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Magnetocrystalline anisotropy energy in cubic Fe, Co, and Ni: Applicability of local-spin-density
theory reexamined
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~Received 2 July 1997; revised manuscript received 15 December 1997!

We report anab initio investigation of the magnetocrystalline anisotropy energy~MAE! in bcc Fe and fcc
Co and Ni. We introduce the spin-orbit scaling~SOS! technique, which, in combination with the force theorem,
we use to achieve numerically converged MAE’s. From these MAE’s, and from MAE’s which we separately
obtain from total energy calculations, we investigate the ability of energy band theory based upon the local-
spin-density approximation to describe the MAE in the cubic 3d metals. The SOS technique yields the correct
easy axis for Fe and Co, but a vanishing MAE for Ni. Our total energy calculations on a smaller number of
3.73105 k points predict the correct easy axis in Fe, Co, and also Ni.@S0163-1829~98!03716-3#
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The problem of the magnetocrystalline anisotropy ene
~MAE! in the ferromagnetic 3d metals Fe, Co, and Ni is on
of the longest standing and still incompletely solved pro
lems in the field of metallic magnetism.1–5 The MAE, which
is the energy that directs the magnetization along a cer
crystallographic axis, called the easy axis, is in the cubicd
transition metals a very small quantity of only a fe
meV/atom.6–8 Nonetheless, the MAE is the source of th
permanent ferromagnetism in Fe, Co, and Ni. In addition,
MAE causes the~001! axis to be the preferential magnetiz
tion axis in bcc Fe, but the~111! axis in fcc Ni, a curiosity
which naturally attracted attention.

Already many years ago, a first theory of the MAE in F
and Ni was formulated by Brooks1 and Fletcher,2 who em-
phasized that an energy band picture, in which the effec
spin-orbit coupling~SOC! is taken into account in a pertur
bative way, could provide a coupling of the magnetizati
orientation to the crystallographic axes of approximately
right order of magnitude. In this pioneering work the ban
structure was oversimplified to three empirical bands.1,2 Re-
cent investigations3–5 elaborated the MAE problem usingab
initio calculated energy bands obtained within the local-sp
density approximation~LSDA! to density functional theory
Although it is beyond doubt that LSDA energy bands a
superior to empirical bands, it turned out that calculating
MAE from first principles poses a great computational ch
lenge. The prime obstacle is the smallness of the MAE
only a few meV/atom, a value which ought to result as t
difference of two total energies for different magnetizati
directions, which are both of the order of 4 104 eV/atom.
Owing to this numerical problem, it remained at first uncle
if the LSDA could at all describe the MAE correctly, sinc
the wrong easy axis was obtained for hcp Co and fcc N3

Recent contributions aimed consequently at improving
numerical techniques,5,9 with the result that the correct eas
axis was obtained for hcp Co, but not for fcc Ni.5 Obviously,
this particular MAE difficulty is imposed by the cubic cryst
symmetry, whereby the magnetic anisotropy is extremely
duced in magnitude. Already in hcp Co6 the MAE is almost
two orders of magnitude larger than in fcc Co,7,8 and even
larger MAE’s of meV/atom occur in thin transition met
films.9–11
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y

-

in

e

of

e
-

-

e
-
f

r

.
e

-

In the present work, we reexamine the fundamental is
whether LSDA energy band theory can describe the MAE
the cubic 3d metals. Previously the MAE problem was a
dressed in first-principles calculations using either the fo
theorem to compute the MAE,3 or the total energy.5 Each of
these approaches has its specific advantages and disa
tages. It was found that when employing the force theore
the calculated MAE depends delicately on thek-point mesh
in the Brillouin zone~BZ!.3 In addition, it was criticized
quite recently that the force theorem in itself is an appro
mation for evaluating the MAE in cubic materials.12 Thus,
MAE’s computed using the force theorem can differ fro
those computed from total energies. In order to examine
MAE problem as accurate as possible, we have chose
apply both approaches to evaluate the MAE’s. In the follo
ing we shall first consider the convergence of MAE valu
obtained with the force theorem with respect to thek-point
mesh. From the requirement that the BZ mesh emplo
must sufficiently resolve those parts in the BZ where, e
SOC lifts band degeneracies, a homogeneous mesh o
least 107 k points in the whole BZ can be inferred. Such a
amount ofk points, however, is unmanageable due to
present-day existing computational limitations. We theref
introduce a new technique, the spin-orbit scaling~SOS! tech-
nique, which, in combination with the force theorem, can
used to obtain numerically converged MAE values with a
preciably lessk points. The MAE values obtained with th
SOS technique are supplemented with the result of ‘‘br
force’’ total energy calculations on 3.73105 k points. This
amount ofk points is larger than thek-mesh employed in
another recent total energy MAE calculation,5 yet it might
still not be sufficient for attaining converged MAE value
From the obtained MAE values we subsequently address
issue of the capability of the LSDA to describe the MAE’

As a sort of empirical fact, it was previously discovere
that the MAE’s calculated with the force theorem depe
sensitively on thek mesh, which gave rise to a very poo
convergence of the MAE with respect to the mesh size.3 The
source of this poor convergence can be deduced from c
sidering a perturbation theory treatment of the SOC inter
9557 © 1998 The American Physical Society
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tion, which is the model underlying the force theorem a
proach to the MAE. The very first perturbative investigatio
of the MAE accounted only for the contribution from no
degenerate states,1,2 but later studies13,14 and also more re-
cent ones3 supplied evidence for important contributions al
from degenerate states. Degenerate states may occur in
ways: First, spin-degenerate states, i.e., majority and mi
ity spin bands at the Fermi energy, which — in the abse
of SOC — cross at certaink points.13 SOC will lift this
degeneracy. The total set of suchk points forms a one-
dimensional hyperstructure on the Fermi surface. The sec
kind of degeneracy is the symmetry related degenerac
bands of one spin type, as occurs, e.g., in fcc Ni for theG- L
direction.14 Due to SOC, the originally touching constant e
ergy surfaces become disjunct. The corresponding setk
points at the Fermi level is only zero dimensional, and the
fore negligible. As for the spin-degenerate states, it can
shown15 that their contribution to the MAE of cubic mater
als is of the same order in the SOC constantj as that that of
the nondegenerate states,1,2 namely j4. Thus, even though
the spin degeneracies occur only in small portions of the
their contribution is as important as the nondegene
contribution.15 Consequently, in order to obtain converg
MAE’s using an evaluation method based on perturbat
theory, these contributions should thus properly be taken
account. From the size of thek-space volume where suc
degeneracies occur, the homogeneousk-point mesh which
would be required can straightforwardly be estimated to b
least 107 points ~cf. Ref. 3!.

Before we outline the SOS technique, we mention t
two methods were previously proposed to improve the
merical evaluation of the MAE, the state tracking metho9

which was employed in combination with the force theore
and the Gaussian broadening~GB! technique,5 which was
applied to total energy calculations. The latter technique w
applied to the MAE of the cubic 3d metals, whereas the sta
tracking technique was applied only to the MAE
monolayers.9 We shall discuss the GB technique later.

To start with, we define the MAE as the total ener
difference for the~001! and ~111! magnetization directions
i.e., DE5E(001)2E(111) . Through application of the force
theorem,3,16 the MAE can be expressed as the difference
k-space sums over all occupied single-particle energ
DE5(nkoccEnk(001)2(n8koccEn8k

8 (111). These energies ar
calculated nonselfconsistently, by adding the SOC termHso
5j(r ) s–l to the scalar-relativistic one-particle Hami
tonian. The basic idea behind the SOS technique is to
ploy the perturbation theory result,1,2,15 which states that the
MAE in cubic materials appears only in fourth order in t
SOC perturbation, i.e.,DE;j4, wherej is the radial average
of j(r ) over Bloch wave functions. If we now simply mu
tiply the SOC Hamiltonian with a constant prefactorl we
can write the MAE for two orientationsM , M 8 of the mag-
netic moment as

DEM ,M8'
1

l4F (
nk occ

Enk~M ,lj!2 (
n8k occ

En8k
8 ~M 8,lj!G .

~1!

At first sight it might seem that with Eq.~1! nothing is
gained over the standard force theorem expression. The
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however, lies in the fact that a smaller amount ofk points
suffices to sample over the BZ in the case of an enlar
SOC strength, since those portions in the BZ where, e
degeneracies are lifted occur in an enlarged volume. If
lifted degeneracies consisted originally of a one-dimensio
hyperstructure on the Fermi surface it will subsequently
cur through SOS in a;l2 times larger volume, while if the
lifted degeneracy was only zero dimensional it occurs in
;l3 times larger volume. Thus, instead of increasing
k-point number one can equivalently increase the SOS
tor.

In the following we first examine the applicability of th
SOS technique. To compute the LSDA single-particle en
gies we use the linear-muffin-tin-orbital~LMTO! method17

with combined corrections. For the LSDA exchang
correlation potential we have chosen the von Barth–He
parametrization.18 In Fig. 1 we show the SOC scaled MAE’
of Fe, Co, and Ni as a function ofl4 for l up to 9. The
calculations presented in Fig. 1 have been performed o
homogeneousk-point mesh of 33106 points in the whole
BZ, using linear tetrahedron integration. We have, furth
more, used aspd basis~i.e., l max52), but we shall address
the influence of includingf -basis functions below. As can b
recognized from Fig. 1, the SOC scaled eigenenergy dif
encesE(001)(l)2E(111)(l) are well described by a linea
function of l4, which is given by the solid lines. There ar
however, two restrictions to be mentioned: First, thel4 de-
pendency is fulfilled only up tol'6. For largerl ’s the
higher order contributions to the MAE (j6 and higher! are
not negligible anymore. Second, the number of 33106 k
points is, for small values ofl (l5 1, 2!, still rather small
for achieving numerically converged MAE’s. Therefore, t
SOC scaled MAE’s for smalll values are less reliable o
this k mesh. These restrictions can be regarded obvious.
have, furthermore, verified that for smaller~larger! k meshes
larger ~smaller! l ’s are needed to reach convergence. W
therefore conclude that the SOS technique can be applie
achieve converged MAE values within the force theore
Our calculations in addition demonstrate the perturbat
theory result that the MAE scales in lowest order asj4. We
mention that scaling of the SOC strength was previou
used to show that the magnitude of the magneto-optical K

FIG. 1. The SOC scaled MAE’s@5E(001)(lj)2E(111)(lj)# as a
function of the SOS factorl4 for bcc Fe, fcc Co, and fcc Ni. The
solid lines depict thel4 dependence.
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effect scales linearly with the SOC.19 It was also used to
show that the MAE of a free standing monolayer is prop
tional to j2.9 We emphasize, however, that in the latter ca
it wasnot applied as a method to improve thek-sum conver-
gence, as is done in the present work.

The force theorem was previously used to comp
MAE’s by Daalderopet al.3 As a test of our approach, w
computed the MAE’s of both Fe and Ni, using the for
theorem only, fork meshes of size similar to those of Ref.
The MAE values we calculated in this manner are quite cl
to those obtained by Daalderopet al.3 We thus verify the
results of Ref. 3 onk-point sets of similar size. To achiev
numerically converged MAE’s, we applied as a next step
SOS technique. The MAE’s are defined by the slope of
solid lines in Fig. 1. The calculated MAE’s are summariz
in Table I, in which also the experimental MAE’s are give
Our converged MAE values obtained forl max52 yield the
correct easy axis for Fe and Co, although the compu
MAE’s are smaller than the experimental ones.6–8 In the case
of Ni, however, the computed MAE forl max52 is very
small and with negative sign (20.03meV!, in disagreement
with experiment. Before this inadequacy in describing
MAE in Ni can be attributed to a failure of the LSDA, th
approximations involved in the force theorem and the limi
basis set (spdstates! have to be investigated. We have test
the latter approximation by includingf states in the basis
The results of these calculations are given also in Tabl
The inclusion off states indeed brings the sign of the MA
in Ni in agreement with experiment, but the thus compu
MAE is very small, only10.04 meV. For the calculations
including f states we used ak mesh of 2.13106 points,
which is, due to computer memory limitations, slight
smaller than the amount achievable withoutf states. We note
that the MAE values of Fe and Co are also minima
changed by less than 0.1meV through the inclusion off
states. From these results we conclude, first, thatf states do
not affect the MAE values very much, and second, the S
technique yields a vanishingly small MAE for Ni.

We have secondly carried out total energy MAE calcu
tions, because the application of the force theorem3,16 implies
several approximations. Especially the fact that the SOC
turbed energies are computed non-self-consistently has
criticized.9,12 The difference between the self-consistent d
sity calculated with and without SOC may give rise to

TABLE I. Calculated MAE’s for bcc Fe, fcc Co, and fcc N
The MAE is defined asE(001)2E(111) and given inmeV/atom, for
the two computational approaches discussed in the text: The
technique, for bothl max52 andl max53, and straightforward tota
energy calculations withl max53 on ~72!3 k points. Experimental
MAE’s are those of Refs. 6–8.

MAE Fe Co Ni

SOS (l max52) 20.4 0.3 20.03
SOS (l max53) 20.5 0.3 0.04
Total energy 22.6 2.4 1.0
Experiment 21.4a 1.3 b21.6 c 2.7a

aRef. 6
bRef. 7.
cRef. 8.
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contribution ofj4 to the MAE, but this is neglected in th
force theorem approach.12 These two methods do thus no
necessarily converge to the same MAE value. Self-consis
total energy calculations on a large number ofk points are,
however, even more restricted by computer limitations th
summing single-particle energies. It is, moreover, unlike
that any band structure scheme can provide total ener
with an absolute accuracy of less than 1meV. One can only
speculate that systematic total energy errors will drop ou
the MAE. We performed total energy calculations using
spd f basis on a homogeneousk-point mesh of ~72! 3

('3.73105) points, which was the maximal amount w
could achieve. On account of the self-consistency requ
ment, SOS cannot be combined with total energy calcu
tions. Compared to the much denserk meshes employed in
the force theorem SOS approach, this relatively smallk-point
number could be insufficient. Contrary to the converg
MAE’s obtained from the SOS method, we can therefore
definitely say that the obtained total energy MAE’s are co
verged with respect to thek-point number. They are, how
ever, converged with respect to the self-consistency requ
ment, because we carried out self-consistent iterations u
stable total energies, having energy fluctuations of less t
0.1meV/atom were reached. The results of these calculati
are given also in Table I. We note thatour total energy
LSDA calculations yield the correct easy axis for all thr
metals.Particularly for Ni this is an important finding, sinc
another recent total energy calculation on, however, 10 tim
lessk points yielded the correct easy axis for Fe and Co,
the wrong one for Ni.5 From Table I we further note that th
total energy MAE’s are for all three metals larger by 1–
meV than those of the SOS method. It thus appears that
approximations involved in the force theorem may influen
the MAE value by about 1meV, which is of the size of the
MAE itself. The total energy MAE’s of Fe and Co are;1
meV larger than the experimental data, whereas that of N
1.7meV smaller than experiment. This is an indication th
within the LSDA the experimental magnitude of the MAE
Ni cannot be reproduced.

The MAE’s of the 3d metals were recently evaluate
from total energy calculations in which a GB of 0.14–0.
eV for states close to the Fermi energy was applied to ac
erate convergence.5,20 These calculations were carried o
with a full-potential LMTO method, usingspd-basis func-
tions and a mesh of about 33104 k points in the whole BZ
for Fe and Co, and 4.83104 points for fcc Ni.5 While the
full-potential approach is for many applications better sui
than the spherical potential approximation we have used,
is not necessary so for the MAE, because the major con
bution of the SOC occurs in the inner atom region, where
potential is approximately spherical~cf. Ref. 3!. We have, on
the other hand, includedf states in the basis, and performe
the calculations on a 10 times larger number of points, us
the integration scheme of Blo¨chl et al.21 With the GB tech-
nique the correct easy axis was obtained for Fe and Co,
the wrong one for Ni.5 To understand this, we have als
calculated the MAE of Ni using~36! 3 ('4.73104) k points
~and no broadening!, which is close to the amount used
Ref. 5. For this amount ofk points we also find the wrong
easy axis for Ni, consistent with the result of Trygget al.5

However, our MAE value for~72! 3 points shows that it is

S
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doubtful that convergence could be achieved on~36! 3 points,
even in combination with GB. As evidently tiny energy ban
shapes near the Fermi level are crucially important to
MAE, a rigorous proof seems to be needed that a relativ
large GB of these important states will provide the sa
MAE limit value as that obtained for manyk points.

As it previously at first appeared that it might not be po
sible to describe within the LSDA the correct easy axis
magnitude of the MAE’s,3,5 the orbital polarization~OP!
correction22 to the LSDA has been applied to improve th
LSDA MAE’s.23,5 With the OP the correct sign of the MAE
was found for hcp Co.23 It might thus be that application o
the OP to Ni could bring the calculated MAE value, which
too small, in better agreement with experiment.

To summarize, we have investigated the ability of LSD
energy band theory to describe the MAE in cubic Fe, Co, a
Ni, using two different computational techniques. From n
d
he
ly
e

-
r

e

s

nd
-

merically converged MAE’s, evaluated using the SO
method, and from total energy MAE’s, we conclude that
Fe and Co the LSDA unambiguously predicts the easy m
netization axis, whereas the size of the MAE’s is only qua
tatively reproduced. For fcc Ni we tentatively conclude th
the correct easy axis could be attainable within the LSD
but the absolute value of the MAE deviates notably fro
experiment. The latter finding is consistent with the we
known fact that the LSDA is less successful in describing
than Fe or Co.24 We find further that the force theorem a
proach yields MAE’s which are systematically smaller
size than those of total energy calculations.

One of us~P.M.O.! gratefully acknowledges several valu
able discussions with Joakim Trygg. We thank H. Esch
for a critical reading of the paper. This work was suppor
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