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Surface effects in the failure probability of heterogeneous materials
with tough-to-brittle crossover
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~Received 15 August 1997!

The surface effects on heterogeneous material breakdown are studied using a stochastic transfer-matrix
approach on systems with one-dimensional cracks. By computing and comparing the failure probabilities
FL

(p)(s) andFL
(o)(s), for systems with periodic and the open boundary conditions respectively, we find that,

over a very large range of the sample sizesL and applied stresss, FL
(o)(s) is significantly larger than

FL
(p)(s). Their ratio FL

(p)(s)/FL
(o)(s) is smallest near the minimum ofFL

(p)(s), where the ratio decreases
exponentially as the stress reduces. This implies that overwhelmingly most of the cracks that result in the
failure of an entire sample are those nucleated from the surfaces. The previously discovered optimum sample
size itselfLmin , where the failure probability reaches a deep minimum and the material undergoes a tough-to-
brittle transition, decreases slightly with the introduction of surfaces.@S0163-1829~98!02215-2#
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I. INTRODUCTION

In a heterogeneous or composite material with a distri
tion of local breaking strengths, many small cracks can
nucleated in weak regions of the sample under app
stresses. These cracks may be stopped from cleaving
sample by strong regions or pins and the material is t
considered to be toughened against fracture. The only tou
ened samples that fracture or fail at low stress are th
having such randomly distributed bonds that allow the we
or crackable regions to percolate or merge~due to local load
sharing and the stress enhancement at the tips of cracks! into
cracks larger than that of a critical sizeM , beyond which,
due to the stress enhancement, even the strongest bon
pins cannot stop growing cracks. Such a tough sys
crosses over to being brittle whenever the applied stresss is
increased sufficiently or, less obviously, whenever
sample sizeL is increased such that there is a more subs
tial probability of finding a cracked region of at least sizeM
somewhere in the sample.

This crossover, from tough to brittle, was suggested
Khanget al.1 and actually seen numerically by Duxbury an
Leath2 in their evaluation of the exact recursion for a simp
model of linear cracks~the one-dimensional, fiber-bundl
model! with local load sharing. They discovered a drama
cally deep minimum that occurs in the sample failure pro
ability FL(s), when the applied stresss is small. This mini-
mum occurs nearLmin;0.75M and its depthFLmin

decreases
exponentially withs. But also they saw a reduction of th
minimum in their numerical simulation ofL3L samples
with open boundary conditions, which raised, for us, t
questions of the effect of the boundaries.

Furthermore, as a function ofs, FL(s) changes from be-
ing a Weibull distribution for sample sizeL,M ~with the
Weibull parameter proportional toL! to the double-
exponential~modified Gumbel! distribution for L.M . We
see this crossover from Weibull to double-exponential dis
bution as a characteristic signature of the crossover f
tough-to-brittle behavior.3 There have now been many nu
570163-1829/98/57~15!/9319~10!/$15.00
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merical and experimental confirmations of the doub
exponential ~modified Gumbel! distribution for brittle
systems.4–6 And although there seem to have been few
careful analyses of the failure of tough systems, neverthel
one of the examples studied by Sahimi and Arbabi is st
ing. In this example,4 they considered a ‘‘superelastic’’ tri
angular lattice, 90% occupied by identical breakab
Hookian springs and 10% occupied by unbreakable Hook
springs. The resulting system was very tough as nuclea
cracks generally stopped when they hit the randomly loca
unbreakable springs. So cracks were able to transverse
system only by a kind of percolation process of avoiding
unbreakable springs, and the result was a Weibull fail
probability distribution. So, it seems, perhaps, that
Weibull failure distribution may be characteristic of toug
systems.

Strictly speaking, the boundary conditions of the sam
failure probability FL(s) calculated by Duxbury and
Leath2,3 for the one-dimensional fiber-bundle model were a
tually those for a sample of sizeL embedded in a large
sample, i.e., they calculated theinterior failure probability,
due to the fact that all the sample configurations included
the recursion calculation satisfy the interior boundary con
tions. A section of sample is considered to haveinterior
boundary conditions when it is surrounded on each end
intact fibers. In this paper, we shall use a stochastic ma
method to examine exactly the effects of various bound
conditions, especially the importance of the surfaces in tw
dimensional samples. It turns out that the presence of o
surfaces~edges! substantially increases the sample failu
probability over a large range of sample sizes, including
most interesting region where the deep minimum appe
and the tough-to-brittle crossover takes place. These res
provide an explanation of why most cracks start from t
surface in real materials and a starting point for more
tailed calculations of surface effects in material breakdow

In the next section we define the model by specifying
breaking-strength distribution and the local-load-sharing r
~with the generalization to include the cases of the bonds
9319 © 1998 The American Physical Society
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9320 57NIU-NIU CHEN AND P. L. LEATH
are open to the surfaces!. The stochastic transfer matri
~STM! approach and the no-lone-bond approximation w
then be introduced. In Secs. III–VI, analytical forms of d
ferent STM’s will be constructed for arrays obeying the
terior, periodic, mixed, and open boundary conditions,
spectively. The open surface effects on the sample’s fai
probability can then be conveniently studied and clearly
derstood. The last two sections are devoted to the nume
results and some further discussions.

II. THE MODEL AND THE STOCHASTIC TRANSFER
MATRIX

We consider anL3L square lattice in which each bond o
the lattice is randomly assigned a breaking strength~such as
tensile strength or critical current! chosen from a uniform,
local-failure probability distributionf (s) with a maximum
bond-breaking strengthsM , as follows:

f ~s!5 H1/sM ,
0,

0<s<sM

otherwise. ~1!

We also assume, for simplicity, that there are only line
cracks perpendicular to the direction of the stress, whic
applied perpendicular to the horizontal rows of the latt
~see Fig. 1!. This restriction to linear cracks means that ea
row ~array! is statistically independent of the others and t
fracture probability for the square latticeFL3L(s) can be
written as

FL3L~s!512@12FL~s!#L. ~2!

So the problem is reduced to that of findingFL(s), the fail-
ure probability of a one-dimensional array~or fiber bundle!
of sizeL.

When a stresss is applied to a one-dimensional arra
either some of the bonds break until a stable structure w
cracks is reached, or bond failure continues until the en
array is completely fractured. We use a modified local-lo
sharing rule of Harlow and Phoenix,6 which is to assume tha
the stress experienced by any surviving bond is given by

FIG. 1. A square lattice sample with some random verti
bonds broken. All the cracks are one dimensional.
l
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k

2Ds with k5ki12ks , ~3!

whereki is the number of adjacent broken bonds situated
the interior of the sample, andks is the number of adjacen
broken bonds open to the surface. The term 2ks indicates
that all the stress on the surface crack is borne by the
intact bond, i.e., the surface crack has only one intact en
carry its stress. The termk can then be considered as a
effectivetotal number of broken bonds adjacent to the s
viving bond. As an example, we label the bonds in an ar
from one of its ends. Suppose that the first, second,
fourth are broken while the third and fifth are intact as sho
in Fig. 2, the effectivek for the third bond~or the first un-
broken one counted from the surface! is 1123255. This
local-load-sharing rule~introduced by Harlow and Phoenix6

without the consideration of the surface!, though idealized,
catches much of the basic and important physical feature
the fracture process in composites and random material
could also be easily modified to account for chemic
changes in the bonds at the surface, but we have not con
ered that here.

With sk and f (s) given by these simple models, we ca
now write the survival probabilityWk(s) of a single bond
with k effective broken neighboring bonds as

Wk512E
0

sk
f ~s8!ds85 H12~11k/2!s/sM

0
for k<M
for k.M .

~4!

From the above expression ofWk , we can see immediately
that for a given ratios/sM , there is always a critical crack
size M[2@sM /s21#, the integer part of 2(sM /s21),
such that any crack of an effective size bigger thanM must
cause the entire array to fail. In other words, under the gi
applied stresss the strongest bond~with breaking strength
sM! can only withstand the enhanced total stress at one ti
cracks of sizeM or smaller.

The main purpose of this paper is to calculate the surf
and other boundary effects in the failure probabilityFL(s)
and henceFL3L(s), and also to discuss the analytical for
of FL3L(s). Since the problem under consideration is o
where the result is dominated, especially in brittle region,
the ‘‘worst’’ situation ~or the weakest configurations!, we
need to consider all the possible configurations the array m
have. In terms of the survival probabilities of each config
ration, the array’s failure probability can be written as

FL~s!512(
CL

3$survival probability of configurationCL%,

~5!

l

FIG. 2. A row of the sample with the first, second, and fou
bonds broken.
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57 9321SURFACE EFFECTS IN THE FAILURE PROBABILITY . . .
where CL runs over all possible array configurations
lengthL subject to the required boundary condition.

The total number of configurations increases factoria
with the array lengthL as expected. However, those of sm
L can be easily written down term by term for each possi
array configuration. Our notation will be to use a total ofL
‘‘0’’ ’s and ‘‘1’’ ’s to represent the broken and the intac
bonds at specific positions in an array configurationCL . For
example, a short array ofL55 with its first and fourth bonds
broken will be represented by 01101, and its survival pr
ability will depend upon its boundary conditions, or how it
connected to the rest of the array. There are several diffe
boundary conditions we shall consider, namely, interi
open, periodic, and mixed. Their survival probabilities a
denoted by the configuration in the appropriate brackets
illustrated in Figs. 3~a!–3~c!. It is easy to see that each o
these probabilities can be written as a product ofWk’s and
various sample failure probabilitiesFk’s with shorter lengths
k,L. We therefore need to establish the recursion rela
relating F ’s with different sample lengths, and this
achieved by the construction of stochastic transfer matr
~STM! for different boundary conditions.

The stochastic transfer matrix approach was introdu
earlier to study the fracture of brittle composites.7 It turns out
that it is also useful in dealing with our present tough-
brittle problems, especially when different boundary con
tions are introduced. We first group all possible array c
figurations with given sizeL according to their endings
namely, their last clusters of broken bonds on one end. A
example,̂ *** 100& represents the total probability of all in
terior array configurations of length 6 with their fourth bon
intact, while the fifth and the sixth are broken, summed o
all possible states of the first three bonds. The advantag
this grouping based on their endings is to make the const
tion of the STM much easier to understand physically and
the same time, to drastically reduce the sizes of the matri
The STM is defined as the matrix that transfers the proba
ity column vectorPL for an array of lengthL into PL11 for
a longer array of lengthL11:

FIG. 3. A partially broken row in the interior~a! of a larger
sample, with periodic boundary conditions~b!, and with open
boundary conditions~c!. The vertical lines represent intact bond
and the dots represent broken bonds.
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TL~s!PL5PL11 , ~6!

where the elements in each column vectorPL are the con-
figuration probabilities for all possible distinct and stab
endings. For a given ratios/sM ~or equivalentlyM !, there
are only a limited number of possible endings with nonva
ishing probability. Therefore the dimensions ofTL(s) are
restricted to be equal to or smaller than that number.

Following the previous study of the size effects of interi
arrays embedded in larger systems, we further simplify
calculation by introducing the no-lone-bond approximatio
which is to neglect the contributions from all configuratio
with lone bond~s! in the interior of the arrays. It has alread
been shown numerically by Leath and Duxbury3 that the
quantitative errors due to this approximation are limited a
that the qualitative behavior is unchanged. However, this
proximation allows us to conveniently write down the su
vival probability for a configuration of lengthL11 as that
for one of lengthL multiplied by a relatively simple factor
This factor accounts for the effects of the extension affect
one end of the array less thanM -sites deep into the arra
interior.

III. STM WITH INTERIOR BOUNDARY CONDITIONS

The failure probability for a one-dimensionalinterior ar-
ray of lengthL, FL(s), was obtained previously by Duxbur
and Leath using a different numerical method. In this sect
we first rederive these results through the construction of
corresponding stochastic transfer matrix~STM!, TL

( i )(s), us-
ing Eq.~6! andPL

( i ) andPL11
( i ) , whose elements are the prob

abilities of different endings. The superscript (i ) denotes the
fact that all configurations involved in the calculation a
embedded in the interior of a larger array, namely, they s
isfy the interior boundary condition.

For smallL, the probability elements for different end
ings in PL

( i ) and PL11
( i ) can be written down term by term

explicitly. For example, in the no-lone-bond approximatio
the five nonvanishing probability elements in the vectorP3

( i )

are, for generalM ,

^* 11&5^111&1^011&1W0
31W0W1F1 ,

^110&5W0W1F1 ,

^101&5W1
2F1 ,

~7!

^100&5W2F2 ,

^001&5W2F2 ,

and the seven nonvanishing elements inP4
( i ) are

^** 11&5^1111&1^0111&1^1011&1^0011&

5W0
41F1W1W0

21W1F1W1W01F2W2W0 ,

^* 110&5^1110&1^0110&5W0
2W1F11F1W1

2F1 ,

^1101&5W0W1F1W1 ,

^1100&5W0W2F2 , ~8!
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^1001&5W2F2W2 ,

^1000&5W3F3 ,

^0001&5W3F3 ,

where the angular brackets denote that each end has int
to
rior

boundary conditions. Basically, the elements correspond
all possible clusters of broken bonds on the right end. T
last elements are included since the two bonds immedia
adjacent to this array are assumed to be intact with the i
rior boundary condition. Using Eq.~6!, we can easily con-
struct a stochastic transfer matrix for the interior configu
tions as
T3
~ i !5

¨

W0 0 W0 0 W0 0 ¯ ¯

W1

W0
F1 0 0 0 0 0 ¯ ¯

0 W1 0 0 0 0 ¯ ¯

0
W2

W1

F2

F1
0 0 0 0 ¯ ¯

0 0 0 W2 0 0 ¯ ¯

0 0 0
W3

W2

F3

F2
0 0 ¯ ¯

0 0 0 0
W3

W2

F3

F2
0 ¯ ¯

• • • • • • ¯ ¯

©

. ~9!
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By inspection and induction, we find that it is possible
write TL

( i )(s) for an arbitraryL in the closed form

~TL
~ i !!1,2n215W0 , n51,2,3, . . . ,L,

~TL
~ i !!2n11,2n5Wn , n51,2,3, . . . ,L21,

~TL
~ i !!2n12,2n5Wn11Fn11 /~WnFn!, n51,2,3, . . . ,L21,

~10!

~TL
~ i !!2,15W1F1 /W0 ,

~TL
~ i !!2L11,2L215WLFL /~WL21FL21!,

~TL
~ i !!n,m50, otherwise.

With the analytical form ofTL
( i )(s), successive multipli-

cations of these matrices will producePL
( i ) for any required

L, and 12FL(s) is simply the sum of all the probability
elements inPL

( i ) . We thus have

FL~s!512~11111̄ !TL21
~ i ! TL22

~ i !
¯T4

~ i !T3
~ i !T2

~ i !P2
~ i ! . ~11!
SinceWk vanishes for anyk.M in this model, the nonzero
part of TL

( i )(s) will not be able to grow bigger than (2M
11)(2M11). Actually, the matrixTL

( i )(s)5TM11
( i ) (s) for

all L.M . From the failure probabilityFL(s) of an array of
lengthL, we can use Eq.~2! to calculateFL3L

( i ) (s), which is
the failure probability for a square array completely embe
ded in a larger two-dimensional sample. It will be seen t
the interior array failure probabilityFL(s) is indispensable
in the calculations of failure probabilities for other mo
physically interesting systems, e.g., systems satisfying
periodic or open boundary conditions.

IV. STM WITH PERIODIC BOUNDARY CONDITIONS

In this section we consider the failure probabilit
FL

(p)(s), for a system with the periodic boundar
condition—a closed loop of lengthL as shown in Fig. 3~b!.
There are several different ways to obtain this failure pro
ability, but we shall discuss the stochastic-transfer-ma
method here. It turns out that this probability is given by t
trace of another matrix,T(p)(s), whose analytical form is
similar to T( i )(s) above and can also be obtained using E
~6!, the proper choices ofPL

(p) andPL11
(p) , and the application

of the periodic boundary condition.
Let us first consider a one-dimensional array of lengthL,

satisfying the periodic boundary condition~a closed loop!
with its length long enough (L.M12) to accommodate al
possible (2M11) endings for a givenM , the maximum
crack size the array can possibly withstand. The largest e
ing configuration for a givenM hasM broken bonds plus an
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57 9323SURFACE EFFECTS IN THE FAILURE PROBABILITY . . .
unbroken one at each end and takes upM12 total sites. For
the case ofM52, those 2321155 endings inPN

(p) , termi-
nating at an arbitrary site, say siteN in the loop, are~¯1!,
~¯10!, ~¯101!, ~¯100!, ~¯1001!. Here, the regular paren
theses are used to denote the fact that the configuration
subject to the periodic boundary condition. The desired S
acting onPN

(p) should then producePN11
(p) with its 2M11

elements being the probabilities of the same set of end
but shifted by one site atN11. Again, using Eq.~6!, we can
easily construct the stochastic transfer matrix between
column vectors, both with the same set of ending configu
tions, for the aboveM52 case as
y

o.

re

e-

le
in

x

s-

u
le
are

gs

o
-

T2
~p!5S W0 0 W0 0 W0

W1

W0
F1 0 0 0 0

0 W1 0 0 0

0
W2

W1

F2

F1
0 0 0

0 0 0 W2 0

D . ~12!

The form of TM
(p) for arbitrary M and L can be easily de-

duced to be the following, which has the dimensions
(2M11)(2M11),
~TM
~p!!1,2n215W0 , n51,2,3, . . . ,M ,11,

~TM
~p!!2n11,2n5Wn , n51,2,3, . . . ,M ,

~TM
~p!!2n12,2n5Wn11Fn11 /~WnFn!, n51,2,3, . . .M21,

~TM
~p!!2,15W1F1 /W0 ,

~TM
~p!!n,m50, otherwise . ~13!
val

e

so

ts
nd.

n

The relation betweenTM
(p) and the sample failure probabilit

turns out to be a very simple one. To findFL
(p)(s), we start

with the probability of thei th ending configuration,̂Ei&N

51 in PN
(p) , with all other probability elements being zer

After L times of successive multiplication ofTM
(p) , the posi-

tion of PN1L
(p) comes back to the original site atN. The im-

posed periodic boundary condition only allows the cor
sponding i th probability element inPN1L

(p) to be included,
which is

^Ei&N1L5 (
j 51

2M11

@~TM
~p!!L# i , j^Ej&N5@~TM

~p!!L# i ,i

and the total failure probability for the periodic array b
comes

FL
~p!~s!512 (

i 51

2M11

^Ei&N1L512Tr@~TM
~p!!L#. ~14!

One might be tempted to find the lowest eigenvalue forTM
(p) ,

which is the only relevant quantity in the largeL limit. How-
ever, failure probabilities of smaller samples are needed
the matrix element and a recursive calculation is inevitab

As a simple example, we can easily write down the n
surviving configurations of lengthL54 andM52 under the
periodic boundary condition and the no-lone-bond appro
mation:~1111!, 43(1110), and 43(1100). The sample fail-
ure probability is thus equal to 12W0

424W0W1
2F1

24W2
2F2 , which is identical to what would be obtained u

ing Eqs.~12! and ~14! above.

V. STM WITH MIXED BOUNDARY CONDITIONS

To calculate the failure probability of an open array, o
main interest of this paper, it is obvious that probability e
-

in
.

e

i-

r
-

ments such aŝ1101110#5W0W1F1W1W0W2G1 have to be
evaluated. HereGL(s) is the failure probability for an array
of lengthL with one of its ends open to the surface~denoted
by the square bracket!, and the other in the interior of the
sample~the angular brackets as before!—a mixed boundary
condition. In this section we calculateGL(s) first, again us-
ing the STM method.

In the no-lone-bond approximation, the sample survi
probability (12G4) of an array of lengthL54, satisfying
the mixed boundary condition, is equal to the sum of th
following elements:̂ ** 11#, ^*110#, ^1100#, and ^1000#. In
order to construct a matrix with a closed form, which al
generates all required probability elements forGL(s), we
have to consider anaugmentedprobability column vectors
PL

(m) and PL11
(m) , which consists of all types of the elemen

listed above, plus those with a lone bond at the surface e
All the elements inP4

(m) are then

^** 11#5^1111#1^0111#1^1011#1^0011#

5W0
41F1W1W0

21W1F1W1W01F2W2W0 ,

^* 110#5^1110#1^0110#5W0
2W2G11F1W1W2G1 ,

^1101#5W0W1F1W1 ,

^1100#5W0W4G2 ,

^1001#5W2F2W2 ,

^1000#5W6G3 .

From Eq.~6!, we finally find, by inspection of the terms i
PL

(m) , the augmented matrixTL
(m)(s) is given by
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~TL
~m!!1,2n215W0 , n51,2,3, . . .L22

~TL
~m!!2n12,2n5W2n12Gn11 /~W2nGn!, n51,2,3, . . .l 21

~TL
~m!!2n13,2n115Wn11

2 Fn11 /~Wn
2Fn!, n51,2,3, . . .L22,

~TL
~m!!1,2L235W0@11WL21FL21 /~WL22

2 FL22!#,

~TL
~m!!2,15W2G1 /W0 ,

~TL
~m!!3,25W1

2F1 /~W2G1!,

~TL
~m!! i , j50, otherwise. ~15!

For example,

T4
~m!5

¨

W0 0 W0 0 W0S 11
W2F2

W1
2F1

D 0 ¯

W2

W0
G1 0 0 0 0 0 ¯

0
W1

2F1

W2G1

0 0 0 0 ¯

0
W4

W2

G2

G1
0 0 0 0 ¯

0 0
W2

2

W1
2

F2

F1
0 0 0 ¯

0 0 0
W6

W4

G3

G2
0 0 ¯

• • • • • • ¯

©

. ~16!
vs
r

o is a
of
FIG. 4. Log-Log plots of the sample failure probabilities
sample size forsM /s50.07, for open, periodic, and interio
boundary conditions.
FIG. 5. The ratioFL
(p)(s)/FL

(o)(s) vs L for different external
stresses. Since the periodic samples have no surfaces, this rati
measure of the fraction of failures that originate in the interior
samples with open boundaries.
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57 9325SURFACE EFFECTS IN THE FAILURE PROBABILITY . . .
Now, to calculateGL(s) in the no-lone-bond approximation
we only include the probability elements of the first and
even number of endings in the finalPL

(m) to obtain

GL~s!512~11010̄ !TL21
~m! TL22

~m!
¯T4

~m!T3
~m!T2

~m!P2
~m! .

~17!

VI. STM WITH OPEN BOUNDARY CONDITIONS

For the same reason discussed in the previous sectio
calculate the failure probabilityFL

(o)(s) with both ends open
to the surfaces, we must construct the enlarged probab

FIG. 6. ~a! Weibull plot of A5 ln@2ln(12FL
(p))/L# vs ln(s/sM)

and ~b! Gumbel plot ofA vs sM /s, for periodic boundary condi-
tions, withL515 and 150.
l

to

ty

columns and the corresponding STM. The probability e
ments ofPL

(o) here consist of all possible open configuratio
without any lone bonds, plus those with only one lone bo
at one end. For example, the elements inP5

(o) are

@*** 11#5@11111#1@01111#1@11011#1@00111#

1@00011#

5W0
51G1W2W0

31W0W1F1W1W01G2W4W0
2

1G3W6W0 ,

FIG. 7. ~a! Weibull plot of A5 ln@2ln(12FL)/L# vs ln(s/sM)
and ~b! Gumbel plot ofA vs sM /s, for interior boundary condi-
tions, withL515 and 150.
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@** 110#5@11110#1@01110#1@00110#

5W0
3W2G1

1G1W2W0W2G11G2W4W2G1 ,

@* 1101#5@11101#1@01101#

5W0
2W1F1W11G1W2W1F1W1 ,

@* 1100#5@11100#1@01100#

5W0
2W4G21G1W2W4G2 ,

FIG. 8. ~a! Weibull plot of A5 ln@2ln(12FL
(o))/L# vs ln(s/sM)

and~b! Gumbel plot ofA vs sM /s, for open boundary conditions
with L515 and 150.
@11001#5W0W2F2W2 ,

@11000#5W0W6G3 .

The desired matrixTL
(o)(s), which successively generate

probability columnsPL
(o) for larger and largerL turns out to

be the same asTL
(m)(s) in Eqs.~12!, except for some minor

modifications,

~TL
~o!!1,2n215W0 , n51,2,3,. . . ,l 22

~TL
~o!!2n12,2n5W2n12Gn11 /~W2nGn!, n51,2,3,. . . ,L22

~TL
~o!!2n13,2n115Wn11

2 Fn11 /~Wn
2Fn!, n51,2,3,. . . ,l 23,

~TL
~o!!1,2L245W2L22GL21 /~W2L24GL22!,

~TL
~o!!2,15W2G1 /W0 ,

~TL
~o!!3,25W1

2F1 /~W2G1!,

~TL
~o!! i , j50, otherwise . ~18!

Again as in Eq.~17!, within the no-lone-bond approximation
we finally obtain the total failure probability for an open-en
array of lengthL:

FL
~o!~s!512~11010̄ !TL21

~o! TL22
~o!

¯T4
~o!T3

~o!T2
~o!P2

~o! ,
~19!

and that for an isolated square sample with open edges

FL3L
~o! ~s!512@12FL

~o!~s!#L. ~20!

VII. THE SURFACE EFFECT

We next evaluatedFL , FL
(p) , and FL

(o) numerically by
iterating Eqs.~11!, ~14!, and~19! exactly. The most obvious
result that appears in our calculations~see Fig. 4! is that the

FIG. 9. Plots ofLmin
(p) , Lmin

(i) , andLmin
(o) , as a test of Eqs.~3! and

~4!. The slope of one for the open case is just the half of that for
periodic case, as predicted by the model.
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introduction of the surfacessignificantlyincreases the sampl
failure probability byorders of magnitudeover a very large
range of sample sizes.

As expected from physical considerations, the numer
results show the following inequalities:

FL
~o!~s!.FL

~p!~s!.FL~s!, ~21!

for a given sample sizeL and applied stresss. Of course, all
three of these sample failure probabilities merge toward
same thermodynamic limit when the sample size beco
extremely large:

FIG. 10. ~a! Plots of ln(Fmin)11.5(sM /s) vs sM /s for interior,
periodic, and open boundary conditions, and~b! plot of ln(Fmin)
10.9(sM /s) vs sM /s for open boundary conditions as fits to E
~24!.
al

e
es

lim
L→`

FL
~o!~s!5 lim

L→`

FL
~p!~s!5 lim

L→`

FL~s!51. ~22!

Near the maximum crack sizeM , we find again a minimum
in FL

(p)(s), but it is not as deep as that inFL(s). And the
optimum sample size with periodic boundaries is sligh
larger than that forFL(s). As for the sample failure prob
ability FL

(o)(s) for open systems, we see, from Fig. 4, th
the minimum becomes much shallower than that inFL

(p)(s)
to the extent that it becomes less obvious that there is
optimum sample size.

Although the only difference we have introduced into t
calculation ofFL

(o)(s) is to use those modified probabilitie
at the ends of each sample configurations to model the
faces, the difference in the total sample failure probabilit
between systems with open and periodic boundary co
tions turns out to be very significant. In Fig. 5 we plot th
ratio of the two probabilitiesFL

(p)(s)/FL
(o)(s) for different

external stresses. Ats/sM50.07, the ratio has the minimum
of about 0.03. This means that only 3% of failures, in tw
dimensional samples with open edges, are initiated from
interior of the sample, or that 97% of the failures origina
from the surfaces. And this occurs in our calculation beca
the surface cracks only have one end to hold the stress
hanced. We believe that these results provide a clear ex
nation of why, in practice, cracks on the surfaces are resp
sible for most fractures in the real materials.

In order to understand the failure probabilities as a fu
tion of the applied stress, we next plot the quant
ln@2ln(12FL)/L# against ln(s/sM) andsM /s. The former is
a Weibull plot, and will provide us with a test of the so
called Weibull form.3,8 The latter is a modified Gumbel plot
which tests the double-exponential modified Gumbel form3,8

In Figs. 6~a! and 6~b!, we show the two plots for the periodi
cases and find that they are rather similar to those obta
earlier for the interior arrays@see Figs. 7~a! and 7~b!#. For an
array of a lengthL smaller than the maximum crack siz
(M5@2sM /s22#), the system follows very closely th
Weibull distribution@a straight line at smallers/sM in Fig.
6~a!#. On the other hand, systems of larger sizes (L.M ),
which are brittle and simply cleave, exhibit clearly th
double-exponential modified Gumbel behavior@a straight
line in Fig. 6~b! for large L#. Similarly, the corresponding
plots for the open arrays in Figs. 8~a! and 8~b! show the same
general behavior, however, with the above-mentioned f
tures being significantly distorted by the surface effects.
general, we find that, in all forms of boundary condition
when the samples are brittleFL(s) displays a modified
Gumbel distribution versus applied stresss, whereas when
they are tough~i.e., have random bonds strong enough
stop simple cracks from cleaving the sample! FL(s) displays
a Weibull distribution versuss. This is at least suggestive o
a general behavior in real samples.

Qualitatively, the optimal sample sizes or minima inFL ,
FL

(p) , andFL
(o) appear at pointsLmin , which are proportional

to M , and in this model is inversely proportional to applie
stress

Lmin;A~sM /s!. ~23!



s

il-
gu

io

t
-
ent
ere

s

ar-
ion
of
rly
u-

ded
i-

bull
tle
type
It

les
re-

9328 57NIU-NIU CHEN AND P. L. LEATH
From Eqs.~3! and ~4!, it is not difficult to see that, for suf-
ficiently large samples, the constantA is equal to 1 with the
open boundary condition whereLmin;ks, and is equal to 2
with either the periodic or interior boundary condition
whereLmin;ki . Plots ofLmin , Lmin

(p) , andLmin
(o) versussM /s

are given in Fig. 9, showing the expected behavior.
The qualitative behavior of the minimum failure probab

ity can also be obtained from a simple approximate ar
ment. In the tough region the order of magnitude ofFL(s) is
given by

FL~s!;~s/sM !LL!, ~24!

sincesL is the probability thatL bonds fail, andL! is the
number of ways of ordering theseL failures. By Stirling
approximation this becomes

FL~s!;L1/2S sL

sMeD L

. ~25!

According to Eq.~23!, FLmin
can be written in the form of

FLmin
;a~sM /s!b exp~2csM /s!. ~26!

More careful arguments@involving the analytical solution to
a linearized difference equation for the generating funct
. J

De
-

n

of FL(s)# tend to be of this same form, but with differen
coefficients ~a, b, and c!. We therefore tried the three
parameter fits to the above formulas for the three differ
boundary conditions. The results are shown in Fig. 10, wh
c51.560.1 for both the interior and periodic cases@see Fig.
10~a!#, and c50.960.06 for the open boundary condition
@see Fig. 10~b!#.

VIII. CONCLUSIONS

We have introduced a simple model with local load sh
ing and an approach that allows a first-principles calculat
of the dramatic effect of surfaces on the failure probability
materials with a heterogeneous microstructure, particula
those undergoing the tough-to-brittle transition. This calc
lation makes it clear that surface effects should be inclu
in any calculation for the failure distribution of real mater
als.

We also found that the tough samples displayed a Wei
failure distribution at low stress but the crossover to brit
behavior corresponded also to a crossover to Gumbel-
failure distribution, even with open boundary conditions.
will be interesting to see if experiments on real samp
and/or numerical simulations are consistent with these
sults.
,
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