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A nanotube is phenomenologically modeled as a chain of atoms wrapped helically on a right circular
cylinder. The semiclassical Hamiltonian of an electron is derived, using the Wannier approach for the Schro¨-
dinger equation, when the nanotube is exposed to both constant~dc! and high-frequency~ac! electromagnetic
fields. The Boltzmann kinetic equation is then solved in the framework of momentum-independent relaxation
time approximation. An analytical expression for electric current in a nanotube is derived. The interaction of
nonlinearity and chirality is analyzed, chiefly as the dependence of a current chiral angle on the amplitude of
the ac electric field. The derived expressions for the electronic transport also help in stating anisotropic
impedance boundary conditions on the nanotube surface. Surface wave propagation in a carbon nanotube~CN!
is examined. The idea of using CN’s as nanowaveguides in the infrared frequency range is established.
Convective instability is shown to occur under special conditions in a CN exposed to an axial dc electric field.
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I. INTRODUCTION

During the past several years, research on the prope
of different fullerenes has proliferated. An extremely attra
tive feature has emerged: the crystalline structure o
fullerene depends on the conditions of its preparation, w
different structures displaying quite different physical r
sponse properties. A comprehensive review of the fuller
literature is given by Eletskii and Smirnov in Ref. 1; see a
Refs. 2 and 3.

Carbon nanotubes~CN’s! are fullerenes with carbon at
oms situated regularly on a helical lattice.4 The base helix of
the helical lattice is wrapped along the surface of a cylin
of cross-sectional radius;10– 150 Å. The wrapping angle
also called the geometric chiral angle~GCA!, is usually a
few degrees.5 Having helical symmetry, CN’s are quasi-on
dimensional chiral systems,6,7 on whose mechanical an
electronic properties much attention has been lavished.8

CN’s not only possess very high strength-to-weig
ratios,9 but also have fascinating electromagnetic propert
Recent experimental studies10 confirmed that a CN can b
metallic, semiconducting or even nonmetallic, depending
its tubular radius and GCA. Lou, Nordlander and Smalley11

Miyamoto, Louie, and Cohen,12 Saito, Dresselhaus, an
Dresselhaus,13 and Benedict, Louie, and Cohen14 examined
570163-1829/98/57~16!/9485~13!/$15.00
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the response of a CN immersed in an electrostatic fie
while Kasumovet al.15 and Langeret al.16 measured the
electrical resistance of a CN immersed in a magnetost
field. A quantum-mechanical treatment of charge-carrier m
tion in the presence of an external magnetic field was de
oped by Kibis17 and Romanov and Kibis.18 Electron-photon
interaction in CN’s was theoretically investigated b
Romanov,19 Romanov and Kibis,20 Chicoet al.21 and Langer
et al.16

Along with CN’s, nanotubes of graphitic compound
BxCyNz , for example, BC2N, have been produced and e
tensively studied in recent years.22–24 According to Ref. 12,
such nanotubes are semiconductors independently of
geometry.

Two broad theoretical approaches for electron transpor
nanotubes have emerged. The first approach comprises
principles numerical simulations, as exemplified by Miy
moto, Louie, and Cohen.12 The other approach requires th
creation of phenomenological models that yield somew
rough but analytically tractable results. As an example,
phenomenological model of a CN as a chain of carbon ato
located on a base helix was investigated by Romanov
colleagues.17–20

Miyamoto, Louie, and Cohen12 computed the current ex
cited in carbon and BC2N nanotubes immersed in an electr
9485 © 1998 The American Physical Society



r-

n
A
th
tro
-
or
ri-
e

he

h
at
ur
in
d
ci

co

re
e
-

l
rg

ca
-
ea

b
ht
uc
m
al

a
e
w
m

ci-
A

by
c

ve
n
he
It
a
re
u

m
S
ac
e
s
e
a

per

ely
the

-
of

his
s
lds
ro-
eri-

ng
the
lix

m
-
se

is
.

on

9486 57GREGORY YA. SLEPYANet al.
static field. Letj z be the current parallel to the tubular~i.e.,
the z! axis, andj c the circumferential current, so that a cu
rent chiral angle~CCA!,

g5tan21~ j z / j c!, ~1!

can be defined. First-principles numerical simulatio
showed thatgÞp/2 as well as that the GCA and the CC
are unequal, even though the surface conductivity of
monatomic curved surface of the CN was taken to be iso
pic. Kasumovet al.15 and Langeret al.16 measured the resis
tance of a single CN, their data being in qualitative acc
with theoretical results. Most importantly, the two expe
mental reports established the validity of theoretical mod
of CN’s isolated from one another as well as from any ot
form of matter.

The conductivity of a nanotube immersed in a hig
frequency electromagnetic field in addition to an electrost
field is of importance for two main reasons. First, expos
to ac electric fields may lead to new techniques for prob
carbon microstructures. Second, a nanotube may stand
as a tool for controlling electromagnetic radiation in spe
fied frequency ranges~for instance, infrared and optical!.
These issues, apparently not discussed in the literature,
stitute the main goals of this paper.

The procedure for describing the electromagnetic
sponse of a nanotube is complicated. It entails finding a s
consistent solution of~i! the equation describing charge
carrier motion, and~ii ! the frequency-domain Maxwel
equations for electromagnetic fields excited by the cha
carriers.

A CN has a two-scale periodicity: one due to the heli
pitch ~along thez axis!, the other from the interatomic dis
tances along the base helix. Also, in a wide variety of r
samples, the dynamics of charge carriers in a CN can
described with good accuracy in the framework of the tig
binding approximation. Thus, as a CN is a high-order str
ture with tight-bound electrons, albeit with an unusual geo
etry, the methods and standard approximations origin
developed for systems of tight-bound electrons, such
quantum superlattices,25–27 are also applicable after som
modification. In particular, the semiclassical approach allo
us to decouple the solution of the equation of motion fro
that of the Maxwell equations, and is well suited for elu
dating the electromagnetic response of a single CN.
analogous approach is possible for BC2N nanotubes.

In this paper we extend a theory outlined recently
us.28,29 We start from a comprehensive description of ele
tronic properties and transport and then, using the deri
transport equations, we pass to the realm of electromag
ics. The outline of the paper is as follows: In Sec. II t
phenomenological model of a nanotube is presented.
used in Sec. III to derive the semiclassical Hamiltonian of
electron on the surface of a nanotube. The electron cur
induced in a CN exposed to ac and dc electric fields sim
taneously is determined in Sec. IV. Electromagnetic ju
conditions across the nanotube surface are delineated in
V. These lead in Sec. VI to the dispersion equation of surf
electromagnetic waves on a CN, when the electrostatic fi
is absent. The idea of a CN as a nanowaveguide is propo
Convective instability is shown in Sec. 7 to occur, und
special conditions, in a CN nanowaveguide exposed to
s
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axial dc electric field. Gaussian notation is used in this pa
for electromagnetic fields and related quantities.

II. PHENOMENOLOGICAL MODEL
OF A NANOTUBE

We start with carbon nanotubes considering an infinit
long chain of carbon atoms wrapped along a base helix as
model of a single CN,17–20 as shown in Fig. 1. In this phe
nomenological model, the hexagonal crystalline structure
graphite is reproduced approximately. The chief merit of t
model is its analytical tractability, which readily yield
physically interpretable results. In addition, the model yie
correct qualitative descriptions of various electronic p
cesses, which are corroborated by the first-principles num
cal simulations of Miyamoto, Louie, and Cohen.12

Let the variables denote the arc length measured alo
the base helix from the intersection of the base helix and
planez50. The position vector of a point on the base he
can be denoted by

r ~s!5
sh

2

rh
H cosFzh~s!

sh
Gux1sinFzh~s!

sh
GuyJ 1zh~s!uz . ~2!

Here,zh(s) is the perpendicular distance of that point fro
the planez50; (ux ,uy ,uz) is the triad of cartesian unit vec
tors; sh

21 andrh
21 are the torsion and curvature of the ba

helix,30 respectively; whileRh5sh
2/rh is the helical radius;

ph52psh is the helical pitch, anduh5tan21(rh /sh) is the
GCA.

More convenient than the cartesian coordinate system
Serret-Frenet coordinate system30 attached to the base helix
The unit Serret-Frenet vectors (ut ,un ,ub) are related to the
unit vectors (ur ,uf ,uz) of the cylindrical coordinate system
as follows:

ut~s!5uf~s!cosuh1uz sin uh ,

un~s!52ur~s!,

ub~s!52uf~s!sin uh1uz cosuh . ~3!

FIG. 1. Schematic of the carbon nanotube geometry. All carb
atoms are numbered consecutively along the base helix.
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Here,ut is tangential to the base helix described by Eq.~2!,
while un and ub are unit vectors along the normal and t
binormal directions, respectively. The unit vectorsur(s) and
uf(s) carry their dependency ons, as they are the unit cy
lindrical vectors at a pointr (s) on the base helix. In the
sequel,az5a•uz andat5a•ut , respectively, denote the pro
jections of a vectora along the tubular axis and the ba
helix.

A complete turn of the base helix accommodatesN>1
regularly spaced carbon atoms. The interatomic distance
electronic jumps along the tubular axis and the base h
are, respectively, given by the expressionsdz5ph and dt
52psh /N sinuh . We takeN@1 in this work so that the
condition

dt

Rh
5

2p

N cosuh
!1 ~4!

is ensured.
The described framework isgeneralbecause, in addition

to chiral CN’s, it can accommodate~i! an achiral carbon
nanotube31 as a system of coaxially stacked circular atom
chains, and~ii ! a BC2N nanotubeas comprising two atomic
helices wrapped along a cylinder and shifted with respec
one another along the cylinder’s axis, with one helix conta
ing carbon atoms and the other formed by alternating ni
gen and boron atoms.

After assuming the tight-binding approximation to b
valid, chiral and achiral CN’s as well as BC2N nanotubes can
be analyzed in a unified manner, as shown later in this pa

III. SEMICLASSICAL HAMILTONIAN OF AN ELECTRON
IN A NANOTUBE

Let us begin with a CN. Following Okotrubet al.,2

Romanov18 and Kibis and Romanov,20 we assume that the
behavior of electrons in a CN can be adequately represe
by the simplified tight-binding approximation for the lowe
conduction band. Thus we assume that the CN is in the se
conducting state.

The phenomenological model of a single CN allows us
apply the Wannier equation,

i\Ċn5E0Cn2
Dt

2
$exp~ iwn11!Cn111exp~ iwn21!Cn21%

2
Dz

2
$exp~ iwn1N!Cn1N1exp~ iwn2N!Cn2N%, ~5!

in the site representation for the amplitudesCn of the elec-
tronic wave function in order to investigate the motion
charge carriers.20 The following notation is used in Eq.~5!:
Ċn[]Cn /]t;

wn615
e

\c E
n61

n

Atds, ~6!

wn6N5
e

\c E
n6N

n

Azdz; ~7!
for
ix

to
-
-

r.

ed

i-

o

Az andAt are the components of the vector potentialA(t) of
the total externally applied field;e is the electronic charge,c
is the light speed in vacuum and\ is the Planck constant;E0
is the energy of an outer-shell electron in an isolated car
atom;Dz andDt are the real overlapping integrals for jump
along the tubular axis and the base helix, respectively.
last two quantities are phenomenological adjustable par
eters to be determined for a real CN by first-principles n
merical calculations; their estimates are given in, e.g., R
18.

The second term on the right side of Eq.~5! describes the
interaction of an electron with two neighboring sites in t
same turn of the helix, while the third describes the inter
tion of an electron with corresponding sites in the two ad
cent turns. Let us introduce shift operators for the two typ
of interactions as follows:

expH dz

]

]zJ F~z!5F~z1dz!,

expH dt

]

]sJ F~s!5F~s1dt!. ~8!

Furthermore, let us effect the substitutions

]

]z
→2 i

P̂z

\
,

]

]s
→2 i

P̂t

\
, ~9!

with the operatorsP̂z and P̂t corresponding to the compo
nents of the canonical momentum. Assuming that the p
of the base helix is small compared with the characteri
length scale of the externally applied field, we set

fn1N.2wn2N . ~10!

Similarly, assuming that the projectionsAt at any three ad-
jacent sitesn21, n, andn11 along the base helix are equa
we also set

fn11.2wn21 . ~11!

The result of the foregoing manipulations is that Eq.~5! sim-
plifies to

i\Ċn5ĤCn~ t !, ~12!

where

Ĥ5E02Dz cosS P̂zdz

\
1wn1ND 2Dt cosS P̂tdt

\
1wn11D

~13!

is the Hamiltonian operator.
We remark here that, in general, one jump along the

bular axis andN jumps along the base helix are not equiv
lent, i.e.,

expH dz

]

]zJ ÞexpH Ndt

]

]sJ . ~14!

This is because the electron velocities near the final site
fer for the two jumps, although both jumps begin at the sa
site l ~with the same initial velocity! and end at the same sit
N1 l also. The electron velocity has a circumferential co
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9488 57GREGORY YA. SLEPYANet al.
ponent for motion along the base helix but not for moti
along the tubular axis. This indicates that a CN is a pur
quantum structure, and the classical minimum action p
ciple cannot be stated because quantum theory allows di
ent paths connecting a pair of atoms.

Now, from Eq.~13! we are in a position to find expres
sions for the classical HamiltonianH of an electron in a CN.
According to the correspondence principle, the moment
operator is replaced by the value of the canonical momen
P. In doing so, we consider thez- and thet- components of
the momentum as mutually independent, neglecting the
terference between the axial and the helical paths connec
a pair of atoms. This actually means that we do not ta
transverse motion quantization into account32

Previously,2,18,20the interference was claimed to be the ma
mechanism for the chirality of certain physical effects. But
this paper, we focus on another, very different physi
mechanism—which is purely classical but, nevertheless,
lows chirality to substantially modify electron transport in
CN.

Let the externally applied electric field have both hig
frequency~ac! and constant~dc! components:

E~ t !5Edc1Eac
~1! cos~vt !1Eac

~2! sin~vt !, ~15!

whereEdc, Eac
(1) and Eac

(2) are time-independent, real-value
vectors. The two harmonic terms on the right side of Eq.~15!
allow the incorporation of an arbitrarily polarized electr
magnetic field in our treatment. We impose the condit
that the electric field varies slowly in space so that we c
neglect the effects of spatial nonhomogeneity. The conc
conditions for whatslowly variesmeans can be different in
different contexts. Clearly, there cannot be appreciable n
homogeneous effects if the externally applied field is vir
ally uniform over the entire CN, which condition is assum
in Sec. IV for treating electron transport. But a weaker co
dition is taken in Sec. VI for surface wave propagation in
CN.

The time-varying vector potential of the applied extern
field ~15! is as follows:

A~ t !52cEdct2
c

v
Eac

~1! sin~vt !1
c

v
Eac

~2! cos~vt !.

~16!

As Edc•uz , Eac
(1)
•uz and Eac

(2)
•uz are spatially uniform, Eqs

~7! and ~16! together yield

wn1N5Vz
dct1jz1

ac sin~vt !2jz2
ac cos~vt !, ~17!

where

Vz
dc5S edz

\ DEdc•uz , ~18!

and the ratios

jz1
ac5S edz

\v DEac
~1!
•uz , jz2

ac5S edz

\v DEac
~2!
•uz ~19!

relate the angular Stark frequencies@(edz /\)Eac
(1,2)

•uz# to
the angular frequencyv of the high-frequency field. Conse
y
-
r-

m
m

n-
ng
e

l
l-

n
n
te

n-
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quently, the classical analog of the second term on the r
side of Eq.~13! may be written as follows:

Hz52Dz cosFPzdz

\
1Vz

dct1jz1
ac sin~vt !2jz2

ac cos~vt !G .
~20!

Now we come to the classical analogHt of the third term
on the right side of Eq.~13!. In evaluating the right side o
Eq. ~6!, spatial nonhomogeneity is encountered beca
ut(s) depends ons. However, using the inequality~4!, we
quickly get the approximate relation

wn11'Vt
dct1jt1

ac sin~vt !2jt2
ac cos~vt !, ~21!

whereVt
dc, jt1

ac , andjt2
ac are obtained on replacing the su

script z by t in Eqs.~18! and ~19!. Thus,

Ht52Dt cosFPtdt

\
1Vt

dct1jt1
ac sin~vt !2jt2

ac cos~vt !G .
~22!

The full semiclassical Hamiltonian of an electron in a C
finally emerges from Eqs.~13!, ~20!, and~22! as

H~Pt ,Pz ,s,t !5E02Dz cosFPzdz

\
1Vz

dct1jz1
ac sin~vt !

2jz2
ac cos~vt !G2Dt cosFPtdt

\
1Vt

dct

1jt1
ac sin~vt !2jt2

ac cos~vt !G . ~23!

This general expression allows us to develop the semicla
cal equation of electron motion so that electron transpor
CN’s can be addressed. The parametersDz,t anddz,t must be
chosen so that the transition from a chiral nanotube t
~monolayer! planar graphite sheet yields isotropic conduct
ity. Therefore,

Dz5Dt , dz5dt ~24!

must be used in Eq.~23!. Furthermore, in view of the rela
tion tanuh5dz/2pRh , we must take into account thatuh
→0 whenRh→` for the transition to the planar sheet.

In order to apply Eq.~23! for an achiral CN, it suffices to
replacePt by Pw . The semiclassical Hamiltonian of elec
trons in a BC2N nanotube can also be written in the form
Eq. ~23!, after effecting the changedz,t→2dz,t together with
corresponding adjustment of the overlapping integrals,
the conditions~24! are invalid because BC2N planar sheets
have anisotropic conductivity.

IV. ELECTRONIC CURRENT IN A NANOTUBE

A. Electron fluxes

Let us commence with the Boltzmann kinetic equation

] f ~p,t !

]t
1 ṗz

] f ~p,t !

]pz
1 ṗt

] f ~p,t !

]pt
5I~F~p!; f ~p,t !!,

~25!
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for the time-varying distribution functionf . Here,F is the
equilibrium distribution function,I(F; f ) is the collision in-
tegral, and

pz5Pz1\wn1N /dz , pt5Pt1\wn11 /dt ~26!

are the components of the electron momentump with

ṗz5eE~ t !•uz , ṗt5eE~ t !•ut . ~27!

In accordance with the previous section and Ref. 33,
use the Boltzmann equilibrium distribution function; thus,

F~p!5C expH Dz cos~pzdz /\!1Dt cos~ptdt /\!

kBT J ,

~28!

where

C5
dzdtno

2I 0S Dt

kBTD I 0S Dz

kBTD , ~29!

n0 is the surface charge density, andI 0(•) is the modified
Bessel function of order 0.

The componentsvz andvt of the electron velocityv are
calculated from Eq.~23! as33

vz~pz!5
Dzdz

\
sinS pzdz

\ D , vt~pt!5
Dtdt

\
sinS ptdt

\ D ;

~30!

while the electron fluxes along the tubular axis and the b
helix, respectively, are given by

Z5
2e

~2p\!2 E E vz~pz! f ~p,t !dptdpz , ~31!

S5
2e

~2p\!2 E E vt~pt! f ~p,t !dptdpz , ~32!

where the integrations are carried out over the first Brillo
zone. From these two fluxes, expressions for the axial
the circumferential components of the time-varying curr
emerge as follows:

j z5Z1S sin uh , j c5S cosuh . ~33!

In view of the inequality~4!, we ignore the spatial inho
mogeneity arising fromut(s). Hence, the momentum
independent relaxation time approximation25 can be invoked
so that

I~F~p!; f ~p,t !!'n@F~p!2 f ~p,t !#, ~34!

wheren is the relaxation frequency. Substituting Eq.~34! on
the right side of the kinetic equation~25!, and using the
method of characteristics,34 we obtain
e

se

d
t

f ~p,t !5FS p1
e

c
A~ t !,0De2nt

1nE
0

t

e2nt8FH p1
e

c
@A~ t !2A~ t2t8!#J dt8.

~35!

Our interest lies chiefly in evaluating the steady-state c
rent, which means that the conditionnt@1 holds hereafter.
Consequently, the first term on the right side of Eq.~35! is
negligible and the upper limitt of the integral in the second
term can be replaced bỳ. After substituting Eqs.~28! and
~35! in Eqs.~31! and~32!, the integrations overpz andpt are
carried out. The algebraic manipulations are assisted by
formula35

exp~a cosu!5 (
m50

`

~22dm0!I m~a!cos~mu!, ~36!

wheredmm8 is the Kronecker delta andI m(•) is the modified
Bessel function of orderm. Finally, we derive the steady
state electron fluxes,

Z'n j z
0E

0

`

exp~2nt8!sin$Vz
dct81jz1

ac@sin vt2sin v~ t

2t8!#1jz2
ac@cosvt2cosv~ t2t8!#%dt8, ~37!

S'n j t
0E

0

`

exp~2nt8!sin$Vt
dct81jt1

ac@sin vt2sin v~ t

2t8!#1jt2
ac@cosvt2cosv~ t2t8!#%dt8, ~38!

with

j z
05n0

edzDz

\

I 1~Dz /kBT!

I 0~Dz /kBT!
,

j t
05n0

edtDt

\

I 1~Dt /kBT!

I 0~Dt /kBT!
. ~39!

Equations~33! and ~37!–~39! are the basic relations de
scribing electron transport in carbon and BC2N nanotubes.
They are used in Secs. 4.2 and 4.3 for investigating elec
transport when the nanotube is immersed in the extern
applied field~15!. In conjunction with the frequency-domai
Maxwell equations, they are also useful for elucidating wa
propagation phenomena.

B. dc conductivity of a nanotube

Let us consider the special case when the high-freque
components ofE(t) are absent andEdc5Ez

dcuz , Then,jz1,2
ac

5jt1,2
ac 50 andEt

dc5Ez
dc sinuh . Equations~37! and~38! eas-

ily yield

Z'
j z
0nVz

dc

~Vz
dc!21n2 , S'

j t
0nVt

dc

~Vt
dc!21n2 , ~40!

so that the dc current components
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9490 57GREGORY YA. SLEPYANet al.
j z
dc'

j z
0nVz

dc

~Vz
dc!21n2 1

j t
0nVt

dc sin uh

~Vt
dc!21n2 , ~41!

j c
dc'

j t
0nVt

dc cosuh

~Vt
dc!21n2 , ~42!

are derived from Eqs.~33!.
The linear conductivity regime is delineated by the satis

faction of the twin conditions (Vz
dc)2!n2 and (Vt

dc)2!n2.
The corresponding axial and circumferential dc conductivi
ties then emerge from Eqs.~18!, ~41!, and~42! as follows:

szz5
j z
dc

Ez
dc'

e

\n
~ j z

0dz1 j t
0dt sin2 uh!, ~43!

scz5
j c
dc

Ez
dc'

e

\n
j t
0dt sin uh cosuh . ~44!

The presence of the Planck constant in the denominato
indicates the purely quantum nature of dc conduction in
CN. Furthermore, the circumferential conductivityscz here
is due to the curvature of the CN surface. Indeed, we obser
that scz→0 and g→p/2 in the limit Rh→` ~i.e., uh→0
becausedt and dz are constants in our model!, in perfect
accord with the results of the first-principles numerical simu
lations of Miyamoto, Louie, and Cohen.12 This agreement
adds to our confidence in the model used.

Figure 2 depicts the dependences of the CCAg on the
amplitudeEz

dc of the applied dc field as well as on the GCA
uh . As Vz

dc increases,g decreases—which means that the
circumferential currentj c

dc increases. On the other hand, Fig.
2 shows thatg'p/22uh whenVz

dc!n ~the case simulated
by Miyamoto, Louie, and Cohen12!. This can also be estab-
lished from Eqs.~39!, ~43!, and~44! after assuming Eq.~24!
to be hold. As far asuh!1, one can conclude from the above
that in CN’s any effects resulting from the chirality will be
extremely small in linear approximation with respect toEz

dc.

FIG. 2. The dependence of the current chiral angleg on the
amplitude of an axially applied electrostatic field for different geo-
metric chiral anglesuh ; n is the relaxation frequency,Vz

dc

5(edz /\)Edc•uz andEac50.
-

-

rs
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As regards BC2N nanotubes, chirality may give pronounce
effects owing to the anisotropy inherent in their plane cr
talline structure.

Another mechanism of conductivity anisotropy, whic
can manifest itself both in carbon and BC2N nanotubes,
arises as the amplitudeEz

dc grows. This mechanism is differ
ent from that described by Miyamoto, Louie, and Cohe12

and can be explained by interpreting the CN as a system
two interacting one-dimensional lattices. Thus, the fluxZ
describes the current on an axial lattice, while the fluxS
refers to a helical lattice. As is clear from Eqs.~41! and~42!,
the CCAg depends on the amplitudeEz

dc in a strong dc field,
bringing nonlinearity and anisotropy into play. The disti
guished direction of the conductivity anisotropy in th
mechanism is parallel to the direction of the applied dc fie

This new mechanism becomes significant in the regi
Vz

dc>n. Now, the range 1010<n<1012 Hz can be estimated
from Refs. 36 and 37, withn.731011 Hz at room
temperature.36 Taking dz.1.42 Å from Ref. 18 and assum
ing Vz

dc.n, we find from Eq.~18! that the new mechanism
is significant forEz

dc>33104 V/cm.

C. Time-averaged current with ac pumping

Let us now add a high-frequency pumping by altering t
applied field to the following form:

E5~Ez
dc1Ez

ac cosvt !uz .

The ac pumping substantially changes the dc conductivity
the CN.28 Analytical results follow on settingjz2

ac5jt2
ac50

andEt
ac,dc5Ez

ac,dcsinuh in Eqs. ~33!, ~37!, and ~38!, our in-
terest lying chiefly in nonlinear effects.

Expressions for time-averaged current compone
emerge after the right sides of Eq.~33! are averaged over th
temporal period 2p/v of the applied ac field; thus,

^ j z&5^Z&1^S&sin uh , ^ j c&5^S&cosuh , ~45!

where the angular brackets denote time averaging. Omit
intermediate calculations, we get

^Z&'n j z
0E

0

`

exp~2nt8!sin~Vz
dct8!J0„2jz1

ac sin~vt8/2!…dt8,

~46!

^S&'n j t
0E

0

`

exp~2nt8!sin~Vt
dct8!J0„2jt1

ac sin~vt8/2!…dt8,

~47!

whereJ0(–) is the cylindrical Bessel function of the order 0
Note that^Z&,^ j z& are even functions ofuh while ^S&,^ j c&
are odd ones.

Suppose the direction of the externally applied elect
static field is reversed: Vz,t

dc→2Vz,t
dc . We observe from

Eqs. ~45!–~47! that the signs of botĥ j z& and ^ j c& then
change, butg, u^ j z&u and u^ j c&u remain unaltered.

Similarly, suppose that a structurally right-handed nan
tube (uh.0) is replaced by its mirror image or enant
omer: uh→2uh . Again, as per Eqs.~45!–~47!, the opera-
tion uh→2uh leads to^ j z&→^ j z& and ^ j c&→2^ j c& which,
in turn, imply thatg→2g.
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Figure 3 shows typical dependencies of^ j z& and ^ j c& on
the dimensionless amplitudejz1

ac of the ac pump. The time
averaged circumferential current^ j c& varies slowly with re-
spect tojz1

ac , but the time-averaged axial current^ j z& pre-
sents a strongly undulating profile. The result is that
GCA varies with the ac pumping amplitude also in a co
plicated fashion, as depicted in Fig. 4.

In particular, there are values ofEz
ac at which g

5tan21(^jz&/^jc&).0, so that the circumferential curren
dominates and the net time-averaged current is almost
pendicular to the applied electrostatic field. Suppose, a
Sec. IV B that n.731011 Hz and dz.1.42 Å; and that
Vz

dc.4.231012 Hz. Let the ac pumping operate at the ang
lar frequencyv.3.531012 rad/s. From Fig. 4, we see tha
g'0 when jz1

ac.4. Thus, whenEz
ac.6.53105 V/cm and

Ez
dc.1.943105 V/cm, the net time-averaged current is a

most purely circumferential even though the total appl
electric field is purely axial. The physical explanation for th
effect is as follows: the axial current in the CN consists
two components—one caused by electron motion along
base helix, the other by electron motion along the tubu
axis from turn to turn. The ac pumping changes their ra
sometimes resulting in almost totally destructive interf
ence.

FIG. 3. Dimensionless time-averaged current components
CN versus the ratiojz1

ac . The plots were drawn with the following
parameter values:n5v/5, Vz

dc5v1n, anduh54°.

FIG. 4. Current chiral angleg as a function of the ratiojz1
ac ,

whenn5v/5, Vz
dc5v1n, anduh54°.
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V. EFFECTIVE JUMP CONDITIONS ACROSS THE
NANOTUBE SURFACE

A. Exposure to ac field alone

Let us now use the results of Sec. IV A to study wa
propagation phenomena. We consider an infinitely lo
nanotube in free space~i.e., vacuum! exposed to a mono
chromatic electro-magnetic field. The pitch and the radius
the nanotube are assumed to be much smaller than the w
length of the electromagnetic field, andEdc50. Furthermore,
the amplitudes of both the applied ac electric field and
surface density of the induced current are weak so that
earization of the right sides of Eqs.~37! and~38! with respect
to jz1,2

ac andjt1,2
ac is possible. Phasor notation is very suitab

for the developments in this section; thus, the electric fie
the magnetic field, and the electric surface current den
are, respectively, stated as follows:

Eac~ t !5Re$E exp~2 ivt !%5Eac
~1! cos~vt !1Eac

~2! sin~vt !,

Hac~ t !5Re$H exp~2 ivt !%, ~48!

Jac~ t !5Re$J exp~2 ivt !%.

We assume that the density of electric surface curren
similarly distributed throughout the nanotube surface,
cause both the pitchph and the radiusRh are small and the
surface may be considered as a continuous current sh
Ohm’s law on the nanotube surface may then be stated

J~r !5ŝac~r !–E~r !; r5Rh , ~49!

where

ŝac~r !5szuzuz1stut~r !ut~r ! ~50!

is the ac surface conductivity tensor with components

sz5 i
edzj z

0

\v
, st5 i

edt j t
0

\v
. ~51!

The two components ofŝac(r ) are evaluated by retaining
only the first terms in the Maclaurin expansion of sin$–% on
the right sides of Eqs.~37! and ~38!, and then puttingVz

dc

5Vt
dc50 therein. Clearly,ŝac(r ) is purely reactive and doe

not give rise to energy dissipation. Furthermore, it deno
surfaceconduction~and notvolumetricconduction! because
it is constituted by the two-dimensional nature of electr
transport in a nanotube. Finally, the various unit vectors
the nanotube surface are no longer specified on the base
lix, but everywhere on a continuous cylindrical surface
radiusr5Rh .

As Eq. ~49! holds on the nanotube surface, it can be us
to determine the jumps in the electric and the magnetic fie
across the surface. Let all space be divided by the infinit
long nanotube into two regions: region I (r,Rh) and region
II ( r.Rh). Since no magnetic surface current density is e
cited on the surface, the usual jump condition

un~r !3@EI~r !2EII~r !#50; r5Rh ~52!

holds for the electric field. However, the electric surface c
rent density creates a discontinuity in the tangential com
nent of the magnetic field; thus,

a
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c

4p
un~r !3@HI~r !2HII~r !#5J~r !; r5Rh . ~53!

Hence, in view of Eq.~49!, the boundary conditions on th
surfacer5Rh may be stated as

c

4p
un~r !3@HI~r !2HII~r !#

5ŝac~r !–EII~r !

52ŝac~r !–$un~r !3@un~r !3EII~r !#%; r5Rh .

~54!

The second equality follows from the fact thatun(r )–ŝac

5ŝac
–un(r )50.

Further manipulations allow reduction of Eq.~54! to the
conventional form of impedance boundary conditions. Th

$un~r !3@un~r !3EII~r !#%

5 i ẑac
–@un~r !3@HI~r !2HII~r !##; r5Rh ,

~55!

with the ac surface impedance tensor given by

ẑac5
ic

4pstsz cos2 uh
~stubub1szufuf!. ~56!

Both components ofẑac are real-valued quantities. As neith
component depends on the spatial characteristics of the
minating wave, the boundary condition~55! is local but an-
isotropic.

Impedance boundary conditions are widely used in
theory of helical slow-wave systems and helic
antennas.38–40 In particular, Eq.~55! allows us to connec
helically conducting cylinders~HEC’s! with nanotubes. As
the surface conductivity of a HEC is infinite along the ba
helix but null in the binormal direction, all foregoing equ
tions for a nanotube are applicable in the limitsustu→` and
sz→0.

The impedance boundary condition for achiral CN’s~Ref.
31! also has the form of Eq.~55! with the transformed ac
surface impedance tensor. First, the replacementN sinuh
→dz/dt has to be made in the foregoing equations; then,
limit uh→0 has to be taken. Finally, after applying cond
tions ~24!, one can obtain

ẑachi
ac .

ic

4psachi
ac ~uzuz1ufuf! ~57!

of an achiral nanotube emerges as an isotropic entity, w

sachi
ac 5 in0

~edz!
2Dz

\2v

I 1~Dz /kBT!

I 0~Dz /kBT!
. ~58!

Parenthetically, we have also calculatedsachi
ac based on a

model that properly incorporates the actual hexagonal c
talline structure of graphite. Instead of Eq.~23!, we used a
Hamiltonian suggested by Wallace.41 Although calculations
with the latter Hamiltonian became much more complicat
the results are in good agreement with Eq.~58!. This fact
substantiates the applicability of our phenomenologi
,

u-

e
l

e

e

s-

,

l

model of a nanotube described in Sec. 2. A detailed co
parative study will be provided in a separate paper.

B. Simultaneous exposure to ac and dc fields

Let us now expose the nanotube simultaneously to a
electric fieldEdc5Ez

dcuz . Equations~37!–~39! are applicable
with Et

dc5Ez
dc sinuh andVt

dc5Vz
dc(dt /dz)sinuh . Assuming

that the amplitude of the high-frequency electric field
small, we linearize the right sides of Eqs.~37! and~38! with
respect tojz1,2

ac and jt1,2
ac , and evaluate the time-depende

parts of the currentsj z and j c in Eq. ~33! analytically. As a
result,

sz52 j z
0n

edz

\v
@Cz2 i ~Az2Bz!#,

~59!

st52 j t
0n

edt

\v
@Ct2 i ~At2Bt!#,

where

Az,t5E
0

`

e2nt8 cos~Vz,t
dc t8!dt85

n

~Vz,t
dc !21n2 ,

Bz,t5E
0

`

e2nt8 cos~Vz,t
dc t8!cos~vt8!dt8

5
n

2 F 1

~Vz,t
dc 2v!21n2 1

1

~Vz,t
dc 1v!21n2G ,

~60!
Cz,t52E

0

`

e2nt8 cos~Vz,t
dc t8!sin~vt8!dt8

52
1

2 F v2Vz,t
dc

~Vz,t
dc 2v!21n2 1

v1Vz,t
dc

~Vz,t
dc 1v!21n2G .

As Vz,t
dc→0 ~i.e., for a weak dc field!, we getAz,t→n21,

Bz,t→n/(n21v2) and Cz,t→2v/(n21v2). For small n,
only the terms containingAz,t are significant, so that Eqs
~59! simplify to Eqs.~51!.

VI. SURFACE WAVE PROPAGATION

A. Dispersion equation

Being very long, a nanotube can guide electromagn
waves. Let us consider therefore guided wave propagatio
an isolated nanotube, the surrounding medium being
space~i.e., vacuum!.

The electromagnetic field phasors associated with a cy
drical eigenwave are written in terms of electric and ma
netic Hertz vectors,Pe andPm , as

E5¹~¹–Pe!1k2Pe1 ik¹3Pm ,
~61!

H52 ik¹3Pe1¹~¹–Pm!1k2Pm ,

where k5v/c is the wave number in free space,Pe,m
5Pe,muze

ihz and h is the guide wave number. Assumin
polar symmetry~i.e., ]/]f[0!, we state the scalar Hert
vectors as38
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Pe5AH I 0~kr!K0~kRh!

I 0~kRh!K0~kr!J , Pm5BH I 0~kr!K08~kRh!

I 08~kRh!K0~kr!J .

~62!
Here,k51Ah22k2 is the transverse wave number;A andB
are unknown coefficients;I 0(–) andK0(–) are the modified
Bessel functions of order 0; while the prime indicates diff
entiation with respect to the argument. The upper rows
the right sides of Eqs.~62! apply in region I (r,Rh), and
the lower rows in region II (r.Rh).

The electromagnetic field components needed to solve
guided wave problem are obtained from the scalar Hertz v
tors as

Ew52 ik
]Pm

]r
eihz, Ez52k2Pee

ihz, ~63!

and

Hw5 ik
]Pe

]r
eihz, Hz52k2Pmeihz. ~64!

The jump condition~52! is satisfied identically. In order to
satisfy the boundary condition~55!, we first use Eqs.~62!
and ~64!, as well as the Wronskian equalityI 08(y)K0(y)
2I 0(y)K08(y)51/y, to get

lim
r→Rh

~Hz
I 2Hz

II !5
kB

Rh
eihz, lim

r→Rh

~Hw
I 2Hw

II !5 i
kA

Rh
eihz.

~65!

Then, substituting expressions~63! and ~65! in Eq. ~55!, we
obtain two algebraic equations, viz.,

2 ikz12A1@kkRhI 1~kRh!K1~kRh!1kz11#B50,

@k2RhI 0~kRh!K0~kRh!2kz22#A2 ikz12B50. ~66!

These equations have a nontrivial solution forA and B for
those values ofk ~or h! that satisfy the dispersion equatio

S kI1~kRh!K1~kRh!1
z11

Rh
D S k2I 0~kRh!K0~kRh!2

kz22

Rh
D

1z12
2 k

Rh
2 50. ~67!

Equation~67! is general and can be used for any model
nanotube conductivity, the choice of model affectingẑac

only. In the following, we employ Eq.~56!.
After using the relationz125z22 tanuh , the dispersion

equation~67! can be transformed into a form analogous
that for HEC’s;38 thus,

S k

k D 2

5
1

Q~k!
, ~68!

where the quality factor

Q~k!5
z11

z22

I 0~kRh!K0~kRh!

I 1~kRh!K1~kRh!1~z112z22 tan2 uh!/kRh

3F11
kRh

z11
I 1~kRh!K1~kRh!G . ~69!
-
n

he
c-

f

Equation~68! is a transcendental equation fork. Recalling
that ẑac is proportional tov, we observe that the right side o
Eq. ~69! does not depend uponk.

On applying the limitsustu→` and sz→0, we see that
z11→` andz11→z22 tan2 uh . The quality factor then simpli-
fies to

Q~k!5tan2 uh

I 0~kRh!K0~kRh!

I 1~kRh!K1~kRh!
, ~70!

which is the same as for a HEC.38

B. Dispersion characteristics analysis

Returning to Eq.~69!, let us introduce the dimensionles
variablesu5kRh tanuh and q5kRh tanuh and define the
parameterh5Au21q2. Then, parametric solutions of th
dispersion equation~68! in terms ofu may be obtained as

h56A11Q~uRh
21 cot uh!, ~71!

q5xAQ~xRh
21 cot uh!. ~72!

The slow-wave coefficientb5k/h is expressed as

b5A Q~uRh
21 cot uh!

11Q~uRh
21 cot uh!

. ~73!

For a qualitative analysis of the dispersion equation~67!,
we set kRh@1, which implies field concentration
near the CN. Then,I 1(kRh)K1(kRh);I 0(kRh)K0(kRh)
;(2kRh)21, and Eq.~67! simplifies as follows:

~k22z22k!~k12z11k!14z22
2 kk tan2 uh50. ~74!

This quadratic equation has the two solutions

k5
k

4z11
@2b6Ab2116z11z22#, ~75!

where b5114z22(z22 tan2 uh2z11)5124(szstcos2uh)
21.

Only the positive solutions of Eq.~74! are physical, as they
lead to the satisfaction of the radiation conditions asr→`.
Whenz11.0, the proper solution,

k5
k

4z11
@2b1Ab2116z11z22#, ~76!

characterizes surface wave propagation in the nanotube
Let us restrict ourselves to the case of CN’s, assum

condition~24! to be valid. It means thatz115z22. Then, the
ac surface impedance tensor can be transformed into
frequency-independent scalar

z̃5
z11

kRh
.S \c

edz
D 2 I 0~Dz /kBT!

4pn0RhDzI 1~Dz /kBT!
. ~77!

By settingdz.1.42 Å, Dz.2 eV,20 n0.2.2731014 cm22,7

Rh.20 Å, and T.300 K, we get the estimatez̃.1.16
3104.

Figure 5 shows computed values of the slow-wave co
ficient b5k/h for an achiral CN (uh50) for different z̃,
when z̃115 z̃22. Surface waves withf-independent fields do
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not possess any critical frequency, andb→1 as kRh→0.
The electromagnetic field is concentrated near the CN su
facer5Rh ~see Fig. 6!, becausez̃ has large values in nano-
tubes.

The dispersion equation for the surface waves being co
sidered depends slightly on the angleuh . The dependence is
slight, because we linearized the results of the previous se
tions in this one. Nonlinear electromagnetic phenomena w
be considered in a separate paper.

The frequency range for validity of the presented CN con
ductivity model can be deduced from the inequality

\n,\v!2Dz<2Dg , ~78!

where Dg is the width of the forbidden band.42 Using Dz
.2 eV andn.531011 Hz, we see that the estimated range
1011 Hz,v/2p,231014 Hz lies in the infrared portion of

FIG. 5. Slow-wave coefficientb5k/h for an achiral nanotube
(uh50) for different z̃, when z̃115 z̃22.

FIG. 6. Electric field structure for the surface wave in an achira
nanotube (uh50).
r-

n-

c-
ill

-

the spectrum, which means that a CN can serve as a n
waveguide at infrared frequencies. ForRh.2 nm then, we
have 231025,kRh,831023.

Let us also estimate the lower limit ofb for which the
presented CN conductivity model holds. In Sec. IV, we
fectively neglected all spatial derivatives in deriving E
~34!. This neglect is valid if (vzh)2!v2, where vz
;Dzdz /\ is the maximum electron velocity. Then we hav
b.3vz /c.0.531022. If b is smaller, the dependence o
ut(s) on s cannot be ignored and spatially inhomogeneo
terms on the right side of Eq.~25! must be taken into ac
count, which causez̃ to depend onh although Eq.~69! still
holds for the quality factor.

VII. NANOWAVEGUIDE IMMERSED IN dc FIELD:
INSTABILITIES OF WAVES

A. Achiral nanowaveguide

Consider a nanowaveguide immersed in an axial dc e
tric field Edc5Ez

dcuz . The dispersion equation for surfac
wave propagation~with f-independent fields! has the same
form as Eq.~67!. However,st and sz now have to be de-
termined from Eqs.~59!.

Let us commence withachiral nanotubes: uh→0. The
dispersion equation then turns out to be as follows:

S k

k D 2

I 0~kRh!K0~kRh!5
z22

kRh
. ~79!

AssumingukuRh.1, we find

k5k81 ik9>2kz225
kc

2psz
~80!

as an approximate solution, withsz given by Eq.~59!.
The existence condition for surface wave propagation

k8.0, or Az2Bz.0 equivalently. Using Eqs.~60!, we have
the result

v21n2.3~Vz
dc!2. ~81!

An important deduction immediately follows: as distin
from the case illustrated at Fig. 5, a sufficiently strong
field may give rise to a critical frequency such that surfa
waves with polar symmetry cannot propagate at frequen
lower than the critical frequency. The minimum dc field am
plitude is found from the conditionVz

dc.n/).
The instability condition isk9.0, i.e.,Cz,0. Again, us-

ing Eqs.~60!, we have the equivalent expression

v21n2,~Vz
dc!2. ~82!

On comparing the inequalities~81! and ~82!, we conclude
that surface wave propagation in an achiral nanotube
stable.

However, this statement does not imply that ac field
stability caused by amplification at the expense of the
field is impossible in an achiral nanotube. When

Vz
dc.Av21n2, ~83!

the solution given by Eq.~80! along with Eqs.~62!, ~63!, and
~64! describes a leaky surface wave withk8,0 andk9,0.l
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The guide wave numberh5h81 ih9 is complex-valued with
h8h95k8k9. If h8.0, thenh9.0; i.e., the fields delineated
by Eqs. ~63! and ~64! intensify with increasingr but de-
crease along thez axis, as it should be for leaky waves.43

The energy fluxSr transferred to a surface wave at th
surfacer5Rh is given by

Sr52
c

8p
lim
d→0

@un•Re$@E3H* #ur5Rh1d

2@E3H* #ur5Rh2d%#52
kc

4puku2 k9uEzu2ur5Rh
,

~84!

where the asterisk indicates the conjugate transpose
k9,0, Eq. ~84! yields Sr.0, which means that the surfac
wave is amplified by the applied dc field, and the add
energy is leaked into outer space. Hence, a convective in
bility of the high-frequency field develops in a nanotube,
the inequality~83! holds.

B. Chiral nanowaveguide

Let us now elucidate another type of instability, which
peculiar to nanotubes. For a simple analysis, let us ass
that

n!v, n!uVz,t
dc 2vu. ~85!

Equations~59! then yield

sz.2
i j z

0nedz /\

v22~Vz
dc!2 , st.2

i j t
0nedt /\

v22~Vt
dc!2 , ~86!

for use in the dispersion equation~68!. Furthermore, whenb
is large, Eq.~68! simplifies to Eq.~74!.

The physical value ofk is then given by Eq.~75! with the
upper sign. Although Re(k).0, in contrast to the develop
ments in Sec. 6, the guide wave numberh5Ak21k2 may be
a complex-valued quantity with Re(h).0 and Im(h),0. The
surface wave then becomes unstable when the follow
conditions also hold simultaneously:

szst cos2 uh.4, st
2 cot2 uh.24. ~87!

Equations~86! permit us to rewrite these two inequalitie
compactly as

v

N
A11aN2

11a
,Vt

dc,v, ~88!

wherea5 j z
0/( j t

0N sinuh).
Clearly, the inequality~88! shows that surface wav

propagation in a CN is unstable whenEz
dc lies in a certain

range. This range narrows asa increases; and the rang
shrinks to a point asa→` ~i.e., j z

0→0!. Consequently, the
instability is suppressed if electron motion is inhibited alo
the tubular axis. The instability disappears whenuh→0,
when the range of appropriate values ofEz

dc becomes infinite.
Parenthetically, when correlation~24! holds true, condition
~88! reduces tov/&,Vt

dc,v.
As the instability at any location does not increase w

the passage of time, it is a convective instability. It cor
If

d
ta-
f

e

g

-

sponds to the amplification regime of an input signal, the
field providing the energy needed for amplification.

The inequality ~88! holds if we haven.1010 Hz, v
.1011 rad/s, dz5dt51.42 Å, Dz5Dt , and sinuh;0.1.
Taking Vz

dc.0.7531012 Hz, we ensure that the condition
~85! are fulfilled. We then needEz

dc.33104 V/cm to obtain
the instability. But this instability is likely to be much harde
to observe experimentally than the one considered in S
VII A. The value of n we use is rather small, although it i
accessible at low temperature.36 Any increase inn leads to a
sharp growth of the dc field amplitude needed. Yet this
stability provides an unusual example of how chirality c
crucially affect the physical responses of nanotubes.

VIII. CONCLUDING REMARKS

The principal result of this work comprises three equ
tions: ~33!, ~37!, and~38!. They describe the electric curren
in a nanotube exposed simultaneously to constant and h
frequency fields. Several physical effects were identified
ing these equations.

The dependence of the CCA on the ac electric field a
plitude was elucidated for the electron transport problem.
certain amplitudes of the ac electric field, the axial comp
nent of the time-varying current was shown to vanish, a
only the circumferential component remained. This effe
can possibly be observed as a sharp increase in the dc r
tivity of a nanotube at specific amplitudes of the ac fie
Another way to observe this effect may be to measure
variation of the magnetic field direction as the amplitude
the ac electric field changes. The identified effect may
useful for mapping nanotube geometry.

We also investigated surface wave propagation in na
tubes, proposing for the first time the concept of nanotu
as nanowaveguides. The surface wave propagates alon
nanotube surface if the dc electric field is absent. Otherw
leaky wave propagation is possible. If the nanotube is
posed to a dc electric field of appropriate magnitude,
surface wave can exhibit an instability with respect to sm
perturbations of electromagnetic field. This suggests the p
sibility of ac signal amplification, with energy supplied b
the dc field. Whereas nanotubes may serve as transmis
lines at infrared frequencies, the instability may be appl
for amplification in nanoelectronics.

The electron transport effects predicted in Sec. IV c
also be observed in planar two-dimensional superlattic
with the nonorthogonality of axes playing a role akin to th
of chirality. It can be realized by using one-dimensional s
perlattices irradiated by strong ultrasonic standing wave25

Thus additional modulation will simulate some features o
nanotube. However, nanotubes display different electrom
netic characteristics in comparison with the quantu
superlattices,25 because they are hollow and possess ch
symmetry. Consequently, surface conduction takes plac
single-wall nanotubes, but volumetric conduction occurs
superlattices. Electromagnetic effects analogous to those
scribed in Secs. VI and VII will take place only in the so
called surface superlattices of different types.46 Our tech-
nique may be applied for theoretical analysis of chi
nanostructures.47,48

We must emphasize again that our model is phenome
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logical and, accordingly, approximate. For example, it do
not take the real hexagonal graphite structure of CN’s i
exact account. For adaptation to real CN’s and BC2N nano-
tubes, the phenomenological parametersDt , Dz , dt , anddz
will have to be determined either experimentally or ev
through the first-principles numerical simulations.

The hexagonal graphite structure can also be exactly s
ied with our approach, by replacing the semiclassical Ham
tonian~23! by more accurate expressions.44 On effecting that
replacement, expressions for the equilibrium distribut
functionF(p) and the electron velocityv become more com
plicated than Eqs.~28! and~30!, respectively. Therefore, th
integrals in Eqs.~31!, ~32!, and ~35! cannot be evaluated
analytically, and must be subjected to numerical and
asymptotic techniques. We shall consider this issue i
separate paper.

An important aspect of the presented work is the neg
of the dependence ofut(s) on s, which allowed us to use the
very simple expression~34! for the collision integral on the
right side of Eq.~25!. This simplification is untenable ifb is
small and/orf-dependent fields must be considered. Bu
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