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Magnetocrystalline anisotropy energy in cubic Fe, Co, and Ni: Applicability of local-spin-density
theory reexamined
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We report amab initio investigation of the magnetocrystalline anisotropy endM@E) in bcc Fe and fcc
Co and Ni. We introduce the spin-orbit scali(®09 technique, which, in combination with the force theorem,
we use to achieve numerically converged MAE’s. From these MAE'’s, and from MAE’s which we separately
obtain from total energy calculations, we investigate the ability of energy band theory based upon the local-
spin-density approximation to describe the MAE in the culidcn3etals. The SOS technique yields the correct
easy axis for Fe and Co, but a vanishing MAE for Ni. Our total energy calculations on a smaller number of
3.7X10° k points predict the correct easy axis in Fe, Co, and alsd $0163-18208)03716-3

The problem of the magnetocrystalline anisotropy energy In the present work, we reexamine the fundamental issue
(MAE) in the ferromagnetic @ metals Fe, Co, and Niis one whether LSDA energy band theory can describe the MAE in
of the longest standing and still Incolrgpletely solved prob-the cubic & metals. Previously the MAE problem was ad-
lems in the field of metallic magnetistn® The MAE, which  gressed in first-principles calculations using either the force
is the energy .that 'd|rects the magnetization .along a certaighaorem to compute the MAEor the total energ§.Each of
crystallographic axis, called the easy axis, is in the cubic 3 y <o 2h5roaches has its specific advantages and disadvan-
transition metals a very small quantity of only a few ;

tages. It was found that when employing the force theorem,

weV/atom®=® Nonetheless, the MAE is the source of the . .
permanent ferromagnetism in Fe, Co, and Ni. In addition, théhe calculated MAE depends delicately on #point mesh

MAE causes thé001) axis to be the preferential magnetiza- I the Brillouin zone(BZ).2 In addition, it was criticized
tion axis in bcc Fe, but thél11) axis in fcc Ni, a curiosity ~ quite recently that the force theorem in itself is an approxi-
which naturally attracted attention. mation for evaluating the MAE in cubic materidfs Thus,
Already many years ago, a first theory of the MAE in Fe MAE’s computed using the force theorem can differ from
and Ni was formulated by Brooksind Fletchef,who em-  those computed from total energies. In order to examine the
phasized that an energy band picture, in which the effect oMAE problem as accurate as possible, we have chosen to
spin-orbit coupling(SOQ s taken into account in a pertur- apply hoth approaches to evaluate the MAE’s. In the follow-

bative way, could provide a coupling of the magnetizationing e shall first consider the convergence of MAE values
orientation to the crystallographic axes of approximately the

. ) e . obtained with the force theorem with respect to Kipoint

right order of magnitude. In this pioneering work the band- :

structure was oversimplified to three empirical bahdi&e-  eSh- From the requirement that the BZ mesh employed
cent investigatioris® elaborated the MAE problem usira must s_uff|C|entIy resolve th(_)se parts in the BZ where, e.g.,
initio calculated energy bands obtained within the local-spinSOC lifts band degeneracies, a homogeneous mesh of at
density approximatiofLSDA) to density functional theory. least 10 k points in the whole BZ can be inferred. Such an
Although it is beyond doubt that LSDA energy bands areamount ofk points, however, is unmanageable due to the
superior to empirical bands, it turned out that calculating thepresent-day existing computational limitations. We therefore
MAE from first principles poses a great computational chal-introduce a new technique, the spin-orbit scali8@9 tech-
lenge. The prime obstacle is the smallness of the MAE ofique, which, in combination with the force theorem, can be
only a few ueV/atom, a value which ought to result as the used to obtain numerically converged MAE values with ap-
difference of two total energies for different magnetizationpreciably lesk points. The MAE values obtained with the
directions, which are both of the order of 4*@v/atom. SOS technique are supplemented with the result of “brute
Owing to this numerical problem, it remained at first unclearforce” total energy calculations on 3710° k points. This

if the LSDA could at all describe the MAE correctly, since amount ofk points is larger than th&-mesh employed in
the wrong easy axis was obtained for hcp Co and fcé Ni. another recent total energy MAE calculatioget it might
Recent contributions aimed consequently at improving thestill not be sufficient for attaining converged MAE values.
numerical techniques® with the result that the correct easy From the obtained MAE values we subsequently address the
axis was obtained for hcp Co, but not for fcc NDbviously,  issue of the capability of the LSDA to describe the MAE'’s.
this particular MAE difficulty is imposed by the cubic crystal ~ As a sort of empirical fact, it was previously discovered
symmetry, whereby the magnetic anisotropy is extremely rethat the MAE’s calculated with the force theorem depend
duced in magnitude. Already in hcp Ethe MAE is almost ~ sensitively on thek mesh, which gave rise to a very poor
two orders of magnitude larger than in fcc €band even convergence of the MAE with respect to the mesh Sithe
larger MAE’s of meV/atom occur in thin transition metal source of this poor convergence can be deduced from con-
films.S-11 sidering a perturbation theory treatment of the SOC interac-
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tion, which is the model underlying the force theorem ap- 20
proach to the MAE. The very first perturbative investigations 15
of the MAE accounted only for the contribution from non-
degenerate staté$,but later studies’'* and also more re-
cent one$supplied evidence for important contributions also —,
from degenerate states. Degenerate states may occur in t\/\i} 00
ways: First, spin-degenerate states, i.e., majority and minor = 5
ity spin bands at the Fermi energy, which — in the absence”;

of SOC — cross at certail points’® SOC will lift this ~ ~ ™°
degeneracy. The total set of sukhpoints forms a one- < -15p ® bee Fe
dimensional hyperstructure on the Fermi surface. The secon'm8 20l 4 feceNi
kind of degeneracy is the symmetry related degeneracy o°  ,,[ ¢ fcc Co
bands of one spin type, as occurs, e.g., in fcc Ni forlthé 0 ] 5 3 . P P 7
direction!* Due to SOC, the originally touching constant en- 3.4

ergy surfaces become disjunct. The corresponding sé&t of 107 A

points at the Fermi level is only zero dimensional, and there- FIG. 1. The SOC scaled MAES=E gop(\£) — Eqip(A£)] as a

fore negligible. AS for Fhe _spin-degenerate State.s’ it Can. b'Function of the SOS factox* for bce Fe, fec Co, and fce Ni. The
showrt® that their contribution to the MAE of cubic materi- solid lines depict the.* dependence ' ’

als is of the same order in the SOC constéuats that that of
the nondegenerate stafespamely £*. Thus, even though however, lies in the fact that a smaller amountkopoints
the spin degeneracies occur only in small portions of the BZsuffices to sample over the BZ in the case of an enlarged
their contribution is as important as the nondegeneratSOC strength, since those portions in the BZ where, e.g.,
contribution!® Consequently, in order to obtain converged degeneracies are lifted occur in an enlarged volume. If the
MAE'’s using an evaluation method based on perturbatioriifted degeneracies consisted originally of a one-dimensional
theory, these contributions should thus properly be taken intbyperstructure on the Fermi surface it will subsequently oc-
account. From the size of thespace volume where such cur through SOS in a\? times larger volume, while if the
degeneracies occur, the homogenekysoint mesh which lifted degeneracy was only zero dimensional it occurs in a
would be required can straightforwardly be estimated to be at- A3 times larger volume. Thus, instead of increasing the
least 10 points(cf. Ref. 3. k-point number one can equivalently increase the SOS fac-
Before we outline the SOS technique, we mention thator.
two methods were previously proposed to improve the nu- In the following we first examine the applicability of the
merical evaluation of the MAE, the state tracking metflod, SOS technique. To compute the LSDA single-particle ener-
which was employed in combination with the force theorem,gies we use the linear-muffin-tin-orbitdlMTO) method’
and the Gaussian broadeniiGB) technique, which was  with combined corrections. For the LSDA exchange-
applied to total energy calculations. The latter technique wasorrelation potential we have chosen the von Barth—Hedin
applied to the MAE of the cubic@metals, whereas the state parametrizatior® In Fig. 1 we show the SOC scaled MAE’s
tracking technique was applied only to the MAE of of Fe, Co, and Ni as a function of* for X up to 9. The
monolayers. We shall discuss the GB technique later. calculations presented in Fig. 1 have been performed on a
To start with, we define the MAE as the total energy homogeneouk-point mesh of % 10° points in the whole
difference for the(001) and(111) magnetization directions, BZ, using linear tetrahedron integration. We have, further-
i.e., AE=E o1~ E(111)- Through application of the force more, used &pd basis(i.e., 7 ma=2), but we shall address
theorent}'® the MAE can be expressed as the difference ofthe influence of including-basis functions below. As can be
k-space sums over all occupied single-particle energiesecognized from Fig. 1, the SOC scaled eigenenergy differ-
AE=EHkOCJEnk(OOl)—En,kOCLEr;,k(lll). These energies are encesE goy)(N) —E(111)(A) are well described by a linear
calculated nonselfconsistently, by adding the SOC teign ~ function of A4, which is given by the solid lines. There are,
=¢(r) ol to the scalar-relativistic one-particle Hamil- however, two restrictions to be mentioned: First, Mede-
tonian. The basic idea behind the SOS technique is to enpendency is fulfilled only up tov~6. For larger\’s the
ploy the perturbation theory resdi®*®which states that the higher order contributions to the MAE£§ and higher are
MAE in cubic materials appears only in fourth order in the not negligible anymore. Second, the number of Bf k
SOC perturbation, i.eAE~ &4, where¢ is the radial average points is, for small values of (A= 1, 2), still rather small
of &(r) over Bloch wave functions. If we now simply mul- for achieving numerically converged MAE'’s. Therefore, the
tiply the SOC Hamiltonian with a constant prefactorwe  SOC scaled MAE’s for smalk values are less reliable on
can write the MAE for two orientations!, M’ of the mag- this k mesh. These restrictions can be regarded obvious. We
netic moment as have, furthermore, verified that for smaligargen k meshes
larger (smalle) \'s are needed to reach convergence. We
1 , , therefore conclude that the SOS technique can be applied to
AEM,M'*F ngcc En(M.N &) — 2 Ep(M7AE) . achieve converged MAE values within the force theorem.
n"koce 1 Our calculations in addition demonstrate the perturbation
@ theory result that the MAE scales in lowest orderédsWe
At first sight it might seem that with Eql) nothing is mention that scaling of the SOC strength was previously
gained over the standard force theorem expression. The gainsed to show that the magnitude of the magneto-optical Kerr
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TABLE.I. Ce}lculated MAE’s for bcc F.e, fo: Co, and fcc Ni. contribution of ¢ to the MAE, but this is neglected in the
The MAE is defined a& ooy~ E(11y and given inueV/atom, for  force theorem approacf.These two methods do thus not
the wo computational approaches discussed in the text: The SQggcessarily converge to the same MAE value. Self-consistent
technique, for DOt g,=2 and/ me=3, and straightforward total - y444| energy calculations on a large numberkgpoints are,
energy calculations With' ., =3 on (72)” k points. Experimental  ,vever, even more restricted by computer limitations than
MAE's are those of Refs. 6-8. summing single-particle energies. It is, moreover, unlikely
that any band structure scheme can provide total energies

MAE Fe Co NI with an absolute accuracy of less thap&V. One can only
SOS ¢ ma=2) —-0.4 0.3 —-0.03 speculate that systematic total energy errors will drop out in
SOS ¢/ max=3) ~05 0.3 0.04 the MAE. We performed total energy calculations using an
Total energy —26 2.4 1.0 spdf basis on a homogeneous-point mesh of (72)3
Experiment 14 13bP-16° 2.72 (=3.7x10) points, which was the maximal amount we
could achieve. On account of the self-consistency require-
*Ref. 6 ment, SOS cannot be combined with total energy calcula-
PRef. 7. tions. Compared to the much dengemeshes employed in
‘Ref. 8. the force theorem SOS approach, this relatively skgibint

number could be insufficient. Contrary to the converged

effect scales linearly with the SO€.It was also used to MAE’s obtained from the SOS method, we can therefore not
show that the MAE of a free standing monolayer is propor-definitely say that the obtained total energy MAE’s are con-
tional to £2.° We emphasize, however, that in the latter caseverged with respect to thie-point number. They are, how-
it wasnot applied as a method to improve thesum conver-  ever, converged with respect to the self-consistency require-
gence, as is done in the present work. ment, because we carried out self-consistent iterations until

The force theorem was previously used to computestable total energies, having energy fluctuations of less than
MAE'’s by Daalderopet al® As a test of our approach, we 0.1ueV/atom were reached. The results of these calculations
computed the MAE’s of both Fe and Ni, using the forceare given also in Table I. We note thaur total energy
theorem only, fok meshes of size similar to those of Ref. 3. LSDA calculations yield the correct easy axis for all three
The MAE values we calculated in this manner are quite closenetals.Particularly for Ni this is an important finding, since
to those obtained by Daalderag al® We thus verify the another recent total energy calculation on, however, 10 times
results of Ref. 3 ork-point sets of similar size. To achieve lessk points yielded the correct easy axis for Fe and Co, but
numerically converged MAE'’s, we applied as a next step théhe wrong one for NF. From Table | we further note that the
SOS technigue. The MAE's are defined by the slope of thdotal energy MAE's are for all three metals larger by 1-2
solid lines in Fig. 1. The calculated MAE’s are summarizedueV than those of the SOS method. It thus appears that the
in Table I, in which also the experimental MAE’s are given. approximations involved in the force theorem may influence
Our converged MAE values obtained fot,,,=2 vield the the MAE value by about eV, which is of the size of the
correct easy axis for Fe and Co, although the computetMAE itself. The total energy MAE'’s of Fe and Co arel
MAE'’s are smaller than the experimental ofie¥In the case  ueV larger than the experimental data, whereas that of Ni is
of Ni, however, the computed MAE for' =2 is very 1.7 ueV smallerthan experiment. This is an indication that
small and with negative sign{0.03ueV), in disagreement within the LSDA the experimental magnitude of the MAE of
with experiment. Before this inadequacy in describing theNi cannot be reproduced.
MAE in Ni can be attributed to a failure of the LSDA, the = The MAE’s of the 31 metals were recently evaluated
approximations involved in the force theorem and the limitedfrom total energy calculations in which a GB of 0.14-0.20
basis set¢pdstates have to be investigated. We have testedeV for states close to the Fermi energy was applied to accel-
the latter approximation by including states in the basis. erate convergence® These calculations were carried out
The results of these calculations are given also in Table Iwith a full-potential LMTO method, usingpdbasis func-
The inclusion off states indeed brings the sign of the MAE tions and a mesh of aboutL0* k points in the whole BZ
in Ni in agreement with experiment, but the thus computedor Fe and Co, and 4:810* points for fcc Ni® While the
MAE is very small, only+0.04 weV. For the calculations full-potential approach is for many applications better suited
including f states we used & mesh of 2. 1(° points, than the spherical potential approximation we have used, this
which is, due to computer memory limitations, slightly is not necessary so for the MAE, because the major contri-
smaller than the amount achievable withbutates. We note bution of the SOC occurs in the inner atom region, where the
that the MAE values of Fe and Co are also minimally potential is approximately sphericaf. Ref. 3. We have, on
changed by less than Qu&V through the inclusion of the other hand, includefi states in the basis, and performed
states. From these results we conclude, first, thethtes do the calculations on a 10 times larger number of points, using
not affect the MAE values very much, and second, the SO$he integration scheme of Btbl et al?! with the GB tech-
technigue yields a vanishingly small MAE for Ni. nique the correct easy axis was obtained for Fe and Co, but

We have secondly carried out total energy MAE calcula-the wrong one for Nr. To understand this, we have also
tions, because the application of the force thedrétimplies  calculated the MAE of Ni using36)® (~4.7x 10%) k points
several approximations. Especially the fact that the SOC perand no broadening which is close to the amount used in
turbed energies are computed non-self-consistently has be®&ef. 5. For this amount of points we also find the wrong
criticized®? The difference between the self-consistent den-easy axis for Ni, consistent with the result of Tryggal.®
sity calculated with and without SOC may give rise to aHowever, our MAE value for(72)2 points shows that it is
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doubtful that convergence could be achieved3® ® points, merically converged MAE’s, evaluated using the SOS
even in combination with GB. As evidently tiny energy band method, and from total energy MAE’s, we conclude that for
shapes near the Fermi level are crucially important to thé-e and Co the LSDA unambiguously predicts the easy mag-
MAE, a rigorous proof seems to be needed that a relativelytization axis, whereas the size of the MAE’S is only quali-
large GB of these important states will provide the samdatively reproduced. For fcc Ni we tentatively conclude that
MAE limit value as that obtained for marky points. the correct easy axis could be attainable within the LSDA,

As it previously at first appeared that it might not be pos-Put the absolute value of the MAE deviates notably from
sible to describe within the LSDA the correct easy axis or€XPeriment. The latter finding is consistent with the well-
magnitude of the MAE'S® the orbital polarization(OP) known fact that the LSDA is less successful in describing Ni
correctior? to the LSDA has been applied to improve the than Fe or CG" We find further that the force theorem ap-
LSDA MAE's.235 With the OP the correct sign of the MAE proach yields MAE’s which are systematically smaller in
was found for hep C82 It might thus be that application of '€ than those of total energy calculations.

the OP to Ni could bring the calculated MAE value, which is  One of us(P.M.O) gratefully acknowledges several valu-
too small, in better agreement with experiment. able discussions with Joakim Trygg. We thank H. Eschrig

To summarize, we have investigated the ability of LSDAfor a critical reading of the paper. This work was supported
energy band theory to describe the MAE in cubic Fe, Co, andby the State of Saxony under Contract No. 4-7541.82-MP2/
Ni, using two different computational techniques. From nu-502.
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