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A nanotube is phenomenologically modeled as a chain of atoms wrapped helically on a right circular
cylinder. The semiclassical Hamiltonian of an electron is derived, using the Wannier approach for the Schro
dinger equation, when the nanotube is exposed to both corggrand high-frequencyac) electromagnetic
fields. The Boltzmann kinetic equation is then solved in the framework of momentum-independent relaxation
time approximation. An analytical expression for electric current in a nanotube is derived. The interaction of
nonlinearity and chirality is analyzed, chiefly as the dependence of a current chiral angle on the amplitude of
the ac electric field. The derived expressions for the electronic transport also help in stating anisotropic
impedance boundary conditions on the nanotube surface. Surface wave propagation in a carbon (@Xptube
is examined. The idea of using CN’'s as nanowaveguides in the infrared frequency range is established.
Convective instability is shown to occur under special conditions in a CN exposed to an axial dc electric field.
[S0163-182608)03016-1

[. INTRODUCTION the response of a CN immersed in an electrostatic field,
while Kasumovet al!® and Langeret al!® measured the
During the past several years, research on the propertiedectrical resistance of a CN immersed in a magnetostatic
of different fullerenes has proliferated. An extremely attrac-field. A quantum-mechanical treatment of charge-carrier mo-
tive feature has emerged: the crystalline structure of dion in the presence of an external magnetic field was devel-
fullerene depends on the conditions of its preparation, withoped by Kibis” and Romanov and Kibi¥ Electron-photon
different structures displaying quite different physical re-interaction in CN's was theoretically investigated by
sponse properties. A comprehensive review of the fulleren®omanovt® Romanov and Kibig? Chicoet al?! and Langer
literature is given by Eletskii and Smirnov in Ref. 1; see alsoet al 1
Refs. 2 and 3. Along with CN'’s, nanotubes of graphitic compounds
Carbon nanotubeéCN's) are fullerenes with carbon at- B,C/N,, for example, BGN, have been produced and ex-
oms situated regularly on a helical lattit&@he base helix of tensively studied in recent ye&is.2* According to Ref. 12,
the helical lattice is wrapped along the surface of a cylindesuch nanotubes are semiconductors independently of their
of cross-sectional radius 10—150 A. The wrapping angle, geometry.
also called the geometric chiral angl&CA), is usually a Two broad theoretical approaches for electron transport in
few degrees.Having helical symmetry, CN’s are quasi-one- nanotubes have emerged. The first approach comprises first-
dimensional chiral systenfs, on whose mechanical and principles numerical simulations, as exemplified by Miya-
electronic properties much attention has been lavihed.  moto, Louie, and Cohetf. The other approach requires the
CN’'s not only possess very high strength-to-weightcreation of phenomenological models that yield somewhat
ratios? but also have fascinating electromagnetic propertiestough but analytically tractable results. As an example, the
Recent experimental studi@sconfirmed that a CN can be phenomenological model of a CN as a chain of carbon atoms
metallic, semiconducting or even nonmetallic, depending orlocated on a base helix was investigated by Romanov and
its tubular radius and GCA. Lou, Nordlander and Smatfey, coIIeague§.7‘20
Miyamoto, Louie, and Cohelf, Saito, Dresselhaus, and Miyamoto, Louie, and Cohéh computed the current ex-
Dresselhaud® and Benedict, Louie, and Cohérexamined  cited in carbon and B{N nanotubes immersed in an electro-
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static field. Letj, be the current parallel to the tubul@re.,

the z) axis, andj. the circumferential current, so that a cur- E®
rent chiral anglgCCA),
de
g E
y=tan *(j,/jo), (1)
can be defined. First-principles numerical simulations
u

showed thaty# 7/2 as well as that the GCA and the CCA
are unequal, even though the surface conductivity of the
monatomic curved surface of the CN was taken to be isotro-
pic. Kasumovwet al!® and Langeet al® measured the resis-
tance of a single CN, their data being in qualitative accord
with theoretical results. Most importantly, the two experi-
mental reports established the validity of theoretical models
of CN'’s isolated from one another as well as from any other FIG. 1. Schematic of the carbon nanotube geometry. All carbon
form of matter. atoms are numbered consecutively along the base helix.

The conductivity of a nanotube immersed in a high-

frequency electromagnetic field in addition to an electrostatiGyjal dc electric field. Gaussian notation is used in this paper

field is of importance for two main reasons. First, exposuregy electromagnetic fields and related quantities.
to ac electric fields may lead to new techniques for probing

carbon microstructures. Second, a nanotube may stand duty
as a tool for controlling electromagnetic radiation in speci- Il. PHENOMENOLOGICAL MODEL
fied frequency rangesfor instance, infrared and optigal OF A NANOTUBE

These issues, apparently not discussed in the literature, con- . L e
PP y We start with carbon nanotubes considering an infinitely

stitute the main goals of this paper. long chain of carbon atoms wrapped along a base helix as the
Th f ibi he el i - : A :
e procedure for describing the electromagnetic re odel of a single CN-2as shown in Fig. 1. In this phe-

sponse of a nanotube is complicated. It entails finding a self™ . _
consistent solution ofi) the equation describing charge- nomenological model, the hexagonal crystalline structure of

carrier motion, and(ii) the frequency-domain Maxwell graphite is reproduced approximately. The chief merit of this

: " ; odel is its analytical tractability, which readily yields
ggﬁfgghs for electromagnetic fields excited by the Charg%qhysically interpretable results. In addition, the model yields

A CN has a two-scale periodicity: one due to the helicalcorrect qualitative descriptions of various electronic pro-

Uy +25(S)U,. (2)

Oh

pitch (along thez axis), the other from the interatomic dis- cesses, Wh.iCh are cqrroborated by the first-prg:iples numeri-

tances along the base helix. Also, in a wide variety of reaFal S|mulat|on§ of Miyamoto, Louie, and Cohen.

samples, the dynamics of charge carriers in a CN can b% Let the va_mabl& den_ote the arc length measur_ed along

described with good accuracy in the framework of the tight-t e base helix from _the intersection of 'ghe base helix and Fhe

binding approximation. Thus, as a CN is a high-order strucPlanez=0. The position vector of a point on the base helix

ture with tight-bound electrons, albeit with an unusual geom-Can be denoted by

etry, the methods and standard approximations originally

developed for systems of tight-bound electrons, such as ol z(S) z(S)

quantum superlatticés;?” are also applicable after some r(s)=—[ ﬁ{ Uy + Sir{—

modification. In particular, the semiclassical approach allows Ph Th

us to decouple the solution of the equation of motion from

that of the Maxwell equations, and is well suited for eluci- Here,zy(s) is the perpendicular distance of that point from

dating the electromagnetic response of a single CN. Arhe planez=0; (uy,uy,U,) is the triad of cartesian unit vec-

analogous approach is possible for Bnanotubes. tors; ogl and pgl are the torsion and curvature of the base
In this paper we extend a theory outlined recently byhelix,*° respectively; whileR,=o?/py, is the helical radius;

us?®29 We start from a comprehensive description of elec-p,=2way, is the helical pitch, and),=tan *(p,/0},) is the

tronic properties and transport and then, using the derive@GCA.

transport equations, we pass to the realm of electromagnet- More convenient than the cartesian coordinate system is

ics. The outline of the paper is as follows: In Sec. Il the Serret-Frenet coordinate syst€rattached to the base helix.

phenomenological model of a nanotube is presented. It i¥he unit Serret-Frenet vectors (,u,,u,) are related to the

used in Sec. Il to derive the semiclassical Hamiltonian of arunit vectors @, ,u,,u,) of the cylindrical coordinate system

electron on the surface of a nanotube. The electron curremats follows:

induced in a CN exposed to ac and dc electric fields simul-

taneously is determined in Sec. IV. Electromagnetic jump :

conditions across the nanotube surface are delineated in Sec. U-(S) = Uy(S)COS O + U, Sin b,

V. These lead in Sec. VI to the dispersion equation of surface

electromagnetic waves on a CN, when the electrostatic field Un(S)=—U,(S),

is absent. The idea of a CN as a nanowaveguide is proposed.

Convective instability is shown in Sec. 7 to occur, under

special conditions, in a CN nanowaveguide exposed to an Up(S)= —Uy(s)sin 6+ U, CoS . €)]



57 ELECTRONIC AND ELECTROMAGNETIC PROPERTIE. .. 9487

Here,u, is tangential to the base helix described by B, A, andA, are the components of the vector potentigt) of
while u, and u,, are unit vectors along the normal and the the total externally applied fiela is the electronic charge,
binormal directions, respectively. The unit vectargs) and s the light speed in vacuum ardis the Planck constank,
ug(s) carry their dependency o) as they are the unit cy- is the energy of an outer-shell electron in an isolated carbon
lindrical vectors at a point(s) on the base helix. In the atom;A, andA, are the real overlapping integrals for jumps
sequela,=a-u, anda,.=a-u,, respectively, denote the pro- along the tubular axis and the base helix, respectively. The
jections of a vectorma along the tubular axis and the base |ast two quantities are phenomenological adjustable param-
helix. eters to be determined for a real CN by first-principles nu-
A complete turn of the base helix accommodates1  merical calculations; their estimates are given in, e.g., Ref.
regularly spaced carbon atoms. The interatomic distances farg.
electronic jumps along the tubular axis and the base helix The second term on the right side of Ef) describes the
are, respectively, given by the expressialys=p, andd, interaction of an electron with two neighboring sites in the
=2moyn/N sin §,. We takeN>1 in this work so that the same turn of the helix, while the third describes the interac-
condition tion of an electron with corresponding sites in the two adja-
cent turns. Let us introduce shift operators for the two types
d, 27 of interactions as follows:
R, N cos 0h<1 @ P
is ensured. exp[ d 02] Flz)=Flzrdd),
The described framework igeneralbecause, in addition
to chiral CN’s, it can accommodat@) an achiral carbon exol d 9 F(s)=F(s+d.) ®
nanotubé! as a system of coaxially stacked circular atomic Td o
chains, andii) a BCN nanotubeas comprising two atomic
helices wrapped along a cylinder and shifted with respect t
one another along the cylinder’s axis, with one helix contain- P D J )
; ; P . 7z T
ing carbon atoms and the other formed by alternating nitro- — i =, — =i =, 9
gen and boron atoms. oz h'oos h
After assuming the tight-binding approximation to be
valid, chiral and achiral CN’s as well as B€ nanotubes can
be analyzed in a unified manner, as shown later in this pape

gurthermore, let us effect the substitutions

with the operators?, and P, corresponding to the compo-
nents of the canonical momentum. Assuming that the pitch
bf the base helix is small compared with the characteristic
length scale of the externally applied field, we set
Ill. SEMICLASSICAL HAMILTONIAN OF AN ELECTRON

IN A NANOTUBE Pn+N= " @n-N- (10

Let us begin with a CN. Following Okotrulet al,? Similarly, assuming that the projectiods. at any three ad-
Romanov® and Kibis and Romanof?, we assume that the jacent sitesr—1, n, andn+ 1 along the base helix are equal,
behavior of electrons in a CN can be adequately representét @ISO set
by the simplified tight-binding approximation for the lowest o1~ — (11)
conduction band. Thus we assume that the CN is in the semi- n+1= " @n-1-
conducting state. The result of the foregoing manipulations is that Eg).sim-

The phenomenological model of a single CN allows us toplifies to
apply the Wannier equation, . R

inC,=HC,(1), (12

o A, . .
ihCr=EoCp— 2 {explien+1)Cni1+explien-1)Cho1} where

7DZdZ

I:|=EO—AZ cos( 7 + onin

Pd.
—A.co 5 T eni
(13

A, . .
- ? {equ‘Pn+N)Cn+N+qu| ‘Pn—N)Cn—N}v )

in the site representation for the amplitud@g of the elec- IS the Hamiltonian operator. _
tronic wave function in order to investigate the motion of ~We remark here that, in general, one jump along the tu-
charge carrier8” The following notation is used in E¢5): ~ bular axis andN jumps along the base helix are not equiva-

C,=0dC, /dt; lent, i.e.,

1% J
e (n exp d, —#exp Nd, —¢. 14
Pn+1=73 f ATdS! (6) F{ ‘ az] 4 &SJ ( )
fic Jne1

This is because the electron velocities near the final site dif-
fer for the two jumps, although both jumps begin at the same
Jn Adz @ sitel (with the same initial velocityand end at the same site
Z ] . . .
N N-+1 also. The electron velocity has a circumferential com-

e
QDn:N:ﬁ_C

nx
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ponent for motion along the base helix but not for motionquently, the classical analog of the second term on the right
along the tubular axis. This indicates that a CN is a purelyside of Eq.(13) may be written as follows:
guantum structure, and the classical minimum action prin- g
ciple cannot be stated because quantum theory allows differ- P .
er?t paths connecting a pair of a?oms. ! H,= -4, COS{ ;i SOt £ sin(wt) — £33 COS{‘”U}

Now, from Eq.(13) we are in a position to find expres- (20
sions for the classical Hamiltonigt of an electron in a CN.
According to the correspondence principle, the momentum Now we come to the classical analbig of the third term
operator is replaced by the value of the canonical momenturan the right side of Eq(13). In evaluating the right side of
P. In doing so, we consider the and ther~ components of EQ. (6), spatial nonhomogeneity is encountered because
the momentum as mutually independent, neglecting the ind(s) depends ors. However, using the inequalit{4), we
terference between the axial and the helical paths connectirgpickly get the approximate relation
a pair of atoms. This actually means that we do not take
transverse  motion  quantization  into  accotft. P 1~ QI+ £ sin(wt) — £25 cogwt), (21
Previously?'®?the interference was claimed to be the main
mechanism for the chirality of certain physical effects. But in
this paper, we focus on another, very different physical

whereQ%, ¢2¢ and£% are obtained on replacing the sub-
jscriptz by 7in Egs.(18) and(19). Thus,

mechanism—uwhich is purely classical but, nevertheless, al- P d
Ig\lilvs chirality to substantially modify electron transportina H = —A_ CO{TTTJrQ‘iCH &1 sin(wt) — €3 COS(wt)}
Let the externally applied electric field have both high- (22

frequency(ad) and constantdc) components: The full semiclassical Hamiltonian of an electron in a CN

E(t) = Eyot E(;C) cos(wt)+E(a%) sin(wt), (15) finally emerges from Eqg13), (20), and(22) as

whereEg., E(Y and E2) are time-independent, real-valued |;p p s —E -4, cos{ P.d, L% £ sin(wt)
vectors. The two harmonic terms on the right side of @§) f

allow the incorporation of an arbitrarily polarized electro-

magnetic field in our treatment. We impose the condition — £2 coq wt)
that the electric field varies slowly in space so that we can

neglect the effects of spatial nonhomogeneity. The concrete

conditions for whatslowly variesmeans can be different in +£% sin(wt) — €% coq wt)
different contexts. Clearly, there cannot be appreciable non-

homog_eneous effects if _the externfally appl?e_d fi_eld is Virtu'This general expression allows us to develop the semiclassi-
ally uniform over the entire CN, which condition is assumedcal equation of electron motion so that electron transport in

in Sec. IV for treating electron transport. But a weaker con--pp
L . o N’s can be addressed. The paramefers andd, . must be
dition is taken in Sec. VI for surface wave propagation in a b ® A

chosen so that the transition from a chiral nanotube to a
CN. . . . . (monolayey planar graphite sheet yields isotropic conductiv-
The time-varying vector potential of the applied external

field (15) is as follows: ity. Therefore,

f

P.d
—A, Co{;u—ﬂﬂct

. (23

AZ:ATi dZ:dT (24)

c c
- _ _ 1) g — g2 . . .
A(t)=—CEqd — — E5e sin(wt) + — E5’ co wt). must be used in Eq23). Furthermore, in view of the rela-

(16)  tion tan#,=d/27R;,, we must take into account tha,
i @) _ . —0 whenR,—« for the transition to the planar sheet.
As Ege Uz, Eyd-u, andE; - u, are spatially uniform, Egs. In order to apply Eq(23) for an achiral CN, it suffices to
(7) and(16) together yield replaceP, by P,. The semiclassical Hamiltonian of elec-
p ac ac trons in a BGN nanotube can also be written in the form of

enen= Q1+ &7 sin(wt) — &5 cogwt), (17 Eq.(23), after effecting the changs, ,— 2d,, , together with
corresponding adjustment of the overlapping integrals, but
the conditions(24) are invalid because BS! planar sheets
have anisotropic conductivity.

where

Q?=(%%)Emwa, (18)

IV. ELECTRONIC CURRENT IN A NANOTUBE

and the ratios A. Electron fluxes

a [€G ed, Let us commence with the Boltzmann kinetic equation,
= — E(l) . u ac: R —
z1 b ac z z2

| U, (19

of(p,t)y . af(pt)y . df(pt) ¢
relate the angular Stark frequencig@d,/#)EL?-u,] to o Pz ap, *Ps ap, =ZFP:f(p.L),
the angular frequency of the high-frequency field. Conse- (25
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for the time-varying distribution functiofi. Here,F is the
equilibrium distribution functionZ(F;f) is the collision in-
tegral, and

pZ: Pz+h¢n+N/dzr pT:PT+h¢n+1/dT (26)
are the components of the electron momenjumith
p,=eE(t)-u,, p,=eE(t)-u,. (27
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f(p,t)=F
t ’
+Vf e "'F
0

Our interest lies chiefly in evaluating the steady-state cur-
rent, which means that the condition>1 holds hereafter.
Consequently, the first term on the right side of E3p) is

e
P+ A(t),O) et

p+§[A(t)—A(t—t’)] dt’.

(39

In accordance with the previous section and Ref. 33, Weegligible and the upper limit of the integral in the second

use the Boltzmann equilibrium distribution function; thus,

A, cogp,d,/A)+A, cogp.d,/f
F(p):CeXpr . cogp.d, )kT <p.d./h)|
B
(29)
where
d,d.n
z o (29)

21 4 | Az )
%lkeT) °\ kgT
ng is the surface charge density, aty{-) is the modified
Bessel function of order 0.

The components, andv , of the electron velocity are
calculated from Eq(23) as®

_Azdz . [P,
vAP)= sin

f

ATdT . pTdT
) UT(pT):TSIn P
(30)

term can be replaced by. After substituting Eqs(28) and

(35 in Egs.(31) and(32), the integrations oveu, andp, are
carried out. The algebraic manipulations are assisted by the
formula®

o0

expla cos )= ZO (2= 8o) | m( @) COIMO),

(36)

whered,,,y is the Kronecker delta ang,(-) is the modified
Bessel function of ordem. Finally, we derive the steady-
state electron fluxes,

o ngJ': exp(— vt')sin{ Q5 + £55sin wt—sin o(t
—t")]+ £ coswt— cos w(t—t’)]}dt’, (37)

S~ vj?f exp(— vt')sin{ Q9% + £2[ sin wt—sin w(t
0

while the electron fluxes along the tubular axis and the basgiith

helix, respectively, are given by

. 2e
2= 2nhy ff”z(Pz)f(p’t)dedpz, (31)
_ 2e
S_(zq-,ﬁ)i jfvr(pf)f(p,t)dedpz, (32)

where the integrations are carried out over the first Brillouin
zone. From these two fluxes, expressions for the axial an
the circumferential components of the time-varying curren

emerge as follows:

j;=Z+S8sin6,, j.=Scosé,. (33

In view of the inequality(4), we ignore the spatial inho-
mogeneity arising fromu(s). Hence, the momentum-
independent relaxation time approximafionan be invoked
so that

Z(F(p); f(p,t))~v[F(p)—f(p,t)], (34)

wherew is the relaxation frequency. Substituting £E84) on
the right side of the kinetic equatio25), and using the
method of characteristic4,we obtain

—t')]+ [ coswt—cosw(t—t')]}dt’, (38
j0=n ed,A, 11(A,/kgT)
2770 h 1o(A,/kgT)’
ed A 1(A, /kgT

jo=n, SR e ) (39

Io(A,TkgT)"

Equations(33) and (37)—(39) are the basic relations de-
scribing electron transport in carbon and BCnanotubes.
'dl'hey are used in Secs. 4.2 and 4.3 for investigating electron

gransport when the nanotube is immersed in the externally

applied field(15). In conjunction with the frequency-domain
Maxwell equations, they are also useful for elucidating wave
propagation phenomena.

B. dc conductivity of a nanotube

Let us consider the special case when the high-frequency
components of(t) are absent anéy.=E%u,, Then, &7,
= ¢% ,=0 andE2°=EZ° sin ¢,. Equations(37) and(38) eas-
ily yield

0 dc
jzvQ;

2 ol
Q%242

T W

so that the dc current components
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As regards BGN nanotubes, chirality may give pronounced

1 1:9=2 effects owing to the anisotropy inherent in their plane crys-
14 b talline structure.
12 2: Gh—4 Another mechanism of conductivity anisotropy, which
3 0=6 can manifest itself both in carbon and BC nanotubes,
100 4 Oh—S’ arises as the amplitudg® grows. This mechanism is differ-
y 08 " h ent from that described by Miyamoto, Louie, and Cotfen
and can be explained by interpreting the CN as a system of
08f two interacting one-dimensional lattices. Thus, the flg&ix
0.4} describes the current on an axial lattice, while the fiix
ool refers to a helical lattice. As is clear from E@41) and(42),
' the CCAy depends on the amplitud€® in a strong dc field,
0.0, s " 6 ry 0 12 12 16 bripging nc_)nlingarity and anisotropy. into play. The.distir_1—
£ guished direction of the conductivity anisotropy in this
¥4

mechanism is parallel to the direction of the applied dc field.
This new mechanism becomes significant in the regime
FIG. 2. The dependence of the current chiral anglen the QgC> v. Now, the range 1< »<10'? Hz can be estimated
amplitude of an axially applied electrostatic field for different geo-from Refs. 36 and 37, withy=7x10'Hz at room
metric chiral anglesé,; v is the relaxation 1‘requencyﬂ§jc temperaturéfi Taking d221.42A from Ref. 18 and assum-
= (€0, /A)Bqc- Uz andEq=0. ing Q%= v, we find from Eq.(18) that the new mechanism
is significant forEZ=3x 10* V/cm.

W IB0F [%0%sing,
~ : (41)
Iz (Q%2+,2 7 (0924 ,2 C. Time-averaged current with ac pumping
o 4 Let us now add a high-frequency pumping by altering the
- de j v Q¢ cos 6y, applied field to the following form:
ERNCLE “ o, g
7 E=(E,"+E; coswt)u,.
are derived from Eqg33). The ac pumping substantially changes the dc conductivity of

The linear conductivity regime is delineated by the satisthe CN2® Analytical results follow on setting3S= £5=0
faction of the twin conditions ©3?<2? and (199)?<+?.  apdEde E2Usin 4 in Egs.(33), (37), and (38), our in-
The corresponding axial and circumferential dc conductivi-terestﬁying Czhieﬂy in nonlinear effects.
ties then emerge from Eqél8), (41), and(42) as follows: Expressions for time-averaged current components

emerge after the right sides of E®3) are averaged over the

+dc . . .
] e | ) . temporal period z/w of the applied ac field; thus,
UZZZEZdE% ﬂ (Jgdz+]2d7 sin? on), (43 ' ' '
‘ (I2=(2)+(S)sin O, (jo)=(S)cosby, (45
jdc where the angular brackets denote time averaging. Omitting
O'CZ:E%E% = j°d. sin 6, cos 6. (44)  intermediate calculations, we get
z

The presence of the Planck constant in the denominatoré@“”]gf exp(— vt/)sin(Q51")Ip(2£35 sin(wt'/2))dt’,

indicates the purely quantum nature of dc conduction in a 0 (46)

CN. Furthermore, the circumferential conductivity, here

is due to the curvature of the CN surface. Indeed, we observe -

that o.,—0 and y— /2 in the limit R,— (i.e., 6,—0 (S)=vj%| exp(—vt")sin(Q%t')Io(2£% sin(wt'/2))dt’,

becaused, and d, are constants in our modelin perfect 0

accord with the results of the first-principles numerical simu- (47)

lations of Miyamoto, Louie, and CoheA.This agreement \hereJ,(-) is the cylindrical Bessel function of the order 0.

adds to our confidence in the model used. Note that(Z),(j,) are even functions o), while (S),{j.)
Figure 2 depicts the dependences of the C€An the  gre odd ones.

amplitudeEZ® of the applied dc field as well as on the GCA  Suppose the direction of the externally applied electro-

On. As Q5 increases,y decreases—which means that thestatic field is reversed: 0% ——0% . We observe from

circumferential currenj® increases. On the other hand, Fig. Egs. (45)—(47) that the signs of botK(j,) and (j.) then

2 shows thaty~ 7/2— 6, when Q°< v (the case simulated change, buty, |(j,)| and|(j.)| remain unaltered.

by Miyamoto, Louie, and Cohéf). This can also be estab- Similarly, suppose that a structurally right-handed nano-

lished from Eqgs(39), (43), and(44) after assuming Eq24)  tube (6,,>0) is replaced by its mirror image or enanti-

to be hold. As far ag,,<1, one can conclude from the above omer: 6,— — 6,,. Again, as per Eq9445)—(47), the opera-

that in CN’s any effects resulting from the chirality will be tion 6,— — 6,, leads to(j,)—(j,) and{j.)— —(j.) which,

extremely small in linear approximation with respecEI‘ﬁ. in turn, imply thaty— — v.
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2054 V. EFFECTIVE JUMP CONDITIONS ACROSS THE
NANOTUBE SURFACE

A. Exposure to ac field alone

~2
b

Let us now use the results of Sec. IV A to study wave
propagation phenomena. We consider an infinitely long
nanotube in free spacg.e., vacuum exposed to a mono-
chromatic electro-magnetic field. The pitch and the radius of
the nanotube are assumed to be much smaller than the wave-
length of the electromagnetic field, aBd°=0. Furthermore,
the amplitudes of both the applied ac electric field and the
surface density of the induced current are weak so that lin-
earization of the right sides of Eq®7) and(38) with respect
to £ ,and £21 , is possible. Phasor notation is very suitable
f a for the developments in this section; thus, the electric field,

L4 the magnetic field, and the electric surface current density
stated as follows:

=
~3
v

Time-averaged Currents

&

e

IU\
=
wn
—
L)

FIG. 3. Dimensionless time-averaged current components in are, respectively,
iac . .
CN versus the rati@;; . The plots were drawn with the following E.{t)=Re(E exp(—iwt)}= Eglc) cog wt) + Eg%) sin(ot),

parameter values:= w/5, Q%= w+ v, and ,=4°.

H,{t)=Re[H exp —iwt)}, (48)
Figure 3 shows typical dependencies(¢f) and(j.) on _
the dimensionless amplitud&s of the ac pump. The time- Jodt) =Re{J exp—iwt)}.

averagedacircumferential currefl;) varies slowly with re- We assume that the density of electric surface current is

. : ; .
spect tog;;, but the time-averaged axial currejt) pre- similarly distributed throughout the nanotube surface, be-
sents a _strongly undulating proflle. The result is that the;guse both the pitcpy, and the radiu®,, are small and the
GCA varies with the ac pumping amplitude also in a com-gyrface may be considered as a continuous current sheet.

plicated fashion, as depicted in Fig. 4. Ohm'’s law on the nanotube surface may then be stated as
In particular, there are values OEZ° at which y A
=tan X((j)(j)=0, so that the circumferential current J(r)=ac®(r)-E(r); p=Ry, (49)

dominates and the net time-averaged current is almost pejghere

pendicular to the applied electrostatic field. Suppose, as in

Sec. IVB thaty=7%x10" Hz andd,=1.42 A; and that o®(r)= o U + o u(r)u(r) (50)

05°=4.2x 10" Hz. Let the ac pumping operate at the angU-is the ac surface conductivity tensor with components

lar frequencyw=3.5x 10'? rad/s. From Fig. 4, we see that

y~0 when £5=4. Thus, whenE3°=6.5x10° V/cm and ed,? ed,j?

E%°=1.94x 10° V/cm, the net time-averaged current is al- 9T e T e

most purely circumferential even though the total applied

electric field is purely axial. The physical explanation for this  The two components a¥*{(r) are evaluated by retaining

effect is as follows: the axial current in the CN consists ofonly the first terms in the Maclaurin expansion of{sjnon

two components—one caused by electron motion along ththe right sides of Eqs(37) and (38), and then putting%°

base helix, the other by electron motion along the tubular= Q;’°=o therein. Clearlyg®qr) is purely reactive and does

axis from turn to turn. The ac pumping changes their rationot give rise to energy dissipation. Furthermore, it denotes

sometimes resulting in almost totally destructive interfer-surfaceconduction(and notvolumetricconduction because

ence. it is constituted by the two-dimensional nature of electron

transport in a nanotube. Finally, the various unit vectors on

¥ the nanotube surface are no longer specified on the base he-

lix, but everywhere on a continuous cylindrical surface of

radiusp=R;,.

As Eq.(49) holds on the nanotube surface, it can be used
to determine the jumps in the electric and the magnetic fields
across the surface. Let all space be divided by the infinitely
long nanotube into two regions: regiond<€<R;) and region
Il (p>R;). Since no magnetic surface current density is ex-
cited on the surface, the usual jump condition

(51)

oy

0 | |
' x 1 un(NX[E(N—E"(r]=0;, p=Ry, (52
0 5 10
! holds for the electric field. However, the electric surface cur-
FIG. 4. Current chiral angley as a function of the ratig3;, rent density creates a discontinuity in the tangential compo-

whenv= /5, 0%=w+ v, and §,=4°. nent of the magnetic field; thus,
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c model of a nanotube described in Sec. 2. A detailed com-
I un(NX[H'(—=H"r)]1=J(r); p=R,. (53  parative study will be provided in a separate paper.

Hence, in view of Eq(49), the boundary conditions on the B. Simultaneous exposure to ac and dc fields

surfacep=R,, may be stated as .
Let us now expose the nanotube simultaneously to a dc

electric fieldEy.= Efcuz. Equationq37)—(39) are applicable

c
2., Un(1) X [H'(r)—H"(] with E%°=EZ sin ¢, and Q%= 09d, /d,)sin 6,. Assuming

. that the amplitude of the high-frequency electric field is
=0qr)-E'"(r) small, we linearize the right sides of Eq87) and(38) with

respect toé57, and £7 ,, and evaluate the time-dependent

— _ 5aqr). I . _
== 0 AU X[un(XEXNT - p=Rn. parts of the currentg, andj. in Eq. (33) analytically. As a
(54) result,

The second equality follows from the fact thag(r)-o2° ed
= 52.Up(r) =0, o==igv 7= [C,~i(A,~B))],

Further manipulations allow reduction of EG4) to the w (59
conventional form of impedance boundary conditions. Thus,

o ed; :
{un(N) X [un(n) X E"(11} o=l g [C1(A—B]

=i 2% Uy X[H(N=H"(D]); p=Ry, where
(55) . o ”
with the ac surface impedance tensor given by A= fo e 7 cosz = Q752402
o= c + 56 R
¢ ~4mo.0, cof 6, (0 Uplp+oligly).  (56) B,.= fo e " cog Q%t")cog wt’)dt’
Both components o&ac are real-valued quantities. As neither
. o . v 1 1
component depends on the spatial characteristics of the illu- -— " s+ |,
minating wave, the boundary conditi@B5) is local but an- 2 (Q—w)+v° (Q,to)+v
isotropic. (60)
Impedance boundary conditions are widely used in the I R dCern ' er
theory of helical slow-wave systems and helical Cor= 0 e " codQy th)sin(wt’)dt
antennas®=*° In particular, Eq.(55) allows us to connect . .
helically conducting cylinder$HEC's) with nanotubes. As 1 w—Q% w+Q5
the surface conductivity of a HEC is infinite along the base ) (ngT_w)2+ 2 + (ng7+ )2+ 2|

helix but null in the binormal direction, all foregoing equa-

tions for a nanotube are applicable in the linjitg| —o and  As Q;{Cﬁo (i.e., for a weak dc field we getA, ,—v~ 1,

o,—0. B, .— vl(v?*+ 0?) and C,—— ol (v?*+ 0?). For small,
The impedance boundary condition for achiral CkRef.  only the terms containing\, , are significant, so that Egs.

31) also has the form of Eq55) with the transformed ac (59) simplify to Egs.(51).

surface impedance tensor. First, the replacenrsin 6,

—d,/d, has to be made in the foregoing equations; then, the VI. SURFACE WAVE PROPAGATION
limit 8,—0 has to be taken. Finally, after applying condi- _ ) )
tions (24), one can obtain A. Dispersion equation

) Being very long, a nanotube can guide electromagnetic
ac _ Uollot U U 5 waves. Let us consider therefore gwd_ed wave propagation in
ach 4wa§§hi( 77+ Uglly) &7 an isolated nanotube, the surrounding medium being free
space(i.e., vacuunm.

The electromagnetic field phasors associated with a cylin-
(ed,)2A, 1,(A,/kgT) drical eigenwave are written in terms of electric and mag-
z z .
) netic Hertz vectorsll, andIl,,, as
ﬁzw IO(AZ/kBT) (58) H #

of an achiral nanotube emerges as an isotropic entity, with

ac __:
Tachi— Ng

, E=V(V-II,) + KT _+ikV XTI,
Parenthetically, we have also calculaieff,; based on a . (61)
model that properly incorporates the actual hexagonal crys- H=—ikV XTI+ V(V-II,)+ k21T

talline structure of graphite. Instead of E@3), we used a ¢ K -

Hamiltonian suggested by WallateAlthough calculations where k= w/c is the wave number in free spackl, ,
with the latter Hamiltonian became much more complicated,=1'[e,ﬂuze'hz and h is the guide wave number. Assuming
the results are in good agreement with E§8). This fact polar symmetry(i.e., d/d$=0), we state the scalar Hertz

substantiates the applicability of our phenomenologicalvectors a¥
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lo(kp)Ko(kRp)
lo(kRn)Ko(kp)

lo(kp)Ko(kRp)
lo(kRp)Ko(kp)

|

s
(62)

Here, k= +h?—k? is the transverse wave numbgrandB
are unknown coefficientdy(-) andKy(-) are the modified
Bessel functions of order 0; while the prime indicates differ-

1.4

entiation with respect to the argument. The upper rows on

the right sides of Eq962) apply in region | p<Ry), and
the lower rows in region Il > Ry).
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Equation(68) is a transcendental equation fer Recalling
that ¢®is proportional tow, we observe that the right side of
Eq. (69 does not depend upda

On applying the limit§o,| —% and o,—0, we see that
{11—° and{,;— {5, tarf 6,. The quality factor then simpli-
fies to

lo(kRp)Ko(&Rp)

Q) =tarf 4, I1(kRh)K1(kRy)

(70

The electromagnetic field components needed to solve thehich is the same as for a HEE.
guided wave problem are obtained from the scalar Hertz vec-

tors as

E,= — «’I1 €%, (63

and

2 ih
I1,e"? (64)
The jump condition(52) is satisfied identically. In order to

satisfy the boundary conditio(b5), we first use Eqs(62)

and (64), as well as the Wronskian equality;(y)Kq(y)
—lo(Y)Ko(y) =14y, to get

kB i,

ihz
— e'"?, hz,
Rh

lim (H,—H})=

p— Rh

lim (H,—H!)=i A
@ 3 Rh

p—>Rh
(65)
Then, substituting expressiof®3) and(65) in Eq. (55), we
obtain two algebraic equations, viz.,
_ikgle_"[kKRhl1(KRh)Kl(KRh)+Kgll:IBZO,

[ k%Rl o( kRp) Ko(kRy) —K{a]A—ik{1,B=0. (66)

These equations have a nontrivial solution forand B for
those values ok (or h) that satisfy the dispersion equation,

4 k¢

Kla(kRy) K (kRy) + 2 (KZIO(KRh>Ko(KRh>— ==
h h

v, %0 6

Equation(67) is general and can be used for any model of

nanotube conductivity, the choice of model affectititf
only. In the following, we employ Eq56).

After using the relation{,,= {5, tan g,, the dispersion
equation(67) can be transformed into a form analogous to
that for HEC’s® thus,

(K)Z— ! 68
K Q! (69
where the quality factor
lo(,kRh)Ko(kR
Q(K)=§11 o( kRy)Ko(&Rp)

L2 11(KR) K1 (kRy) + (L11— Eo0 tar? 6,) KR,

X . (69

KR,
1+ —— 11(kRy)K1(«Ry)
{1

B. Dispersion characteristics analysis

Returning to Eq(69), let us introduce the dimensionless
variablesu= kR;, tan 4, and q=kR, tan §, and define the
parametery=\u?+q?. Then, parametric solutions of the
dispersion equatiof68) in terms ofu may be obtained as

7=*+J1+Q(uR; ! cot 6y), (71)
a=xVQ(xR; ! cot 6y). (72
The slow-wave coefficienB=k/h is expressed as
Q(UR, " cot 6y)
= \/ CTIR! : (73)
Q(uR;* cot )

For a qualitative analysis of the dispersion equat@n),
we set «kRy>1, which implies field concentration
near the CN. Then]l («Rp)Ki(«Ry,)~1o(xRp)Ko(kRy)
~(2«Rp) "1, and Eq.(67) simplifies as follows:

(k= 2LK) (K+2¢116) + 45 KK tarf 6,=0.  (74)
This quadratic equation has the two solutions
k
KZE[_bi\/b +16{11¢2,], (79

where b=1+4¢,)({y, tart 6,—11) =1—4(0,0,c086,) L.
Only the positive solutions of Eq74) are physical, as they
lead to the satisfaction of the radiation conditionspasoe.
When {,,>0, the proper solution,

k
K= 25, [ — b+ Vb?+16¢1105,],

characterizes surface wave propagation in the nanotube.
Let us restrict ourselves to the case of CN’s, assuming
condition(24) to be valid. It means that;;= {,,. Then, the
ac surface impedance tensor can be transformed into the
frequency-independent scalar
~ hc lo(A,/kgT)

2
- k_Rh:(ﬁj 4mnoRpA 1 1(A,/KgT) "
27

By settingd,~1.42 A, A,~2eV° ny=2.27x10" cm?,
R,=20A, and T=300K, we get the estimat¢=1.16
x 104

Figure 5 shows computed values of the slow-wave coef-
ficient B=k/h for an achiral CN ¢,=0) for different ¢,
when{,,={,,. Surface waves witl$-independent fields do

(76)

(77)
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0.05- the spectrum, which means that a CN can serve as a nano-
waveguide at infrared frequencies. H8g=2 nm then, we
have 2< 10 5<kR,<8x 10 3.

Let us also estimate the lower limit g for which the
presented CN conductivity model holds. In Sec. IV, we ef-
fectively neglected all spatial derivatives in deriving Eq.
(34). This neglect is valid if ¢,h)?<w? where v,
~A.d, /% is the maximum electron velocity. Then we have
B>3v,/c=0.5x10"2. If B is smaller, the dependence of
u,(s) ons cannot be ignored and spatially inhomogeneous
terms on the right side of E¢25 must be taken into ac-

0.00 0.01 0.02 0.03 0.04 0.05 0.06 count, which caus¢ to depend orh although Eq.(69) still
th holds for the quality factor.
FIG. 5. Slow-wave coefficien8=k/h for an achiral nanotube VII. NANOWAVEGUIDE IMMERSED IN dc FIELD:
(6,=0) for differentZ, when{,;={5,. INSTABILITIES OF WAVES

not possess any critical frequency, age-1 askR,—0. A. Achiral nanowaveguide

The electromagnetic field is concentrated near the CN sur- Consider a nanowaveguide immersed in an axial dc elec-
facep=R, (see Fig. 6 becausd has large values in nano- tric field Eq=E2%,. The dispersion equation for surface
tubes. wave propagatioriwith ¢-independent fielgshas the same
The dispersion equation for the surface waves being corform as Eq.(67). However,o . and o, now have to be de-
sidered depends slightly on the angle. The dependence is termined from Eqs(59).
slight, because we linearized the results of the previous sec- Let us commence witlachiral nanotubes: 6,—0. The
tions in this one. Nonlinear electromagnetic phenomena wiltlispersion equation then turns out to be as follows:
be considered in a separate paper. ) ;
The frequency range for validity of the presented CN con- K 22
ductivity rr?odel Zan b% deduced f);om thepinequality (E) lo(Rn) Kol <Rn) = KR, 79

hv<hw<28,<2A,, (79) Assuming|«|R,>1, we find

where A is the width of the forbidden barfd. Using A,
=2 eV andv=5x 10" Hz, we see that the estimated range

) kc
KZK’+IK”EZk§22:FO'Z (80
10" Hz< w/2r<2x 10" Hz lies in the infrared portion of

as an approximate solution, with, given by Eq.(59).

The existence condition for surface wave propagation is
AP k'>0, orA,—B,>0 equivalently. Using Eq60), we have
the result

w?+12>3(0%92, (81)

An important deduction immediately follows: as distinct
from the case illustrated at Fig. 5, a sufficiently strong dc
field may give rise to a critical frequency such that surface
A waves with polar symmetry cannot propagate at frequencies
teee @ @ <§ I lower than tr?e critic):lal freqlzlency. Thg m?nigr]num dc figld am-
plitude is found from the conditiof3> v/v3.
R, The instability condition is<">0, i.e.,C,<0. Again, us-
ing Egs.(60), we have the equivalent expression

(

- w?+12< (092, (82)

Ny

On comparing the inequalitie@1) and (82), we conclude
that surface wave propagation in an achiral nanotube is

stable.
/ \ / \ However, this statement does not imply that ac field in-
o0 <> <> @ “ LR XN stability caused by amplification at the expense of the dc
\ / \ / field is impossible in an achiral nanotube. When

Q%> Jw?+172, (83

the solution given by Eq80) along with Eqs(62), (63), and

FIG. 6. Electric field structure for the surface wave in an achlral(64) describes a leaky surface wave with<0 and " <O0.

nanotube §,=0).
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The guide wave numbdr=h'+ih" is complex-valued with  sponds to the amplification regime of an input signal, the dc
h'h”=«k'k". If h'>0, thenh”>0; i.e., the fields delineated field providing the energy needed for amplification.

by Egs. (63) and (64) intensify with increasingo but de- The inequality (88) holds if we haver=10'"Hz,
crease along the axis, as it should be for leaky wavés. =10"rad/s, d,=d,=1.42A, A,=A,, and sing,~0.1.
The energy fluxz, transferred to a surface wave at the Taking Q§°z0.75>< 10*2 Hz, we ensure that the conditions
surfacep=Ry is given by (85) are fulfilled. We then neeB%=3x 10* V/cm to obtain
the instability. But this instability is likely to be much harder
S —— < lim[u,- RE[EXH*]|,— to observe experimentally than the one considered in Sec.
P 8mg g " P=Ryto VIl A. The value of v we use is rather small, although it is

accessible at low temperatuf®Any increase inv leads to a
C[EXH*]| 1= - K|E,|? sharp growth of the dc field amplitude needed. Yet this in-
p=R,=48 47| k|? zl Ip=Ry stability provides an unusual example of how chirality can
84) crucially affect the physical responses of nanotubes.

where the asterisk indicates the conjugate transpose. If
k"<0, Eq.(84) yields X ,>0, which means that the surface
wave is amplified by the applied dc field, and the added The principal result of this work comprises three equa-
energy is leaked into outer space. Hence, a convective instgons: (33), (37), and(38). They describe the electric current
bility of the high-frequency field develops in a nanotube, ifin a nanotube exposed simultaneously to constant and high-

VIIl. CONCLUDING REMARKS

the inequality(83) holds. frequency fields. Several physical effects were identified us-
ing these equations.
B. Chiral nanowaveguide The dependence of the CCA on the ac electric field am-

s plitude was elucidated for the electron transport problem. At

Let us now elucidate another type of instability, which i . - L .
. nfRertain amplitudes of the ac electric field, the axial compo-

that ' nent of the time-varying current was shown to vanish, and
only the circumferential component remained. This effect
r<o, v<|Q¥-—g. (85  can possibly be observed as a sharp increase in the dc resis-
] ] ' tivity of a nanotube at specific amplitudes of the ac field.
Equations(59) then yield Another way to observe this effect may be to measure the
ijgvedz/h ij?vedrlh variation of the magnetic field direction as the amplitude of

(86) the ac electric field changes. The identified effect may be
useful for mapping nanotube geometry.

We also investigated surface wave propagation in nano-
tubes, proposing for the first time the concept of nanotubes
as nanowaveguides. The surface wave propagates along the
nanotube surface if the dc electric field is absent. Otherwise,
leaky wave propagation is possible. If the nanotube is ex-
posed to a dc electric field of appropriate magnitude, the
surface wave can exhibit an instability with respect to small
%erturbations of electromagnetic field. This suggests the pos-
sibility of ac signal amplification, with energy supplied by

0,0, o2 6,>4, o> cof 6,>—4. (87)  the dc field. Whereas nanotubes may serve as transmission
T lines at infrared frequencies, the instability may be applied
Equations(86) permit us to rewrite these two inequalities for amplification in nanoelectronics.

for use in the dispersion equati¢d8). Furthermore, wheB
is large, Eq.(68) simplifies to Eq.(74).

The physical value ok is then given by Eq(75) with the
upper sign. Although Re&{>0, in contrast to the develop-
ments in Sec. 6, the guide wave number k?+ «x? may be
a complex-valued quantity with R&¢0 and Imf)<0. The
surface wave then becomes unstable when the followin
conditions also hold simultaneously:

compactly as The electron transport effects predicted in Sec. IV can
5 also be observed in planar two-dimensional superlattices,

@ [l1+aN —qdoe 89) with the nonorthogonality of axes playing a role akin to that

N 1+« T of chirality. It can be realized by using one-dimensional su-

017 Ony s perlattices irradiated by strong ultrasonic standing waves.
wherea=J/(j;N sin 6,). Thus additional modulation will simulate some features of a
Clearly, the inequality(88) shows that surface wave nangtube. However, nanotubes display different electromag-
propagation in a CN is unstable wh&{° lies in a certain  petic characteristics in comparison with the guantum
range. This range narrows as increases; and the range gyperlattice$® because they are hollow and possess chiral
shrinks to a point ag— (i.e., j;—0). Consequently, the symmetry. Consequently, surface conduction takes place in
instability is suppressed if electron motion is inhibited alongsingle-wall nanotubes, but volumetric conduction occurs in
the tubular axis. The instability disappears whep—0,  superlattices. Electromagnetic effects analogous to those de-
when the range of appropriate valuessjf becomes infinite.  scribed in Secs. VI and VII will take place only in the so-
Parenthetically, when correlatiaf24) holds true, condition called surface superlattices of different tyf&<Our tech-
(88) reduces tcu/ﬁ<Q‘j°<w. nigue may be applied for theoretical analysis of chiral
As the instability at any location does not increase withnanostructure$’48
the passage of time, it is a convective instability. It corre- We must emphasize again that our model is phenomeno-
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logical and, accordingly, approximate. For example, it doeggeneral solution, analogous to E(5), can then not be
not take the real hexagonal graphite structure of CN’s intdfound. Although linearization with respect to the ac field
exact account. For adaptation to real CN's and,B®@ano-  amplitudes reduces the analytical complexity somewtfst,
tubes, the phenomenological parametkrs A,, d., andd,  pecomes an integral operator that describes nonlocal effects.
will_have to be determined either experimentally or evengther research appears necessary.

through the first-principles numerical simulations. Certain new theoretical problems can be identified. For

The hexagonal graphite structure can also be exactly stugzgiance, nanotubes are not infinitely long and edge diffrac-

ied_withzgutr) approach, by ;eplacing th?}‘@gmicflfas?_icaltﬁatmil-tion needs to be investigated. That can be accomplished with
onian(23) by more accurate expressicfiOn effecting tha a semi-infinite cylinder model, and the Wiener-Hopf

replacement, expressions for the equilibrium distribution .29 .- . : .
. . techniqué® appears promising. Similarly, real CN’s can dis-
functionF(p) and the electron velocity become more com- : . .
plicated than Eq928) and(30), respectively. Therefore, the play s_paﬂally inhomogeneous - electromagnetic response
integrals in Egs.(31), (32), and (35 cannot be evaluated proper_tles. . Irr:geed,kconnected . CNRZf' 13band CN q
analytically, and must be subjected to numerical and/of€t€rojunctions are known to exist, and may be conceive
asymptotic techniques. We shall consider this issue in &f @ inhomogeneities in open waveguides. Scattering by
separate paper. these inhomogeneities will cause modal transformations and
An important aspect of the presented work is the neglecfadiation Ios;eéf? Flnally, only linear eIectromagng'uc pro.b—
of the dependence of.(s) on's, which allowed us to use the lems were discussed in Secs. VI an.d VII. Nopllnear h|g|_ﬂ—
very simple expressio(84) for the collision integral on the ~frequency phenomerauch as harmonic generation and soli-
right side of Eq.(25). This simplification is untenable j§is  ton propagation, etcwill appear in a nanowaveguide with
small and/or¢-dependent fields must be considered. But anonlinear surface impedance.
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