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Magnetoelectric and second-harmonic spectra in antiferromagnetic Cr2O3
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We present a microscopic model to understand the magnetoelectric and second-harmonic spectra of Cr2O3

and the interference effect between the magnetic (xm) and electric (xe) second-order optical polarizations. The
spin-orbit interaction and the crystalline fields of correct symmetry around the Cr31 ion, i.e., the axial and
twisted crystalline field ofC3 symmetry, are treated as perturbation on the trigonal states of thed3 system of
Cr31. By these treatments we attempt to describe the observed phenomena associated with the transitions
between4A2g and 4T2g states in Cr2O3. It is possible to reproduce the observed spectra of the polarization
rotation and ellipticity, and the second-harmonic generation spectra described by the nonlinear susceptibilities
xm and xe. The estimated theoretical magnitudes of these quantities are in reasonable agreement with the
observed magnitudes.@S0163-1829~98!07415-3#
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I. INTRODUCTION

In the 1960s, magneto-optical effects were studied
metals1 and insulators.2 In the 1990s, ellipsometry and bro
ken time-reversal symmetry were extensively discus
theoretically3,4 as well as experimentally5 for the high-
temperature superconductors. Reciprocity in reflection
transmission of light was studied by group-theoreti
method.6 Spontaneous nonreciprocal reflection of light7 and
its spectrum8 were observed for Cr2O3. Here the interference
between electric dipole and magnetic dipole is possible
the crystal loses space-inversion and time-reversal symm
below the Ne´el temperature. First, Krichevtsovet al.8 mea-
sured the spectra of the nonreciprocal rotation and ellipti
of light reflected from the antiferromagnetic Cr2O3 and
found an ellipticity spectrum of dispersive type and a ro
tion spectrum of bell shape near 2.1 eV corresponding to
transition from 4A2g to 4T2g states. These look opposite
those expected from the Kramers-Kronig relation. This m
tery will be solved in this paper. Second, Fiebiget al.9 have
succeeded in observing the antiferromagnetic domains
Cr2O3 through resonant second-harmonic signals due to
transitions between4A2g and 4T2g states of a Cr31 ion in the
crystal. They also observed10 the second-harmonic spect
described by the second-order magnetic and electric sus
tibilities, xm and xe, separately and the interference effe
between these contributions below Ne´el temperatureTN
5307.5 K. Muthukumar, Valenti, and Gros11 proposed a mi-
croscopic theory to explain the observed nonreciprocal ef
assuming a cluster model withD3d symmetry. Unfortu-
nately, their model does not reflect the correct symmetry
the cluster in the crystal which is 38̄. Besides, in their treat
ment, only conventional trigonal crystalline fields with ev
and odd symmetry and spin-orbit interaction were assum
as perturbation on the trigonal states of the Cr31 ion. We
have shown, however, in a previous paper12 that within this
model bothxm andxe vanish belowTN when the contribu-
tions from the four Cr31 ions in a unit cell are summed up
even when each single-site contribution toxm or xe is finite.
This is due to the fact that the real or imaginary nature of
matrix elements matters seriously in the problems of non
ciprocal optical effects in antiferromagnetic crystals, beca
we are forced to use complex wave functions in the orde
570163-1829/98/57~16!/9586~22!/$15.00
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phase to evaluate them. In order to obtain nonvanishing n
linear susceptibilities, twisted crystalline fields around t
Cr31 ion have to be introduced. The second purpose of
present paper is to evaluate the nonvanishing expression
xm andxe so derived explicitly and to see if the calculate
results are able to explain the observation, i.e., the ma
tudes and the spectra of the susceptibilities and the inte
ence effect.

In the present paper, we apply the same model both
the magnetoelectric spectrum of the nonreciprocal rota
and ellipticity of light and the second-harmonic generati
~SHG! in antiferromagnetic Cr2O3.

In Sec. II we review the magnetic and electronic stru
tures of the antiferromagnetic Cr2O3 crystal, and examine
the types of the low-symmetry crystalline field involved, b
cause these types are related to the reality of the rele
matrix elements contributing to the magnetoelectric eff
and the second-harmonic generation. In Sec. III we de
expressions for the magnetoelectric susceptibilities for
spin-allowed transitions between the quartet states. The s
forbidden transitions to the doublet states such as2Eg and
2T1g levels are also treated there. The results obtained
Sec. III are compared with the observed spectra of elliptic
and rotation in Sec. IV. We find that the observed features
the magnetoelectric spectra for the transition between4A2g
and 4T2g states are well explained. Estimation of the order
magnitude of these spectra is also made in good agreem
with the observation. In contrast to this, we predict the co
ventional spectra of rotation and ellipticity for the transitio
from 4A2g to 4T1g states. The theory is also able to expla
the observed spectra of spin-forbidden transitions. Contri
tions to the second-order susceptibilitiesxm andxe that are
important in the resonance effect are derived explicitly
Sec. V. Their orders of magnitude are also estimated th
In Sec. VI, the second-harmonic spectra described byxm and
xe are drawn using the results obtained in Sec. V. The ag
ment is satisfactory. However, it is found that the observ
interference ofxm andxe cannot be explained well becaus
of the small phase difference between them. Two poss
mechanisms are suggested to overcome this difficulty. S
tion VII is devoted to the conclusion. The Appendix give
some relevant reduced matrix elements of operators app
ing in x in terms of one-electron integrals together with t
9586 © 1998 The American Physical Society
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57 9587MAGNETOELECTRIC AND SECOND-HARMONIC SPECTRA . . .
wave functions for thed3 system~in the strong ligand-field
limit !.

II. MAGNETOLECTRIC
AND NONLINEAR SUSCEPTIBILITIES

A. Magnetic and electronic structures of the crystal

Below Néel temperatureTN5307.5 K, the crystal Cr2O3
loses the inversion and time-reversal symmetry and has
symmetryR3̄8c8. The unit cell consists of four Cr ions, eac
surrounded by six oxygen ions as shown in Fig. 1. Thez axis
is taken along the threefold (C3) axis of the crystal, and the
x axis is taken along the twofold (C2) axis of the crystal so
that theyz plane is the mirror plane, in distinction from th
choice of Refs. 8 and 11. We call the four ions located on
C3 axis within the unit cell, from the lower to highe
B1 , A1 , B2, andA2 with down, up, down, and up spin
in this order in one of the antiferromagnetic domains.
another domain, these spins are reversed simultaneously
take the center of inversion betweenB2 andA1 as the origin.
Then in the ordered phase described by the magnetic gr
the ion A1 with its environment is carried intoB1 by the
operationC2x(t), into B2 by QI and intoA2 by Qsd(t),
where t is the displacement vector (0,0,c/2) andQ is the
time-reversal operation. This implies that the wave functio
of the four ions are related to each other by the followi
relations:

C i@B1#5C2x~t!C i@A1#, ~2.1!

FIG. 1. The crystal and magnetic structure of Cr2O3 crystal
below Néel temperature. Black and white circles represent C31

and O22 ions, respectively. TheC3 axis of the crystal is chosen a
z axis, so theC2 axis is chosen asx axis. Theyz plane is the mirror
plane. The origin of the coordinates is the inversion center.
arrows indicate the directions of the spins.
he

e

e

p,

s

C i@B2#5QIC i@A1#, ~2.2!

C i@A2#5Qsd~t!C i@A1#. ~2.3!

Take, for example, the ions atA1 and B1 @Eq. ~2.1!#. We
may adopt for thei th state~which may or may not necessa
ily be an eigenstate! of the ionB1 the wave function obtained
by transforming thei th state of the ionA1, that is, rotating
the latter byp around thex axis and translating it byt. Note
that Eqs.~2.1!–~2.3! are based on the symmetry of the ma
netic group. They simply correlate the wave functions at d
ferent sites by the symmetry operations of the group. T
procedure assumes that the molecular field acting onB1 is
obtained by just rotating byp the corresponding field onA1.
This is the symmetry described by the magnetic group.
this sense, the present treatment, which takes advantag
the magnetic symmetry throughout, is a mean field the
which neglects the spin fluctuations.

The matrix elements of an operatorÂ at different sites are
thus correlated to each other through the equations

^RCuÂuRC8&5^CuR21ÂRuC8&, ~2.4!

^QRCuÂuQRC8&5^CuQ21R21ÂRQuC8&* , ~2.5!

where R stands for any of the symmetry operatio
C2x(t), I , andsd(t). Since both orbital and spin states a
involved in the present problem, operatorR as well asQ act
upon both of them. The matrix elements ofx components of
the magnetic- and electric-dipole moments,Mx and Px , at
B1 , A2, andB2 sites are related to those atA1 by

Mx@B1#5Mx@A1#, Px@B1#5Px@A1#, ~2.6!

Mx@A2#52Mx@A1#* , Px@A2#52Px@A1#* , ~2.7!

Mx@B2#52Mx@A1#* , Px@B2#52Px@A1#* . ~2.8!

These equations enable us to correlate the values of ma
toelectric and second-harmonic susceptibilities atB1 , B2,
andA2 to that ofA1.

The optical absorption in Cr2O3 ~Ref. 13! is similar to that
of ruby14 and is characterized by the two wide absorpti
bands due to transitions from the ground state4A2g of the
Cr31 ion to the excited cubic-field terms4T2g and 4T1g .
Below these bands, sharp lines are observed and assign
the spin-forbidden transitions to2Eg and 2T1g .15 These are
optical transitions between the multiplets with the same c
figuration (t2)3 as the ground state4A2g . On the other hand
the broad bands are due to the transitions to the states o
configuration (t2)2e different from the ground states an
their energies are nearly proportional to cubic crystall
field 10Dq. Therefore these bands are broadened by str
electron-phonon interaction while the spin-forbidden lev
2Eg and 2T1g do not suffer effectively from phonon broad
enings so that they are much sharper. Taking accoun
these facts, we adopt the model of localized electrons
each Cr31 ion in analyzing the magnetoelectric as well as t
SHG spectrum.

Besides the cubic field, the Cr31 ion is affected by the
field of low symmetryVtrig corresponding to the symmetr

e
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9588 57MUTO, TANABE, IIZUKA-SAKANO, AND HANAMURA
C3 of the environment around the ion. The fieldVtrig can be
written as a sum of the conventional trigonal fieldVaxial and
the twisted fieldVtwist as

Vtrig5Vaxial1Vtwist , ~2.9!

Vaxial5Vaxial,g1Vaxial,u5Vtrig
c @T2gx0#1Vodd@T1ua0#, ~2.10!

Vtwist5Vtwist,g1Vtwist,u5Vtwist,g@T1ga0#1Vtwist,u@T2ux0#.
~2.11!

The Vaxial,g and Vaxial,u will be called conventional trigona
field in this paper, and denoted asVtrig

c }3z22r 2 and Vodd

}z, respectively. They have been assumed to be domina
many previous treatments.11,14Note that they haveC3v sym-
metry around thez axis. From the real crystalline and sp
structures of antiferromagnetic Cr2O3, however, we find that
they also are affected by the twisted crystalline fieldVtwist
5Vtwist,g1Vtwist,u . The newly introduced crystalline field
Vtwist ~Ref. 16! reflects the fact that the layers of three ox
gen ions above and below a Cr31 ion are twisted from each
other. These crystalline fields are irreducible tensor opera
with C3 symmetry as denoted in Eqs.~2.10! and ~2.11!.17

These fieldsVtwist have the following angular dependenc
Vtwist,g}yz(3x22y2) andVtwist,u}y(3x22y2).

It will be seen in the following sections thatVaxial and
Vtwist contribute, respectively, to the magnetoelectric and
second-order susceptibilities.

The wave functions adapted to theOh andC3 symmetry
for the ground and excited states will be called trigonal ba
and are given in the Appendix for the threed electrons of a
Cr31 ion in a Cr2O3 crystal. They are used to evaluate t
matrix elements of operatorsPx andMx .

The spin-orbit interactionHso,

Hso5(
i

zsi• l i , ~2.12!

may be put in the following form when working within th
manifold of (4A2g ,4T2g ,4T1g):18

Hso5lS•L, ~2.13!

whereS andL are the total spin and the angular momentu
operator, respectively. The parameterl is equal to one-third
of the single 3d electron spin-orbit coupling parameterz.

The effects of the spin-orbit interactionHso and the crys-
talline field of low symmetryVtrig will be taken into account
as perturbation on these states. However, the first-order
turbation energies, i.e., diagonal components of these pe
bations as well as the effects of the internal magnetic fie
will be included in the unperturbed energies, e.g., for4A2g
and 4T2g , as follows:

E~4A2gMs!52mBMsHi , ~2.14!

E~4T2gMsx0!5E02DE2mBMsHi , ~2.15!

E~4T2gMsx6!5E02mBMsHi6
1

2
lMs , ~2.16!

where the nonmagnetic ground state is chosen as the o
of the energy,Hi is the internal magnetic field at theA1 site,
in

rs

e

s

er-
r-
,

in

E0 is the excitation energy to4T2gxm , andDE is the split-
ting between4T2gx0 and 4T2gxm due to the crystalline field.
The off-diagonal part ofVtrig and Hso put together is re-
garded as an essential perturbation and is denoted asH8 in
the following treatment.

B. Magnetoelectric susceptibility

The polarization rotationu and ellipticity e in the reflec-
tion on the crystal surface are described in terms of the m
netoelectric susceptibilitya' as8,19

u1 i e52a'

11n'

12n'

, ~2.17!

wherea'5axx(v)5ayy(v) is the component of the mag
netoelectric susceptibility tensor andn' is the refractive in-
dex given byn'

2 5«xx(v)5«yy(v), i.e., the dielectric func-
tion in thexy plane. The contribution from Cr31 ions at the
A1 site to the magnetoelectric susceptibilityaxx(v) is ex-
pressed as

axx,A1
~v!5

N

«0c\(
i ,n

H ^ i uMxun&^nuPxu i &
vni2v2 iGni

1
^ i uPxun&^nuMxu i &

vni1v1 iGni
J r i , ~2.18!

whereN is the number density of the unit cells,\vni5En
2Ei is the excitation energy from the statei to n, Gni is
the dephasing rate, andr i is the population distribution of
the statei .

We write down expressions similar to Eq.~2.18! for other
sites in the unit cell and sum up the contributions from t
four sites. Then we find, by using the relations~2.6!–~2.8!,
that we may replace the numerators of Eq.~2.18! by
4Re@^ i uMxun&^nuPxu i &# at theA1 site simply to obtain the
expression for the~total! magnetoelectric susceptibilty of th
crystal. Note that 4N gives the number density of the Cr31

ions. It will be needless to say that the result agrees with
derived previously by a different method.19

In Sec. III, only the resonance term of Eq.~2.18! will be
dealt with, so that the expression to be used hereafter re

axx~v!5
4N

«0c\(
i ,n

Re@MinPni#

vni2v2 iGni
r i . ~2.19!

The thermal distributionr i depends on the spin polarizatio
of the ground state4A2g at the siteA1. The basesu i & andun&
in evaluating the matricesMin[^ i uMxun& and Pni
[^nuPxu i & in Eq. ~2.19! should be the eigenfunctions whic
diagonalize the spin-orbit interactionHso and the crystalline
field. Since we start from the cubic-field terms and inclu
the diagonal elements ofHso and Vtrig in the unperturbed
energy of the cubic-field terms as mentioned above, only
off-diagonal components ofHso andVtrig appear in the per-
turbed expressions of the numerators in Eq.~2.19!.

C. Second-order susceptibilities

Second-order optical susceptibilityx(2v;v,v) under
nearly resonant pumping of the4T2g state of the Cr31 ion
comes from two processes. In one process, two fundame
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photons excite the ion virtually from the ground4A2g state to
the 4T2g state through the two successive electric-dip
transitions and then the second harmonics are generate
the magnetic-dipole transition back to the ground state. T
is described by the susceptibilityxm[xxxx

mee(2v,v,v). In an-
other process, the excitation process is the same as
former case and the second harmonics are generated b
electric-dipole transition. This is described byxe

[xxxx
eee(2v,v,v). The superscriptsm(e) and twoe’s of x

indicate the magnetic~electric! dipole momentMx(Px) for
the second harmonics and the two electric-dipole mome
Px and Px for the two fundamentals in this order, and su
scriptsx, x, andx denote the polarization directions of th
dipole moments in the same order, wherez andx axes have
been chosen along the threefold (C3) and twofold (C2x)
axes of the Cr2O3 crystal, respectively. Note that the prese
choice is different from that of Fiebiget al.10

First, let us write down the expressions forxm and xe

under off-resonant conditions where the damping effec
negligible. Thesex ’s are the contribution from the Cr31 ions
at theA1 site ~see below!. With N the number density of uni
cells andn the refractive index for the fundamentals, respe
tively, the expression forxm is given by

xm5
Nn

e0c\2(i
S (

m,k

~M PP! imki

~vmi22v!~vki2v!

1 (
m,m8

~PM P! imm8 i

~vmi1v!~vm8 i2v!

1(
k,m

~PPM! ikmi

~vmi12v!~vki1v!D r i , ~2.20!

wherevmi , for example, is the energy difference betwe
the statesum& and u i & ~divided by\) and

~M PP! imki5~Mx! im~Px!mk~Px!ki , ~2.21!

~PM P! imm8 i5~Px! im~Mx!mm8~Px!m8 i , ~2.22!

~PPM! ikmi5~Px! ik~Px!km~Mx!mi , ~2.23!

and r i5r(4A2gMs) describes thermal distribution in th
ground state4A2g .

The electric-dipole contribution to the second-harmo
generationxe is calculated in a similar way:

xe5
N

e0\2(i
S (

m,k

~ P̄PP! imki

~vmi22v!~vki2v!

1 (
m,m8

~PP̄P! imm8 i

~vmi1v!~vm8 i2v!

1(
k,m

~PPP̄! ikmi

~vmi12v!~vki1v!D r i , ~2.24!

where

~ P̄PP! imki5~Px! im~Px!mk~Px!ki , ~2.25!
e
by
is

the
the

ts
-

t

is

-

c

~PP̄P! imm8 i5~Px! im~Px!mm8~Px!m8 i , ~2.26!

~PPP̄! ikmi5~Px! ik~Px!km~Px!mi . ~2.27!

We have considered here the case where both the funda
tal and second harmonics are linearly polarized along theC2x
axis. Other components of the tensorx are derived by the
symmetry consideration as shown in Sec. VI.

On summing up the contributions from the four Cr31 ions
in the unit cell by using relations~2.6!–~2.8!, we havex total

m

below TN as

x total
m 5

4Nn

e0c\2 (
i

S (
m,k

i Im~M PP! imki

~vmi22v!~vki2v!

1 (
m,m8

i Im~PM P! imm8 i

~vmi1v!~vm8 i2v!

1(
m,k

i Im~PPM! ikmi

~vmi12v!~vki1v!D r i , ~2.28!

x total
e 5

4N

e0\2 (
i

S (
m,k

i Im~ P̄PP! imki

~vmi22v!~vki2v!

1 (
m,m8

i Im~PP̄P! imm8 i

~vmi1v!~vm8 i2v!

1(
k,m

i Im~PPP̄! ikmi

~vmi12v!~vki1v!D r i . ~2.29!

In the subsequent treatments, we are mainly intereste
the resonance effect, so that only the first term of these
pressions will be kept hereafter, and the subscript ‘‘tota
will be dropped for simplicity when there is no fear of co
fusion:

xm5
4Nn

e0c\2 (i ,m,k
r i

i Im~M PP! imki

~vmi22v!~vki2v!
, ~2.30!

xe5
4N

e0\2 (i ,m,k
r i

i Im~ P̄PP! imki

~vmi22v!~vki2v!
. ~2.31!

Probably, it is worth pointing out that these expressions
main valid also in the paramagnetic phase, where the sp
group isR3̄c and the time-reversal operationQ is no longer
involved. This can be seen as follows. First of all, we wr

2i Im~M PP!5~M PP!2~M PP!* , ~2.32!

2i Im~ P̄PP!5~ P̄PP!2~ P̄PP!* . ~2.33!

Next, we remember that

^FuQ21ÂQuC&* 5^QFuÂuQC&. ~2.34!

If the suffix i † is defined by

QF i5F i †, ~2.35!

then, we have, for example,
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~Mx! im* 52~Mx! i †m†, ~Px! im* 5~Px! i †m†. ~2.36!

These relations enable us to replace the second term on
right-hand side of Eqs.~2.32! and~2.33! by the first term but
with daggered suffixes, that is,

2~M PP! imki* 5~M PP! i †m†k†i †,

2~ P̄PP! imki* 52~ P̄PP! i †m†k†i †. ~2.37!

Since F i has the same energy asF i † in the paramagnetic
phase, it is not difficult to arrive at the expressions

xm5
4Nn

e0c\2 (i ,m,k
r i

~M PP! imki

~vmi22v!~vki2v!
, ~2.38!

xe50, ~2.39!

which are valid in this phase. These equations also fol
from Eqs.~2.20! and ~2.24! by making use of the equation

Mx@B1#5Mx@A1#, Px@B1#5Px@A1#, ~2.40!

Mx@A2#5Mx@A1#, Px@A2#52Px@A1#, ~2.41!

Mx@B2#5Mx@A1#, Px@B2#52Px@A1#, ~2.42!

which follow from the relations

C i@B1#5C2x~t!C i@A1#, ~2.43!

C i@B2#5IC i@A1#, ~2.44!

C i@A2#5sd~t!C i@A1#, ~2.45!

valid in the paramagnetic phase.

III. MAGNETOELECTRIC SPECTRA

We are interested in the magnetoelectric spectrum un
nearly resonant pumping from the ground state4A2g into ~1!
the spin-allowed bands4T2g and 4T1g and ~2! the spin-
forbidden levels2Eg and 2T1g . The former processes ar
analyzed in Sec. III A and the latter in Sec. III B.

A. Spin-allowed transitions

In order to evaluate the magnetoelectric susceptibility
Eq. ~2.19!, we need the following matrix elements for th
transition from the ground state4A2gMs to the band
4T2gMsxm at theA1 site:17

^4A2gMsuMxu4T2gMsx7&

52
mB

2 (
6

^4A2gMsuL6u4T2gMsx7&

572A2i S mB

2 D , ~3.1!

^4T2gMsx7uP̄xu4A2gMs&5
i

2A3
^4T2gi P̄x@T1#i4A2g&. ~3.2!

Here the electric-dipole momentPx is accompanied with the
crystalline field Vaxial,u[V@T1ua0#, i.e., the conventiona
the

w

er

f

crystalline fieldVodd of odd parity, which has been used fo
analysis of the ruby spectrum. The effect of this crystalli
field is taken into account as perturbation on both sta
linked by the electric-dipole moment. The combined effe
of the electric-dipole momentPx5Px@T1ua6# and the crys-
talline fieldVodd5V@T1ua0# leads to the effective dipole mo
ment denoted asP̄x and defined by

^ i uP̄xun&52(
j 8

^ i uPxu j 8&^ j 8uVoddun&

DE~ j 8n!

2(
j 8

^ i uVoddu j 8&^ j 8uPxun&

DE~ j 8i !
, ~3.3!

with DE( j 8n)5E( j 8)2E(n). The j 8-dependent energy de
nominatorsDE( j 8n), etc. may be approximated by an ave
age excitation energy to odd statesDEo . Then the enclosure
relation enables us to decomposeP̄x into its irreducible com-
ponents as

P̄x52
1

2A3
(

m56
mP̄x@T2xm#1

1

A6
(

m56
mP̄x@Eum#

1
i

2 (
m56

P̄x@T1am#, ~3.4!

by the help of the Clebsch-Gordan coefficients. The relev
matrix elements are evaluated also by means of the Wig
Eckart theorem and the many-electron wave functions in
Appendix as

^4T2gx7uP̄xu4A2g&5
i

2A3
^4T2gi P̄x@T1#i4A2g&

5
i

A2
~2^u6u p̄xux7&7^u7u p̄xux0&!.

~3.5!

Thus the product of Eqs.~3.1! and ~3.5! is real so that this
channel can contribute toaxx . Other components of the
crystalline field in Eq.~2.11! have no contribution to the
present magnetoelectric susceptibilityaxx .

As to the resonant excitation to the stateu4T1ga6&, we
need the following matrix elements:

^4T1ga6uP̄xu4A2g&56
1

6
^4T1gi P̄x@T2#i4A2g&

5
21

A2
~6^u7u p̄xux6&1^u6u p̄xux0&!.

~3.6!

Here also the Wigner-Eckart theorem and the many-elec
wave functions in the Appendix were used. The one-elect
orbitals can be expressed in terms of real orbitals so that
easy to confirm^4T2gx6uP̄xu4A2g& in Eq. ~3.5! to be pure
imaginary while^4T1ga6uP̄xu4A2g& in Eq. ~3.6! is real. The
matrix element̂ 4A2guMxu4T1ga6& vanishes. Therefore we
need to take into account the perturbation of spin-orbit int
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action working on u4T1ga6& which makes the magnetic
dipole transition possible to the stateu4T1ga6& as follows:

^4A2gMsuM̄ xu4T1gMsa6&

5S 2
mB

2 D(
m

^4A2gMsuL2mu4T2gMsxm&

3
^4T2gMsxmuHsou4T1gMsa6&

E~4T1gMsa6!2E~4T2gMsxm!

5S mB

2 D ~72A2i !
ilMs

2DE1
56

mBlMs

A2DE1

, ~3.7!

where

DE1[E~4T2gMsx6!2E~4T1gMsa6!. ~3.8!

The matrix elements of spin-orbit interactionHso are evalu-
ated by using the Wigner-Eckart theorem and Table II
Ref. 20 as

^4T2gMsx6uHsou4T1gMsa6&

5^4T2giVsoi4T1g&
1

2A3
K 3

2
MsU32 Ms10L

3^T2x6uT1a6T1a0&

5
i

2
Msl, ~3.9!

with l[z/3. The double barred matrix element^t2ivsoi t2&
of the spin-orbit interaction for at2 electron is given by 3i z.

Now we can evaluate the magnetoelectric susceptib
axx(v) for the spin-allowed transitions. Under nearly res
nant pumping of4T2gx6 , axx(v) is obtained by inserting
Eqs.~3.1! and ~3.2! into Eq. ~2.19! as follows:

axx
~a!~v!5ayy

~a!~v!

52A0(
Ms

r~Ms!

3H 1

E~4T2gMsx1!2E~4A2gMs!2v2 iGa

2
1

E~4T2gMsx2!2E~4A2gMs!2v2 iGa
J

.A
$~E* 2v!22Ga

2%12iGa~E* 2v!

~E* 2v!21Ga
2

, ~3.10!

where

E* 5(
6

1

2
$E~4T2gMsx6!2E~4A2gMs!%,

A05
N

A6

mB

e0c
^4T2gi P̄x@T1#i4A2g&, and A5A0l^Ms&.

~3.11!

Here we include the diagonal components ofHso in the
eigenenergies, i.e.,
f

y
-

E~4T2gMsx6!5E06
1

2
lMs , and ^Ms&[(

Ms

Msr~Ms!,

~3.12!

and neglectMs dependence of the energy denominator in E
~3.10! where ^Ms& denotes the magnetization at sublatti
A1. Here and hereafter~Secs. III and IV! we set\51 for
simplicity. The spin-orbit interaction in Eq.~3.12! is evalu-
ated in a way similar to Eq.~3.9! as follows:

^4T2gMsx6uHsou4T2gMsx6&

5^4T2giVsoi4T2g&
1

2A3
K 3

2
MsU32 Ms10L

3^T2x6uT2x6T1a0&

52
A5

3A2
~3i z!

Ms

3A3
A3

5S 6 i

A2
D

56
Ms

2
l. ~3.13!

The magnetoelectric spectrumaxx
(b)(v) at 4T1gam is theoreti-

cally derived to show characteristics different from that
4T2gx6 . Both the matrix elements ofP̄x @Eq. ~3.6!# andM̄x
@Eq. ~3.7!# are real, resulting in the finite contribution eve
after summing over four ions in the unit cell. The magne
electric susceptibilityaxx

(b)(v) is expressed as

axx
~b!~v!5ayy

~b!~v!

52(
Ms

(
6

B~Ms!r~Ms!

E~4T1gMsa6!2E~4A2gMs!2v2 iGb

,

~3.14!

whereB(Ms)52A0lMs /DE1. First, when we neglectMs

dependence of energy denominator,axx
(b)(v) is proportional

to the sublattice magnetization̂Ms&. Therefore bothaxx
(a)

and axx
(b) are finite only below Ne´el temperature in accor

dance with the fact that the system loses both inversion
time-reversal symmetry below Ne´el temperature. Second, w
have included the relaxation ratesGa andGb in Eqs. ~3.10!
and~3.14! in accordance with causality requirement. The re
and imaginary parts of22axx(v)(n'11)/(n'21) describe
the polarization rotation and ellipticity of light reflected
the crystal surface, respectively. Usually, as Eq.~3.14!
shows, the rotation spectrumu(v) is dispersive while the
ellipticity spectrum is of absorptive type. This is the case
4T1ga6 . The spectrum characteristics are reversed for
case of 4T2gx6 as Eq.~3.10! shows. This comes from the
fact that two levels4T2gMsx1 and 4T2gMsx2 are split off
by the spin-orbit interactionlMs(,Ga), and contribute to
the magnetoelectric spectrum with opposite sign. These
tures of the spectrum appear to be in agreement with
observed spectra,8 as will be shown in the next section. O
the other hand, two states of4T1gMsa6 have the contribu-
tion with the same sign so that the magnetoelectric susce
bility is of ordinary type.
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B. Spin-forbidden transition

In this subsection, we will propose a microscopic mod
to explain the magnetoelectric spectra of the spin-forbid
transitions to2Eg and 2T1g from the ground state4A2g .

The magnetic-dipole transition between the level2Eg and
the ground state4A2g becomes possible with assistance
the spin-orbit interactionHso. This matrix element is evalu
ated by perturbational method as

^4A2gMsuM̄ xu2EgMs8um&

5S 2
mB

2 D(
6

^4A2gMsuL7u4T2gMsx6&

3
^4T2gMsx6uHsou2EgMs8um&

E~2EgMs8um!2E~4T2gMsx6!
. ~3.15!

As long as we discuss the case of such low temperature
T!TN , we may choose the ground state4A2gMs53/2 at the
A1 sublattice and then we have the finite matrix element
Eq. ~3.15! only for the levelu2EgMs851/2u2&. The matrix
element of spin-orbit interaction in Eq.~3.15! is calculated
by using the Wigner-Eckart theorem and the Wigner and
Clebsch-Gordan coefficients as follows:20

^4T2g3/2x1uHsou2Eg1/2u2&

5^4T2giVsoi2Eg&~21!
1

2 K 3

2

3

2
121U12 1

2L
3^T2x1T1a1uEu2&

5
2A2

3
~3A2i z!S 21

2 D 1

A2
S 2

i

A3
D

52A2

3
z. ~3.16!

Then Eq.~3.15! is obtained as

^4A2g3/2uM̄ xu2Eg1/2u2&

5S 2
mB

2 D ~22A2i !S 2A2

3
z D /DEdq

5A2imBS 2A2

3
z/DEdqD , ~3.17!

where DEdq[E(2Eg1/2u2)2E(4T2g3/2x1). The effective

electric-dipole momentP̄̄x is also evaluated in a similar wa
as

^2Eg1/2u2u P̄̄xu4A2g3/2&5
^2Eg1/2u2uHsou4T2g3/2x1&

E~2Eg1/2u2!2E~4T2g3/2x1!

3^4T2g3/2x1uP̄xu4A2g3/2&

5S 2A2

3
z/DEdqD S i

2A3
D

3^4T2gi P̄x@T1#i4A2g&. ~3.18!

Therefore the magnetoelectric susceptibility at2Eg1/2u2 is
finally expressed as
l
n

f

as

f

e

axx
~c!~v!52

A0~A2/3z/DEdq!
2

E~2Eg1/2u2!2E~4A2g3/2!2v2 iGc

. ~3.19!

Note that the ellipticity spectrum e(v)5

22Im@axx
(c)(v)#(n'11)/(n'21) is of Lorentzian form,

i.e., of absorptive type, and that the rotation spectr
u(v)522Re@axx

(c)(v)#(n'11)/(n'21) is of dispersive
type in contrast to those at4T2g .

The spin-orbit interaction is smaller than but of the sa
order of magnitude as the internal magnetic field splittin
Therefore it is a better approximation to diagonalize the sp
orbit interactionHso within the manifold of4T2gMsxm . The
state u4T2g3/2x2& is coupled to u4T2g1/2x0& and
u4T2g21/2x1& by the matrix

F 2 3
2 mBHi1

1
2 K2 3

4 l 1
2A 3

2 l 0

1
2A 3

2 l 2 1
2 mBHi2K A1

2
l

0 A1

2
l 1

2 mBHi1
1
2 K2 1

4 l

G ,

(3.20)

whereHi denotes the internal field andK5^xmuv trig
c uxm&5

2(A2/3)^4T2giV@T2gx0#i4T2g& is the strength of the con
ventional trigonal field, so thatDE in Eq. ~2.15! is given by
3
2 K. When the lowest eigenstateu4T2g3/2x2* & is denoted by

u4T2g3/2x2* &5au3/2x2&1bu1/2x0&1gu21/2x1&, ~3.21!

the stateu2Eg21/2u1& is shown to contribute to the magne
toelectric susceptibility with the same order of perturbatio
as fromu2Eg1/2u2&. The effective magnetic-dipole momen

M̄ x and electric oneP̄̄x are evaluated in terms of the coeffi
cientsa, b, andg as follows:

^4A2g3/2uM̄ xu2Eg21/2u1&

5^4A2g3/2uMxu4T2g3/2x2* &

3
^4T2g3/2x2* uHsou2Eg21/2u1&

E~2Eg21/2u1!2E~4T2g3/2x2* !

5a~2A2imB!$b* ^4T2g1/2x0uHsou2Eg21/2u1&

1g* ^4T2g21/2x1uHsou2Eg21/2u1&%/DEdq

5~2A2imB!SA2

3
z/DEdqD

3a~b* /A322g* /A15!, ~3.22!

where the energy denominator E(2Eg21/2u1)
2E(4T2g3/2x2* ) is approximated to be equal toDEdq , and
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^2Eg21/2u1u P̄̄xu4A2g3/2&

5
^2Eg21/2u1uHsou4T2g3/2x2* &

E~2Eg21/2u1!2E~4T2g3/2x2* !

3^4T2g3/2x2* uP̄xu4A2g3/2&

5
i

2A3
^4T2gi P̄x@T1#i4A2g&SA2

3
z/DEdqD

3a* ~b/A322g/A15!. ~3.23!

As a result, the magnetoelectric susceptibility atu2Eg21/2u1&
is evaluated as follows:

axx
~c8!~v!5

A0~A2/3z/DEdq!
2R

E~2Eg21/2u1!2E~4A2g3/2!2v2 iGc8

, ~3.24!

with

R5U a

A3
S b* 2

2

A5
g* D U2

. ~3.25!

It is noted here that the signal Eq.~3.24! at u2Eg21/2u1& has
the opposite sign from that, Eq.~3.19!, at u2Eg1/2u2&.

Finally we will discuss the magnetoelectric spectrum
2T1g . For this purpose, we need the following matrix e
ments of spin-orbit interaction:

^2T1g1/2a2uHsou4T2g3/2x1&

52^2T1giVsoi4T2g&
1

A2

1

A3
K 1

2

1

2U32 3

2
121L

3^T1a2uT2x1T1a1&

52~A6i z!
1

A6

1

A2
A2

3

52
i

A3
z, ~3.26!

^2T1g1/2a0uHsou4T2g3/2x2&

52^2T1giVsoi4T2g&
1

A2

1

A3
K 1

2

1

2U32 3

2
121L

3^T1a0uT2x2T1a1&

52~A6i z!
1

A6

1

A2

1

A6

52
i

2A3
z. ~3.27!

The effective magnetic- and electric-dipole moments are
tained by using Eqs.~3.26! and ~3.27! similarly to Eqs.
~3.17! and~3.18!. The effective magnetic- and electric-dipo
moments coupled by the spin-orbit interaction through
state 4T2g are both real:
t

-

e

^4A2g3/2uM̄ xu2T1g1/2a0&5
1

A6

mBz

DEdq8
,

^4A2g3/2uM̄ xu2T1g1/2a2&52A2

3

mBz

DEdq8
,

^2T1g1/2a0u P̄̄xu4A2g3/2&5
1

12

z^4T2gi P̄x@T1#i4A2g&

DEdq8
,

^2T1g1/2a2u P̄̄xu4A2g3/2&5
1

6

z^4T2gi P̄x@T1#i4A2g&

DEdq8
,

~3.28!

with DEdq8 5E(2T1g)2E(4T2g). We have another channe
giving rise to the real electric-dipole transition to the sta
u2T1g1/2a0& through the stateu4T1g3/2a2&. To evaluate this
effective electric-dipole moment, we use Eq.~3.6! and the
following spin-orbit interaction:

^2T1g1/2a0uHsou4T1g3/2a2&

52^2T1giVsoi4T1g&
1

A2

1

A3
K 1

2

1

2U32 3

2
121L

3^T1a0uT1a2T1a1&

53A2i z
1

A6

1

A2

i

A2
52

A3

2
z. ~3.29!

This channel also gives the real electric dipole as

^2T1g1/2a0u P̄̄xu4A2g3/2&52
z

4A3

^4T1gi P̄x@T2#i4A2g&

DEdq9
,

~3.30!

whereDEdq9 5E(2T1g)2E(4T1g). Then the magnetoelectri
susceptibilityaxx

(d)(v) at 2T1g is evaluated at low tempera
tures as

axx
~d!~v!52A0S z

2A3DEdq8
D 2

3F 4

E~2T1g1/2a2!2E~4T2g3/2!2v2 iGd

1
C21

E~2T1g1/2a0!2E~4T2g3/2!2v2 iGd
G ,

~3.31!

where

C5A3S DEdq8

DEdq9
D ^4T1gi P̄x@T2#i4A2g&

^4T2gi P̄x@T1#i4A2g&
.

The spin-orbit splitting within the multiplets2Eg and 2T1g
vanishes for the configuration (t2)3. The energy splitting be-
tween u2T1g1/2a2& and u2T1g1/2a0& comes from the inter-
play between the spin-orbit interaction and the crystall
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field. Hybridization of the multipletu4T1gMsam& by the spin-
orbit interaction can also be taken into account by

u4T1g3/2a2* &5au3/2a2&1bu1/2a0&1gu21/2a1&,
~3.32!

with the same coefficients as Eq.~3.21!. Then the state
u2T1g21/2a1& can contribute toaxx(v) with the same order
of perturbations as foru2T1g1/2a2&. The magnetic-dipole
momentM̄ x is evaluated as

M̄ x5^4A2g3/2uMxu4T2g3/2x2* &

3
^4T2g3/2x2* uHsou2T1g21/2a1&

E~2T1g21/2a1!2E~4T2g3/2x2* !

52A2

3

mBz

DEdq8
S ab*

2A6
D ~3.33!

and the electric-dipole moment is

P̄̄x5
^2T1g21/2a1uHsou4T2g3/2x2* &

E~2T1g21/2a1!2E~4T2g3/2x2* !

3^4T2g3/2x2* uP̄xu4A2g3/2&

1
^2T1g21/2a1uHsou4T1g3/2a2* &

E~2T1g21/2a1!2E~4T1g3/2a2* !

3^4T1g3/2a2* uP̄xu4A2g3/2&

52
a* bz

12A3DEdq8
^4T2gi P̄x@T1#i4A2g&

2
a* bz

12DEdq9
^4T1gi P̄x@T2#i4A2g&. ~3.34!

Therefore the magnetoelectric susceptibility atu2T1g21/2a1&
is evaluated as follows:

axx
~d8!~v!5A0S z

2A3DEdq8
D 2

3
R8

E~2T1g21/2a1!2E~4A2g3/2!2v2 iGd

,

~3.35!

with R85uab* u2(11C)/(24A2) at sufficiently low tem-
peratures. These magnetoelectric spectra are compared
the observed ones8 in Sec. IV. These contributions are, how
ever, also shown to vanish above the Ne´el temperature be
cause the equal thermal distribution in the ground s
4A2gMs563/2 and61/2 cancels outaxx(v).

IV. COMPARISON
WITH MAGNETOELECTRIC EXPERIMENTS

The theoretical results obtained in Sec. III are compa
with the observed spectra of ellipticity and polarization ro
tion around the transition frequency to the2Eg , 2T1g , and
ith

te

d
-

4T2g states of Cr2O3 crystal in this section. We also predic
these spectra at4T1g .

We start from the spectra at the spin-allowed transition
4T2g . Krichevtsovet al.8 assigned the~positive! peak of el-
lipticity at 2.17 eV and~negative! bottom at 2.05 eV, respec
tively, to the absorptive-type spectrum of ellipticity due
the transitions to4T2gx6 and 4T2gx0. Here they assumed th
same magnitude of oscillator strengths and the opposite
for these two transitions. However, both of these assum
tions look very difficult to accept. These two characteristi
i.e., the positive ellipticity peak at 2.17 eV and the negat
bottom at 2.05 eV with the same magnitude, can be
plained very naturally in our model. The present model
fact gives us good agreement with the observed spectr
both ellipticity and rotation by using the material constan
obtained from other experiments as has been shown in
2. We chooseE* in Eq. ~3.10! at 90 K to be 2.12 eV, the
splitting E(4T2g3/2x1)2E(4T2g3/2x2)53l/2 by the spin-
orbit interaction to be 15 meV,14 and the relaxation rateGa
50.1eV.13,21The value 2A(n'11)/(n'21) is chosen as an
adjustable parameter in drawing Fig. 2 and will be found
be reasonable from numerical estimation as will be sho
below. The essential features of the observed spectra are
reproducible by these theoretical curves:~1! the positive
peak on the high-energy side and the negative valley on
low side have the same absolute values and the opposite
in the ellipticity spectrum at4T2g and ~2! the bell-shaped
spectrum of rotation with negative signals on both tails,
agreement with both observed spectra. This comes from
fact that two levels of4T2gx6 have the contribution to the
magnetoelectric spectrumaxx

(a)(v) with the same magnitude

FIG. 2. The spectra of linear absorption~Ref. 13!, polarization
rotation, and ellipticity at the spin-allowed transitions4T2g and
4T1g . White circles describe the observed data~Ref. 8! and solid
lines theoretical curves.
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but with the opposite sign as Eq.~3.10! shows. A small de-
viation of both tail parts may come from rather stro
electron-phonon coupling,21 as the present model is trying t
describe this effect solely in terms of single relaxation co
stantGa .

We will check the numerical magnitude of peak valuesua
and ea of the rotation and ellipticity spectra, 2A(n'

11)/@Ga
2(n'21)#. By using the number density of Cr31

ions 4N53.331028 m23 and the effective electric-dipole
moment P̄x50.9310231 C m, A/Ga

251025, and 2A(n'

11)/@Ga
2(n'21)#51024, in agreement with the observe

value.8 The effective dipole momentP̄x is estimated as the
atomic electric-dipole momentea0 (a05 Bohr radius! times
^Vodd&/DEo'0.1eV/10 eV.

The magnetoelectric spectrum at4T1g is simplified at
such a low temperature asT!TN5307.5 K into the follow-
ing form:

axx
~b!~v!522BS Ms5

3

2D 1

E** 2v2 iGb

, ~4.1!

where

E** 5
1

2(6 $E~4T1gMsa6!2E~4A2gMs!%. ~4.2!

The spectra of ellipticity and rotation at4T1g are of ordinary
form, i.e., absorptive and dispersive, respectively, in cont
to those at 4T2g . The maximum value 4B0(n'

11)/@GbuDE1u(n'21)# of the polarization rotationub and
ellipticity eb at 4T1g is compared to that at4T2g , where
B0(Ms)[A0lMs . We also assumed tha

^4T1gi P̄x@T2#i4A2g& has the same sign a

^4T2gi P̄x@T1#i4A2g&. The relative magnitude 2Ga
2/

(GbuDE1u) is estimated to be about 1/3. We also assumed
refractive indicesn' at 4T2g and 4T1g to be equal to each
other and Gb5Ga50.1 eV while the energy separatio
uDE1u between 4T1g and 4T2g is 0.6 eV. The spectra o
ellipticity and rotation are drawn in Fig. 2 by using the
material constants.

Signals of spin-forbidden transitions at2Eg and 2T1g
come from the higher-order perturbation of the spin-or
interactionHso than the spin-allowed ones. The signal pea
at 2Eg and 2T1g , however, happen to be higher than that
4T2g because the relaxation rates of2Eg and 2T1g levels are
by two orders of magnitude smaller than that of4T2g and
4T1g . The latter are electronic transitions between the d
ferent configurations of 4A2g(t2

3) and 4T2g(t2
2e) or

4T1g(t2
2e) so that they are broadened by the lattice vibrat

of the cubic field. On the other hand, the levels2Eg and 2T1g
come from the same configuration as the ground state4A2g
so that they are almost free from the lattice vibration of
cubic field. As a result, these transitions are rather sharp.
magnetoelectric signals atu2Eg1/2u2& andu2Eg21/2u1& are
dominant ones as calculated in Sec. III. The peak valu
u2Eg1/2u2& is 2A0(A2/3z/DEdq8 )2(n'8 11)/@Gc(n'8 21)#. As
discussed above, the relaxation constantGc is estimated to be
1 meV from the absorption spectrum and the magnetoele
spectra.8,13The energy splittingDEdq8 50.4 eV between4T2g

and 2Eg and the spin-orbit interactionz53l530 meV are
-
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used. The relative magnitude of signal peaks at2Eg to those
at 4T2g is expressed by the product of two factor
(4/9)@Ga

2/(Gcl)#(A6l/DEdq8 )2 and (n'8 11)(n'21)/@(n'8
21)(n'11)#. The first factor is estimated to be of an ord
of unity. The data of refractive indexn' at 2.1 eV andn'8 at
1.7 eV are not available for the Cr2O3 crystal, but the second
factor may be of an order of unity. Therefore the signal pe
at 2Eg become of the same order of magnitude or a lit
larger than that at4T2g . When we choose a single paramet
(n'8 11)(n'21)/@(n'8 21)(n'11)# to be 2, i.e.,n'8 52.1
andn'52.5, the magnetoelectric spectra are drawn in go
agreement with the observation8 as shown in Fig. 3. The
levelsu2E1g1/2u2& andu2E1g21/2u1& are split by the inter-
nal magnetic fieldmBHi524 meV and located at 1.705 eV
and 1.727 eV, respectively. The contributions to the mag
toelectric spectra from these levels have the opposite sign
Eq. ~3.19! and Eq.~3.24! show. The relative magnitudeR is
chosen to 0.2 to get the better fitting between the experim
tal and theoretical results although it is estimated to be of
order of 0.02 from Eq.~3.25!. Here we used the spin-orb
interactionl of an order of 10 meV, the internal fieldmBHi
about 20 meV at low temperature, and the trigonal crys
line field parameterK of an order of130 meV. The relax-
ation rateGc is chosen commonly to be 1 meV. Note that t
ellipticities at 2Eg1/2u2 and 2Eg21/2u1 have opposite
signs in agreement with observation8 although the authors o
Ref. 8 suspect that they should be of equal sign accordin
the theory developed in Refs. 22 and 23. As Fig. 3 shows,
have good agreement of the rotation spectrum between
experiment and the theory, but there remain two proble
The first is some positive background in the ellipticity spe

FIG. 3. The spectra of linear absorption~Ref. 13!, polarization
rotation, and ellipticity at the spin-forbidden transitions2Eg and
2T1g . White circles from Ref. 8 and solid lines show theoretic
results.
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trum aroundE(2Eg21/2u1)51.727 eV. This may be re
lated to the excitonic levels proposed by Macfarlane a
co-workers.22,23 The second problem is that the observ
relative magnitudeR of the signals atu2Eg1/2u2& and
u2Eg21/2u1& is by one order of magnitude larger than t
theoretical result Eq.~3.25!. This may come from the uncer
tainty of material constantsK, mBHi , andl, and/or from the
vibronic effect. In the present model, we have used the st
model of crystalline fieldVtrig . However, when the vibronic
levels of the lattice vibration are taken into account, both
statesu4T2gx0& andu4T2gx6& may become more strongly hy
bridized than in the static model. This will result in larg
value ofR. However, this problem is beyond the scope of t
present treatment.

The three levels of the2T1g manifold, i.e.,u2T1g1/2a2&,
u2T1g1/2a0&, and u2T1g21/2a1&, contribute to the magneto
electric spectra equally in the lowest-order perturbations
spin-orbit interaction and lower-symmetry crystalline fie
The largest splitting in this manifold comes from the intern
magnetic field, which results in the splitting of an order
mBHi524meV. The splitting betweenu2T1g1/2a0& and
u2T1g1/2a2& is due to the combined effect ofHso andVtrig .
We have assigned these levelsu2T1g1/2a2&, u2T1g1/2a0&
and u2T1g21/2a1& at 1.75 eV, 1.757 eV, and 1.764 eV i
this order. Although the largest observed splitting 14 meV
a little smaller than the value 24 meV expected theoretica
the calculated magnetoelectric spectra seem to be in g
agreement with observed ones as Fig. 3 shows. HerC
in Eq. ~3.31! and R8 in Eq. ~3.35! are chosen to be 3
and 4, respectively. The value of C looks reasona
from ^4T1guuP̄x@T2#uu4A2g&/^

4T2guuP̄x@T1#uu4A2g&.A3 and
(DEdq8 /DEdq9 ).1. However, we have the same problem f
the valueR8 as forR. Also in this case, we have to assum
strong dynamical coupling betweenu4T1ga6& and u4T1ga0&
in Eq. ~3.32! as for Eq.~3.21!.

V. SHG SPECTRA

The purpose of the present section is to evaluate explic
the nonvanishing expressions ofxm andxe and to see if they
are able to explain the observed magnitudes of the susc
bilities and the interference effect.

We first calculate the dominant contributions toxm and
xe which contain the resonant denominator of signal f
quency 2v nearly equal to the excitation frequency fro
4A2g to 4T2gx6 or 4T2gx0 states.

During these calculations, we are able to confirm that b
xm and xe for the crystal vanish under theC3v symmetry
around Cr31 ions even though those for a single site do n
This was proved in a previous paper12 by using group theory.
As emphasized there, this is true even when we evaluatexm

and xe by taking account of perturbations o
Vaxial,g , Vaxial,u , andHso, to the higher orders. As long a
only the conventional trigonal crystalline field, i.e.,Vaxial, is
taken into account as perturbation on the trigonal bases
finite contributions toxm andxe at each of the four sites in
the unit cell turn out to be real to any order of perturbatio
Summing up the four contributions fromA1 , B1 , B2,
andA2 sites, which are calculated by using Eqs.~2.1!–~2.3!,
d

ic

e
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.
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e
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ti-

-
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.
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xm andxe are found then to vanish without exception. Th
is in agreement with Eqs.~2.30! and ~2.31!, because these
equations describe that only the imaginary part of (M PP)
and (P̄PP) can contribute toxm andxe, which implies that
Vtwist has to be included at least once in the perturbed
pressions of (M PP) and (P̄PP) to make them imaginary. In
the present paper, this fact will be verified in the Append
by calculating the relevant~reduced! matrix elements explic-
itly.

A. Magnetic susceptibility

Let us start fromxm of Eq. ~2.30!. We are interested only
in the term whereum&5u4T2gxm& and u i &5u4A2g&. The per-
turbed eigenfunctionsf j may be expressed in terms of th
unperturbed basis functionsc j as

f j5c j1(
j 8

c j 8

~H8! j 8 j

DE~ j j 8!
. ~5.1!

We have four possible cases leading to finite matrix eleme
of magnetic-dipole momentMx , i.e., ~1! MimÞ0, ~2! Mim8
Þ0, ~3! Mi 8mÞ0, and~4! Mi 8m8Þ0 for the unperturbedi
and perturbedi 8 ground states. The magnetic-dipole mome
M is the sum of angular momentumL and spin operatorS,
that is,M52mB(L12S) with mB the Bohr magneton. In the
first case, which results in the dominant contribution toxm,
the magnetic-dipole momentMx connects the excited state
4T2gxm to the ground state4A2g through the matrix element
given by Eq.~3.1!. Remember that the states4T2gxm cannot
be excited directly through the two-photon process from
ground state4A2g .24 One possibility is the indirect excita
tion via the states4T1gam which are closest to them an
linked by the fieldVtwist,g . The other is the mixing of the
state4T2gx0 with 4A2g due to this field. This also makes th
two-photon excitation to4T2gxm possible.

The corresponding term (xm per single ion atA1 site!
apart from the constant factorn/e0c is denoted asx (1)

m and
evaluated as

x~1!
m 52

mB

2

3 (
Ms ,m56

^4A2gMsuL2mu4T2gMsxm&Cmr0~Ms!

E~4T2gMsxm!2E~4A2gMs!22\v2 iGm

,

~5.2!

where

Cm5(
n,k

^4T2gMsxmuVtwist,gun&

E~4T2gMsxm!2E~n!

^nuPxuk&^kuPxu4A2gMs&

E~k!2E~4A2gMs!2\v

1(
k

^4T2gMsxmuPxuk&^kuPxu4T2gMsx0&

E~k!2E~4A2gMs!2\v

3
^4T2gMsx0uVtwist,gu4A2gMs&

E~4A2gMs!2E~4T2gMsx0!
. ~5.3!

In accordance with the causality requirement, we have in
duced the ratesGm(m561,0) to take account of the relax
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ation of the excited states4T2gxm(m561,0), as we want to
discuss the resonant second-harmonic generation betw
the ground state4A2g and the excited state4T2gxm(m5
61,0).

As mentioned above, we should choose only the sta
4T1gam as the intermediate stateun&, because the denomina
tor of the first factor in Eq.~5.3! then becomes smalles
among the possible states. But then, it turns out that
matrix element̂ 4T2gMsxmuVtwist,gu4T1gam& vanishes within
the present~strong field! approximation as shown in the Ap
pendix, so that only the second sum of Eq.~5.3! will be
considered hereafter.

The two-photon excitation process in Eq.~5.3! is evalu-
ated by using the closure approximation as follows:

(
k

Pxuk&^kuPx

E~k!2E~4A2gMs!2\v
5

Px
2

DEo
, ~5.4!

where DEo is the energy separation between 4p and 3d
states of the Cr31 ion. The dipole moment operatorPx is
then expressed in terms of the operator of typeT1a6 :a65
7(Px6 iPy)/A2. This makes it possible to decompose t
square

Px
25

1

2
$a1

2 1a2
2 2~a1a21a2a1!% ~5.5!

into its irreducible components by using tables of t
Clebsch-Gordan coefficients forT13T1.15 Thus Px

2 is de-
composed as

Px
25

1

A6
(

m56
mPx

2@T2xm#1
1

A6
Px

2@T2x0#

1
1

2A3
(

m56
mPx

2@Eum#2
1

A3
Px

2@A1#. ~5.6!

For example, the components with the symmetryT2x6 and
Eu6 are given by

Px
2@T2x6#5 (

m,m8
amam8^T1amT1am8uT2x6&

5
1

A6
~a6a01a0a662a7a7!, ~5.7!

Px
2@Eu6#52

1

A3
~a6a01a0a67a7a7!, ~5.8!

wherea05Pz belongs to the representationT1a0.
The matrix elements in Eq.~5.3! can now be evaluated in

terms of the reduced matrix elements by using the Wign
Eckart theorem:
en

es

e

r-

^4T2gMsxmuPx
2u4T2gMsx0&

5
m

A6
K 4T2gMsxmUPx

2@T2xm#

1
1

A2
Px

2@Eum#U4T2gMsx0L
52

m

6A3
S ^4T2giPx

2@T2#i4T2g&

2A3

2
^4T2giPx

2@E#i4T2g& D , ~5.9!

^4T2gMsxmuVtwist,g@T1a0#u4A2gMs&

5
1

A3
^4T2giVtwist,g@T1#i4A2g&. ~5.10!

Now the expression ofCm @Eq. ~5.3!# is simplified into the
following form:

Cm52
m

18

^4T2giPx
2@T2#i4T2g&2A3/2̂ 4T2giPx

2@E#i4T2g&
DEo

3
^4T2giVtwist,g@T1#i4A2g&

DE2
, ~5.11!

with the energy differenceDE2 defined by

DE25E~4A2gMs!2E~4T2gMsx0!. ~5.12!

Summing up these results, we obtain

x~1!
m 5 (

Ms ,m

iAmr0~Ms!

E~4T2gMsxm!2E~4A2gMs!22\v2 iGm

,

~5.13!

with

Am5A2mBmCm , ~5.14!

wherer0(Ms)[r(4A2gMs)5r i in Eq. ~2.30!. At 0 K and at
the siteA1, the spin distributionr0(Ms) is chosen to be unity
for Ms53/2 and zero otherwise.

The second contributionx (2)
m comes from case~2! Mim8

Þ0 and~3! Mi 8mÞ0. For case~2!, we can choose the state
um8&5u4T2gMsxn&(n561) which are connected to the sta
um&5u4T2gMs1nx0& by the off-diagonal components of th
spin-orbit interaction:

um&pert5um&1(
m8

um8&^m8uHsoum&

DE~mm8!

5um&1 (
n56

u4T2gMsxn&

3
^4T2gMsxnuHso

2nnu4T2gMs1nx0&

E~4T2gMs1nx0!2E~4T2gMsxn!
,

~5.15!
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whereum&pert[cm . Note that the spin-orbit interaction her
has been decomposed as follows:

Hso5 (
n56

Hso
2nn1Hso

z 5
l

2 (
n56

S2nLn1lSzLz .

~5.16!
Then the statesum&5u4T2gMs1nx0& can emit the second
harmonics 2v by the magnetic-dipole momentMx . Com-
pared with Eq.~5.15!, we can show the contribution from
case~3! Mi 8mÞ0 is negligible because of the large denom
nator involved. The ground stateu i &5u4A2gMs& is modified
only slightly byHso.

Now we can write down the expression ofx (2)
m in a simple

way:
x~2!
m 5(

m
(

m1 ,m2

^ i uMxum1&^m1uHsoum&^muHsoum2&^m2uPx
2Vtwist,gu i &

DE~mm1!$E~m!22\v2 iGm%DE~mm2!DE2DEo
. ~5.17!

In this equation the first term^ i uMxum1& is the same as that in case~1! @Eq. ~3.1!# and the last factor
^m2uPx

2Vtwist,gu i &/DE2DEo is equal toCn @Eq. ~5.3! or ~5.11!# as um2&5u4T2gMsxn&. Inserting these into Eq.~5.17! we have

x~2!
m 52

mB

2 (
Ms ,n56

Cnr0~Ms!
^4A2gMsuL2nu4T2gMsxn&

E~4T2gMs1nx0!2E~4T2gMsxn!

^4T2gMsxnuHso
2nnu4T2gMs1nx0&

E~4T2gMs1nx0!2E~4A2gMs!22\v2 iG0

3
^4T2gMs1nx0uHso

n2nu4T2gMsxn&

E~4T2gMs1nx0!2E~4T2gMsxn!

5
l2

4 (
Ms ,n56

A2nmBiCnr0~Ms!

E~4T2gMs1nx0!2E~4A2gMs!22v2 iG0
U^4T2gMsxnuS2nLnu4T2gMs1nx0&

E~4T2gMs1nx0!2E~4T2gMsxn!
U2

5
l2

8 (
Ms ,n56

iAmr0~Ms!

E~4T2gMs1nx0!2E~4A2gMs!22\v2 iG0
U S~S11!2Ms~Ms1n!

E~4T2gMs1nx0!2E~4T2gMsxn!
U2

. ~5.18!
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^MsuS2nuMs1n&5AS~S11!2Ms~Ms1n!, ~5.19!

and using

^4T2gxnuLnu4T2gx0&51/A2 ~n56 !, ~5.20!

we find thatx (2)
m may be written as

x~2!
m 5 (

Ms ,n56

iBmr0~Ms!

E~4T2gMs1nx0!2E~4A2gMs!22\v2 iG0

.

~5.21!

At 0 K and at the siteA1 , Ms53/2 is dominantly populated
@the same as in case~1!# and the only stateu4T2gMs

51/2x0&(n521) will contribute finitely tox (2)
m . The rela-

tive magnitude ofx (2)
m to x (1)

m may be estimated from

Bm5
3

8S l

DE3
D 2

Am, ~5.22!

with

DE3[ES 4T2g

1

2
x0D2ES 4T2g

3

2
x2D , ~5.23!

where
uDE3u5uDE2mBHi23l/4u;65 meV, ~5.24!

by Eqs.~2.15! and ~2.16! andl;10 meV.
So far we have calculated the contribution of a particu

single channel tox (2)
m , i.e., the term with the numerator

^ i uMxHsoum&^muHsoPxPxVtwist,gu i &. ~5.25!

There are, however, 12 similar terms to this order of pert
bation which can give rise to the same resonance effec
um&5u4T2gMs51/2x0& in the SHG. This is because we hav
12 possibilities to putHso andVtwist,g in the second factor of
Eq. ~5.25!. We cannot evaluate numerically all of these term
at present because of the poor information available to us
the highly excited intermediate states~especially those of
odd parity!. This point will be taken into consideration aga
in Sec. VI.

The matrix elements inCm @in Eq. ~5.3! or ~5.11!# can be
evaluated using the many-electron wave functions given
the Appendix. It then turns out thatCm is real. As a result
both x (1)

m and x (2)
m are pure imaginary under off-resona

condition so that both remain finite after summing up t
contributions from four Cr31 ions in a unit cell, in accor-
dance with Eqs.~2.28! and ~2.30!.

The total susceptibilityx total
m is written down with the

Cr31 ion density 4N as
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x total
m 5

4Nn

e0c
~x~1!

m 1x~2!
m !. ~5.26!

B. Electric susceptibility

The second-order susceptibilities due to electric-dip
momentx total

e are nonvanishing only below Ne´el temperature
TN where the crystal Cr2O3 loses the inversion symmetry
We list microscopic mechanisms forxe given by Eq.~2.31!
with 2v resonant to the transition between the ground s
4A2g and the excited states4T2g . These are required to lea
not only to a nonvanishing value of the susceptibility for
single Cr31 ion, but also to a finite value ofx total

e even after
the susceptibilities have been summed up over the four
ferent sites in the unit cell.

Two-photon excitation through a product of two electr
dipole moment operatorsPx is possible only to the state
4T1gam from the ground state4A2g .24 The spin-orbit inter-
actionHso

z 5lSzLz then mixes them with the states4T2gxm .
The latter statesum&5u4T2gMsxm& are brought down to the
ground state by the combined action of the electric-dip
moment Px and the crystalline field of odd parityVtwist,u

5V@T2ux0#. In this section, we keep the same notationP̄x as
before for this effective dipole moment and define it also
Eq. ~3.3!, but with Vodd now replaced byVtwist,u . The opera-
tor P̄x may be decomposed in its irreducible components

P̄x5
i

A6
(

m56
P̄x@Eum#1

1

2A3
(

m56
mP̄x@T1am#

1
i

2 (
m56

P̄x@T2xm#. ~5.27!

This is possible with the help of the Clebsch-Gordan coe
cients for the product ofT1ua6 andT2ux0 as in Eq.~5.6!.15

Note that the decomposition is quite different from the one
Eq. ~3.4!, because it isVtwist,u here that helps the electric
dipole transition.

Using thisP̄x , the first contribution to the electric susce
tibility per single ion,x (1)

e , is evaluated apart from the facto
1/e0 as

x~1!
e 5 (

Ms ,m56

^4A2gMsuP̄xu4T2gMsxm&

E~4T2gMsxm!2E~4A2gMs!22\v2 iGm

3
^4T2gMsxmuHso

z u4T1gMsam&

E~4T2gMsxm!2E~4T1gMsam!

3
^4T1gMsamuPx

2u4A2gMs&
DEo

r0~Ms!

5 (
Ms ,m56

iAeMsr0~Ms!

E~4T2gMsxm!2E~4A2gMs!22\v2 iGm

,

~5.28!

where
e

te

if-

e

y

s

-

n

Ae5
l

36A2DE1DEo

^4A2gi P̄x@T1#i4T2g&

3^4T1giPx
2@T2#i4A2g&, ~5.29!

with DE1 given by Eq.~3.8!. In deriving this equation, we
have used Eq.~5.9!, the Wigner-Eckart theorem forP̄x and
the matrix element ofHso

z calculated by means of the wav
functions given in the Appendix. For example, we find

^4A2gMsuP̄xu4T2gMsxm&

52
m

2A3
^4A2gMsuP̄x@T1a2m#u4T2gMsxm&

52
m

6
^4A2gi P̄x@T1#i4T2g&, ~5.30!

and

^4T2gMsxmuLzu4T1gMsam&5
i

2
. ~5.31!

It is possible to show that the matrix elements of Eq.~5.9!
and Eq. ~5.29! are real by using the many-electron wa
functions. As a consequence,Ae becomes real andx (1)

e is
pure imaginary under off resonance.

It is in order here to comment on the relation between
present treatment and that of Muthukumar, Valenti, a
Gros.11 These authors proposed a microscopic theory to
plain the observed nonreciprocal effect assuming
(CrO6)2 cluster model withD3d symmetry. In their model,
the ion at siteA1 is carried into the one at siteB2 with its
surrounding environment by the twofold rotation. Howev
we find that the covering operation for the cluster in the r
crystal is the inversion accompanied with the time revers
Along with this, conventional trigonal crystalline fields wit
even and odd symmetry and spin-orbit interaction were c
sidered in their treatment as perturbation on the trigo
states of the Cr31 ion. Within their model, they were able t
show that the spin-orbit interaction will lead to a linear d
pendence ofxe on the sublattice magnetization. It is, how
ever, unfortunate that they did not take the effect of magn
symmetry into account correctly. As shown in our previo
paper,12 the correct symmetry leads to the result that bothxm

and xe vanish belowTN with the conventional crystalline
fields when the contributions from the four Cr31 ions in a
unit cell are summed up, even though each single-site c
tribution toxm or xe does not. In order to obtain nonvanish
ing nonlinear susceptibilities, twisted crystalline field
around the Cr31 ion have to be introduced. Apart from this
their result agrees with ourx (1)

e in Eq. ~5.28! except for the
imaginary factor in the numerator, when the Zeeman en
gies in the molecular field which appear in the energy
nominators are neglected.
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The second contributionx (2n)
e corresponds to the secon

harmonic resonant to the transition between the ground s
and the excited state4T2gx0. In this case the electric-dipol
transition becomes possible in association with the odd
ity twisted crystalline fieldVtwist,u and the spin-orbit interac
te

r-

tion Hso, the intermediate statem1 being modified by the
spin-orbit interaction@Eq. ~5.15!#. The channel is similar to
that considered forx (2)

m , involving Hso twice but without
Vtwist,g . This time we can obtain a finite value without intro
ducingHso

z as inx (1)
e , so thatx (2n)

e can be simply written as
x~2n!
e 5(

m
(

m1 ,m2

^ i uP̄xum1&^m1uHsoum&^muHsoum2&^m2uPx
2u i &

DE~mm1!$E~m!22\v2 iGm%DE~mm2!DEo
. ~5.32!

Then we evaluate this as follows:

x~2n!
e 5 (

Ms ,m56
r0~Ms!S ^4A2gMsuP̄xu4T2gMsxm&^4T2gMsxmuHso

2mmu4T2gMs1mx0&

E~4T2gMs1mx0!2E~4T2gMsxm!

1
^4A2gMsuP̄xu4T1gMsam&^4T1gMsamuHso

2mmu4T2gMs1mx0&

E~4T2gMs1mx0!2E~4T1gMsam!
D ^4T2gMs1mx0uHso

m2mu4T1gMsam&

E~4T2gMs1mx0!2E~4A2gMs!22\v2 iG0

3
^4T1gMsamuPx

2u4A2gMs&

@E~4T2gMs1mx0!2E~4T1gMsam!#DEo

5 (
Ms ,m56

r0~Ms!S l

2D 2

$S~S11!2Ms~Ms1m!%S ~2m/6!^4A2gi P̄x@T1#i4T2g&3~1/A2!

DE3

1
~ i /2A3!^4A2gi P̄x@T2#i4T1g&3~ im/A2!

DE4
D ~2 im/A2!3~2m/3A2!^4T1giPx

2@T2#i4A2g&

@E~4T2gMs1mx0!2E~4A2gMs!22\v2 iG0#DE4DEo

5 (
Ms ,m56

~2 iA2ml2/288!$S~S11!2Ms~Ms1m!%r0~Ms!

E~4T2gMs1mx0!2E~4A2gMs!22\v2 iG0

S ^4A2gi P̄x@T1#i4T2g&
DE3

1
A3^4A2gi P̄x@T2#i4T1g&

DE4
D

3
^4T1giPx

2@T2#i4A2g&
DE4DEo

, ~5.33!

where we have made use of Eqs.~5.9!, ~5.19!, ~5.27!,

^4A2guP̄xu4T1gam&5
i

2
^4A2guP̄x@T2x2m#u4T1gam&5

i

2A3
^4A2gi P̄x@T2#i4T1g&, ~5.34!

and

^4T1gamuLmu4T2gx0&5 im/A2, ~5.35!

as in Eqs.~5.30! and ~5.31!. The energy differenceDE4 here is defined by

DE45E~4T2gMs1mx0!2E~4T1gMsam!. ~5.36!

At low temperatures, only the stateu4A2gMs53/2& at theA1 site is populated, so that the term withm521 will dominate on
the right hand side of Eq.~5.33!. As a result,x (2n)

e is simplified as

x~2n!
e 5

iBn
e

E~4T2g1/2x0!2E~4A2g3/2!22\v2 iG0

, ~5.37!

with

Bn
e5

A2l2

96
S ^4A2gi P̄x@T1#i4T2g&

DE3
1

A3^4A2gi P̄x@T2#i4T1g&
DE4

D ^4T1giPx
2@T2#i4A2g&

DE4DEo
. ~5.38!
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We note here thatDE3[E(4T2g1/2x0)2E(4T2g3/2x2).265 meV and DE4[E(4T2g1/2x0)2E(4T1g3/2a2).DE1

[E(4T2g3/2xm)2E(4T1g3/2am).21 eV. We may assume that^4A2gi P̄x@T1#i4T2g& and ^4A2gi P̄x@T2#i4T1g& are of com-
parable magnitude, so that the relative magnitude will be given byBn

e/Ae.3l/4uDE3u;1/7. AboveT.TN , this contribution
vanishes as it should.

There is another contribution corresponding to the second harmonic resonant to the transition between the ground
the excited state4T2gx0. We call this second-order nonlinear susceptibilityx (2)

e and evaluate it as follows:

x~2!
e 5 (

Ms ,m56
r0~Ms!S ^4A2gMsuP̄xu4T2gMsxm&^4T2gMsxmuHso

2mmu4T2gMs1mx0&

E~4T2gMs1mx0!2E~4T2gMsxm!

1
^4A2gMsuP̄xu4T1gMsam&^4T1gMsamuHso

2mmu4T2gMs1mx0&

E~4T2gMs1mx0!2E~4T1gMsam!
D ^4T2gMs1mx0uHso

m2mu4T2gMsxm&

E~4T2gMs1mx0!2E~4A2gMs!22\v2 iG0

3
^4T2gMsxmuHso

z u4T1gMsam&

E~4T2gMs1mx0!2E~4T2gMsxm!

^4T1gMsamuPx
2u4A2gMs&

@E~4T2gMsxm!2E~4T1gMsam!#DEo

5 (
Ms ,m56

r0~Ms!~l2/4!$S~S11!2Ms~Ms1m!%

E~4T2gMs1mx0!2E~4A2gMs!22\v2 iG0
S ~2m/6!^4A2gi P̄x@T1#i4T2g&3~1/A2!

DE3

1
~ i /2A3!^4A2gi P̄x@T2#i4T1g&3~ im/A2!

DE4
D ~1/A2!3~ ilMs /2!3~2m/3A2!^4T1giPx

2@T2#i4A2g&
DE3DE1DEo

5 i (
Ms ,m56

BeMsr0~Ms!

E~4T2gMs1mx0!2E~4A2gMs!22\v2 iG0

, ~5.39!

with

Be5
l3

64A2
S ^4A2gi P̄x@T1#i4T2g&

DE3
1

A3^4A2gi P̄x@T2#i4T1g&
DE4

D ^4T1giPx
2@T2#i4A2g&

DE3DE1DEo
~5.40!

using Eqs.~5.9!, ~5.19!, ~5.20!, ~5.30!, ~5.31!, ~5.34!, and ~5.35!. From the perturbational point of view, this process is o
order higher compared tox (2n)

e . The relative magnitude ofBe to Ae of Eq. ~5.29! is given by

Be5
3

8S l

DE3
D 2

Ae;0.02. ~5.41!

Note that the remark made after Eq.~5.25! may apply here as well.
There is one more contribution to the susceptibilityxe which leads to different intensities for the second harmon

generated from4T2gx1 and 4T2gx2 contrary tox (1)
e . This is obtained by replacingHso

z in Eq. ~5.28! by the conventional
trigonal fieldVtrig

c and is calledx (1a)
e :

x~1a!
e 5 (

Ms ,m56

^4A2gMsuP̄xu4T2gMsxm&

E~4T2gMsxm!2E~4A2gMs!22\v2 iGm

^4T2gMsxmuVtrig
c u4T1gMsam&

E~4T2gMsxm!2E~4T1gMsam!

^4T1gMsamuPx
2u4A2gMs&

DEo
r0~Ms!

5 (
Ms ,m56

iCa
emr0~Ms!

E~4T2gMsxm!2E~4A2gMs!22\v2 iGm

, ~5.42!

where

Ca
e52

^4A2gi P̄x@T1#i4T2g&

36A3DE1DEo

^4T2giVtrig
c @T2#i4T1g&^

4T1giPx
2@T2#i4A2g&. ~5.43!

A similar contributionx (1b)
e follows if we replaceVtwist,u and Vaxial,g in the equations given above byVaxial,u5Vodd and

Vtwist,g , respectively:
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x~1b!
e 5 (

Ms ,m56

^4A2gMsuP̄x
cu4T2gMsxm&

E~4T2gMsxm!2E~4A2gMs!22\v2 iGm

^4T2gMsxmuPx
2u4T2gMsx0&

DEo

^4T2gMsx0uVtwist,gu4A2gMs&

E~4A2gMs!2E~4T2gMsx0!
r0~Ms!

5 (
Ms ,m56

iCb
emr0~Ms!

E~4T2gMsxm!2E~4A2gMs!22\v2 iGm

, ~5.44!
t
c
r-

o

e
. E

nd

e

p

r

e
d

that

n-

lue

cep-
where

Cb
e5

1

2A3
^4A2gi P̄x

c@T1#i4T2g&mCm , ~5.45!

with Cm given by Eq.~5.11!. The effective dipole momen
P̄x

c is well known in the interpretation of the absorption spe
tra of ruby,15 and originates from the transition moment pe
turbed byVaxial,u[Vodd, which is exactlyP̄x employed in
Sec. III. It is to be noted that bothCa

e andCb
e may well be of

the same order of magnitude asAe of x (1)
e , althoughx (1a)

e

andx (1b)
e vanish because of the cancellation which occurs

the right hand sides of both Eqs.~5.42! and ~5.44! when
4T2gx1 and 4T2gx2 have the same energy.

Finally, the expression forx total
e is given by

x total
e 5

4N

e0
~x~1!

e 1x~2n!
e 1x~2!

e 1x~1a!
e 1x~1b!

e !. ~5.46!

C. Order estimation

In the present paper we neglect contributions of ord
higher than those considered in the previous subsections
timation of the orders of magnitude ofuxmu and uxeu around
2v nearly equal to the excitation energy from the grou
state 4A2g to the state4T2g will now be the subject of this
subsection. In general,uxeu is a few orders of magnitude
larger thanuxmu. However, they are shown to be of the sam
order of magnitude in the present problem, because thexe

process requires by one-order higher perturbation in the s
orbit interactionHso or the low-symmetry crystalline field
Vtrig for the transition in question. We are especially inte
ested in the magnitudes ofx (1)

m andx (1)
e which are supposed

to be dominant in Eqs.~5.26! and ~5.46!, respectively.
First, we define ideal quantities ofxm andxe in which all

the matrix elements ofM , P̄, andP in Eqs.~2.30! and~2.31!
take their nonvanishing unperturbed values, i.e.,

x0
m5

4Nn

e0c\2
M0m(

k

~PP!mk0

~vm22v!~vk2v!
, ~5.47!

and

x0
e5

4N

e0\2
P0m(

k

~PP!mk0

~vm22v!~vk2v!
. ~5.48!

As Eqs.~5.2! and~5.3! show, the absolute value ofux (1)
m u

is reduced by a factor̂Vtwist,g&/uDE2u compared toux0
mu,

whereuDE2u[E(4T2g)2E(4A2g), so that
-

n

rs
s-

in-

-

ux~1!
m u;ux0

mu
^Vtwist,g&
uDE2u

. ~5.49!

On the other hand, the electric susceptibilityx (1)
e can be

estimated from Eq.~5.28! as

ux~1!
e u;ux0

eu
l

uDE1u
^Vtwist,u&

DEo
, ~5.50!

with uDE1u[E(4T1g)2E(4T2g), because the electric-dipol
momentP becomes nonvanishing only with the aid of od
parity field, i.e.,Vtwist,u in the present problem, as Eqs.~3.3!
and ~5.27! show, i.e.,

uP̄u;ea0

^Vtwist,u&
DEo

, ~5.51!

wherea0 is the Bohr radius. We have assumed as usual
the intermediate stateu j 8& in Eqs.~3.3! and~5.27! is mainly
the 4p state of the Cr31 ion so that DEo of Eq. ~5.4!
;DE(pd).

Let us assume the following values for the material co
stants:DE(pd)510 eV, the spin-orbit coupling constantl
510 meV, ^Vtwist,g& ;^Vtwist,u&;0.1 eV, 4N53.331028

m23, uDE1u;1 eV, uDE2u;2 eV, the refractive index
n;1, and the relaxation constantGm in Eq. ~5.13! and Eq.
~5.28! ;0.1 eV.

The relative magnitude ofuxm/xeu is then estimated to be
of the order of unity:

Uxm

xeU; nmB

cea0

DE~pd!

^Vtwist,u&

^Vtwist,g&
l

uDE1u
uDE2u

;2, ~5.52!

where we have set the values of the physical constantsmB
5e\/2m 5 9.274310224 C m2/s, c52.9983108m/s, e
51.602310219 C, anda050.5292310210m. This is in
good agreement with the observation.10 The absolute magni-
tude of uxeu at 2v5@E(4T2gx6)2E(4A2g)#/\ is estimated
to be 1310212m/V, with e058.854310212 C2/mJ. This is
by one or two orders of magnitude smaller than the va
5310211m/V of LiNbO3 at l51.064mm.

VI. SPECTRA OF SECOND HARMONICS
AND INTERFERENCE EFFECT

In the present coordinate system, the second-order sus
tibilities xm andxe in the point group3̄m have the following
symmetries:

xm[xxxx
mee52xxyy

mee52xyxy
mee52xyyx

mee, ~6.1!

xe[xxxx
eee52xxyy

eee52xyxy
eee52xyyx

eee. ~6.2!
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As a result, the source term for the second harmonicsS:

S5m0S ¹3
]M

]t
1

]2P

]t2 D , ~6.3!

is expressed as follows:

S Sx

Sy

Sz

D 5
4v2

c2 S 2xmExEy2xe~Ex
22Ey

2!

xm~Ex
22Ey

2!12xeExEy

0
D , ~6.4!

or

S S1

S2

S0

D 5
4A2v2

c2 S ~2 ixm2xe!E2
2

~ ixm2xe!E1
2

0
D , ~6.5!

setting S65(Sx7 iSy)/A2 and E65(Ex7 iEy)/A2, after
Fiebiget al.10 From Eq.~6.4! it is clear that the spectra ofxm

andxe can be measured separately by observing the sec
harmonics linearly polarized alongx and y axes, respec-
tively, under the irradiation of fundamentals linearly pola
ized alongx or y axis.

Sincexe is linearly proportional to the magnetization o
the sublattice, it is possible to observe the magnetic dom
of the antiferromagnetic crystals by using the circularly p
larized fundamentals. From Eq.~6.5! the signal intensityI
}uSu2 for the circularly polarized light is expressed as

uSu2}~ uxmu21uxeu2!~ uE1u41uE2u4!22~xm8 xe92xm9 xe8!

3~ uE1u42uE2u4!, ~6.6!

wherexm[xm8 1 ixm9 andxe[xe81 ixe9 . The interference of
the second harmonics generated by the magnetic-
electric-dipole moments is described byD[22(xm8 xe9
2xm9 xe8), which is also proportional to the sublattice magn
tization, e.g., at theA1 sublattice. Therefore we can dete
the magnetic domains of the crystal through this interfere
factor D by using the circularly polarized light as the pum
source. When the magnetic domain to pump is fixed,
total signals of second harmonics show different spe
against positively and negatively circular-polarized fund
mentals.

In this section, we draw four spectra of the secon
harmonic generation, i.e.,uxmu2, uxeu2, and ux(s6)u2
[uxmu21uxeu26D, using the microscopic expressions ofxm

andxe derived in Sec. V.
The energy levels of4T2gMsxm(m561,0) are evaluated

by using Eqs.~2.15! and ~2.16! with the values estimated
from other experiments. The crystalline field splittinguDE3u
~between4T2gx0 and 4T2gxm) ~Ref. 8! was assumed to b
65 meV, the spin-orbit interactionl512 meV, and the inter-
nal magnetic field splittingmBHi525 meV. The nonmag-
netic level of 4T2gx6 , i.e., E0, is located atE052.19 eV.
We confine ourselves to sufficiently low temperatureskBT
!mBHi.300 K, so that we set the thermal distribution fun
tion r0(Ms)51 for Ms53/2 and 0 otherwise atA1 andA2
sublattices. From Eqs.~5.13!, ~5.21!, ~5.28!, and~5.33!, it is
found that the energy levels relevant to the resonant sec
harmonic generations are4T2gMs53/2x6 and 4T2gs
nd

ns
-

nd

-

e

e
a
-

-

d-

51/2x0. The positions of these energies are estimated fr
the result of Sec. IV as follows:

E~4T2gMs51/2x0!52.08 eV,

E~4T2gMs53/2x2!52.14 5eV, ~6.7!

E~4T2gMs53/2x1!52.164 eV.

A. Spectra of xm and xe

In order to compare the observedxm andxe spectra with
the calculated ones,xm given by Eq.~5.26! andxe given by
Eq. ~5.47!, we introduce several parameters, although
have seen that the most dominant terms are able to exp
the observed intensities roughly.

As to thexm spectrum, the value ofAm in Eq. ~5.13! and
the relative magnitudex (2)

m /x (1)
m ;nterms(3/8)(l/DE3)2 were

varied so as to obtain best fitting. Althoughntermsis supposed
to be 12 according to the argument following Eq.~5.25!, best
fit was found for nterms;20. The relaxation ratesG6

m of
4T2gx6 and G0

m of 4T2gx0 were chosen to be 40 meV an
20 meV, respectively.

The xe spectrum was also drawn with the parametersAe

and the ratio (x (2n)
e 1x (2)

e )/x (1)
e . The same values ofG6

e and
G0

e as forxm were assumed. Inclusion of (x (1a)
e 1x (1b)

e ) was
also tried to obtain better fit with the observed spectra.

The theoretical spectra ofuxmu2 and uxeu2 are shown in
Fig. 4. We may say that they reproduce the observed feat
of the spectra fairly well.

B. Interference effect

The interference effect will be most pronounced when
value ofD[22(xm8 xe92xm9 xe8) becomes of the same orde
of magnitude as that ofuxmu21uxeu2. If we define the phase
anglesum andue by

FIG. 4. Calculated spectra of SHG through the magnetic dip
~broken line! and the electric dipole~solid line! as a function of the
signal frequency in eV near the transition from4T2g to 4A2g at low
temperatures.
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xm5uxmuexp~ ium!, ~6.8!

xe5uxeuexp~ iue!, ~6.9!

we find

D52uxmuuxeusin~um2ue!, ~6.10!

so that the perfect interference will be attained when~1!
uxmu5uxeu and ~2! um2ue56p/2.

From the observed spectra, i.e., Fig. 5~b! of Ref. 10, we
find that these conditions are almost satisfied experiment
Theoretically, we have seen above that the first condit
uxmu;uxeu is nearly satisfied. However, it is by no mea
easy to make the second be satisfied near the frequencvs
[2v.@E(4T2g)2E(4A2g)#/\. The reasons are that~1!
both xm and xe must be pure imaginary, away from th
resonance, as Eqs.~2.30! and ~2.31! show, and~2! even in
the near resonance region, the phase differenceum2ue will
be very small, as long as the relaxation ratesG6

m ,G0
m are

assumed equal or nearly equal toG6
e ,G0

e . This means that
the present theory cannot explain the observed interfere
quantitatively. If only the phase ofxm is changed byp/2 or
xm multiplied by i for some reason, it will become possib
to reproduce the interference fairly well as shown in Fig.
Clearly, some effects involving dissipative process must
introduced to modify the expressions ofxm and/or xe in
order to overcome this difficulty. As such effects, we c
mention the phase changes due to the local field correcti25

and the cross relaxation.26 However, detailed treatments o
them must be left for another paper.

VII. CONCLUSION

The absolute values and the spectra of the ellipticity a
polarization rotation observed at the Cr2O3 crystal surface
have been theoretically well analyzed and explained by
microscopic model. First, we confirmed that only the re

FIG. 5. Calculated second-harmonic signals unders2 ~solid
line! ands1 ~broken line! circularly polarized incoming laser ligh
as a function of the signal frequency in eV. The difference sho
the interference effect. The phase ofxm has been changed byp/2
rather arbitrarily.
ly.
n

ce

.
e

d

ur
l

part of the product of the magnetic- and electric-dipole m
trix elements contributes to the magnetoelect
susceptibility.19 From this fact, only the conventional trigo
nal crystalline fieldsVaxial,g and Vaxial,u are effective in the
present phenomena in contrast to the second-harm
generation12 in which only Vtwist,g and Vtwist,u lead to finite
contribution. Second, two levelsu4T2gx7& split by the diag-
onal component of the spin-orbit interaction contribute w
opposite sign to the magnetoelectric susceptibility. This c
explain the spectrum structure of ellipticity and rotation
4T2g , i.e., not only the absolute value but also the sign
these signals, very well in contrast to the explanation by R
8. Third, the main spectrum structures at2Eg and 2T1g have
been well described by the present microscopic model us
the material constants determined by other experime
These transitions are spin forbidden so that the off-diago
components of the spin-orbit interaction must be involve
Therefore the product of electric- and magnetic-dipole m
ments is reduced by two orders of magnitude, but this red
tion is just compensated by the small relaxation rate of
relevant transitions. As a result, we can explain the la
peak signals at2Eg and 2T1g . The observed intensities o
the sidebands at2Eg21/2u1 and 2T1g21/2a1 are by one
order of magnitude larger than the present model of the st
crystalline field but we feel that this discrepancy may
resolved by introducing the dynamical hybridization betwe
4T2gx6 and 4T2gx0 and between4T1ga6 and 4T1ga0. This
problem must be left as one of the future problems.

Thus we may conclude that the three important facts
the magnetoelectric spectra observed on the surface of
Cr2O3 crystal are well understood by the present microsco
model.

We have derived explicit expressions of the resona
terms of the magnetic and electric susceptibilities which
important for the interpretation of the resonance seco
harmonic generation observed by Fiebiget al.10 It was con-
firmed that the crystalline fieldsVtwist,g andVtwist,u , together
with the spin-orbit interactionHso, acting on the trigonal
states as perturbations, lead to nonvanishing signals of S
and the interference betweenxm andxe below the Ne´el tem-
perature of Cr2O3. Here the judgment of reality of relevan
matrix elements has been essential to obtain finite res
We have also seen that the mechanism involvingVtwist could
indeed lead to observed magnitudes of the signal intens

It was found that the observed spectra in the region
4T2g for linearly polarized light could be reproduced fair
well by choosing reasonable values for the adjustable par
eters in the theoretical expressions forx. Apparently, some
effects to modify the phases of susceptibilities must be
volved. As the two such effects, we suggested in Sec. VI
modification due to the local field correction and the cro
relaxation. It was indeed possible to explain the interfere
by introducing a factor ofi for xm rather arbitrarily. The
origin of this factor offers a very interesting subject for fu
ther study. This will be treated in the near future togeth
with the effect of cross relaxation fromu4T2g3/2x2& to
u4T2g1/2x0& on xe .
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APPENDIX: WAVE FUNCTIONS
AND REDUCED MATRIX ELEMENTS

In this appendix we first give the wave functions for t
threed electrons in the trigonal environment and then deri
using these functions, the expressions for the reduced~or
double barred! matrix elements involved in the magnetic an
electric susceptibilities, i.e., in Eqs.~5.11! and~5.29!. It then
turns out that the latter matrix elements are all real, mean
that the nonlinear susceptibilties themselves are pu
imaginary in the absence of relaxation as they should be

The wave functions for the threed electrons of a Cr31 ion
in a Cr2O3 crystal are derived appropriate to theC3 symme-
try. The ground state of the threed electrons in this crystal-
line field is expressed by Hund’s coupling rule as

C~4A2gMs53/2!5 i ux1x2x0u, ~A1!

C~4A2gMs523/2!5 i u x̄1 x̄2 x̄0u, ~A2!

in terms of the Slater determinants describing the state
which the threed electrons occupy the threet2 states with
components61 and 0 of effective angular momentum alon
the C3 axis. For the notations and conventions adopted
the wave functions in theC3 symmetry, the reader is referre
to Ref. 15. The up and down spin orbitals for a single el
tron are represented without and with bars onx6 and x0
orbitals, as in Eqs.~A1! and ~A2!. The excited electronic
states were obtained from the original wave functions giv
in Ref. 15 by transforming thet2(j,h,z),t1(a,b,g), and
e(u,v) orbitals in the ordinary cubic coordinate system in
t2(x1 ,x2 ,x0), t1(a1 ,a2 ,a0), ande(u1 ,u2) in the present
coordinate system whose quantization axis is theC3 axis.
The wave functions obtained in this way are as follows:

C~4T2gMs53/2x1!5
1

A2
~ ux1x2u1u2ux2x0u2u!,

~A3!

C~4T2gMs53/2x2!5
1

A2
~ ux1x0u1u2ux1x2u2u!,

~A4!

C~4T2gMs53/2x0!5
1

A2
~ ux2x0u1u1ux1x0u2u!,

~A5!

C~4T1gMs53/2a1!5
2 i

A2
~ ux1x2u1u1ux2x0u2u!,

~A6!

C~4T1gMs53/2a2!5
2 i

A2
~ ux1x0u1u1ux1x2u2u!,

~A7!
,

,

g
ly

in

r

-

n

C~4T1gMs53/2a0!5
2 i

A2
~ ux2x0u1u2ux1x0u2u!,

~A8!

C~2EgMs51/2u1!5
1

A3
~2ux1 x̄1x2u1ux1x0x̄0u

2ux2 x̄2x0u!, ~A9!

C~2EgMs51/2u2!5
1

A3
~ ux1 x̄1x0u2ux1x2 x̄2u

1ux2x0x̄0u!, ~A10!

C~2T1gMs51/2a1!5
i

A6
~2ux1 x̄1x2u1ux1x0x̄0u

12ux2 x̄2x0u!, ~A11!

C~2T1gMs51/2a2!5
i

A6
~ ux1x2 x̄2u12ux1 x̄1x0u

2ux2x0x̄0u!, ~A12!

C~2T1gMs51/2a0!5
i

A6
~ u x̄1x2x0u1ux1 x̄2x0u

22ux1x2 x̄0u!. ~A13!

The d orbitals employed here may be expressed as

x152~A2d2* 2d1!/A3, ~A14!

x25~A2d22d1* !/A3, ~A15!

x05d0 , ~A16!

and

u152~d2* 1A2d1!/A3, ~A17!

u25~d21A2d1* !/A3, ~A18!

using the complex orbitals given by

d25~dx22y21 idxy!/A2, ~A19!

d15~dzx1 idyz!/A2, ~A20!

d05d3z22r 2, ~A21!

in the present coordinate system.
Let us confirm, before showing thatCm in Eq. ~5.11! is

real, that the matrix element ofVtwist,g connecting the state
4T2gMsxm and 4T1gMsam does vanish as long as we rema
within the strong field scheme. We can evaluate this ma
element using the three-electron wave functions given ab
and express it in terms of the one-electron integrals of
crystalline fieldv twist,g as follows:
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^4T2gMsxmuVtwist,g@T1a0#u4T1gMsam&

5
1

A2

2 i

A2
~m^ux1x2umuuVtwist,guux1x2umu&

2m^ux2mx0u2muuVtwist,guux2mx0u2mu&!

5
2mi

2
~^x1uv twist,gux1&1^x2uv twist,gux2&

2^x2muv twist,gux2m&2^x0uv twist,gux0&!

5
2mi

2
^xmuv twist,guxm&. ~A22!

It is not difficult to see botĥ x6uv twist,gux6& vanish, if we
express the orbitalsx6 in terms of the complex and then th
real d orbitals with the help of Eqs.~A14! and ~A15! and
Eqs.~A19! and ~A20!.

In a similar way, we have

^4T2gMsx0uVtwist,g@T1a0#u4A2gMs&5miA2^umuv twist,guxm&
~A23!

for bothm51 andm52 and find that the right hand side
real, which means the reduced matrix eleme
^4T2giVtwist,g@T1#i4A2g& is also real according to Eq.~5.10!.
This time, it will be nonvanishing in general.

For the reduced matrix element appearing in Eq.~5.9!, we
proceed in the same way:

^4T2gMsxmuPx
2u4T2gMsx0&52

m

2
~^x2mupx

2uxm&

1m^xmupx
2ux0&

1^u2mupx
2uum&!. ~A24!

This result also assures that the matrix element in questio
real.

Since the two reduced matrix elements in Eq.~5.11! are
found to be real,Cm is real.

We will next show thatAe is real. The reduced matrix
element̂ 4T1giPx

2@T2#i4A2g& is found to be real, because w
have

^4T1gMsamuPx
2u4A2gMs&

5
m

A6
^4T1gMsamuPx

2@T2xm#u4A2gMs&

52
m

3A2
^4T1giPx

2@T2#i4A2g&

52
m

A2
~^u2mupx

2uxm&1m^umupx
2ux0&!.

~A25!

Now we only have to consider the reality o

^4A2gi P̄x@T1#i4T2g&. For this purpose, we assume the c
sure approximation, replacing the two energy denomina
in Eqs.~5.27! and ~3.3! by some appropriate averages. Th
then allows us to proceed here also in the same way as
fore. The left hand side of Eq.~5.30! now can be evaluated
as
t

is

rs

e-

^4A2gMsuP̄xu4T2gMsxm&

52 i
1

A2
~m^ux1x2x0uuP̄xuux1x2umu&

2m^ux1x2x0uuP̄xuux2mx0u2mu&!

5
2mi

A2
~^x0u p̄xuum&2m^xmu p̄xuu2m&!.

~A26!

We thus find that

^4A2gMsuP̄xu4T2gMsxm&5
2m

6
^4A2guuP̄x@T1#uu4T2g&

5
2mi

A2
~^x0u p̄xuum&

2m^xmu p̄xuu2m&!. ~A27!

Using the one-electron orbitals given above, and notingpx
andVtwist,u are real, we easily confirm that the reduced m
trix element^4A2gi P̄x@T1#i4T2g& is indeed real. This proves
the reality of the parameterAe in Eq. ~5.29!.

We must next prove the reality ofBn
e . Since

^4A2gi P̄x@T1#i4T2g& and ^4T1giPx
2@T2#i4A2g& have already

been proved to be real, it only remains to see the reality

^4A2gi P̄x@T2#i4T1g&.
The left hand side of Eq.~5.35! is obtained as

^4A2gMsuP̄xu4T1gMsam&5
21

A2
~^x0u p̄xuum&

1m^xmu p̄xuu2m&!. ~A28!

Arguing in the same way as before, we find the reduc
matrix element̂ 4A2gi P̄x@T2#i4T1g& to be real, which im-
plies thatBn

e in Eq. ~5.38! is real. It will be needless to sa
that Be is also real.

Finally, we give below the expression of the matrix el
ments which are necessary to verify the reality ofCa

e in Eq.
~5.43! andCb

e in Eq. ~5.45!:

^4T2gMsxmuVtrig
c u4T1gMsam&52

mi

A6
^4T2giV@T2g#i4T2g&

52
3mi

2
^xmuv trig

c uxm&, ~A29!

and

^4A2gMsuP̄x
cu4T1gMsam&5

m

6
^4A2gi P̄x

c@T2#i4T1g&

5
21

A2
~^x0u p̄x

cuum&

1m^xmu p̄x
cuu2m&!. ~A30!

The relevant reduced matrix elements are all real.
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