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Surface effects in the failure probability of heterogeneous materials
with tough-to-brittle crossover
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The surface effects on heterogeneous material breakdown are studied using a stochastic transfer-matrix
approach on systems with one-dimensional cracks. By computing and comparing the failure probabilities
F(P (o) andF(9(c), for systems with periodic and the open boundary conditions respectively, we find that,
over a very large range of the sample sizesand applied stress, F(Lo)((r) is significantly larger than
F(P(o). Their ratio F{P(¢)/F((s) is smallest near the minimum &P (o), where the ratio decreases
exponentially as the stress reduces. This implies that overwhelmingly most of the cracks that result in the
failure of an entire sample are those nucleated from the surfaces. The previously discovered optimum sample
size itselfL ., , Where the failure probability reaches a deep minimum and the material undergoes a tough-to-
brittle transition, decreases slightly with the introduction of surfaf®8163-182608)02215-2

[. INTRODUCTION merical and experimental confirmations of the double-
exponential (modified Gumbel distribution for brittle

In a heterogeneous or composite material with a distribusystem$:™® And although there seem to have been fewer
tion of local breaking strengths, many small cracks can beareful analyses of the failure of tough systems, nevertheless,
nucleated in weak regions of the sample under appliedne of the examples studied by Sahimi and Arbabi is strik-
stresses. These cracks may be stopped from cleaving tlieg. In this examplé,they considered a “superelastic” tri-
sample by strong regions or pins and the material is themangular lattice, 90% occupied by identical breakable
considered to be toughened against fracture. The only toughdookian springs and 10% occupied by unbreakable Hookian
ened samples that fracture or fail at low stress are thosgprings. The resulting system was very tough as nucleated
having such randomly distributed bonds that allow the wealcracks generally stopped when they hit the randomly located
or crackable regions to percolate or mefdae to local load unbreakable springs. So cracks were able to transverse the
sharing and the stress enhancement at the tips of graatks  system only by a kind of percolation process of avoiding the
cracks larger than that of a critical sid@, beyond which, unbreakable springs, and the result was a Weibull failure
due to the stress enhancement, even the strongest bondspoobability distribution. So, it seems, perhaps, that the
pins cannot stop growing cracks. Such a tough systerVeibull failure distribution may be characteristic of tough
crosses over to being brittle whenever the applied siwess  systems.
increased sufficiently or, less obviously, whenever the Strictly speaking, the boundary conditions of the sample
sample siza. is increased such that there is a more substanfailure probability F (o) calculated by Duxbury and
tial probability of finding a cracked region of at least sMe  |eatt>for the one-dimensional fiber-bundle model were ac-
somewhere in the sample. _ tually those for a sample of size embedded in a larger

This crossover, from tough to brittle, was suggested bysample, i.e., they calculated tirterior failure probability,
Khanget al.” and actually seen numerically by Duxbury and qye to the fact that all the sample configurations included in
Leatlf in their evaluation of the exact recursion for a simplehe recursion calculation satisfy the interior boundary condi-
model of linear crackgthe one-dimensional, fiber-bundle tjons A section of sample is considered to haweerior
mode) with local load sharing. They discovered a dramati-poyndary conditions when it is surrounded on each end by
cally deep minimum that occurs in the sample failure probntact fibers. In this paper, we shall use a stochastic matrix
ability F\ (o), when the applied stressis small. This mini-  method to examine exactly the effects of various boundary
mum occurs neakt ,jn~0.75M and its depttF, . decreases conditions, especially the importance of the surfaces in two-
exponentially witho. But also they saw a reduction of this dimensional samples. It turns out that the presence of open
minimum in their numerical simulation of XL samples surfaces(edge$ substantially increases the sample failure
with open boundary conditions, which raised, for us, theprobability over a large range of sample sizes, including the
guestions of the effect of the boundaries. most interesting region where the deep minimum appears

Furthermore, as a function of, F_ (o)) changes from be- and the tough-to-brittle crossover takes place. These results
ing a Weibull distribution for sample size<M (with the  provide an explanation of why most cracks start from the
Weibull parameter proportional td.) to the double- surface in real materials and a starting point for more de-
exponential(modified Gumbeél distribution forL>M. We tailed calculations of surface effects in material breakdown.
see this crossover from Weibull to double-exponential distri- In the next section we define the model by specifying the
bution as a characteristic signature of the crossover fronmbreaking-strength distribution and the local-load-sharing rule
tough-to-brittle behaviot. There have now been many nu- (with the generalization to include the cases of the bonds that
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I [ l FIG. 2. A row of the sample with the first, second, and fourth
bonds broken.

k
1+

5o with k=ki+2ks, 3)

| | | 7

I I wherek; is the number of adjacent broken bonds situated in
l the interior of the sample, arld, is the number of adjacent
I ] ‘ broken bonds open to the surface. The terky Ihdicates
that all the stress on the surface crack is borne by the first
[ l intact bond, i.e., the surface crack has only one intact end to
l l I carry its stress. The terrk can then be considered as an
effectivetotal number of broken bonds adjacent to the sur-
FIG. 1. A square lattice sample with some random verticalViving bond. As an example, we label the bonds in an array
bonds broken. All the cracks are one dimensional. from one of its ends. Suppose that the first, second, and
fourth are broken while the third and fifth are intact as shown
are open to the surfagesThe stochastic transfer matrix in Fig. 2, the effectivek for the third bond(or the first un-
(STM) approach and the no-lone-bond approximation willbroken one counted from the surfade 1+2X2=5. This
then be introduced. In Secs. IlI-VI, analytical forms of dif- local-load-sharing rul¢introduced by Harlow and Phoefiix
ferent STM’s will be constructed for arrays obeying the in-without the consideration of the surfaceéhough idealized,
terior, periodic, mixed, and open boundary conditions, recatches much of the basic and important physical features of
spectively. The open surface effects on the sample’s failurgne fracture process in composites and random materials. It
probability can then be conveniently studied and clearly uncould also be easily modified to account for chemical
derstood. The last two sections are devoted to the numericghanges in the bonds at the surface, but we have not consid-

results and some further discussions. ered that here.
With o andf(o) given by these simple models, we can
IIl. THE MODEL AND THE STOCHASTIC TRANSFER now write the survival probabilityV/ (o) of a single bond
MATRIX with k effective broken neighboring bonds as
We consider ai. X L square lattice in which each bond of o 1-(1+kl2)aloy for k=M
the lattice is randomly assigned a breaking strerigtich as W= 1‘] f(o')do’ 2{0 for k>M.
tensile strength or critical currenchosen from a uniform, 0 4)
local-failure probability distributionf (o) with a maximum
bond-breaking strengttry,, as follows: From the above expression @f,, we can see immediately
that for a given ratiar/ o, , there is always a critical crack
f(o)= Vo, Os‘Tg."M 1) size M=2[oy /o—1], the integer part of 2fy,/oc—1),
0, otherwise. such that any crack of an effective size bigger tihviinmust

We also assume, for simplicity, that there are only linealc@Use the entire array to fail. In other words, under the given

cracks perpendicular to the direction of the stress, which i@PPlied stressr the strongest bondwith breaking strength
applied perpendicular to the horizontal rows of the lattice?™) €an only withstand the enhanced total stress at one tip of
(see Fig. 1 This restriction to linear cracks means that eacht'acks of sizeM or smaller. _

row (array is statistically independent of the others and the 1he main purpose of this paper is to calculate the surface

fracture probability for the square lattide, ., (o) can be @nd other boundary effects in the failure probabikity(o)
written as and hencé= . (o), and also to discuss the analytical form

of Fi « (o). Since the problem under consideration is one
Fix (o)=1—[1—F_(0)]". 2) where the result is dominated, especially in brittle region, by
the “worst” situation (or the weakest configurationswe
need to consider all the possible configurations the array may
have. In terms of the survival probabilities of each configu-
ration, the array’s failure probability can be written as

So the problem is reduced to that of findiRg(o’), the fail-
ure probability of a one-dimensional arréyr fiber bundle
of sizeL.

When a stresgr is applied to a one-dimensional array,
either some of the bonds break until a stable structure with FL(U)zl_E
cracks is reached, or bond failure continues until the entire CL
array is completely fractured. We use a modified local-load-
sharing rule of Harlow and Phoerfixwhich is to assume that
the stress experienced by any surviving bond is given by 5)

X{survival probability of configurationC, },
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) where the elements in each column ved®r are the con-
a figuration probabilities for all possible distinct and stable
endings. For a given ratie/ o), (or equivalentlyM), there
N are only a limited number of possible endings with nonvan-

{ ishing probability. Therefore the dimensions Bf (o) are
km; restricted to be equal to or smaller than that number.
Following the previous study of the size effects of interior

arrays embedded in larger systems, we further simplify the
b) calculation by introducing the no-lone-bond approximation,
which is to neglect the contributions from all configurations
with lone bonds) in the interior of the arrays. It has already
. been shown numerically by Leath and Duxbuthat the
quantitative errors due to this approximation are limited and
) that the qualitative behavior is unchanged. However, this ap-
C proximation allows us to conveniently write down the sur-
FIG. 3. A partially broken row in the interioa) of a larger vival probability for a configuration of length +1 as that

sample, with periodic boundary conditior(s), and with open for_ one of lengthL multiplied by a relatively simp_le factor._
boundary conditiongc). The vertical lines represent intact bonds, 1his factor accounts for the effects of the extension affecting

-
i T ()PL=PL4q, (6)

_—— — — e

and the dots represent broken bonds. one end of the array less thawi-sites deep into the array
interior.

where C, runs over all possible array configurations of

lengthL subject to the required boundary condition. lll. STM WITH INTERIOR BOUNDARY CONDITIONS

The total number of configurations increases factorially . ._ _ o
with the array length. as expected. However, those of small ~ The failure probability for a one-dimensioniaterior ar-

L can be easily written down term by term for each possiblgay of lengthL, F, (o), was obtained previously by Duxbury
array configuration. Our notation will be to use a totallof ~and Leath using a different numerical method. In this section

“0"’s and “1”’s to represent the broken and the intact We first rederive these results through the construction of the

bonds at specific positions in an array configuratiyn For  corresponding stochastic transfer mat®M), T{)(o), us-
example, a short array af=>5 with its first and fourth bonds ing Eq.(6) and P(L') and P(,_')H, whose elements are the prob-
broken will be represented by 01101, and its survival prob-abilities of different endings. The superscrip} (lenotes the
ability will depend upon its boundary conditions, or how it is fact that all configurations involved in the calculation are
connected to the rest of the array. There are several differemmbedded in the interior of a larger array, namely, they sat-
boundary conditions we shall consider, namely, interior,isfy the interior boundary condition.

open, periodic, and mixed. Their survival probabilities are For smallL, the probability elements for different end-
denoted by the configuration in the appropriate brackets aggs in P{" and P{'}; can be written down term by term
illustrated in Figs. 89)-3(c). It is easy to see that each of explicitly. For example, in the no-lone-bond approximation,

these probabilities can be written as a produciMfs and  the five nonvanishing probability elements in the ved§?
various sample failure probabiliti€s’'s with shorter lengths  are  for generaM,

k<L. We therefore need to establish the recursion relation

relating F’'s with different sample lengths, and this is (*11)=(11D) +(011) + W3+ WoW,F
achieved by the construction of stochastic transfer matrices
(STM) for different boundary conditions. (110 =WoW,F 4,
The stochastic transfer matrix approach was introduced
earlier to study the fracture of brittle composifdsturns out (103 =W§F1,
that it is also useful in dealing with our present tough-to- (7)
brittle problems, especially when different boundary condi- (100 =W,F»,
tions are introduced. We first group all possible array con-
figurations with given size. according to their endings, (001 =W,F»,

namely, their last clusters of broken bonds on one end. As

@nd the seven nonvanishing element®fh are
example(**+ 100 represents the total probability of all in- g Eﬁ

terior array configurations of length 6 with their fourth bond (*+ 11)=(1112+ (01121 + (101D +(0011)
intact, while the fifth and the sixth are broken, summed over

all possible states of the first three bonds. The advantage of :VV3+ F1W1W3+W1F1W1Wo+ FoW,W,,
this grouping based on their endings is to make the construc-

tion of the STM much easier to understand physically and, at (x110=(1110 + (0110 =W3W, F, + F;W3F
the same time, to drastically reduce the sizes of the matrices.

The STM is defined as the matrix that transfers the probabil- (110 =WoW,F Wy,

ity column vectorP, for an array of length. into P, , 4 for
a longer array of length + 1: (1100 =WoW,F,, (8)
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(1002 =W,F ,W,, boundar_y conditions. Basically, the elements porrespond to
all possible clusters of broken bonds on the right end. The
(1000 =W;F 3, Ias_t eIements_are included since the two _bonds immediately
adjacent to this array are assumed to be intact with the inte-

(0001 =W;F 3, rior boundary condition. Using Ed6), we can easily con-

struct a stochastic transfer matrix for the interior configura-
where the angular brackets denote that each end has interitions as

W, 0o W, O W, O
W,
w.F1 0 0 0 0 0
0
0 W, 0 0 0 o0
W, F
0 WZF_Z 0 0 0 0
(i) 1 F1
T3 0 0 0 A 0 0 -+ - | ©
W, F
0 0 32 0 o0
W, F»
W, F
0 0 0 o =320
W, F,

By inspection and induction, we find that it is possible to SinceW, vanishes for ank>M in this model, the nonzero
write T{)(o) for an arbitraryL in the closed form part of T)(¢) will not be able to grow bigger than {2
+1)(2M +1). Actually, the matrixTV (o) =T}, ,(o) for
. all L>M. From the failure probability= (o) of an array of
(T 1m-1=Wo, n=123....L, lengthL, we can use Eq2) to calculateF ("), (o), which is
the failure probability for a square array completely embed-
ded in a larger two-dimensional sample. It will be seen that
(Tl(_i))2n+l,2n:an n=1,2,3...,L—1, the interior array failure probability, (o) is indispensable
in the calculations of failure probabilities for other more
physically interesting systems, e.g., systems satisfying the
(T(Li))2n+2,2n:Wn+1Fn+1/(WnFn)r n=123...L-1, periodic or open boundary conditions.

(10
IV. STM WITH PERIODIC BOUNDARY CONDITIONS

(T(L”)M:WlFl/WO, In this section we consider the failure probability,
FP(o), for a system with the periodic boundary
condition—a closed loop of length as shown in Fig. @).

(T(Li))2L+1,2L—1:WLFL/(WL—lFL—l)r There are several different ways to obtain this failure prob-
ability, but we shall discuss the stochastic-transfer-matrix
method here. It turns out that this probability is given by the
trace of another matrixJ (P (o), whose analytical form is

similar to T!)(o) above and can also be obtained using Eq.

) i (p) () icati
With the analytical form off()(o), successive multipli- (6), the proper choices @% ~ andP ,, and the application
of the periodic boundary condition.

cations of these ma”?ces will produ@éL') for any requir_e_d Let us first consider a one-dimensional array of lerigth
L, and 1_,':'-(?)(’) is simply the sum of all the probability - gtisfying the periodic boundary conditida closed loop
elements inP”. We thus have with its length long enoughl(>M +2) to accommodate all
possible (M+1) endings for a giverM, the maximum
_ . PR crack size the array can possibly withstand. The largest end-
Fu(o)=1— (11112 )T, T - TOTPTYPY . (11) g configuration for a givem hasM broken bonds plus an

(T{),m=0, otherwise.
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unbroken one at each end and takesvup 2 total sites. For W, 0 W, 0 W,

the case oM =2, those % 2+ 1=5 endings irP{" , termi- W

nating at an arbitrary site, say sitein the loop, arg---1), Wl Fi 0 0O O 0

(---10), (---10D), (---100), (---1001). Here, the regular paren- 0

theses are used to denote the fact that the configurations are TP = 0 w, 0 0 0]. (12
subject to the periodic boundary condition. The desired STM 0 W, F, 0 0 0

acting onP{" should then produc®{), with its 2M +1
elements being the probabilities of the same set of endings
but shifted by one site &+ 1. Again, using Eq(6), we can 0 0 0 W, 0

easily construct the stochastic transfer matrix between tw@he form of T{?) for arbitrary M andL can be easily de-
column vectors, both with the same set of ending configuraduced to be the following, which has the dimensions of

tions, for the abovéM =2 case as 2M+1)(2M +1),
(TW)1m-1=Wo, n=123... M,+1,
(TW)2n+1.20=Wa, n=123... M,

(TE\/FI)))2n+2,2n:Wn+an+1/(WnFn), n=1,2,3,.. M—1,
(T8 21= WiF1 /Wy,
(TW)nm=0, otherwise . (13)

The relation betweefi{?’ and the sample failure probability ments such a1101119=W,W;F;W;W,W,G; have to be
turns out to be a very simple one. To fiﬁ(&p)(g), we start  evaluated. Her&, (o) is the failure probability for an array
with the probability of theith ending configuration(E;),  Of lengthL with one of its ends open to the surfacienoted
=1 in P{?’, with all other probability elements being zero. PY the square bracketand the other in the interior of the
After L times of successive multiplication P, the posi- samp_l_e(the angular b_rackets as befprea mix ed b ou_ndary
tion of P(NpJ)rL comes back to the original site Bt The im- condition. In this section we calcula€g (o) first, again us-

posed periodic boundary condition only allows the corre-"9 the STM method.

T . ) . In the no-lone-bond approximation, the sample survival
m (p)
\?vﬁw?gt?lir;glth probability element irPy:, to be included, probability (1-G,) of an array of lengthL =4, satisfying

2M+1 the mixed boundary condition, is equal to the sum of the
(En+L= 2 [(TFJ?))L]i j<Ej>N=[(T(Mp>)L]i : following elementsi(** 11], (*110], (1100], and (1000]. In
=1 ’ ’ order to construct a matrix with a closed form, which also

generates all required probability elements @&yr(o), we
and the total failure probability for the periodic array be- h?¥$ to co(gq)&der aaugmentecprobability column vectors
comes P and P}, , which consists of all types of the elements
M1 listed above, plus those with a lone bond at the surface end.
FiP(o0)=1~ Zl Edne=1-T(T¥H ] (14 All the elements inP{™ are then

One might be tempted to find the lowest eigenvalueTigt , (¥+ 11]=(11110+(0111+(1011]+(0011]

which is the only relevant quantity in the largdimit. How- _ 2

ever, failure probabilities of smaller samples are needed in Wo+ F 1 Wi Wo+ Wi WiWo-+ FoWoWo,

the matrix element and a recursive calculation is inevitable. _ 2
As a simple example, we can easily write down the nine (¥110]=(1110+(0110=WoW,G; + F; W, W,Gy ,

surviving configurations of length=4 andM =2 under the

periodic boundary condition and the no-lone-bond approxi- (1107 =WoW,F Wi,

mation:(1111), 4xX(1110), and 4 (1100). The sample fail-

ure probability is thus equal to -1Wj—4W,WF, (1100 = WoW, G,

— 4W3F,, which is identical to what would be obtained us-

ing Egs.(12) and(14) above. (1001 = W,F,W,,
V. STM WITH MIXED BOUNDARY CONDITIONS <1OOO_|:W6G3-

To calculate the failure probability of an open array, ourFrom Eq.(6), we finally find, by inspection of the terms in
main interest of this paper, it is obvious that probability ele-P{™, the augmented matrix{™(¢) is given by
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(TI™) -1 =W, n=1,2,3,..L-2
(T™) 20+ 20= Wans 2Gns 1/ (W2 Gi), n=1,2,3,..1-1
(T ons 3ot 1=W2, 1Fni 1 /(WAF,), n=1,2,3,..L-2,
(Tl(_m))l,ZLf3:WO[l+WLleLfll(Wﬁszsz)]a
(Tf_m))z,lzszllwo,
(TI™)3.2= WiF 1/(W,Gy),
(T{™); ;=0, otherwise. (15)
For example,
W, 0 W, 0 w1+ Nefz|
0 ) 0 W
W,
-G, O 0 0 0 0
Wo
W2F
0 r1 0 0 0 0
W,G,
(m) W, G
Ta o -*22 ¢ 0 0 0 (16)
W, G,
W3 F,
0 0 —5=2 0 0 0
W1 Fq
Wy G
0 0 o _°=8 0 0
W, G,
10 T
10° r r T
o: Open BC
o v : Interior BC
10" F T . o : Periodic BC .
v
7] Ou —
a c
£ 102 |} °a 5 2
o v © o
© a ]
o On L
Q v oﬂ ~
o 3 a §
© 10" F vo E 5
=2 v° =
& v % 3
%_ -4 v OO u._'
g 10" F v 2 E
] v 0.01
10° | k 3
o 0.001 L
10 L L L 10 100 1000
1 10 100 1000 Sample Size L
Sample Size L

boundary conditions.

FIG. 5. The ratioF P (a)/F(?(o) vs L for different external

FIG. 4. Log-Log plots of the sample failure probabilities vs stresses. Since the periodic samples have no surfaces, this ratio is a
sample size foroy, /oc=0.07, for open, periodic, and interior measure of the fraction of failures that originate in the interior of
samples with open boundaries.
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Now, to calculates, (o) in the no-lone-bond approximation, columns and the corresponding STM. The probability ele-
we only include the probability elements of the first and allments ofP(LO) here consist of all possible open configurations
even number of endings in the finaf_m) to obtain without any lone bonds, plus those with only one lone bond
at one end. For example, the element®(fY are
GL(0)=1-(11016-)T{™, T{™,- - T T TEVPY™ .

(A7 [exx 10]=[11110+[01110+[11017+[0011]

VI. STM WITH OPEN BOUNDARY CONDITIONS +[0001]
: : . . —\\5 3 2
For the same reason discussed in the previous section, to =W+ Gy W, Wy +WoW, F 1 Wi Wo+ GaW, W
calculate the failure probabilit{*)(o) with both ends open
. + G3W6W0 y
to the surfaces, we must construct the enlarged probability
0.0 T . . 0.0 . T .
B ]
L2 100 5 -10.0
ke P4
2 8
3 E
£ £
E E
z 3
& &
T 200} // 1 T 200
£ / £
,/
/ —L=15 / — L=15
—-— L=150 ] —-—L=150
-30.0 L L . -30.0 . . L
3.2 27 2.2 17 3.2 2.7 22 1.7
(a) In(External Stress/Maximum Stress) (a) In{External Stress/Maximum Stress)
0.0 . . . 0.0 T T T
— L=15 — L=15
—-—L=150
2 3
£ -100 5 -100
R 5
8 E
£ £
E £
= 3
n N
T 200 £ -200
£ 5
-30.0 L L L -30.0 L L 1
5.0 10.0 15.0 20.0 25.0 5.0 10.0 15.0 20.0 25.0
(b) Maximum Stress/External Stress (b) Maximum Stress/External Stress
FIG. 6. (8) Weibull plot of A=In[—In(1-FP)/L] vs In(o/oy,) FIG. 7. (8 Weibull plot of A=In[—In(1—F.)/L] vs In(a/ay)

and (b) Gumbel plot ofA vs o /o, for periodic boundary condi- and(b) Gumbel plot ofA vs o, /o, for interior boundary condi-
tions, withL =15 and 150. tions, withL =15 and 150.
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[+ 110]=[11110+[01110+[00110
:WgWZGl
[*1101=[11101+[01101
=W3W1F W3 + Gy WoW, Fy Wy,

[*1100/=[11100+[01100

2
= W0W4GZ + G1W2W462 y
0.0 T T T
-5.0
(6]
|
c
(7]
o
o
£
2 -100
-~
o
E
£
-15.0
:/ — L=15
/ —-— L=150
,/
-20.0 1 . L
-3.2 2.7 -2.2 -1.7
(a) In(Extemnal Stress/Maximum Stress)
'2.0 T T T
-6.0
Q
i}
[y
a
2 -100
£
E
=
& 140
=
£
\ ]
-18.0 s\\
\\
N
-22.0 L L L
5.0 10.0 15.0 20.0 25.0
(b) Maximum Stress/External Stress

FIG. 8. (a) Weibull plot of A=In[—In(1-F?)/L] vs In(o/oy,)
and(b) Gumbel plot ofA vs o, / o, for open boundary conditions,
with L=15 and 150.
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[ 1100]} = WOW2F 2W2 y

[ 1100q = W0W6G3 .

The desired matrixT(?(o), which successively generates
probability cqumnsP(LO) for larger and larget. turns out to
be the same a'E(Lm)((r) in Egs.(12), except for some minor
modifications,

(T(Lo))l,zn—lzwm n=1,2,3,...,-2
(TE)20+ 2= Wan+2Gn+1/(WanGr), n=1,2,3,...,L-2
(T anrami1=W2, 1Fni1 [(W2F,), n=1,2,3,...,-3,
(T(Lo))l,z_—4:WzL—zeL—ll(WZL—4GL—2),

(T:_O))Z,1:W2G1/W0|

(T1)a.2= WiF1 /(WoGy),

(T):;=0, otherwise.  (1g)

Again as in Eq(17), within the no-lone-bond approximation,
we finally obtain the total failure probability for an open-end
array of lengthL:

Fi(0)=1-(11010-)T{" , T{? - TOTY'TY'PY,
19
and that for an isolated square sample with open edges

Fi%L(o)=1-[1-F{(a)]" (20

VIl. THE SURFACE EFFECT

We next evaluated®, , F{P’, and F{°) numerically by
iterating Eqs(11), (14), and(19) exactly. The most obvious
result that appears in our calculatiofsee Fig. 4 is that the

50.0 T T T
Q: Interior BC i}
O: Periodic BC
<©:Open BC o
400 3
©
N
(2 L 4
P 30.0
g
@ D
7]
K]
£ 200} .
o
O
100 | 4
0‘0 1 L 1
5.0 10.0 15.0 20.0 25.0

Max Stress/ External Stress
FIG. 9. Plots ofL®  L® andL© | as a test of Eqg3) and
(4). The slope of one for the open case is just the half of that for the
periodic case, as predicted by the model.
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introduction of the surfacesignificantlyincreases the sample lim F%)=lim FP(¢)=lim F (0)=1. (22
failure probability byorders of magnitudever a very large L—oo Lo Lo
range of sample sizes.

As expected from physical considerations, the numerical , , ! . .
results show the following inequalities: Near the maximum crack si2d, we find again a minimum

in F,(_p)(o-), but it is not as deep as that i (o). And the
FIO>0)>FP(0)>F (0), (21)  optimum sample size with periodic boundaries is slightly
, i i larger than that folF (o). As for the sample failure prob-
for a given sample sizk and applied stress. Of course, all ability F(LO)(O') for open systems, we see, from Fig. 4, that

three of these sample failure probabilities merge toward th -
same thermodynamic limit when the sample size become%1e minimum becomes much shallower than thalFiﬁ)(a)

extremely large: to t_he extent that _|t becomes less obvious that there is an
optimum sample size.

20.0 . Although the only difference we have introduced into the
calculation ofF{?(o) is to use those modified probabilities
O Interior BC < at the ends of each sample configurations to model the sur-
180 | O: Periodic BC i faces, the difference in the total sample failure probabilities
©: Open BC between systems with open and periodic boundary condi-
16.0 } o . tions turns out to be very significant. In Fig. 5 we plot the
5 ratio of the two probabilities(P(o)/F{% () for different
= 140 o i external stresses. At/ oy =0.07, the ratio has the minimum
2 of about 0.03. This means that only 3% of failures, in two-
S dimensional samples with open edges, are initiated from the
- 120 y interior of the sample, or that 97% of the failures originate
= from the surfaces. And this occurs in our calculation because
oE 100k 4 the surface cracks only have one end to hold the stress en-
£ hanced. We believe that these results provide a clear expla-
- nation of why, in practice, cracks on the surfaces are respon-
8or ] sible for most fractures in the real materials.
In order to understand the failure probabilities as a func-
6.0 . tion of the applied stress, we next plot the quantity
In[—In(1—F})/L] against Ing/oy) and oy, /o. The former is
40 A a Weibull plot, and will provide us with a test of the so-
' 10.0 called Weibull form>® The latter is a modified Gumbel plot,
(@) Max Stress/ External Stress which tests the double-exponential modified Gumbel féfim.
8.0 ' In Figs. 6a) and Gb), we show the two plots for the periodic

cases and find that they are rather similar to those obtained
earlier for the interior arrayfsee Figs. @ and 1b)]. For an
array of a lengthL smaller than the maximum crack size
(M=[20y/0—2]), the system follows very closely the
Weibull distribution[a straight line at smalles/ oy, in Fig.
6(a)]. On the other hand, systems of larger sizes>M),
which are brittle and simply cleave, exhibit clearly the
double-exponential modified Gumbel behavia straight
line in Fig. Gb) for large L]. Similarly, the corresponding
plots for the open arrays in Figs(&@ and &b) show the same
general behavior, however, with the above-mentioned fea-
tures being significantly distorted by the surface effects. In
general, we find that, in all forms of boundary conditions,
when the samples are brittle, (o) displays a modified
Gumbel distribution versus applied strasswhereas when
they are tough(i.e., have random bonds strong enough to
stop simple cracks from cleaving the sampte(o) displays
a Weibull distribution versus-. This is at least suggestive of
a general behavior in real samples.

Qualitatively, the optimal sample sizes or minimaHp,
F(P  andF(? appear at pointk n,, which are proportional
to M, and in this model is inversely proportional to applied

FIG. 10. (a) Plots of InF ) +1.5(oy /o) Vs oy /o for interior, stress
periodic, and open boundary conditions, afl plot of In(Fy,)

+0.9(oy /o) vs o /o for open boundary conditions as fits to Eq.
(24). Lmin~A(om /o). (23

o o N
o o o
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»
o
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10.0
(b) Max Stress / External Stress



9328 NIU-NIU CHEN AND P. L. LEATH 57

From Egs.(3) and(4), it is not difficult to see that, for suf- of F (o)] tend to be of this same form, but with different

ficiently large samples, the constaktis equal to 1 with the coefficients(a, b, and c). We therefore tried the three-

open boundary condition whete,;,~ks, and is equal to 2 parameter fits to the above formulas for the three different

with either the periodic or interior boundary conditions boundary conditions. The results are shown in Fig. 10, where

whereL yin~ki . Plots of Ly, L®, andL© versusoy /o ¢=1.5+0.1 for both the interior and periodic cadsee Fig.

are given in Fig. 9, showing the expected behavior. 10(@)], andc=0.9+0.06 for the open boundary conditions
The qualitative behavior of the minimum failure probabil- [see Fig. 1()].

ity can also be obtained from a simple approximate argu-

ment. In the tough region the order of magnitudé-pfo) is VIIl. CONCLUSIONS

given by We have introduced a simple model with local load shar-

FL(o)~(aloy)“L!, (24) ing and an approach that allows a first-principles calculation

. L . , , of the dramatic effect of surfaces on the failure probability of
sinces- is the probability thal bonds fail, and.! is the  mgaterials with a heterogeneous microstructure, particularly
number of ways of ordering thede failures. By Stirling  those undergoing the tough-to-brittle transition. This calcu-

approximation this becomes lation makes it clear that surface effects should be included
L in any calculation for the failure distribution of real materi-
FL(o)~LY? —) (25  als. _ .
ome We also found that the tough samples displayed a Weibull

According to Eq.(23), F,__ can be written in the form of failure distribution at low stress but the crossover to brittle
min behavior corresponded also to a crossover to Gumbel-type
F. ~a(oy/o)® exp—cay /o). (26)  failure distribution, even with open boundary conditions. It
min will be interesting to see if experiments on real samples
More careful argumentsnvolving the analytical solution to and/or numerical simulations are consistent with these re-
a linearized difference equation for the generating functiorsults.
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