying to s F
describe this effect solely in terms of single relaxation con- £ 4}
stantl’, . 2 2'
We will check the numerical magnitude of peak valdgs % i
and e, of the rotation and ellipticity spectra, AIn, = O
+1)/[T%(n, —1)]. By using the number density of &r 5k ]
ions 4N=3.3x10m 2 and the effective electric-dipole T~ "} -
moment P,=0.9x10"3 Cm, A/T2=10"5 and 2A(n, 5 [ I
+1)/[T3(n, —1)]=10"%, in agreement with the observed & [
value® The effective dipole momerf?x is estimated as the & 0‘_’°°°Q
atomic electric-dipole momemta, (ag= Bohr radiug times %
(Voap/AE,~0.1eV/10 eV. G
The magnetoelectric spectrum éTlg is simplified at 5 |
such a low temperature 8s<Ty=307.5 K into the follow- g 1
ing form: :
3 1 % 0.5}
by, N _ - s I
ayy (w)= ZB(MS_Z)E**—w—in' 4.9 £ |
S of ]
where b . . . . .
1.68 1.72 1.76 1.8

Energy [eV]

1
E** =22, {E(*T;gMa.) —E(*AygMg)}. (4.2
22 {EC 197 +) ( 29 i 42 FIG. 3. The spectra of linear absorptigRef. 13, polarization

L . . rotation, and ellipticity at the spin-forbidden transitioﬁEg and
The spectra of ellipticity and rotation éfrlg are of ordinary leg_ White circles from Ref. 8 and solid lines show theoretical

form, i.e., absorptive and dispersive, respectively, in contrasfegjts.
to those at 4T2g. The maximum value Bg(n,
+1)/[Ty|AE,|(n, —1)] of the polarization rotatiorg,, and
ellipticity e, at *T;4 is compared to that afT,,, where
Bo(Mg)=Ao\Mg. We also assumed that

4 4 i
<4T19HEx[T2]”4A29> has the_ same ) sign as _ 1)(n, +1)]. The first factor is estimated to be of an order
(“Tog PY[T1][*Azg).  The relative magnitude 1%/ of ynity. The data of refractive index, at 2.1 eV anch| at
(I'p|AE4) is estimated fo be about 1/3. We also assumed thg 7 e/ are not available for the 9, crystal, but the second
refractive indicesn, at "Tpq and "Ty4 to be equal to each t5ctor may be of an order of unity. Therefore the signal peaks
other and Fb=£a=0.1 e\‘{ while the energy separation o 2 become of the same order of magnitude or a little
|AE,| between™T;q and *Tyq is 0.6 eV. The spectra of |ager than that afT,4. When we choose a single parameter
elllptlc_lty and rotation are drawn in Fig. 2 by using these(niJrl)(nl—1)/[(ni—1)(nl+l)] to be 2, ie.n=2.1
matgrlal constan;s. . . 5 andn, =2.5, the magnetoelectric spectra are drawn in good
Signals of spin-forbidden transitions &€, and T, _agreement with the observatfbas shown in Fig. 3. The
come from the higher-order perturbation of the Sp'n'orb'tlevels|2E191/2u_> and|2E,,— 1/2u,,) are split by the inter-

intcgraction?}SO than the spin-allowed ones. .The signal peaksnal magnetic fieldugH; =24 meV and located at 1.705 eV
at E% and Tlgﬁ hovlveve_r, happer;(ﬁfo bedhzlgherl thaln that aty 4 1727 ev, respectively. The contributions to the magne-
T2y because the relaxation rates @y and “Tyg levels are y,q1qctric spectra from these levels have the opposite sign, as

Ey two orders of magnitude smaller than that o,y and . Eq.(3.19 and Eq.(3.24 show. The relative magnitude is
Taig. The latter are electrz)mc tr3an5|t|ons4betwe2en the dif-chosen to 0.2 to get the better fitting between the experimen-
ferent configurations of “Ay4(t;) and “T,4(t3e) or

p ) . _“Y  tal and theoretical results although it is estimated to be of an
T14(t2€) so that they are broadened by the lattice vibrationgrger of 0.02 from Eq(3.25. Here we used the spin-orbit
of the cubic field. On the other hand, the levé; and°T1;  interaction\ of an order of 10 meV, the internal fiejdsH
come from the same configuration as the ground stAtg  about 20 meV at low temperature, and the trigonal crystal-
so that they are almost free from the lattice vibration of thejine field parameteK of an order of+30 meV. The relax-
cubic field. As a result, these transitions are rather Sharp. Tr@tion ratel"c is chosen Comm0n|y to be 1 meV. Note that the
magnetoelectric signals FE 1/2u_) and|’Eq—1/2u,) are  ellipticities at ’Egl/2u_ and 2E4—1/2u, have opposite
dominant ones as calculated in Sec. Ill. The peak value &jgns in agreement with observaticaithough the authors of
|?EqL/2u_) is 2Ag(2I3LIAE )% (N +1)/[T¢(n] —1)]. As  Ref. 8 suspect that they should be of equal sign according to
discussed above, the relaxation consignis estimated to be the theory developed in Refs. 22 and 23. As Fig. 3 shows, we
1 meV from the absorption spectrum and the magnetoelectrigave good agreement of the rotation spectrum between the
spectrd**The energy splittind\E,=0.4 eV betweerfT,;  experiment and the theory, but there remain two problems.
and 2Eg and the spin-orbit interactioti=3\=30meV are The first is some positive background in the ellipticity spec-

used. The relative magnitude of signal peakéEg to those
at “ng2 is expressed by the product of two factors;
(419 T2/(T M) I(VENAE)? and (] +1)(n, —1)/[(n]
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trum aroundE(ZEg—1/2u+)=1.727 eV. This may be re- x™ andx® are found then to vanish without exception. This
lated to the excitonic levels proposed by Macfarlane ands in agreement with Eqg2.30 and (2.31), because these
co-workers??23 The second problem is that the observedequations describe that only the imaginary part KfRP)
relative magnitudeR of the signals at|?’Egl/2u_) and  and (PPP) can contribute to¢™ and x¢, which implies that
|?Eq—1/2u.) is by one order of magnitude larger than the Vs has to be included at least once in the perturbed ex-

th_eoretical res_ult Eq.3.25. This may come from the uncer- pressions of 1 P P) and (PP P) to make them imaginary. In
tainty of material constants, ugH;, and\, and/or from the  the present paper, this fact will be verified in the Appendix

vibronic effect. In the present model, we have used the statigy calculating the relevariteduced matrix elements explic-
model of crystalline field/;;. However, when the vibronic gy

levels of the lattice vibration are taken into account, both the

stateq*T,4Xo) and|*T,x. ) may become more strongly hy-

bridized than in the static model. This will result in larger A. Magnetic susceptibility

value ofR. However, this problem is beyond the scope of the )

present treatment. _ Let us start fromy™ 0121 Eq. (2.30. We are interested only
The three levels of théTy, manifold, i.e.,|2T;1/2a_), [N the term whergm)=|"Texyy) and|i)=|"Ayg). The per-

|2T191/2a0>, and|2Tlg—1/2a+>, contribute to the magneto- turbed elgenfunqtlons/>j may be expressed in terms of the

electric spectra equally in the lowest-order perturbations ofNPerturbed basis functiong as

spin-orbit interaction and lower-symmetry crystalline field. (H' )0

The largest splitting in this manifold comes from the internal b=+ > ,/,j,%_ (5.2

magnetic field, which results in the splitting of an order of i’ AE(jj")

— [ 2
%BHi_ZA'mPTV' The splitting .betweed T141/28,) and We have four possible cases leading to finite matrix elements
|“T1gl/2a_) |s'due to the combined effect 0{5[2, andVyig. of magnetic-dipole momerM, , i.e., (1) M, %0, (2) M,
W% gf;ve_als/szlgned tthleig Ie\\//¢41§%g517/2a\,/), (ljllgéfa"?/ . #0, (3 M;/n,#0, and(4) M, #0 for the unperturbed
flTis |ordlegr Altho+u>gr?thé IarSeét c;bser\(/aed, :[::]Iittiné 14 (rane\llni and perturbed” ground states. The magnetic-dipole moment
a little smaller than the value 24 meV expected theoreticallyéﬁq is the sum of angular momentutmand spin operatog,

: : that is,M= — ug(L+2S) with ug the Bohr magneton. In the
the calculated magnetoelectric spectra seem to be in go Ist case, which results in the dominant contributionyt®

%grggm(ean;ﬁv ';hn dogs;e:\r/]eclizqonéssgsalr:ég.cr?oss::vzcs). t:b r; the magnetic-dipole momeid, connects the excited states
and 4, respectively. The value of C looks reasonable TagXm to the ground StatéAZg through the matrix elements

A — 4 4 — 4 given by Eq.(3.1). Remember that the staté§zgxm cannot
from (*Tyql [P Tolll*Agg)/(*Togl P T1ll|*A2g)=+3 and  pe excited directly through the two-photon process from the
(AEgf/AEgq)=1. However, we have the same problem for ground state*A,,.> One possibility is the indirect excita-
the valueR’ as forR. Also in this case, we have to assumetjon via the states"'Tlgam which are closest to them and
strong dynamical coupling betwedfiljga.) and[*Tig80)  linked by the fieldVyistg- The other is the mixing of the
in Eq. (3.32 as for Eq.(3.2. state*T,gxo with *A, due to this field. This also makes the
two-photon excitation td‘ngxm possible.

The corresponding termy(" per single ion atA; site)
apart from the constant factov e c is denoted as([“l) and
evaluated as

The purpose of the present section is to evaluate explicitly

V. SHG SPECTRA

the nonvanishing expressions gF andy® and to see ifthey  m _ _#8B
are able to explain the observed magnitudes of the suscepﬁ(—(l) 2
bilities and the interference effect. 4 4
We first calculate the dominant contributions x8' and « (*AggMs|L _ | *T2gM Xm) Cmpo(Ms)
x© which contain the resonant denominator of signal fre- Mg m==+ E(4T29|\/|Sxm)—E(4A2g|\/|s)—2ﬁw—irm’

guency 2o nearly equal to the excitation frequency from

Az 10 *TogX. or TyyX States. (5.2)
During these calculations, we are able to confirm that bottwhere

x™ and x° for the crystal vanish under th€;, symmetry

around Ct" ions even though those for a single site do not. < (TogM Xl Viwisglny (nIPyIK)(K|Py|*AzgM )

This was proved in a previous papby using group theory. mo E(*TogMoXm) — E(n) E(K)—E(*AggM¢) —fiw»

As emphasized there, this is true even when we evalyite

and x® by taking account of perturbations of 5 (*T 2gM X Py K) (K| Py | *T 2M 6Xo)

Vaialg » Vaxialy » gnd Hso, 10 the highe_r or(_jers._As Iong as 7 E(k)—E(4AngS)—ﬁw

only the conventional trigonal crystalline field, i.& 4, IS

taken into account as perturbation on the trigonal bases, the <4T29MsX0|VtWist,g|4A2ng>

finite contributions toy™ and x® at each of the four sites in X ECAM)—EC“T,Mxg) | (5.3

the unit cell turn out to be real to any order of perturbations. 297s 2g77s70

Summing up the four contributions frod,;, B;, B, In accordance with the causality requirement, we have intro-

andA, sites, which are calculated by using E¢a1)—(2.3), duced the rate¥ ,(m=*=1,0) to take account of the relax-
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ation of the excited state“stgxm(m: +1,0), as we want to <4T29M5Xm| P§|4ngMon>
discuss the resonant second-harmonic generation between

the ground state’A,; and the excited statéT,gX,(m= m
+1,0). = —< T 2M Xi| PA[ T 2Xpn]
As mentioned above, we should choose only the states V6
4Tlgam as the intermediate staj), because the denomina-
tor of the first factor in Eq.(5.3) then becomes smallest +iP2[Eu 14T 5M X
among the possible states. But then, it turns out that the J2 T e
matrix element*T oM Xpm|Viistgl “T148m) Vanishes within
the presentstrong field approximation as shown in the Ap- _om 2 4
pendix, so that only the second sum of E§.3) will be == ﬁ(( Togl PALT2I1*T2g)
considered hereafter.
The two-photon excitation process in E&.J) is evalu- 3 )
ated by using the closure approximation as follows: - \[§<4ng|||°><[|5]||4-|'2@,>>- (5.9
P, K)(K|Py P2 5.4 (*T2gM Xl Viwist gl T120]| “AzgMs)
K E(k)—E(*AyMg)—fiw AEo’ ' 1
= ﬁ<4T29”Vtwist,g[Tl]||4A29>- (5.10

where AE, is the energy separation betweep 4nd 3
states of the Cf" ion. The dipole moment operatd?, is  Now the expression of,, [Eq. (5.3)] is simplified into the

then expressed in terms of the operator of tfpa. :a. = following form:
I(PxiiPy)/\/E. This makes it possible to decompose the . ) . . ) .
square c _m¢ Togll PALT21l*Tog) — VI *T o0 PR ET|*T2g)
m- 18 AE,
1 4 4
Pizi{a2++a2,—(a+a,+a,a+)} (5.5 ><< TZQHVtWizt,é[Tl]” Azg) , (5.19)
2

into its irreducible components by using tables of thewith the energy differencAE, defined by

Clebsch-Gordan coefficients faF; X T;.2° Thus P2 is de- 4 .
composed as AE;=E("AygMs) —E("T2gMexo). (5.12

Summing up these results, we obtain

1 1 .
Piz\—@n; mPﬁ[szm]Jr%Pﬁ[szo] oS IA"po(Ms)
- W om E(*T1qMXm) — E(*AggMg) —2h0—iT
1 1 (5.13
+—— >, mP}Eu,]- —=P3A;]. (5.6
PN N e ' with
For example, the components with the symmdipx.. and AT= \/E'“Bmcm’ (514
Eu. are given by wherepo(Mg)=p(*AMg) =p; in Eq. (2.30. At 0 K and at

the siteA,, the spin distributiomg(My) is chosen to be unity
for Mg=3/2 and zero otherwise.
The second contributiong) comes from casé€2) M/

PATx. 1= E/ amam(T18mT18m | ToX-) #0 and(3) M, ,#0. For casd?2), we can choose the states
m.m |m’")=|*T M x,)(n= 1) which are connected to the state
1 |m)=[*T,4Ms+nxo) by the off-diagonal components of the
=—(a+agtapa~-*2aza;), (5.7 spin-orbit interaction:
V6
[m"){(m’|Hsd m)
[M)per= | MY+ >, — 2L
) per= M) 2 A E(mm)
1
P Eu.]=-—=(a.ay+a¢a.ra-as), (5.8
X[ ,] \/§ +d0 (O :|m>+n2+ |4T2ngXn>
whereay= P, belongs to the representatidina,. (*T2gM X Heg " *T2gM s+ NX0)
X

The matrix elements in Eq45.3 can now be evaluated in 2 4
terms of the reduced matrix elements by using the Wigner- E("T2gMs+nx0) = E("T2gM oxn)
Eckart theorem: (5.19
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where|m) o= ¢, . Note that the spin-orbit interaction here Then the state$m>=|4T29Ms+ nXy) can emit the second
has been decomposed as follows: harmonics 2 by the magnetic-dipole momemd,. Com-
pared with Eq.(5.15, we can show the contribution from
case(3) M;,,# 0 is negligible because of the large denomi-
nator involved. The ground statg)=[*A,,Ms) is modified
only slightly by H.
Now we can write down the expression,@ﬂ) in a simple
(5.19 way:

_ A
Hso= Hsonn+ Héo: En2+ S LatASL,.

n==

m _2 2 <i|Mx|m1><ml|Hso|m><m|Hso|m2><m2|Pivt\Nist,g“)
Xom 4 & AE(mm){E(M)— 2hw—iT pJAE(MM,) AE,AE,

(5.17

In this equation the first term(i|M,/m;) is the same as that in casél) [Eq. (3.1)] and the last factor
<m2|Pivt\,vist,g“)/AEzAEO is equal toC,, [Eq. (5.3) or (5.11)] as|my)=|*T,qMgX,). Inserting these into Eq5.17) we have

m _ MB <4A29Ms|Lfn|4T2ngXn> <4T29Msxn|H;onn 4T29Ms+ nXO>
X=~ % 2 Cupo(Mo— n - y _
Ms,n=i E( T29M5+ nXO)_E( ngMSXn) E( ngMS+ nXO)_E( Angs)_ZfLw_|Fo
> <4T29Ms+ n)(0|7_(20_n 4T29Msxn>
E(*TogMs+nxo) — E(*TogMXy)

: 2
_ )\_2 \/En,U«B|CnPO(Ms) ‘<4T2ngXn|anLn|4T29Ms+nXO)’
4 Ms.n=x E(4T2ng+nXO)_E(4A29Ms)_2w_iro‘ E(4T29Ms+nxo)_E(4T29Msxn)’
RS s iAMoo(My) | S(S+D-M(Mg+n)  |? 518
B E(*TogM o+ o) — E(*AggM o) — 2fiw—iTo| E(*T M+ nXg) ~E(“TogMx,)| |
|
Remembering |AE3|=|AE— ugH;—3N/4|~65 meV, (5.29

(M[S_o[Ms+n)= VS(S+1)~My(Mgtn), (519 by Egs.(2.195 and(2.16 and\~10 meV.
and using So far we have calculated the contribution of a particular
single channel tqg), i.e., the term with the numerator

(*TogxalLnl*TogXe)=1/12 (n=%),  (5.20

we find thaty(3, may be written as (M s m}(M| HsoPsP Vst gl - (525
iBMpo(My) There are, however, 12 similar terms to this order of pertur-
X(2)= > bation which can give rise to the same resonance effect at

Mgin== E(*TogMstnxo) —E(*AggMg) —2hw =il |m)=1]9T4Ms= 1/2%,) in the SHG. This is because we have
(5.2 12 possibilities to put{s, andVys; 4 in the second factor of
At 0 K and at the sitéd;, M =3/2 is dominantly populated EQ:(5.29. We cannot evaluate numerically all of these terms
[the same as in casél)] and the only state{“ngMs at present becguse .of the poor information avanable to us on
=1/2xo)(n=—1) will contribute finitely to x3,. The rela- the highly excited intermediate statésspecially those of

tive magnitude Of)([g) to Xa) may be estimated from i(:]dcsiepzrkt/%: This point will be taken into consideration again

3\ \2 The matrix elements i€, [in Eq. (5.3 or (5.11)] can be
Bm=—<— AM (5.22 evaluated using the many-electron wave functions given in
8l AE; the Appendix. It then turns out th&,, is real. As a result
with both X[“l) and X?%) are pure imaginary under off-resonant
condition so that both remain finite after summing up the
) contributions from four G¥* ions in a unit cell, in accor-

(.23  dance with Eqs(2.28 and(2.30.
The total susceptibilityy, iS written down with the
where Cr** ion density N as

3
—E(“ng—x_

4 1
AE3EE TZQEXO 2



4Nn

m _ momy 2
Xtotal €oC (X(l) X(z)) (5.26

B. Electric susceptibility
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e

© 36\2AE,AE,
X(*T1gl P T21l*Asg),

(A PRl T2l T2g)

(5.29

The second-order susceptibilities due to electric-dipole

momentyg,, are nonvanishing only below ¥etemperature
Tn Where the crystal GO; loses the inversion symmetry.
We list microscopic mechanisms fgf given by Eq.(2.31)

with AE; given by Eq.(3.8). In deriving this equation, we
have used Eq5.9), the Wigner-Eckart theorem fd?, and
the matrix element of{Z, calculated by means of the wave

with 2w resonant to the transition between the ground stat@nctions given in the Appendix. For example, we find

*A,q and the excited statesT,,. These are required to lead

not only to a nonvanishing value of the susceptibility for a

single CP* ion, but also to a finite value off,, even after

the susceptibilities have been summed up over the four dif-

ferent sites in the unit cell.

Two-photon excitation through a product of two electric-
dipole moment operatorB, is possible only to the states
*T148m from the ground statéA,.>* The spin-orbit inter-
actionHZ,=\S,L, then mixes them with the staté3 26%Xm -
The latter statem)=|*T,,M X)) are brought down to the

<4A29 M s| E><| 4T29M sXm>

ground state by the combined action of the electric-dipole

momentP, and the crystalline field of odd parity sy
=V[ T, Xo]. In this section, we keep the same notatiynas

before for this effective dipole moment and define it also by

Eq. (3.3, but with V44 now replaced by, . The opera-

tor P, may be decomposed in its irreducible components as

Py

Vo

i _
+§ 2 Px[TZXm]-
m==*

_ 1 _
PLEunl+ o= > mPTian]

-+ m=+

(5.2

This is possible with the help of the Clebsch-Gordan coeffi
cients for the product of ;,a. and T, as in Eq.(5.6).1°

Note that the decomposition is quite different from the one in

Eq. (3.4), because it isVye, here that helps the electric-
dipole transition.

Using thisP,, the first contribution to the electric suscep-
tibility per single ion,x(el), is evaluated apart from the factor
l/ey as

2 <4A29M s| E><|4T2§;M sXm>
sm== E(*TyuM X)) —E(*AygMg) — 2w —iTp,

<4T2gM sXm| Héo' 4TlgM sam>
E(4T29M sxm) - E(4TlgM sam)
% <4TlgM sam| P§| 4A29M s>

X(n=
(1) M

AE Po MS)
(o]
_ s IA®Mgpo(My)
Mom== E(*TyqMXy) — E(*AggM¢) —2hw—iT,’

(5.28

where

m 4 =y 4
== ﬁ< A2ng| P Tia_ ]| TZngXm>
m 4 =y 4
== €< AZg”Px[Tl]” ng>, (5.30
and
i
<4T29Msxm|Lz|4Tlngam>= 2" (5.3)

It is possible to show that the matrix elements of Ef9)
and Eq.(5.29 are real by using the many-electron wave
functions. As a consequencA’f becomes real an;s}(el) is
pure imaginary under off resonance.

Itis in order here to comment on the relation between the
present treatment and that of Muthukumar, Valenti, and
Gros!! These authors proposed a microscopic theory to ex-
plain the observed nonreciprocal effect assuming the
(Cr0g), cluster model withD 34 symmetry. In their model,
the ion at siteA, is carried into the one at sitB, with its
surrounding environment by the twofold rotation. However,
we find that the covering operation for the cluster in the real
crystal is the inversion accompanied with the time reversal.
Along with this, conventional trigonal crystalline fields with
even and odd symmetry and spin-orbit interaction were con-
sidered in their treatment as perturbation on the trigonal
states of the Cf" ion. Within their model, they were able to
show that the spin-orbit interaction will lead to a linear de-
pendence ofy® on the sublattice magnetization. It is, how-
ever, unfortunate that they did not take the effect of magnetic
symmetry into account correctly. As shown in our previous
paper‘? the correct symmetry leads to the result that hgth
and x® vanish belowT, with the conventional crystalline
fields when the contributions from the four Crions in a
unit cell are summed up, even though each single-site con-
tribution to y™ or x® does not. In order to obtain nonvanish-
ing nonlinear susceptibilities, twisted crystalline fields
around the G¥ ion have to be introduced. Apart from this,
their result agrees with ow?l) in Eq. (5.28 except for the
imaginary factor in the numerator, when the Zeeman ener-
gies in the molecular field which appear in the energy de-
nominators are neglected.
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The second contributiop{fzﬂ) corresponds to the second tion Hy,, the intermediate statm, being modified by the
harmonic resonant to the transition between the ground staspin-orbit interactior{Eq. (5.15]. The channel is similar to
and the excited staténgxo. In this case the electric-dipole that considered fop([g), involving H,, twice but without
transition becomes possible in association with the odd paw s 4. This time we can obtain a finite value without intro-
ity twisted crystalline fieldVy,ist, and the spin-orbit interac-  ducingHg, as inx{y,, SO thatx(,, can be simply written as

e -3 3 (i| Py my)(my| Hed m)(m| Hed mp)(my| P i)
X(2n)™ m mym, AE(Mm){E(M)—2hw—il JAE(Mmm)AE,’

(5.32

Then we evaluate this as follows:

<4A29M sl E><|4T29M sXm><4T29M sXm| Hs_omm 4T29M s+ mXO>
E(4T2gM st mXO) - E(ATZgM sxm)

X(e2n):M Em: . po(My)
o m==

 (AogMIP*T1gM ) (“T1gM | Hog ™1 *TagM s + mxo>) (*TogM o+ mxo| HEy ™*T1gM g8
E(*Ty Mg+ mxg) —E(*T14Msap) E(*TygMst+mxg) —E(*Ax M) —2fw—iTg
« (*T1gMsan| PYI*AgM )
[E(*TygMs+mxo) —E(*T1gMsam) JAE,

(—m/B)(*Aggl PRl T11[[*T2g) X (112)
AE,

(—im/2) X (—m/3y2)(*T14| P T,][*Agg)
[E(*TygMs+mxo) —E(*AygMg) — 2w —iTg]AE,AE,

N 2
= E . PO(MS)(E) {S(S+1)_Ms(Ms+m)}

s M=

(i/1243)(*Aggl P T21[4T1) X (im/+/2)
* AE,

(=i V2mA21288){S(S+ 1)~ My(Ms+m)}po(Mg) [ (*Asgl[ P, T11]*Tog) L V3(*Asg [P T2 Tig)

M E(MTMetmxg) —E(*AgMo) —2hw—iTy | AE, AE,
<4Tlg||P>2<[T2]||4A29> (5.33
AELAE, ’ ’
where we have made use of E@5.9), (5.19, (5.27),
_ i — i —
<4A29| F)x|4-|—19am> = §<4A2g| Px[szfm]lllTlgam) = m<4A29” PX[T2]||4T19>1 (5.34
and
(*T1ganlLul *Togxo)=im/\2, (5.39
as in Eqgs(5.30 and(5.31). The energy differencAE, here is defined by
AE,=E(*TygMs+mxg) —E(*T1gMgap). (5.36

At low temperatures, only the sta\lfbAngsz 3/2) at theA, site is populated, so that the term with= — 1 will dominate on
the right hand side of Eq5.33. As a result,X?Zn) is simplified as

iBe
e n
= , (5.37
X ™ (4T, 1/2x0) — E(*Agg3/2)— 2hiw—iT
with
o VN[ (Aol P Tall*Tag) | V3(*AzglIPAT2]I*Tag) | (“Tagl P T2l *Acg) 538

nT 06 | AE, AE, AE,AE,
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We note here thatAE;=E(*T,q1/2%0) —E(*T,3/2x_)=—65meV and AE,=E(*T,41/2Xy) —E(*T143/2a_)=AE;
=E("T243/2Xm) —E(*T143/2a,)=—1 eV. We may assume thatA,¢||P[T1][*Toe) and(*Aygl|Py[T,]|*T14) are of com-
parable magnitude, so that the relative magnitude will be giveB#p®=3\/4|AEs|~1/7. AboveT>Ty, this contribution
vanishes as it should.

There is another contribution corresponding to the second harmonic resonant to the transition between the ground state and
the excited staténgxo. We call this second-order nonlinear susceptibi}{{&) and evaluate it as follows:

<4A2gM s| 5><| 4T29M sXm><4T2gM sXm| H;omm 4TZQM s+ mx0>
E(4T29M st mXO) - E(4T29M sxm)

X‘(az): E . po(Ms)

Mg, m=

+ <4A29M s| Exl4TlgM sam><4TlgM sam| Hgomm 4T29M s+ mXO>
E(4T2gM st mXO) - E(4TlgM sam)

<4T29Ms+ mxo| Hep 4T29Msxm>
E(*TogMg+mxg) —E(*AggMg) —2hw—iT

<4T29Msxm|H§o‘ 4Tlngam> <4Tlngam| P§|4A2gMS>
E(ATZgM s+ mxo) - E(ATZQM sxm) [E(4T29M sxm) - E(4TlgM sam)]A Eo

_ Po(Mg)(N?/4){S(S+1)—My(Mg+m)} ( (—/6)(*Angl PLL T, 11T og) X (1112)
Mesm==+ E(*ToqMg+mx) —E(*AggMg) —2hw—iT, AE3

. (1123)(*Agg| Py T[4 T 1g) X (im/y2) | (12) X (1AM §12) X (= mI32)(*T 1] PA T, 1] *Agg)
AE, AEZAE,AE,

BEM M
=i E - Spg( S) . , (539
Ms,m:t E( ngMS+m)(())_E( AngS)—Zﬁw—IFO

with

e

N [(CAlIP LTl T o) . ﬁ<4A29||FX[Tz]||“Tlg>) (*T1gl P T,1I1*Asg) (5.40

642 AE, AE, AE,AE,AE,

using Egs.(5.9), (5.19, (5.20, (5.30, (5.31), (5.34), and(5.35. From the perturbational point of view, this process is one
order higher compared t)p‘én). The relative magnitude d° to A® of Eq. (5.29 is given by

2

3
Be=— A®~0.02. (5.41)

S(A_Es

Note that the remark made after E§.25 may apply here as well.

There is one more contribution to the susceptibilify which leads to different intensities for the second harmonics
generated from“ngx+ and 4ngx_ contrary toxg’l). This is obtained by replacing(z, in Eq. (5.28 by the conventional
trigonal field Vi, and is calledy(;,:

<4A2 Ms|5x|4T2 Msxm> <4T2 I\/lsxm|VtCri |4T1 Msam> <4T1 Msam| P§|4A2 MS>
e g g g gl '1g g g
X(1a)= > 4 4 . 4 2 AE po(Ms)
Mg == E(*TqMXm) — E(*AggM o) — 2k 0 —iT iy E(*T2qM X)) — E(*T1gM ) 0
iCmpo(My)
=3 — = —, (5.42
Mg == E(*TqMXym) — E(*AggM o) —2hw—iT
where
(*Asgl PLT111*T2g)
Co=——2 = S (T ogl Vel T2 4T 1) (*T g PALT21[*Agg). (5.43

36\3AE;AE,

A similar contribution X?lb) follows if we replaceViys, and Vayag in the equations given above By =Vodq and
Viistg: respectively:
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<4A29M sl Eﬂ 4T2g M sXm>

<4T2g M sXml P>2<| 4T29 M SX0> <4T2g M sXO|Vtwist|g| 4AZgM s>
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e —
XA e E("T 1M Xm) — E(*AggMo) — 2Ty

ngmpO(Ms)
Moo=+ E(*TogMXm) — E(*AygMg) —2h0—iT

where

1 —
Cg:ﬁ<4A29”Pg[Tl]H4T29>mCma (5.49

with C,,, given by Eq.(5.11). The effective dipole moment
Eﬁ is well known in the interpretation of the absorption spec-
tra of ruby?® and originates from the transition moment per-
turbed byV gy u=Voqq, Which is exactlyﬁx employed in
Sec. lIl. It is to be noted that botB; andC§ may well be of

the same order of magnitude &S of x(,,, althoughx(i,

po(Ms)

AE, E(*AxM¢) —E(*“TogMeXo)
(5.44
[
<Vtwistg>
M~y ——=", 54
|X(1)| |Xo| |AE2| (5.49

On the other hand, the electric susceptibili,, can be
estimated from Eq(5.28 as

e e A <Vtwist,u>
|X(1)|~|X0|m AE,

with |[AE;|=E(*T14) —E(*Ty,), because the electric-dipole
momentP becomes nonvanishing only with the aid of odd
parity field, i.e.,Vysty in the present problem, as Ed8.3

(5.50

and x{yp,) vanish because of the cancellation which occurs ornd(5.27) show, i.e.,

the right hand sides of both Eqé.42 and (5.44 when

*T,g%+ and “Tygx_ have the same energy.
Finally, the expression foxg,, is given by

X?otalze_o()((el) +X(2m T X(2)F X1 T X(1p)) - (5:40

C. Order estimation

<Vtwist,u>
AE,

|P|~ea (5.50)
wherea, is the Bohr radius. We have assumed as usual that
the intermediate statg’) in Egs.(3.3 and(5.27) is mainly
the 4p state of the Ci* ion so thatAE, of Eq. (5.4
~AE(pd).

Let us assume the following values for the material con-
stants:AE(pd) =10 eV, the spin-orbit coupling constant

In the present paper we neglect contributions of orders-1g meV, (Vuistg) ~(Vanistu)~0.1 eV, N=3.3x 108

higher than those considered in the previous subsections. Egy-3
timation of the orders of magnitude pf™| and|x€| around

|AE4|~1 eV, |AE,~2 eV, the refractive index
n~1, and the relaxation constaht, in Eq. (5.13 and Eq.

20 nearly equal to the excitation energy from the groundi5 2g ~0.1 ev.

state “A, to the state'T,

will now be the subject of this

The relative magnitude df™ x| is then estimated to be

subsection. In general,)(ei is a few orders of magnitude of the order of unity:

larger than x™|. However, they are shown to be of the same

order of magnitude in the present problem, becauseythe X" nug AE(Pd) (Viistg) |AE]|
process requires by one-order higher perturbation in the spin- —| " ce NVowaa) X ’ AE,| ~2, (5.52
orbit interactionH,, or the low-symmetry crystalline field X % (Viwistu 2

Viig for the transition in question. We are especially inter-yhere we have set the values of the physical constagts

ested in the magnitudes {7, and x(;, which are supposed

to be dominant in Eqg5.26) and (5.46), respectively.

First, we define ideal quantities gf" and x€ in which all
the matrix elements d¥1, P, andP in Egs.(2.30 and(2.3)
take their nonvanishing unperturbed values, i.e.,

4Nn (PP)mio
m_ M . (5.4
s LU P P TP L
and
4N (PP)mio
e p . (54
Xo™_ w2 MY Com 2w 4D

As Egs.(5.2) and(5.3) show, the absolute value b,ﬂ“l)|
is reduced by a factofVi,sq)/|AE,| compared to| xg],
where| AE,|=E(*T,g) —E(*Ayg), so that

=eh/2m = 9.274x107%* C /s, c=2.998x10%m/s, e
=1.602x10"1° C, anday=0.5292x10 1°m. This is in
good agreement with the observattdnThe absolute magni-
tude of [x®| at 20=[E(*T4X+)—E(*Ayg)]/# is estimated

to be 1x 10 m/V, with €,=8.854x 10 2 C?/mJ. This is

by one or two orders of magnitude smaller than the value
5% 10" *m/V of LiNbO5 at A\ =1.064um.

VI. SPECTRA OF SECOND HARMONICS
AND INTERFERENCE EFFECT

In the present coordinate system, the second-order suscep-
tibilities x™ and x® in the point grouBm have the following
symmetries: T

X=X 0=~ Xy = ~ Xyxy = ~ Xyyx o (6.
X°=Xxo= ~ Xxyy= ~ Xyxy= — Xyyx- (6.2
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As a result, the source term for the second harmo8ics . T —
S= anM+&2P 6.3 % 20f it 1
—He a - a?) €3 3 [ |s MD(exp.) ~*
. 2 ' |v ED (exp.) D
is expressed as follows: 8 | a1t
S\, 2X"EE,~ x(Ei-ED) 2 i
4o 4 YOR!
S| =7 | \"ECE)+2EE |, (64 §10r fa s ;
S, 0 £
T
or )
S (—ix™—x®)E2
: 4\/5('02 H Y =4
S| = = (ix"=xEL |, (6.5
So 0
SH energy [eV]
setting S. =(S,¥iS,)/y2 and E.=(E,FiE,)/\2, after
Fiebiget all° From Eq.(6.4) it is clear that the spectra gi™ FIG. 4. Calculated spectra of SHG through the magnetic dipole

and x® can be measured separately by observing the secorfdroken ling and the electric dipolésolid line) as a function of the
harmonics linearly polarized along and y axes, respec- signal frequency in eV near the transition fl’Cﬁ’ﬁgg to 4A29 at low
tively, under the irradiation of fundamentals linearly polar- temperatures.
ized alongx or y axis.

Since x© is linearly proportional to the magnetization of =1/2. The positions of these energies are estimated from
the sublattice, it is possible to observe the magnetic domainie result of Sec. IV as follows:
of the antiferromagnetic crystals by using the circularly po-
larized fundamentals. From E¢6.5) the signal intensityl E(*TogMs=1/2xg)=2.08 €V,
«|9|? for the circularly polarized light is expressed as

19120 (Ix™2+ [XSIA) (|E 4 [*+E_|*) = 2(xfxe— XmXe)
X(|EL|*=|E_|Y), (6.6) E(*TyqMs=3/2,)=2.164 eV.

E(*TyyMs=3/2%_)=2.14 5eV, (6.7

’

where ™=y, +ixm and x°= x,+i xo . The interference of
the second harmonics generated by the magnetic- and
electric-dipole moments is described by=—2(x/,xe In order to compare the observgd and x® spectra with
— XX, which is also proportional to the sublattice magne-the calculated onex™ given by Eq.(5.26) and x° given by
tization, e.g., at thed; sublattice. Therefore we can detect Ed. (5.47), we introduce several parameters, although we
the magnetic domains of the crystal through this interferenc&ave seen that the most dominant terms are able to explain
factor A by using the circularly polarized light as the pump the observed intensities roughly. _
source. When the magnetic domain to pump is fixed, the AS to thex™ spectrum, the value 6&™ in Eq. (5.13 and
total signals of second harmonics show different spectrdhe relative magnitudg 5,/ x (1)~ Niermd 3/8) A/ AE3)? were
against positively and negatively circular-polarized funda-varied so as to obtain best fitting. Although,msis supposed
mentals. to be 12 according to the argument following E8.25), best

In this section, we draw four spectra of the second-it was found for nm¢~20. The relaxation rate$” of
harmonic generation, i.eJx™? [x%? and |[x(c7)]®? = “T,gx. andI'§ of *Tyux, were chosen to be 40 meV and
=|x"?+|x®>= A, using the microscopic expressionsdf 20 meV, respectively.
and x° derived in Sec. V. The x© spectrum was also drawn with the paramets?s

The energy levels OszngXm(m: +1,0) are evaluated and the ratio () + x{>))/x{1) - The same values df¢ and
by using Egs.(2.15 and (2.16 with the values estimated ['¢ as fory™ were assumed. Inclusion ok fia)+ X{10) WaS
from other experiments. The crystalline field splittiiEs|  aiso tried to obtain better fit with the observed spectra.
(between*Tyxo and “Tygxy) (Ref. 8 was assumed to be  The theoretical spectra ¢§™|? and [x¢|? are shown in
65 meV, the spin-orbit interaction=12 meV, and the inter-  Fig, 4. We may say that they reproduce the observed features
nal magnetic field splittingugH; =25 meV. The nonmag- of the spectra fairly well.
netic level of 4ngx:, i.e., Eq, is located atEj=2.19 eV.
We confine ourselves to sufficiently low temperatukgd
<ugH;=300 K, so that we set the thermal distribution func-
tion pg(M¢)=1 for Mg=3/2 and O otherwise a; andA, The interference effect will be most pronounced when the
sublattices. From Eqg5.13), (5.21), (5.28, and(5.33, itis  value of A=—2(x/xe— XmXe) becomes of the same order
found that the energy levels relevant to the resonant secondf magnitude as that dfy™|2+| x®|?. If we define the phase
harmonic generations are4ngMs= 3/2x. and “ngS angleséd,, and 6, by

A. Spectra of y™ and x°

B. Interference effect
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part of the product of the magnetic- and electric-dipole ma-
trix elements contributes to the magnetoelectric
susceptibility® From this fact, only the conventional trigo-
nal crystalline fieldsV a1 g @and Vayiau are effective in the
present phenomena in contrast to the second-harmonic
generatiof? in which only Viwistq and Vst y l€ad to finite
contribution. Second, two Ievel%ngx¢> split by the diag-
onal component of the spin-orbit interaction contribute with
opposite sign to the magnetoelectric susceptibility. This can
explain the spectrum structure of ellipticity and rotation at
4T2g, i.e., not only the absolute value but also the sign of
these signals, very well in contrast to the explanation by Ref.
8. Third, the main spectrum structures’&t, and °T, 4 have
been well described by the present microscopic model using
the material constants determined by other experiments.
These transitions are spin forbidden so that the off-diagonal
components of the spin-orbit interaction must be involved.
SH energy [eV] Therefore the product of electric- and magnetic-dipole mo-
o ) ments is reduced by two orders of magnitude, but this reduc-
FIG. 5. Calculated second-harmonic signals under (solid tion is just compensated by the small relaxation rate of the

line) anda_+ (broken l'.ne circularly polgnzed Incoming laser light relevant transitions. As a result, we can explain the large
as a function of the signal frequency in eV. The difference shows

. 2 . ..
the interference effect. The phasedf has been changed hy/2 peak_S|gnaIs alzl%Eg and Tag- Thze observed intensities of
rather arbitrarily. the sidebands atE,—1/2u, and “T,4—1/2a, are by one

order of magnitude larger than the present model of the static

100

nits]

50

SH intensity [arb.u

m_|m . crystalline field but we feel that this discrepancy may be
X"= X" expli O, 6.8 resolved by introducing the dynamical hybridization between
4 4 4 .
. TooX. and 4T, X, and betweerfT; a. and 4T;qa,. This
e=|v®le , 6.9 290+ 2g”0 1g9= 1g<0
X°= X7l expi fe) 6.9 problem must be left as one of the future problems.
we find Thus we may conclude that the three important facts in
S the magnetoelectric spectra observed on the surface of the
A=2[x"|x®|sin(6m— be), (6.10  cr,0;5 crystal are well understood by the present microscopic
so that the perfect interference will be attained whén model. . . .
X" =|x¢ and (2) f,— 8=+ /2 We have derived explicit expressions of the resonance
m e - .

From the observed spectra, i.e., Figbjsof Ref. 10, we terms of the magnetic and e[ectnc susceptibilities which are
mportant for the interpretation of the resonance second-

find that these conditions are almost satisfied experimentally. . ’ b d by Fiekioal 2 It
Theoretically, we have seen above that the first conditio 1armonic generation observed by lekigal.™ It was con-
irmed that the crystalline fieldgys; g andVyyisiu, together

[x™ ~|x® is nearly satisfied. However, it is by no means . ; =0 . . :

easy to make the second be satisfied near the frequency with the spin-orbit interactiori{s,, acting on the trigonal

—2w=[E(*T,)— E(*Ay) /. The reasons are thafl) states as perturbations, lead to nonvanishing signals of SHG

both y™ andz)?e must f)ge pu.re imaginary, away from the and the interference betwegff' andx® below the Nel tem-

resonance, as Eq&.30 and (2.3) show, and(2) even in perature of CfO3. Here the judgment of reality of relevant

the near résonance region, the phase d’iffereampee will matrix elements has been essential to obtain finite results.
' A We have also seen that the mechanism involWigs could

H afég m
be vzydsmall, Iasr Irc])ngrlas thelifealaﬁtlo_?hri m ’Fg ?[Let indeed lead to observed magnitudes of the signal intensity.
assumed equal or nearly equaiita.,lo- S means tha It was found that the observed spectra in the region of

the present theory cannot explain the observed interferen - : . -
quantitatively. If only the phase gf™ is changed byx/2 or Cﬁrzg for I|nea_rly polarized light could be repr_oduced fairly

m o ) o .. well by choosing reasonable values for the adjustable param-
x" multiplied byi .for some reason, it will become posslble eters in the theoretical expressions jarApparently, some
to reproduce the mterfgrencg fa|r_ly \{vell'as shown in Fig. 5'effects to modify the phases of susceptibilities must be in-
_Clearly, some effe(_:ts involving dlS_Slpatlve process em_ust b(?/olved. As the two such effects, we suggested in Sec. VI the
introduced to modify the expressions gf" and/or x° in 1 qification due to the local field correction and the cross

ordetr_ to tc;}vertf:}ome tr:"s d|ff|(zjulty.t Atsh SlIJCh lefﬁelgts' Wgéganrelaxation. It was indeed possible to explain the interference
mention the phase changes due to the local Tield corr Ionby introducing a factor of for y™ rather arbitrarily. The

and the cross relaxatidi.However, detailed treatments of origin of this factor offers a very interesting subject for fur-

them must be left for another paper. ther study. This will be treated in the near future together

with the effect of cross relaxation fronfT,43/2x_) to
VIl. CONCLUSION |4T 4 1/2¢0) on x© .

The absolute values and the spectra of the ellipticity and
polarization rotation observed at the,Og crystal surface
have been theoretically well analyzed and explained by our This work was supported by a Grant-in-Aid for COE Re-
microscopic model. First, we confirmed that only the realsearch on “Phase Control and Engineering of Spin-Charge-
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Photon Coupled Systems” from The Ministry of Education, _
Science, Sports and Culture. W (*T1gMs=3/280) = E(|x,xou+| =X Xqu_]),
(A8)
APPENDIX: WAVE FUNCTIONS
AND REDUCED MATRIX ELEMENTS 1
In this appendix we first give the wave functions for the V(*EM=12u,)= ﬁ(_ X X X[+ [X4 XoXol
threed electrons in the trigonal environment and then derive,
using these functions, the expressions for the reduoed —|x_x__x0|), (A9)
double barrefimatrix elements involved in the magnetic and
electric susceptibilities, i.e., in Eq.11) and(5.29. It then 1 o o
turns out that the latter matrix elements are all real, meaning \Ir(ZEgMS= 1/2u_)= —=(|X 4 X4 Xo| = [X s X_x_|
that the nonlinear susceptibilties themselves are purely V3
imaginary in the absence of relaxation as they should be. —
The wave functions for the thrakelectrons of a G ion +|X-XoXol), (A10)
in a CrO5 crystal are derived appropriate to tg symme-
try. The ground state of the threkelectrons in this crystal- I — —
line field is expressed by Hund’s coupling rule as W (*TygMs=1/2a,)= \/g =X XX F X4 XoXol
W (*AqM =312 =i X, X_Xq|, (A1) +2|x_x_Xo|), (A11)
4 — —i i
W (*AzgMs==3/2) =i|x. X-Xq, (A2) V(* T gMg=1/2a_)= — \/E (X XX |+ 2[X4 X Xo|
in terms of the Slater determinants describing the state in
which the threed electrons occupy the threg states with —[X_XoXo]), (A12)
componentst 1 and 0 of effective angular momentum along
the C; axis. For the notations and conventions adopted for .
the wave functions in th€; symmetry, the reader is referred \If(ZTlg =1/2a9)= — |x X_Xo| + |x+x Xol
to Ref. 15. The up and down spin orbitals for a single elec- \/6
tron are represented without and with barson and xg —
orbitals, as in Eqs(Al) and (A2). The excited electronic —2[X1X-Xo|). (A13)

states were obtained from the original wave functions given
in Ref. 15 by transforming the,(¢,7,¢),t1(«,8,y), and

The d orbitals employed here may be expressed as

e(u,v) orbitals in the ordinary cubic coordinate system into __ *
to(X, ,X_ ,Xo), t1(a, ,a_,ap), ande(u, ,u_) in the present X, == (V2d; —d/\3, (AL4)
coordinate system whose quantization axis is €heaxis. _ *
The wave functions obtained in this way are as follows: X-=( ‘/EdZ_dl VN3, (A15)
X0:d01 (A16)
W(*TgM=3/2x, )= \/5(|X+X7U+|— -, and
A3 Uy =—(d§ +2d,)/\3, (A17)
1 _ *
‘lf(4ng Ms=3/2_)= \/§(|X+X0U+|_|X+ —u_)), u- (d2+\/§dl)/\/§' (A18)
(A4) using the complex orbitals given by
dy=(dez_y2+idy)/V2, (A19)
W (*TogMs=3/2x0) = \/E(IX—XoU+|+|X+XoU-I), dy=(d,,tidy,)/2, (A20)
(A5)
do=dzz2_r2, (A21)
—I in the present coordinate system.
W (*TiMs=3/2a,)= \/§(|x+x_u+|+|x_x0u_|), Let us confirm, before showing th&t,, in Eq. (5.11) is
(A6) real, that the matrix element &y 4 CONnecting the states
4T2ngxm and 4T1 <4y, does vanish as long as we remain
within the strong f|eld scheme. We can evaluate this matrix
(4Tlg M =3/2a_)= — _ (X4 XUy |+ X5 x_u_|), element using the three-electron wave functions given above
V2 and express it in terms of the one-electron integrals of the
(A7)  crystalline fieldv s g as follows:
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<4T2gM sXm|Vtwist,g[T1a0] |4T1g|\/I sam> <4A29|\/| sl Ex| 4ngM sXm>
1 —i 1 _
:Eﬁ(m<|x+x—um||Vtwist,g||x+x—um|> =—|E(m(|x+x_xo||PX||x+x_um|)
_m<|X*mX0u*m||VtWiSt,g||X*mX0u*m|>) _m<|x+x_xo||E)(||X_mxou_m|>)
—mi .
= —— ({(Xy |Umist gl X+ ) T {X_|Utwist gl X = —mi — —
2 < +| tWISt,g| +> < | tWISt,g| ) — \/E (<X0|px|um>_m<xm|px|ufm>)-

_<X7m|vtwist,g|xfm>_<XO|Utwist,g|XO>) (A26)

—mi ]
= T(Xmlvtwist,glxm>- (A22) We thus find that

_ —-m _
It is not difficult to see both(X..|vyisig|X-) vanish, if we <4A29M5| Px|4T29MSXm>: T<4A29||P><[T1]”4T29>
express the orbitals.. in terms of the complex and then the
real d orbitals with the help of EqstAl14) and (A15) and —mi —
Egs.(A19) and (A20). = f((Xol PxlUm)

In a similar way, we have

<4T2gM sxolvtwist,g[Tlao]|4A29M s> = mi\/§<um|vtwist,g|xm> N m<Xm| pX| U—m>)- (A27)
(A23) Using the one-electron orb!tals gi\(en above, and nofing
for bothm= + andm= — and find that the right hand side is and Vs, are real, we easily confirm that the reduced ma-
real, which means the reduced matrix elementrix element(*Ay[[P,[T1]|*Toy) is indeed real. This proves
<4T29HVt\Nist,g[Tl]||4A29> is also real according to E¢5.10. the reality of the parametex® in Eq. (5.29.

This time, it will be nonvanishing in general. We must next prove the reality ofB;. Since
For the reduced matrix element appearing in &c9), we (*AgllPLL T4 T2g) and<4Tlg||P§[T2]||4Azg> have already
proceed in the same way: been proved to be real, it only remains to see the reality of
m (*Angl P T[T ).

2 _ 2 gll Fx g
(*T2gM Xl P3| T 2gM X0) = = = (X ml Px[Xm) The left hand side of E¢(5.39 is obtained as

+ M X | P2|X0)
+(Uu_plpilum)). (A24)

This result also assures that the matrix element in question is + m(xm|E(|u,m)). (A28)

real. L .
Since the two reduced matrix elements in E&11 are Arguing in the same way as before, we find the reduced

found to be realC,, is real. matrix elem(_ant(4Azg||Ex['l_'z]||4Tlg) to be real, which im-
We will next show thatA® is real. The reduced matrix Plies thatBj in Eq. (5.38) is real. It will be needless to say
element*T,4||PZ T,][|*A,g) is found to be real, because we thatB® is also real.

— -1 —
<4A29M sl l:)x|4-|—lgM Sam> :E(<XO| px| um>

have Finally, we give below the expression of the matrix ele-
ments which are necessary to verify the realityagfin Eq.
(*T1gMgan| P *AxgM ) (5.43 andC¢ in Eq. (5.45:
m .
= _<4T19M sam|P>2<[T2Xm]|4Angs> 4 c |4 mi , 4
\/6 < TZngXm|Vtrig| Tlngam>: - %( TZg”V[TZg]H T29>
m
== = ("TulPIT*Az) 3mi
3\2 =~ S (XalvEig ), (A29)
m
=_E(<U—m|p)2(|xm>+m<Um|p§|Xo>)- and
J— m —
(A25) (*AagM I PSI*T1gM ) =5 (“Aggl PIL T2 Tag)

Now we only have to consider the reality of

(*Aq PX[T1]]*Tog). For this purpose, we assume the clo- -1 —
sure approximation, replacing the two energy denominators = E(<Xo|px|um>
in Egs.(5.27 and(3.3) by some appropriate averages. This
then allows us to proceed here also in the same way as be-
fore. The left hand side of Ed5.30 now can be evaluated

as The relevant reduced matrix elements are all real.

+mM(Xp|plu_m)).  (A30)
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