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p-band contribution to the optical properties of carbon nanotubes: Effects of chirality
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We study thep-band contribution to the optical properties of the carbon nanotubes based on the tight-
binding model, including optical absorptions, optical rotatory power, and circular dichroism. By taking into
account not only the interband contributions but also the free-carrier contributions, the dielectric functions and
the third-rank tensor responsible for the optical activity are calculated. The following have been shown.~i! The
features of the dielectric functions are consistent with the ellipsometry experiments by de Heer and co-workers
@Science268, 845 ~1995!#; ~ii ! The calculated plasma frequency is of the same order of magnitude as the one
recently observed by Bommeliet al. @Solid State Commun.99, 513 ~1996!#. ~iii ! Chiral nanotubes are, as
expected, optically active and the spectra of their optical rotatory power~RP! and circular dichroism~CD! are
highly oscillatory.~iv! Nanotubes with a diameter about 4 nm can give RP and CD that are of the same order
of magnitude as those of certain organic compounds.~v! The RP and CD decrease as the diameter increases.
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I. INTRODUCTION

Since their discovery1 by Iijima, carbon nanotubes hav
been intensively studied both experimentally2–8 and
theoretically.9–24 Nanotubes consist of coaxial cylinders
graphene sheets, the number of sheets ranging from 1 to
They are predicted to be metallic or semiconducting depe
ing on the structure, mainly the way of connection of carb
atoms.9–15 It is also predicted that their geometry gives ri
to interesting properties. Due to the cylindrical shape, a u
form magnetic field along the tubule axis causes
Aharonov-Bohm effect,15–18 which can be observed as a
oscillation of the magnetic susceptibility as a function of t
external magnetic field or as a magnetic-field-induced s
of optical absorption edges. The Peierls instability11,12,21,22is
expected because of the quasi-one-dimensionality. On
other hand, the chirality due to the spiral alignment, which
one of the main features of the nanotube geometry, and
consequence are not investigated so well. Since one of
consequences of chirality is the optical activity, we study
optical properties of nanotubes including the optical rotat
power and circular dichroism.

Experimentally, optical properties of nanotubes have b
studied by the optical ellipsometry6 or by the electron-
energy-loss spectroscopy~EELS!.7 More recently, Bommeli
et al.8 reported the reflectivity measurements of align
nanotubes, particularly paying attention to the free-car
~Drude! contributions. Theoretically, Ajiki and Ando18 stud-
ied the low-energy optical absorption due to the interba
transitions as a probe of the Aharonov-Bohm effect. Lin a
Shung19 reported the frequency dependence of the dielec
570163-1829/98/57~15!/9301~18!/$15.00
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functions due top bands within the gradient approximatio
and investigated a low-energy peak of EELS. Mintmire a
White20 calculated the dielectric functions using a firs
principles local-density-functional method and taking in
account bothp- ands-band contributions.

The energy bands of a nanotube, as a rolled grap
sheet, consist of the ones originated from thep orbits ~p
bands! and the ones from thes orbits ~s bands! and, accord-
ing to the band calculation of the graphite sheet25 and zigzag
nanotubes,11 there exists a threshold energy of 6–10 eV, b
low which only thep-p transitions are allowed. Hence w
focus our attention on the response of light with energy up
this threshold so that thep-p transitions give a dominan
contribution.

In the rest of this section the electronic property of thep
bands of nanotubes is briefly reviewed. In Sec. II we cal
late the response functions to a monochromatic electrom
netic field ~i.e., the dielectric function and third-rank tens
responsible for the optical activity! with the aid of the linear-
response theory. Then we find the following relation betwe
the electric displacementD~k,v! and the electric fieldE~k,v!
for the components with wave vectork and frequencyv:

D~k,v!5e i@E~k,v!•ez#ez1e'$E~k,v!2@E~k,v!•ez#ez%

1 ig i$@k3E~k,v!#•ez%ez1 ig'
~1!@ez•E~k,v!#

3~ez3k!1 ig'
~2!$ez3@k3E~k,v!#%,

whereez is the unit vector along the tubule axis,e i and e'

are the dielectric functions, andg i , g'
(1) , andg'

(2) are related
to the optical activity. In Sec. III the frequency dependenc
9301 © 1998 The American Physical Society
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of the dielectric functionse i and e' are investigated and
compared with previous works.18–20 Our results agree wel
with the previous ones. Then, by using a very short rel
ation time, we simulate the dielectric functions for a bund
of nanotubes, which qualitatively explain the difference b
tween the observed parallel and perpendicular dielec
functions with respect to the sample axis.6 Also, for large
nanotubes, the square of the plasma frequency is shown
proportional to the carbon densityrC and inversely propor-
tional to the tubule diameterD. The experimental value o
the plasma frequency~0.215 eV! obtained from the data by
Bommeli et al.8 is of the same order of magnitude as, b
smaller by a factor of; 1

3 than, the calculated one~0.686 eV!
for a sample of randomly synthesized multilayer nanotu
with the outermost diameterDex.11 nm and the hollow di-
ameterD in.2.2 nm. In Sec. IV the optical activity of the
ensemble of nanotubes is considered and the differencg i

2g'
(1) is shown to be related to the optical rotatory pow

and circular dichroism. It shows negative and positive Cot
effects alternately as the frequency increases. The l
frequency peaks of the optical activity are suppressed, wh
indicates the achiral nature of the electronic states near
Fermi points. We have also found that the magnitude of
circular dichroism for nanotubes with diameter about 4
and density 30% of the graphite crystal is of the same or
of magnitude as those observed in certain orga
compounds.26 Since the infinitely large nanotube is th
achiral two-dimensional~2D! graphite, the optical activity
diminishes when the diameter becomes larger. Section
devoted to the summary and concluding remarks. Detail
the calculations of response functions are shown in App
dix A–C. Particularly, in Appendix B we show the explic
expressions of the response functions valid for a more g
eral case where each carbon atom is described byj atomic-
centered basis functions.

The structure of a nanotube, as a rolled graphite shee
specified by the way of rolling, i.e., by the relative lattic
vectorRab5ax1by between two hexagons to be identifie
wherea andb are integers andx andy are two unit vectors
of the two-dimensional graphite lattice24,27 ~Fig. 1!. In the
discussions of the band structure,10,11 usually the index is
confined so that the angleuab of Rab with respect to a given
ts
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direction is in between 0 andp/6 and the chirality of the
nanotube is specified by the type of rolling~i.e., from the
back of the sheet to the front or from the front to the bac!.
Instead, once we fix the way of rolling the sheet~e.g., from
the front to the back!, we can uniquely specify the structure
of nanotubes by the vectorRab with 2p/6<uab<p/6. Here
we use a tubule index (a,b) satisfying a>1 and 2a11
<b<0. Then the mirror image of the nanotube (a,b) is
(a,0) for b50 and (a,2a2b) for bÞ0. Hence the achira
nanotube (a,b) is characterized byb50 or a12b50 with
bÞ0.

The p bands of the nanotube are well described by
tight-binding model.9–11 Its Hamiltonian is given by

H52t0 (
i , j ;s

$Cis
† Cj s1H.c.%,

whereCis andCis
† are annihilation and creation operators

a p electron with spins at the i th site, t0 is the hopping
energy, and the sum runs over the nearest-neighbor p
The HamiltonianH gives, for the nanotube (a,b), a one-
dimensional~1D! bands9,11,19,24,27

FIG. 1. Parametrization of nanotubes. Vectorsx andy stand for
the unit vectors of the graphite lattice. The nanotube (a,b) is
formed by rolling the graphite sheet from the front to the back
that the hexagon atO is overlapped with the hexagon (a,b).
E6~N,k!56t0A114 cosS 2pN

a
2

a12b

2a
kl D cos

kl

2
14 cos2

kl

2
, ~1.1!
s

at
nd
d

V

ter
where l is 3
2 times the interatomic distance,N50,1, . . . ,a

21, and 2p/l <k<p/l . The plus and minus subscrip
stand for the conduction and valence band, respectively.

Equation~1.1! predicts the following. A nanotube (a,b)
is a metal when 2a1b53n ~n an integer! and generally has
four metallic bands with energiesE6(n,k) ~Fermi wave
numberk5kF52p/3l ! andE6(a2n,k) ~Fermi wave num-
ber k52kF522p/3l !. When 2a1b53n and n5a2n,
the nanotube has only two metallic bands and is achiral
cause ofa12b50. Strictly speaking, this is not true exce
e-

for n52b since expression~1.1! does not include the effect
of curvature on the electronic structure.10,11,14However, the
energy gaps for nanotubes with 2a1b53n (nÞ2b) are
small @less than 10 meV~Refs. 10 and 11!# even for a small
nanotube with a diameter of 1 nm, which is negligible
room temperature. Also, as will be seen in Sec. III, the ba
structure20 calculated by the local-density-functional metho
agrees well with Eq.~1.1! at energy less than about 3 e
even for a very small nanotube~diameter.0.7 nm!. Clearly
the effects of curvature diminishes as the tubule diame
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57 9303p-BAND CONTRIBUTION TO THE OPTICAL . . .
increases and hence at energy less than 5 eV, they are
pected to be negligibly small for nanotubes with a diame
more than a few nanometers at room temperature. Note
when 2a1b is not divisible by 3, a nanotube (a,b) is a
semiconductor.

II. OPTICAL RESPONSE FUNCTIONS

The electromagnetic response to the weak applied fiel
fully characterized by the dielectric functionē i j (k,v), de-
pending on the frequencyv and wave vectork, and the
optical processes such as absorption and diffraction are
described by its long-wavelength limit28 e i j [ē i j (0,v).
However, in order to take into account the optical activi
we need to considerk-linear terms ofē i j (k,v) as they may
have different symmetry from thek-independent ones.28

The dielectric functione i j is given by29–31,18,19

e i j 5d i j 1
8pe2\

m2v
rT (

t,t856
(

N,N8
E dk

3E dk8
^N8k8t8u p̂i uNkt&^Nktu p̂ j uN8k8t8&
Et8~N8,k8!2Et~N,k!1\v1 i0

3
f „Et8~N8,k8!…2 f „Et~N,k!…

Et8~N8,k8!2Et~N,k!
, ~2.1!

where i0 in the denominator stands for a pure imagina
infinitesimal with a positive imaginary part,e andm are the
electron charge and mass, respectively,\ is the Planck con-
stant,rT is the volume density of nanotubes,p̂i is the elec-
tron momentum, andf is the Fermi distribution function
f (E)51/$exp@b(E2m)#11% with inverse temperatureb and
chemical potentialm. For the half-filled case, which we ar
interested in,m50.

Thek-linear terms ofē i j (k,v) are specified by its deriva
tives with respect to thel th component of the wave vectork.
We divide them intog i j l

A and g i j l
S , which are, respectively

antisymmetric and symmetric in the subscripts (j ,l ):

]ē i j ~k,v!

]kl
U

k50

[ i $g i j l
A 1g i j l

S %.

Recall that the long-wavelength limit of the dielectric fun
tion e i j is obtained from the coefficient of the average pol
ization 4p^P& to the field strengthE0 by neglecting the elec
tron coordinater̂ in the applied field: E0 exp@ik•(R1 r̂ )
2 ivt#.E0 exp(ik•R2 ivt), whereR stands for the center
of-mass coordinate of the nanotube. Similarly, the sum of
third-rank tensorsi $g i j l

A 1g i j l
S % is obtained as the coefficien

of the average polarization 4p^Pi& to the productklE0 j by
replacing the applied field to its first-order correction w
respect to the electron coordinates:i (k• r̂ )E0 exp(ik•R
2 ivt). This replacement corresponds to the substitution

i $~k•r ! p̂ j1H.c.%5 i(
l

H(
l

e l j lL̂l1Q̂jl J kl

in place ofp̂ j in Eq. ~2.1!, wheree l j l is the alternating tenso
of third rank, L̂l the lth component of the angular
momentum operator, andQ̂jl [$x̂l p̂ j1 x̂ j p̂l1H.c.%/2 the
ex-
r
at

is

ell

,

-

e

f

symmetric tensor withx̂l the l th component ofr̂ . Thus the
antisymmetric third-rank tensorg i j l

A is given by

g i j l
A 5(

l
e l j l

4pe2\

m2v
rT (

t,t856
(

N,N8
E dk

3E dk8
^N8k8t8u p̂i uNkt&^NktuL̂luN8k8t8&

Et8~N8,k8!2Et~N,k!1\v1 i0

3
f „Et8~N8,k8!…2 f „Et~N,k!…

Et8~N8,k8!2Et~N,k!
~2.2!

and the symmetric oneg i j l
S is obtained from Eq.~2.2! by

replacing(le l j lL̂l by Q̂jl . Expression~2.2! corresponds to
Rosenfeld’s formula for the rotatory strength of molecule

The matrix elements of the momentum operator can
estimated as the derivative of the corresponding matrix
ments of the Hamiltonian with respect to the wa
vector.18,19,30However, such a method is not available for t
matrix elements of the angular momentumL̂ and quadratic
momentQ̂. So we directly estimate the matrix elements in
way similar to the first-principle calculation.20 First we note
that since the Bloch stateuNkt& is a superposition of the
statesu j & localized at thej th site, uNkt&5( jgj (N,k,t)u j &,
the matrix element̂NktuÔuN8k8t8& in Eqs.~2.1! and ~2.2!
~Ô5 p̂ j , L̂l , or Q̂jl ! is expanded as

^NktuÔuN8k8t8&5(
j , j 8

gj* ~N,k,t!gj 8~N8,k8,t8!^ j uÔu j 8&.

~2.3!

As will be outlined in Appendixes A and B, the sum~2.3!
can be calculated with the aid of the symmetry argument
White, Robertson, and Mintmire.14 Along with the line of
thought that leads to thep-band energy~1.1!, we estimate
the response functions under the following assumptions.

~i! The sum~2.3! is well approximated only by the con
tributions from the on-site and nearest-neighbor pairs.

~ii ! The localized stateu j & is well described by a superpo
sition of 2p Slater orbits for carbon atoms with their axe
perpendicular to the tubule surface:

u j &5Nj H uc j
~2p!&1(

k
cjkuck

~2p!&J , ~2.4!

where the leading 2p Slater orbituc j
(2p)& is placed at the site

j , the summation in the second term runs over the near
neighbor sites,and the coefficientscjk are chosen such tha
u j & is approximately orthogonal to the other localized sta
~for more details see Appendix C!.

The consistency of these assumptions with ear
works18–20 will be discussed in Sec. III. For details of th
calculations see Appendixes A–C. We then obtain

e i j 5e ieziez j1e0'@d i j 2eziez j#, ~2.5!
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(
l

kl$g i j l
A 1g i j l

S %5g0iezi~ez3k! j1g'
~1!~ez3k! iez j1g'

~2!

3$kiez j2d i j ~k•ez!%2z i~k•ez!eziez j

2z'~k•ez!$d i j 2eziez j%, ~2.6!

whereez is the unit vector along the tubule axis@its direction
is identical to that of the lattice vector2(a12b)x1(2a
1b)y], ezi is its i th component,d i j is the Kronecker delta
andk andkl stand for the wave vector and itsl th component,
respectively. The explicit expressions of the dielectric fun
tionse i ande0' and those of the coefficientsg0i andg'

(1) are
given, respectively, in Secs. III and IV, and that ofg'

(2) is in
Appendix C. The subscript 0 ine0' andg0i implies that they
are ‘‘bare’’ quantities. By comparing Eq.~2.5! with Eq.
~2.6!, we see that the last two terms of Eq.~2.6! gives a
correction with relative order ofzauku/ea;~interatomic
distance!/~wavelength of light! to the dielectric function
ea . In the energy range we are interested in~up to 10 eV!,
the correction is at most 1023ea and thus will be neglected

Because a nanotube is a cylinder, we have to take
account the depolarization effect. As discussed by Ajiki a
Ando,18 the effective fieldEi

eff parallel to the tubule axis is
identical to the applied fieldEi and the effective fieldE'

eff

perpendicular to the tubule axis is different from the appl
field E' by a factor of $114p i s̄' /Dv%21, where D
5uRabu/p is the diameter of the nanotube ands̄' stands for
the surface conductivity along the peripheral direction.
the other hand, when one neglects the depolarization ef
the surface conductivitys̄' gives the perpendicular polariza
tion of iSs̄'/2v for a tubule with surface areaS, which is
equal to the polarizability per tubule calculated via the line
response theory: iSs̄'/2v5(e0'21)/4prT5)S(e0'

21)/4pl 2rC, with rC the density of carbon atoms per vo
ume. Thus the total effective field experienced by the tub
is

Eeff[Ei
eff1E'

eff5~E•ez!ez1H 11
2)~e0'21!

rCl 2D J 21

3@E2~E•ez!ez#.

By substituting this into

Di2Ei5(
j

$e i j 2d i j %Ej
eff1 i(

j ,l
$g i j l

A 1g i j l
S %klEj

eff

and neglecting the terms that may give small corrections
the dielectric functionse i ande0' ~cf. the last arguments in
the preceding paragraph!, one obtains

D~k,v!5e i@E~k,v!•ez#ez1e'$E~k,v!

2@E~k,v!•ez#ez%1 ig i$@k3E~k,v!#•ez%ez

1 ig'
~1!@ez•E~k,v!#~ez3k!

1 ig'
~2!$ez3@k3E~k,v!#%, ~2.7!

wheree' andg i are, respectively, the renormalized values
e0' andg0i ,
-

to
d

d

n
ct,

r

le

to

f

e'511H 11
2)~e0'21!

rCl 2D J 21

~e0'21!, ~2.8a!

g i5H 11
2)~e0'21!

rCl 2D J 21

g0i . ~2.8b!

Note that the above renormalization factor does not dep
on the carbon densityrC. The depolarization effect can als
be obtained from the electron-electron Coulomb interact
via the time-dependent Hartree approximation.

Note that formulas~2.1! and~2.2! are still valid for more
general case where each carbon atom is described bj
atomic-centered basis functions and hence the tubule e
tronic states by 2j sets of bandsuN,k,t& (t51,2, . . . ,2j ).
In Appendixes A and B the matrix elements in Eqs.~2.1! and
~2.2! and the general expressions of the response funct
are calculated with the aid of the symmetry argument of R
14. The frequency dependences of the coefficientse i , e' ,
g i , andg'

(1) will be described in the following sections.

III. DIELECTRIC FUNCTIONS

A. Parallel dielectric function

The dielectric functione i of a nanotube (a,b) for the field
parallel to the tubule axis consists of the one due to
interband transitione i

b and the one from the free carrier~the
Drude term! e i

f :

e i
b511S e\2

m D 2 4rC

al (
N

3E
2p/l

p/l

dk
f „E1~N,k!…2 f „E2~N,k!…

E1~N,k!2E2~N,k!

3
@Re K0~N,k!#2

~\v!21 i\2v/t r2@E1~N,k!2E2~N,k!#2 ,

~3.1!

e i
f52

~\vpl!
2

\v~\v1 i\/t r !
, ~3.2a!

with vpl the plasma frequency

vpl
2 52S e\

m D 2 2rC

al (
N

E
2p/l

p/l

dk@ Im K0~N,k!#2

3$ f 8„E1~N,k!…1 f 8„E2~N,k!…%, ~3.2b!

where we have introduced a phenomenological relaxa
time18,19,30,31t r . The quantityK0(N,k) in Eqs. ~3.1! and
~3.2b! corresponds to the~dimensionless! matrix element of
the momentum operator and is given by

K0~N,k!5e2 iu~N,k! (
l51

3

e2 ifl~N,k!@J1coshl

1J2~12coshl!2#jl , ~3.3!

whereu(N,k) is the argument of
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TABLE I. Auxiliary variableshl , jl , andfl(N,k). The indexl51,2,3 stands for the three nearest
neighbors for a given site. The pair (hl ,jl) stands for the cylindrical coordinate of a nearest neighborl
measured from the given site. The anglefl(N,k) is the phase difference of the Block wave function for each
nearest-neighbor pair.
to
he
nt

ng
di

e
th
a
u

e

e
th

re

-

e

H expF2 i S 2pN

a
2

b

a
kl D G1exp~2 ikl !11J ,

the variablesfl(N,k), hl , andjl are listed in Table I, and
J1 and J2 are matrix elements of the momentum opera
with respect to two localized states listed in Table II. T
subscriptsl51, 2, and 3 correspond to three differe
nearest-neighbor pairs~cf. Fig. 1!. Note that the interband
contribution e i

b arises from the wave-number-preservi
~‘‘vertical’’ ! transitions between the bands with same in
ces, as in the case of bulk semiconductors@cf. Fig. 2~a!#.

For the nanotubes (a,b) with 2a1b53n, the interband
contributione i

b logarithmically diverges for low temperatur
b→` because of the crossing of two metallic bands at
Fermi wave number. Strictly speaking, the divergence is
artifact since an energy gap appears at the Fermi wave n
ber due to the nonzero curvature10,11 @for metallic nanotubes
(a,b) with 2a1bÞ23b# or to the spontaneous lattic
distortion21,22 ~at very low temperature!. Still, the contribu-
tion from the vicinity of the Fermi wave number could b
large as the above-mentioned gap is very small. We see
it is not the case and this contribution is negligible compa
r

-

e
n
m-

at
d

to the Drude term. Indeed, for\v@\vFdkc@b21 with vF

5t0l Aa21ab1b2/a\ the Fermi velocity, we have

e i
b5 ē i

b12S e\2

m D 2 4rC

al
E

uk2kFu,dkc

3dk
f „E1~n,k!…2 f „E2~n,k!…

E1~n,k!2E2~n,k!

3
@Re K0~n,k!#2

~\v!21 i\2v/t r2@E1~n,k!2E2~n,k!#2

. ē i
b2S e\

m D 2 8\rC

al vF

@Re K0~n,kF!#2

\v~\v1 i\/t r !
ln~bdEc!,

~3.4!

where ē i
2b is the finite part of the interband dielectric func

tion, dkc the wave-number cutoff,kF52p/3l the Fermi
wave number, anddEc.1.13\vFdkc the cutoff energy. The
singular term of Eq.~3.4! gives an additional contribution to
the Drude term~3.2!, but it is negligible because its relativ
magnitude to the Drude term is approximately 531024 for
n

TABLE II. Matrix elements of the differential operator] i and of the angular-momentum operatorxi] j

2xj] i with respect to two localized states. The vector from one center to the other is denotedd, which points
to the positivex direction. They andz directions are orthogonal to it. The functionwh (h5x,y,z) stands for
the 2p Slater orbit with its axis in theh direction,l is 3

2 times the C-C distance of the graphite sheet, andD
is the tubule diameter. The parameteru is given byu5Zl /3aBohr, with Z the effective charge for the carbo
2p orbit andaBohr the Bohr radius.

J1[2
3l

2N E d3r wy~r1d!]xwy~r !5
29e2u

20N
u2S u2

3
1u11D ,

J2[
27D2

32l N F E d3r wx~r1d!$]xwx~r !2]ywy~r !%22Ed3r wy~r1d!]xwy~r !G5 227D2e2u

320l 2N
u4~u11!,

J3[2
2l 2

D2N E d3r wy~r1d!~y]z2z]y!wz~r !5
22l 2e2u

3D2N S u3

5
1

6u2

5
13u13D

J4[
9

2N F E d3r wy~r1d!(y]z2z]y)wz~r !2E d3r wx~r1d!(x]y2y]x)wy~r !G5 9e2u

40N
u2S u2

3
1u11D
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9
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the nanotube (5,21) and is less for larger nanotubes.
The frequency dependence of the real part of the para

conductivitys i[2 iv(e i21)/4pSrT for metallic and semi-
conductive chiral nanotubes are shown respectively in F
2~b! and 2~c! using the parameters listed in Table III. Th

FIG. 2. Real part of the parallel conductivity in unit ofe2/h. ~a!
Schematic representation of the ‘‘vertical’’ transitions responsi
for the parallel dielectric function.~b! and ~c! Frequency depen
dence of the real part of the parallel conductivity calculated fr
the parallel dielectric function as Resi5v Im ei/4pSrT , with S the
area of a single nanotube andrT the tubule density, for~b! a me-
tallic nanotube (50,210) with a diameter of 3.59 nm and~c! a
semiconductive nanotube (60,220) with a diameter of 4.14 nm
The abscissa represents\v/2t0 . The insets show the overall view
Note that Resi does not depend on the carbon densityrC .
el

s.

growth of the conductivity of the metallic nanotube at lo
frequency is due to the Drude term~3.2!. The low-frequency
conductivity (\v/2t0<0.25), except for the Drude term
agrees well with the one obtained from thek•p model.18

Indeed, the latter predicts a peak at\v/2t0

.3p/A3(a21ab1b2) for metallic nanotubes of type (a,b)
and peaks at \v/2t0.p/A3(a21ab1b2) and
2p/A3(a21ab1b2) for semiconductive nanotubes. Thos
correspond to the peak at\v/2t0.0.119 for the nanotube
(50,210) and to the peaks at\v/2t0.0.034 and 0.068 for
the nanotube (60,220), which agree well with the presen
results@cf. Figs. 2~b! and 2~c!#.

This can be shown analytically. First, we note that wh
the tubule radius is large, the dielectric functions~3.1! and
~3.2! reduce to the ones obtained within the derivati
approximation,19 except for a numerical facto
(ml 2t0 /\2J1)2. Indeed, at absolute zero temperature, o
has

S ml 2t0

\2J1
D 2

$e i
b21%528pe2

rCl

a E dk

2p

1

\vvc~N,k!

3
uv̂vc~N,k!u2

v~v1 i /t r !2vvc~N,k!2 , ~3.5!

where \vvc(N,k)5E1(N,k)2E2(N,k) is the energy dif-
ference between the valence and conduction bands and
velocity matrix elementv̂vc(N,k) along the tubule axis with
respect to the valence and conduction bands is calcul
from the wave-number derivative of the Hamiltonian mat
elements.19,30 Furthermore, when one deals with only th
low-energy excitations, the dielectric function~3.5! is well
approximated by the contributions from the states near
Fermi points, which are just the ones given by thek•p
model.18

Finally, we compare the present results with the ones
tained by a first-principles local-density-functional~LDF!
method.20 Mintmire and White20 have reported their calcula
tions on the imaginary parts of the dielectric functions for t
nanotube~5,7!, which has a diameter of 0.84 nm and
equivalent to the nanotube (12,25) in our notation. At the
energy\v<10 eV, the imaginary part of the parallel diele
tric function has a large peak at\v5Egap

L 50.86 eV with a
shoulder at \v.1.7Egap

L and a smaller peak at\v
.4.4Egap

L . This results can be compared with the one o
tained from Eq.~3.1! for \/t r50.3t0 , which has a large
peak at\v5Egap50.35t0 with a shoulder at\v.1.75Egap
and smaller peaks at\v.4.08Egap and 5.42Egap. This dif-
ference is due to the difference in the calculated band st
tures. The LDF calculation predicts20 six local minima in the
energy difference between the valence and conduction ba
namely,Ev2Ec5Egap

L , 1.9Egap
L , 3.6Egap

L , 3.9Egap
L , 4.3Egap

L ,
and 4.5Egap

L . The first two minima correspond to the firs
peak and the associated shoulder of Imei and the rest to the
second peak.20 On the other hand, the band energy~1.1!
gives six local minimaEv2Ec5Egap, 1.92Egap, 3.76Egap,
4.26Egap, 5.48Egap, and 5.55Egap and the first two minima,
middle two minima, and the last two minima generate th
peaks in Imei . If one usest052.4 eV, which is obtained for
the nanotube~5,5! by the LDF calculation,13 instead oft0
52.7 eV, we haveEgap50.35t050.84 eV and hence the firs

e
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three minima in the energy difference and the first two pe
in Im ei obtained respectively from Eqs.~1.1! and~3.1! agree
well with the LDF results. At higher energy than 4Egap

L

.3.4 eV, a difference appears in both the band structure
Im ei because of the tubule curvature. Since the curva
effects become less significant for larger nanotubes, the
ference is expected to be very small for nanotubes with
ameter more than a few nanometers, which we are ma
interested in.

B. Perpendicular dielectric function

Only the interband transitions contribute to the bare
electric functione0' of the nanotube (a,b) for the field per-
pendicular to the tubule axis:

e0'511S e\2

pmD 2 rC~a21ab1b2!

3al (
N

E
2p/l

p/l

dk

3
f „E1~N11,k1k0!…2 f „E2~N,k!…

E1~N11,k1k0!2E2~N,k!

3
uK1~N11,k1k0!1K2* ~N,k!u2

~\v!21 i\2v/t r2@E1~N11,k1k0!2E2~N,k!#2 ,

~3.6!

wherek05p(a12b)/l (a21ab1b2) and, as before, a phe
nomenological relaxation timet r is introduced. AsK0(N,k),
K6(N,k) corresponds to the matrix element of the~dimen-
sionless! momentum operator

K6~N,k!5
1

&
e2 iu~N,k! (

l51

3

e2 ifl~N,k!@J1~2 coshl21!

1J2~12coshl!2#~12e6 ihl!. ~3.7!

Contrarily to the previous case, the perpendicular diel
tric function e0' arises from the transitions accompanied
a wave-number change between the bands with diffe
band indices@cf. Fig. 3~a!#. Indeed, if one maps the bands
the nanotubes to the Brillouin zone of the graphite,
change of the band index and wavenumber (N,k)→(N
61,k6k0) corresponds to the wave-vector change perp
dicular to the tubule axis with magnitude 1/(tubule radiu
As discussed in Ref. 18, this is due to the cylindrical sha
of the nanotubes: The uniform field perpendicular to the
bule axis corresponds to the sinusoidal field on the tub
surface with period 2p times the tubule radius and thus in
duces transitions accompanied by the change of the w
vector corresponding to this periodicity. Note that our tra
sition rule (N,k)→(N61,k6k0) and Ajiki and Ando’s
rule18 (N,k)→(N61,k) are actually identical. They look
different simply because of the difference of the parame
zation of the bands~our k is along the inverse lattice vecto
K y for the graphite lattice and Ajiki and Ando’sk is along
the tube axis!.

In Figs. 3~b! and 3~c! we show the real parts of the ba
and renormalized ‘‘reduced’’ perpendicular conductiv
s0'[2 iv(e0'21)/4pSrT and s'[2 iv(e'

21)/4pSrT , respectively. Note that the reduced conducti
tiess0' ands' are twice the surface conductivity along th
s
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peripheral direction, but we use these quantities in orde
compare the perpendicular dielectric function with the par
lel one. We see that the depolarization almost comple
smears out the low-frequency resonance peaks. As be

FIG. 3. Real part of the ‘‘reduced’’ perpendicular conductivi
in unit of e2/h. ~a! Schematic representation of the transitions
sponsible for the perpendicular dielectric function.~b! and ~c! Fre-
quency dependence of the real part of the perpendicular condu
ity calculated from the perpendicular dielectric function via Res'

5v Im e'/4pSrT ~solid line! and its bare value Res0'

5v Im e0'/4pSrT ~broken line!, for ~b! a metallic nanotube (50
210) with a diameter of 3.59 nm and~c! a semiconductive nano
tube (60,220) with a diameter of 4.14 nm. The abscissa represe
\v/2t0 . The insets show the overall views of the conductivity wi
depolarization effect. Note that Res' does not depend on the ca
bon densityrC .
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for large nanotubes at low frequency, the present re
agrees well with Ajiki and Ando’s result. Indeed, when t
tubule radius is large and the frequency is low, the perp
dicular dielectric function reduces to the onee'

AA obtained by
the k•p model:18 e'215$\2J1 /ml 2t0%

2@e'
AA21#, except

for a numerical factor$\2J1 /ml 2t0%
2 close to unity. This

can also be seen in the figure: Ajiki and Ando’s bare perp
dicular conductivity for a metallic nanotube has a relative
broad peak at\v/2t0.1.69p/A3(a21ab1b2), which cor-
responds to a peak at\v/2t0.0.067 for the nanotube (50
210) and thus agrees with the first peak shown in Fig. 3~b!.
Also, the overall shape of the low-frequency part of Fig. 3~b!
including the suppression of peaks is quite similar to tha
Ref. 18.

Another remarkable feature of the imaginary parts of
dielectric functions Imei and Ime' is the existence of a rela
tively broad peak at\v.2t055.4 eV irrespective of the tu
bule type. As discussed by Lin and Shung,19 this feature is
consistent with the~5–7!-eV plasmon peak found in th
EELS experiments on carbon nanotubes.7 Also, this result
qualitatively agrees with the behavior of the dielectric fun
tion observed by de Heer and co-workers6 for an assembly of
aligned nanotubes, where its real and imaginary parts h
respectively, a cutoff and a peak at about 4.6 eV: For s
samples, the oscillatory behavior of the dielectric function
suppressed as a result of averaging over tubules with di
ent sizes. This aspect can be taken into account qualitati
by employing a much shorter relaxation time. In Fig. 4 w
show the real and imaginary parts of the dielectric functio
e i1De ande'1De as a function of energy, where the offs
dielectric constantDe51.4 is the value for graphite,19 the
relaxation time is\/t r50.132t0 , and the other parameter
are given in Table III. The result reproduces well the ex

FIG. 4. Dielectric functions for aligned nanotubes (60,220)
with the carbon density 60% of the crystalline graphite. The sho
relaxation time\/t r50.132t0 is used to simulate the effect o
averaging over a tubule size distribution. The bare perpendic
dielectric function is presented instead of the renormalized
since the depolarization effects are suppressed for large nano
such as used in the ellipsometry experiment~Ref. 6!, with which the
present results are compared. The imaginary and real parts o
dielectric functions are shown, respectively, by the solid and bro
curves. The curves labeled PARA stand fore i and those labeled
PERP fore0' .
lt
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tence of a peak in the imaginary parts and a cutoff in the r
parts at about\v.2t055.4 eV as well as the differenc
between the parallel and perpendicular dielectric function

C. Drude term

In this subsection we discuss the Drude contribution.
seen from Eq.~3.2b!, for large nanotubes at temperatures le
than a few hundred kelvin, the plasma frequencyvpl is a
function of carbon densityrC and tubule diameterD:

vpl
2 5

16J1
2

)pl 2t0
S e\

m D 2

rC

l

D
5

4pe2

m S 0.348rC

l

D D ,

~3.8!

where the values listed in Table III are used. This behav
can be understood as follows. A nanotube with diameteD
has a number of 1D bands, each of which is specified by
quantized wave number along the peripheral direction:k'

52ps/pD (s50,1, . . . ). Themaximum number of the in-
teger s, i.e., the number of 1D bandss̄, is given by the
condition maxk'52p/l 52p s̄/pD, which leads to s̄
5pD/l . As one of those 1D bands is conductive, 1/s̄ of the
total p electrons behave as free carriers. Thus, because
carbon atom provides onep electron, the free-electron den
sity ne is given by ne5rC/ s̄5rCl /pD. Substituting this
into the well-known formula of the plasma frequencyvpl

2

54pe2ne /m, we get

vpl
2 5

4pe2

m S 1

p
rC

l

D D ,

which depends on carbon density and tubule diameter in
same way as our result~3.8!. Note that the limiting value
limD→`vpl50 correctly corresponds to the plasma fr
quency of the 2D graphite, which is a gapless semicondu
and has zero plasma frequency.

Now we compare the result with the plasma frequency
an assembly of aligned nanotubes observed by Bomm
et al.8 Their samples consist of multilayer nanotubes. F
such samples, the plasma frequency is given by the ave
of Eq. ~3.8! with respect to a tubule distribution. Here w
estimate it by assuming that the assembly is a square la
of multilayer nanotubes with lengthL̄, outer diameterDex,
and an inner hollow of diameterD in . The densityrC(D) of
carbon atoms belonging to single-layer tubules with diame
D is rC(D)5prGCDc8/Dex

2 since the number of carbon a
oms contained in a single-layer tubule of diameterD is
pDL̄)/l 2 and the density of such tubules is 1/Dex

2 L̄. Here
rGC5)/c8l 250.113 Å23 is the carbon density of the per
fect graphite crystal withc853.37 Å the interlayer distance
of graphite. Hence

^rC/D&5
pc8rGC

Dex
2 3~number of layers in a tubule!

5
pc8rGC

2c9

Dex12c92D in

Dex
2

and

r
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e
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~\vpl!
25

16J1
2

3)pl t0
S e\2

m D 2 pc8rGC

2c9

Dex12c92D in

Dex
2 ,

~3.9!

where the interlayer distance ofc953.4 Å for a multilayer
nanotube and the hollow diameter ofD in522 Å are taken
from Iijima’s observation.1 Also, we have replacedrGC in
Eq. ~3.9! by rGC/3 since only the metallic tubules contribu
to the Drude term and they account for one-third of the r
domly synthesized tubules due to the metallic conditiona
1b53n. In Fig. 5 we plot the plasma frequency as a fun
tion of tubule diameterDex.

The plasma frequencies\v i and \v' , respectively, for
the parallel and perpendicular polarization with respect to
sample axis reported by Bommeliet al.8 are

\v i50.14 eV, \v'50.115 eV. ~3.10!

Since, in their samples, the anglea between the tubule axi
and the sample axis distributes over some range, the D
contribution to the average dielectric function is given by

ē i5^cos2 a&e i
f , ē'5 1

2 ~12^cos2 a&!e i
f . ~3.11!

Assuming the uniform distribution ofa within an interval
0<a<a0 , one has ^cos2 a&5(cos2 a01cosa011)/3 and
then (v' /v i)25 ē i / ē'5(1/̂ cos2 a&21)/2, which givesa0
576.9°. For this distribution, the mean valueā and the stan-
dard deviationda are, respectively,ā.50° andda.13°.
Also, we find

\vpl
expt5A~\v i!

212~\v'!2.0.215 eV, ~3.12!

which is, for the multilayer nanotubes, of diameter 8–
nm.5 This value is also shown in Fig. 5. Although the o
served and calculated plasma frequencies have the sam
der of magnitude, the calculated onevpl is about three times
larger than the observed onevpl

expt. This discrepancy canno
be explained by simply adjusting the parameters listed

FIG. 5. Diameter dependence of the plasma frequency of
domly synthesized multilayer nanotubes with an inner hollow
diameterD in52.2 nm. A solid square and a horizontal bar indica
the experimental value obtained from the data of Ref. 8~see the
text!. The solid square corresponds to the most probable tu
diameter of 11 nm and the horizontal bar~8–18 nm! to the half-
width of the tubule-diameter distribution, both for the sample
Ref. 5.
-

-

e

de

or-

n

Table III within a physically reasonable range. For examp
t053 eV, D in55 nm, and the other parameter values as
fore give vpl /vpl

expt.2.5, which is still large. One possibl
reason for this discrepancy is the band-structure change
to interlayer and/or intertubule interactions. In the case
graphite, the interlayer interaction changes the free-car
density from 0 to about 1018 cm23 and the similar change is
expected for nanotubes. However, since this value is
order smaller than the free-electron density 3.331019 cm23

obtained from\vpl
expt, the interlayer and/or intertubule inter

actions might not be a main reason for the difference
tween the calculated and observed plasma frequencies. O
possible reason may be the low rate of the metallic tub
synthesis. We have assumed the rate to be1

3 based on the
condition of metallic tubule formation 2a1b53n. How-
ever, the metallic tubule synthesis seems to be restricted
the matching of hexagonal patterns between two adjac
layers in a multilayer nanotube as well as other experime
conditions, and the rate of synthesizing metallic tubu
might be much smaller than13 , which is estimated to be
about 1

30.5 from the present result.

IV. THIRD-RANK TENSOR AND OPTICAL ACTIVITY

A. Optical activity of the nanotube ensemble

As seen from the explicit expressions@see Eqs.~3.1!,
~3.2!, ~3.6!, ~4.3!, ~4.4!, ~4.6!, and~C7!#, the dielectric func-
tions e i ,e0' of the nanotube (a,b) are the same as those o
its mirror image (a,2a2b), and the components of th
third-rank tensorsg0i , g'

(1) , andg'
(2) are opposite:

e i~a,2a2b!5e i~a,b!, e0'~a,2a2b!5e0'~a,b!,

g0i~a,2a2b!52g0i~a,b!,

g'
~1!~a,2a2b!52g'

~1!~a,b!,

g'
~2!~a,2a2b!52g'

~2!~a,b!.

It is also the case for the renormalized quantitiese' andg i .
Therefore, the parts of the linear relation~2.7! containingg i

and g'
( j ) ( j 51,2) are responsible for the optical activity o

the chiral nanotube. To see it more concretely, we cons
the propagation of the light through a film of nanotub
(a,b) with their axes distributed randomly.

By averaging Eq.~2.7! with respect to the direction ofez ,
we have

n-
f

le

f

TABLE III. Numerical values of the parameters used to dra
the figures.

l ~Å! Z t0 ~eV! \/t r ~ev!

2.13a 3.136b 2.7c 0.03d

aThree-halves of the in-plane C-C distance of the graphite.
bThe ‘‘best atom’’ effective charge for carbon in units ofe for the
2p Slater orbital~Ref. 32!.

cThe value obtained for 2d graphite by a local-density-functiona
method~Ref. 33!.

dThe value for graphite from Ref. 31.
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D~k,v!5
e i

2
$E~k,v!2@E~k,v!•s#s%1

e'

2
$E~k,v!

1@E~k,v!•s#s%1 i
g i2g'

~1!

2
k3E~k,v!

2 i
g i

2
$@k3E~k,v!#•s%s

2 i
g'

~1!

2
@s•E~k,v!#•s3k, ~4.1!

wheres is the unit normal to the film. From Eq.~4.1! and the
Maxwell equations, for the light traveling along the film no
mal s, the electric fieldE(k,v) is found to be orthogonal to
the wave vectork and, up to the first order ing i andg'

(1) ,
the complex refractive indices are given by

n65Ae i1e'

2
7

v$g i2g'
~1!%

4c
,

wheren1 andn2 are the refractive indices, respectively,
the right-handed and left-handed circularly polarized lig
andc the velocity of light.
e

s

As is well known,28 when the incident light is linearly
polarized, the transmitted light is elliptically polarized. For
nanotube film with widthd, the angle of rotation of the
polarized planef r , which measures the strength of the o
tical rotatory power, and the ellipticity of the polarization o
the transmitted lightue , which measures the strength of ci
cular dichroism, are give by

f r5
dv2

4c2 Re$g i2g'
~1!%, ue5

dv2

4c2 Im$g i2g'
~1!%.

~4.2!

In the following subsection we study the coefficientsg i and
g'

(1) in more detail.

B. Third-rank tensor and circular dichroism

As the parallel dielectric function, the bare componentg0i

of the third-rank tensor for the nanotube (a,b) consists of the
interband contributiong0i

b and the free-carrier contribution
g0i

f ,
e

listed
a-
g0i
b 5S e\2

pmD 2 2rC~a21ab1b2!

3a (
N

E
2p/l

p/l

dk
f „E1~N,k!…2 f „E2~N,k!…

E1~N,k!2E2~N,k!

Re K0~N,k!Re L0~N,k!

~\v!21 i\2v/t r2@E1~N,k!2E2~N,k!#2 ,

~4.3!

g0i
f 5S e\2

pmD 2 rC~a21ab1b2!

3a\v~\v1 i\/t r !
(
N

E
2p/l

p/l

dk Im K0~N,k!Im L0~N,k!$ f 8„E1~N,k!…1 f 8„E2~N,k!…%, ~4.4!

where the phenomenological relaxation timet r is introduced as before andL0(N,k) corresponds to the matrix element of th
magnetic dipole moment,

L0~N,k!5e2 iu~N,k! (
l51

3

e2 ifl~N,k! sin hl@J1~2 coshl21!1J2~12coshl!212J312J4~12coshl!#, ~4.5!

with J3 andJ4 the ~dimensionless! matrix elements of the magnetic dipole moment with respect to two localized states
in Table II. As the perpendicular dielectric function, the other componentg'

(1) arises from the interband transitions accomp
nied by the wave-number change,

g'
~1!5S e\2

pmD 2 rC~a21ab1b2!

6&a
(
N

E
2p/l

p/l

dk
f „E1~N11,k1k0!…2 f „E2~N,k!…

E1~N11,k1k0!2E2~N,k!

3
Im$@K1* ~N11,k1k0!1K2~N,k!#@L2* ~N,k!1L1~N11,k1k0!#%

~\v!21 i\2v/t r2@E1~N11,k1k0!2E2~N,k!#2 , ~4.6!
.
e

whereL6(N,k) corresponds to the matrix element of som
component of the operator@ r̂ i p̂ j1 p̂ j r̂ i #,

L6~N,k!5e2 iu~N,k! (
l51

3

e2 ifl~N,k!jl$@J1coshl

1J2~12coshl!2#~11e6 ihl!

62iJ4sin hl~12e6 ihl!%. ~4.7!
As in the case ofe i
b , for the half-filled metallic nano-

tubes, the interband contributiong i
b may become very large

at low temperatureb→` @cf. the arguments above Eq
~3.4!#. However, actually, it is negligibly small because th
ratio of the singular term to the typical peak value ofg i at
room temperature is 1024 for nanotube (5,21) and is less
for larger ones.

The frequency dependences of Re(vgi /c) and Re(vg'
(1)/c)
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are shown respectively in Figs. 6 and 7. They oscillate w
a pitch corresponding to the band gap between adja
bands. Their imaginary parts Im(vgi /c) and Im(vg'

(1)/c) have
similar frequency dependences. We also show the bare q
tity Re(vg0i /c) in Fig. 6 and find that the effect of depola
ization is not significant compared to the perpendicular
electric function. In contrast to the dielectric functions, t
quantitiesg i andg'

(1) do not exhibit low-energy peaks. Thi
can be understood as follows. As seen in Sec. III, the lo
energy peaks come from the transitions between bands
the Fermi energy, which are well described by thek•p
model.15,16,18,24However, it does not distinguish nanotub
from their mirror images. Indeed, the tubule parameters
the k•p model are the tubule diameterD and an indexn
distinguishing the metallic (n50) and semiconductive (n
561) cases. For example, the nanotube (5,21) and its mir-
ror image (5,24) have the same diameter and the indexn
50, but are different. Therefore, in the frequency ran
where thek•p model works well, the nanotubes show n
optical activity. Also, this can be checked directly. As
example, the componentg0i

b will be considered. LetdEc be
a width of the energy shell near the Fermi energy with
which the energy dispersion is well approximated by a lin
function of the wave numbers. Then, for low energy\v
<dEc , because of the factor 1/$\v(\v1 i\/t r)
24E1

2 (N,k)%, the integrand ofg0i at energyuE6(N,k)u
<dEc is larger than the rest by a factor of\/t rdEc . Hence
Eq. ~4.3! can be evaluated as

FIG. 6. Frequency dependence of the real part of a dimens
less quantityvg i /c. The renormalized quantity Re(vgi /c) is shown
by the solid curve and the bare one Re(vg0i /c) by the broken curve,
for ~a! a metallic nanotube~50,210! with a diameter of 3.59 nm
and ~b! a semiconductive nanotube~60,220! with a diameter of
4.14 nm. The abscissa represents\v/2t0.
h
nt

n-

i-

-
ar

n

e

r

d0i
b 522S e\2

m D 2 J1
2l rC

)pt0
(
N

8E
2dkC

dkC8 dk i

k'~N!k i

$k'~N!21k i
2%3/2

3
f 1~N,k i!2 f 2~N,k i!

~\v!21 i\2v/t r24t0
2@k'~N!21k i

2#

1O~\/t rdEc!, ~4.8!

where f 6(N,k i)[ f „6t0Ak'(N)21k i
2
…,

k'~N![
2l

D S N2
b2a

3 D ,

k i[
1

)a
H 3pD

2
dk2~a12b!k'~N!J ,

with dk the deviation ofk from the Fermi wave numberkF

52p/3l , the cutoffs of the integraldkC;dkC8 ;dEc /t0 ,
and theN-summation running over the bands that pass
vicinity of the Fermi energyEF ; uE2EFu<dEc . The error
introduced by replacing the interval of integration
@2dkC ,dkC8 # by (2`,`) in Eq. ~4.8! is also of order
\/t rdEc and the integral over (2`,`) vanishes as it is an
integral of an odd function over a symmetric interval. Hen
we have the desired resultg0i

b 5O(\/t rdEc). Note that this
implies that the electrons of large nanotubes near the Fe
energy do not ‘‘feel’’ the chirality.

n-

FIG. 7. Frequency dependence of the real part of a dimens
less quantityvg'

(1)/c, for ~a! a metallic nanotube (50,210) with a
diameter of 3.59 nm and~b! a semiconductive nanotube (60
220) with a diameter of 4.14 nm. The abscissa represents\v/2t0.
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We show the angle of rotationf r @av2Re(g i2g'
(1))# of

transmitted light in Fig. 8 and the ellipticityue

@}v2 Im (gi2g'
(1))# in Fig. 9, both of which are given by Eq

~4.2!, as a function of frequency. The values correspond
the carbon density of 1 mol/dm356.0231024Å 23, nanotube
film width d51 cm, and the other parameters as listed
Table III. For the nanotube film of 30% density of the grap
ite crystal, the molar ellipticityuueu.400 ~deg dm3/mol!/cm
corresponds to the difference 6.8 cm21 between the decadi
absorption coefficients for the left- and right-handed circ
larly polarized lights. The value is of the same order of ma
nitude as those observed in certain organic compound26

FIG. 8. Frequency dependence of the rotation angle for a film
randomly oriented nanotubes with a width of 1 cm and a car
density of 1 mol/dm3 for ~a! a metallic nanotube (50,210) with a
diameter of 3.59 nm,~b! a semiconductive nanotube (60,220) with
a diameter of 4.14 nm, and~c! a semiconductive nanotube (12
25) with a diameter of 0.82 nm. The rotation angle is proportio
to v2 Re(gi2g). The abscissa represents\v/2t0
o

n
-

-
-
.

When the frequency of the incident light increases, the ne
tive and positive Cotton effects appear alternately. The p
of this oscillation corresponds to the band gap between
jacent bands and hence is smaller for larger tubes.

Since the graphite is achiral, the componentsg i , g'
(1) ,

andg'
(2) should become smaller for larger tubes. This is

deed the case. The way they disappear can be unders
from their oscillatory nature mentioned above: When t
tubes are large enough so that the pitch of the oscillatio
smaller than the width of each peak, the adjacent peaks ig i

with opposite signs cancel each other andg i vanishes. This
implies that the optical activity is higher for smaller nan

f
n

l

FIG. 9. Frequency dependence of the ellipticity of transmit
light for a film of randomly oriented nanotubes with a width of
cm and a carbon density of 1 mol/dm3 for ~a! a metallic nanotube
(50,210) with a diameter of 3.59 nm,~b! a semiconductive nano
tube (60,220) with a diameter of 4.14 nm, and~c! a semiconduc-
tive nanotube (12,25) with a diameter of 0.82 nm.The ellipticity is
proportional tov2 Im(gi2g'

(1)). The abscissa represents\v/2t0.
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tubes and thus may provide a way of detecting small-s
nanotubes once the asymmetric synthesis succeeds.

V. SUMMARY AND CONCLUSIONS

Based on the tight-binding model, we have derived
expressions of the dielectric functions and the third-rank t
sor responsible for the optical activity and studied their f
quency dependences for the half-filled nanotubes. We h
shown the following.

~i! The imaginary part of the parallel dielectric functio
shows peaks at frequencies corresponding to the w
number-preserving transitions between bands with the s
indices. Because of the cylindrical shape of the tube,
peaks of the perpendicular dielectric function come from
wave-number-nonpreserving transitions between the ba
with different indices, but its low-frequency peaks a
strongly suppressed by depolarization. Both parallel and
pendicular dielectric functions exhibit a plasmon peak
about\v52t0.5.4 eV, which is consistent with the EEL
experiments.7 These results agree well with the previous th
oretical works.18–20 Moreover, the dielectric functions simu
lated using a very short relaxation time are consistent w
the ellipsometry results on aligned multilayer nanotubes
de Heer and co-workers.6

~ii ! For large nanotubes, the square of the plasma
quency is shown to be proportional to the carbon density
inversely proportional the tube diameter. The calcula
value of \vpl.0.686 eV for the tubes with a diameter o
about 11 nm and an inner hollow of diameter 2.2 nm is of
same order of magnitude as, but three times larger than
experimental value (.0.215 eV) obtained from the data b
Bommeliet al.8 The reason for this discrepancy is attribut
to the lower rate~about 1

30.5! of the metallic tubule synthesi
than that expected from the condition of metallic tubule f
mation 2a1b53n.

~iii ! Chiral nanotubes are optically active. The optical r
tatory power and the circular dichroism oscillates as the
quency of the external field increases. Their low-frequen
peaks are suppressed since, in this frequency range
nanotubes are described well by thek•p model, which does
not describe the chirality.

~iv! For the nanotubes with a diameter of about 4 nm a
30% density of graphite crystal, the optical rotatory pow
and circular dichroism are found to have peak values of
same order of magnitude as those of certain orga
compounds.26

~v! The optical activity diminishes for nanotubes wi
larger diameterD and thus it may provide a way of detectin
small-size nanotubes once the asymmetric synthesis
ceeds.

In the present work, only thep-band contributions are
considered. To obtain more precise information on the o
cal properties, one should take into account the virtuals-s
and p-s transitions since they also contribute to the re
parts of the dielectric functionse i j and the third-rank tenso
g i j l . However, such contributions are expected to have
structure and to be nearly constant in the frequency range
are interested in and thus may not affect the qualitative
tures of the present results.
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APPENDIX A: MATRIX ELEMENTS

In this appendix, following the symmetry argument b
White, Robertson, and Mintmire,14 we calculate the matrix
elements appearing in the expressions of the response f
tions ~2.1! and ~2.2! for the case where each carbon atom
described byj atomic-centered basis functions. First w
briefly review the arguments of Ref. 14 in terms of slight
different notations. Since the unit tubule cell consists of t
carbon atoms, a basis functionum,n,l& centered on each
atom is specified by an orbital labell (51,2, . . . ,2j ) and a
tubule cell label (m,n), where the (m,n) tubule cell corre-
sponds to the unit cell in the plane located atmx1ny ~cf.
Fig. 1!. Now, as discussed in Ref. 14, the nanotube (a,b) is
symmetric with respect to a 2p/M rotation CM around the
cylinder axis and a screw operationS(h,a) representing a
translationh units along the cylinder axis in conjunctio
with ana radian rotation around this axis. In the above,M is
the largest common divisor of a and ubu, h
[M l /Aa21ab1b2, and a[p$(2a1b)p11(a
12b)p2%/(a

21ab1b2), where a pair of integers (p1 ,p2)
(p1.0) satisfiesap22bp15M and minimizesup1x1p2yu.
Then two different basis functionsum,n,l& and um50, n
50,l& are related by those symmetry operations14

um,n,l&5CM
m~m,n!S~h,a!n~m,n!um50,n50,l&, ~A1!

wherem(m,n)5p2m2p1n andn(m,n)5(an2bm)/M . As
a result, symmetry-adapted generalized Bloch bases

uN,k,l&[A l

2pa (
m,n,

f N,k~m,n!um,n,l&, ~A2a!

f N,k~m,n![expH i l F S 2pN

l a
2

b

a
kDm1knG J ~A2b!

are simultaneous eigenstates of the two symmetry operat
CM and S(h,a), where N50,1, . . . ,a21 and kP
@2p/l ,p/l #. Also, they block diagonalize the Hamiltonia
H:
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^N,k,luHuN8,k8,l8&5dN,N8d~k2k8! (
m8,n8

f N,k~m8,n8!

3^m50,n50,luHum8,n8,l8&

[dN,N8d~k2k8!M~N,k!l,l8 , ~A3!

where a 2j 32 j matrix M(N,k)l,l8 is introduced. The
eigenenergiesEt(N,k) (t51, . . . ,2j ) are eigenvalues of the
matrix M(N,k)l,l8 and the corresponding eigenfunctio
uN,k,t& are superposition of 2j generalized Bloch bases

uN,k,t&5 (
l51

2 j

btl~N,k!uN,k,l&, ~A4!

with btl being the coefficients. Note that the energy eige
statesuN,k,t& are also the simultaneous eigenstates of
symmetry operations

S~h,a!uN,k,t&5exp$2 i ~2pNp11Mkl !/a%uN,k,t&,
~A5a!

CMuN,k,t&5exp$22p iN/M %uN,k,t&. ~A5b!

As an example, we calculate the matrix element of
angular-momentum component alonge6 : L̂•e6 , where
e65(ex6 iey)/& with (ex ,ey ,ez) an orthonormal basis se
including the unit vectorez along the tubule axis. SinceCM is
a rotation andS(h,a) is a screw operation, both with respe
to ez , we have
e-
-
e

e

CM
21~ L̂•e6!CM5expS 6 i

2p

M D ~ L̂•e6!, ~A6a!

S~h,a!21~ L̂•e6!S~h,a!5exp~6 ia!$~ L̂•e6!6 i\~ p̂•e6!%.
~A6b!

Using Eq. ~A1! and repeatedly applying Eqs.~A6a! and
~A6b!, we have

^m,n,lu~ L̂•e6!um8,n8,l8&

5e6 i @~2p/M !m1an#^0,0,lu$~ L̂•e6!

6 inh~ p̂•e6!%um82m,n82n,l8&,

wherem(m,n) andn(m,n) are abbreviated, respectively, a
m andn. Then, because of

2pm

M
1an5l H S 2p

M
2

b

a
k0Dm1k0nJ ,

hn5
l ~na2mb!

Aa21ab1b2
,

with k0[p(a12b)/$l (a21ab1b2)% and the formula

l

2pa (
m,n

f N82N71,k82k7k0
~m,n!5dN8,N61d~k82k7k0!,

we obtain
^N,k,lu~ L̂•e6!uN8,k8,l8&5
l

2pa (
m,n,m8,n8

f N,k* ~m,n! f N8,k8~m8n8!^m,n,lu~ L̂•e6!um8,n8,l8&

5dN8,N71d~k82k6k0! (
m8,n8

f N8,k8~m8n8!^0,0,lu~ L̂•e6!um8,n8,l8&

6
adN8,N71d8~k82k6k0!

Aa21ab1b2 (
m8,n8

f N8,k8~m8n8!^0,0,lu~ p̂•e6!um8,n8,l8&,
ay.
where dN8,N61 is Kronecker’s delta andd(k82k6k0)
Dirac’s delta function. In terms of symmetrized matrix el
ments

^^N,k,tuÔuN8,k8,t8&&[ 1
2 (

l,l8
m,n

btl* ~N,k!bt8l8~N8,k8!

3@ f N8,k8~m,n!^0,0,luÔum,n,l8&

1 f N,k* ~m,n!^m,n,luÔu0,0,l8&#,

~A7!

we have

^N,k,tu~ L̂•e6!uN8,k8,t8&

5dN8,N71d~k82k6k0!^^N,k,tu~ L̂•e6!uN8,k8,t8&&
6
adN8,N71d8~k82k6k0!

Aa21ab1b2

3^^N,k,tu~ p̂•e6!uN8,k8,t8&&. ~A8!

The other matrix elements can be calculated in a similar w
Here we list only the ones necessary in Appendix B:

^N,k,tu~ p̂•ez!uN8,k8,t8&5dN8,Nd~k82k!

3^^N,k,tu~ p̂•ez!uN8,k8,t8&&,

~A9a!

^N,k,tu~ L̂•ez!uN8,k8,t8&5dN8,Nd~k82k!

3^^N,k,tu~ L̂•ez!uN8,k8,t8&&.

~A9b!
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Before closing this appendix, we show that, as a result of
time-reversal symmetry, there exists a bijective functions~t!
of the indext and

Et~N,k!5Es~t!~a2N,2k!, ~A10a!

^^N,k,tuÔuN8,k8,t8&&52ei ~U2U8!^^a2N,2k,s~t!uÔ†ua

2N8,2k8,s~t8!&&* , ~A10b!

where Ô is (p̂•a), (L̂•a), or (aQ̂b)[( i , j (aiQ̂i j bj ) (a,b
5e6 ,ez) and the phaseU2U8 depends only onN, N8, k,
k8, t, andt8.

Let T be the time-reversal operator; then it satisfies34

Ta5a* T, ^cuT †T uf&5^fuc&,

TP52PT, TH5HT, ~A11!

wherea is an arbitrary complex number,P is either a mo-
mentump̂ j , an angular momentumL̂ j , or an electric quad-
rapoleQ̂i j , andc andf are any pair of wave functions. A
a result of Eq.~A11!, the wave functionT uN,k,t& is an
eigenfunction of the HamiltonianH with eigenenergy
Et(N,k). On the other hand, from Eq.~A11! and CM

5exp@2pi(L̂•ez)/\M #, one finds

CMT uN,k,t&5TCMuN,k,t&5Te22p iN/MuN,k,t&

5e22p i ~a2N!/MT uN,k,t&.

Similarly, T uN,k,t& is an eigenfunction of the screw oper
tion S(a,h) with an eigenvalue exp$2i@2p(a2N)p1
2Mkl #/a%. Therefore, the stateT uN,k,t& must be propor-
tional to one of the energy eigenfunctionsua2N,2k,t8& as
the statesua2N,2k,t8& are generally nondegenerate f
each (a2N,2k):

T uN,k,t&5eiU~N,k,t!ua2N,2k,s~t!&, ~A12!

whereU(N,k,t) is some phase andt8 is denoted ass~t!.
Since the eigenenergy of the state on the right-hand sid
Es(t)(a2N,2k), we have Eq.~A10a!.

Now we show Eq.~A10b!. Let Ô be one of the operator
listed after Eq.~A10b!; thenT Ô†52ÔT follows from Eq.
~A11! and we have

^N,k,tuÔuN8,k8,t8&

5^N8,k8,t8uT †T Ô†uN,k,t&

52^N8,k8,t8uT †ÔT uN,k,t&

52ei ~U2U8!^a2N8,2k8,s~t8!uÔua2N,2k,s~t!&

52ei ~U2U8!^a2N,2k,s~t!uÔ†ua2N8,

2k8,s~t8!&* ,

where U and U8 are abbreviations forU(N,k,t) and
U(N8,k8,t8), respectively. Equation~A10b! follows imme-
diately from this relation. Note that relations~A10! guarantee
the uniaxial symmetry of the dielectric functione i j with re-
spect to the unit vectorez .
e

is

APPENDIX B: RESPONSE FUNCTIONS „GENERAL CASE …

The response functions can be obtained by a straight
ward but tedious calculation. Here we only outline the de
vation and give the final results, which are valid for the ca
where each carbon atom is described byj atomic-centered
basis functions.

We consider a component( iezig i j l
A of the third-rank ten-

sor. It can be rewritten as

(
i

ezig i j l
A 5(

l
e l j l

4pe2\2

m2 rTGl , ~B1a!

Gl5(
t,t8

(
N,N8

E dkE dk8^N8k8t8u~ p̂•ez!uNkt&

3^NktuL̂luN8k8t8&R~NktuN8k8t8!, ~B1b!

with

R~NktuN8k8t8!5
1

\v@Et8~N8,k8!2Et~N,k!1\v1 i0#

3
f „Et8~N8,k8!…2 f „Et~N,k!…

Et8~N8,k8!2Et~N,k!
. ~B1c!

For notations, see the explanation after Eq.~2.2!. Hence Eq.
~A9a! gives

Gl5(
t,t8

(
N

E dk^^Nkt8u~ p̂•ez!uNkt&&

3^NktuL̂luNkt8&R~NktuNkt8!ezi . ~B2!

ExpandingL̂l as L̂l5(L̂•ez)ezl1(L̂•e1)e2l1(L̂•e2)e1l

and using Eqs.~A8! and ~A9b!, we get

^NktuL̂luN,k,t8&5
l NC

4pa
^^Nktu~ L̂•ez!uN,k,t8&&ezl ,

where we have usedd(0)5l NC/(4pa) with NC the num-
ber of carbon atoms per tubule. From Eq.~A10! one finds
that the functionR(NktuN8k8t8) in Eq. ~B2! can be re-
placed by

1

2
@R~NktuN8k8t8!1R~N8k8t8uNkt!#

5
1

~\v1 i0!22@Et~N,k!2Et8~N8,k8!#2

3
f „Et8~N8,k8!…2 f „Et~N,k!…

Et8~N8,k8!2Et~N,k!
. ~B3!

A phenomenological relaxation timet r is introduced into the
response functions by changing (\v1 i0)2 in Eq. ~B3! to
\v(\v1 i\/t r). Substituting them into Eq.~B2!, one fi-
nally obtains



as

d

9316 57SHUICHI TASAKI, KOJI MAEKAWA AND TOKIO YAMABE
(
i

ezig i j l
A 5S e\

m D 2 l rC

a (
l

e l j lezl

3(
t,t8

(
N

E dk^^Nkt8u~ p̂•ez!uNkt&&

3^^Nktu~ L̂•ez!uNkt8&&G~NktuNkt8!,

~B4!

whererC5NCrT is the carbon density and the functionG is
defined by

G~NktuN8k8t8!

[
1

\v~\v1 i\/t r !2@Et~N,k!2Et8~N8,k8!#2

3
f „Et8~N8,k8!…2 f „Et~N,k!…

Et8~N8,k8!2Et~N,k!
. ~B5!

The other components ofg i j l
A , e i j , andg i j l

S can be calcu-
lated in a similar way and we finally obtain

e i j 5e ieziez j1e0'@d i j 2eziez j#, ~B6a!

(
l

kl$g i j l
A 1g i j l

S %5g0iezi~ez3k! j1g'
~1!~ez3k! iez j

1g'
~2!$kiez j2d i j ~k•ez!%1j0iezikj

2j0'~k•ez!(
l

e i j l ezl2z i~k•ez!eziez j

2z'~k•ez!$d i j 2eziez j%, ~B6b!

where the relevant coefficients are given by

e i511S e\

m D 2 2l rC

a (
t,t8

(
N

3E dkz^^Nkt8u~ p̂•ez!uNkt&& z2G~NktuNkt8!,

~B7a!

e0'511S e\

m D 2 2l rC

a (
t,t8

(
N

E dkG~NktuN11,k

1k0 ,t8!z^^Nktu~ p̂•e2!uN11,k1k0 ,t8&& z2,

~B7b!

and

g0i5S e\

m D 2 l rC

a (
t,t8

(
N

E dk^^Nkt8u~ p̂•ez!uNkt&&

3^^Nktu~ L̂•ez!uNkt8&&G~NktuNkt8!, ~B8a!
g'
~1!5S e\

m D 2 l rC

a (
t,t8

(
N

E dk G~NktuN11,k1k0 ,t8!

3Im@^^N11,k1k0 ,t8u~ p̂•e1!uNkt&&

3^^Nktu$~ r̂•e2!,~p•ez!%uN11,k1k0 ,t8&&#, ~B8b!

g'
~2!5S e\

m D 2 l rC

a (
t,t8

(
N

E dk G~NktuN11,k1k0 ,t8!

3Re@^^N11,k1k0 ,t8u~ p̂•e1!uNkt&&

3^^Nktu$~ r̂•e2!,~ p̂•ez!%uN11,k1k0 ,t8&&#, ~B8c!

j0i5S e\

m D 2 l rC

a (
t,t8

(
N

E dk^^Nkt8u~ p̂•ez!uNkt&&

3^^Nktu~e1Q̂e2!uNkt8&&G~NktuNkt8!, ~B8d!

j0'5S e\

m D 2 l rC

a (
t,t8

(
N

E dk G~NktuN11,k1k0 ,t8!

3Im@^^N11,k1k0 ,t8u~ p̂•e1!uNkt&&

3^^Nktu$~ r̂•ez!,~ p̂•e2!%uN11,k1k0 ,t8&&#. ~B8e!

Note that if the depolarization effect is taken into account
discussed in Sec. II, one obtains

D~k,v!5e i@E~k,v!•ez#ez1e'$E~k,v!2@E~k,v!•ez#ez%

1 ig i$@k3E~k,v!#•ez%ez1 ig'
~1!@ez•E~k,v!#

3~ez3k!1 ig'
~2!$ez3@k3E~k,v!#%

1 i j i@k•E~k,v!#ez1 i j'~k•ez!@ez3E~k,v!#,

~B9!

wheree' , g i , j i , andj' are, respectively, the renormalize
values ofe0' , g0i , j0i , andj0' ,

e'511H 11
2)~e0'21!

rCl 2D J 21

~e0'21!, ~B10a!

g i5H 11
2)~e0'21!

rCl 2D J 21

g0i . ~B10b!

ja5H 11
2)~e0'21!

rCl 2D J 21

j0a , ~B10c!

with a5i or'.

APPENDIX C: RESPONSE FUNCTIONS „p-BAND
CONTRIBUTIONS …

Here we outline the derivation of Eqs.~2.5! and ~2.6!
from Eqs.~B6!, ~B7!, and~B8! under assumptions~i! and~ii !
in Sec. II.

1. Localized states

As discussed, the localized stateu j & @ j 5(m,n,l)# is as-
sumed to be well approximated by a superposition
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u j &5
1

ANj
H uc j

~2p!&1(
k

cjkuck
~2p!&J , ~C1!

where uc j
(2p)& is the 2p Slater orbit of a carbon atom at

positionRj with its directional vectorcj perpendicular to the
tubule surface:

c j
~2p!~r !}cj•~r2Rj !exp@2Zur2Rj u/~2aBohr!#, ~C2!

with Z the effective charge for carbon 2p orbit32 and aBohr
the Bohr radius. In Eq.~C1!, Nj is the normalization con-
stant, thek summation runs over the nearest-neighbor si
and the coefficientscjk will be determined such that the lo
calized stateu j & is orthogonal to the other states up to t
lowest order ine[exp@2Zl /3aBohr#, wherel is 3

2 times the
C-C distance.

Let j 5(m,n,l) and k5(m8,n8,l8) be nearest-neighbo
pairs of lattice sites, then Eq.~C1! gives

^ j uk&5
1

ANj* Nk

$^c j
~2p!uck

~2p!&1ck j1cjk* %1O~e)!,

whose leading-order term must vanish. Becau
^c j

(2p)uck
(2p)& is real and the sitesj andk are equivalent, the

coefficientcjk is real symmetric. Also, as the coefficientsck j
themselves are small, the effects of the tubule curvature
be neglected in̂c j

(2p)uck
(2p)& and one obtains

ck j5cjk52 1
2 ^c j

~2p!uck
~2p!&.c0

[2 1
2 E d3r wy~r1d!wy~r !, ~C3!

wherewy is the 2p Slater orbit along they axis andd the
vector from one site to its nearest-neighbor site, which po
in the positivex direction. Then the normalization conditio
gives

^ j u j &5
1

Nj
$129c0

2%1O~e11)!51

and henceNj5129c0
21O(e11)). The so-prepared state

u j & satisfy

^ku j &5dk j1O~e)!. ~C4!

In addition, sincê uuÔuu&50 ~Ô5 p̂ j , L̂ j , or Q̂i j ! for a real
wave functionu(r ), we have

^ j uÔu j &50, ~C5a!

^kuÔu j &5
^ck

~2p!uÔuc j
~2p!&

129c0
2 1O~e)!, ~C5b!

wherek is one of the nearest neighbors of the sitej .

2. Response functions

The symmetrized matrix elements~A7! are evaluated with
the aid of Eq.~C5! and one obtains

^^Nk1u~ p̂•ez!uN,k,2&&5
\

i l
Re K0~N,k!, ~C6a!
s,

e

an

ts

^^N,k,1u~ p̂•ez!uNk1&&52^^N,k,2u~ p̂•ez!uNk2&&

52
\

l
Im K0~N,k!, ~C6b!

^^N11,k1k0 ,1u~ p̂•e1!uNk2&&

5
\D

4i l 2 @K1~N11,k1k0!* 1K2~N,k!#, ~C6c!

^^N,k,2u~ L̂•ez!uNk1&&5
i\D2

4l 2 Re L0~N,k!, ~C6d!

^^N,k,1u~ L̂•ez!uNk1&&52^^Nk2u~ L̂•ez!uNk2&&

52
\D2

4l 2 Im L0~N,k!, ~C6e!

^^N,k,tu~e1Q̂e2!uNkt8&&50, ~C6f!

^^Nk2u$~ r̂•e2!,~ p̂•ez!%uN11,k1k0 ,1&&

5
i\D

4&l
@L2~N,k!* 1L1~N11,k1k0!#, ~C6g!

^^Nk2u$~ r̂•ez!,~ p̂•e2!%uN11,k1k0 ,1&&

52l j1^^N11,k1k0 ,1u~ p̂•e1!uNk2&&* ,

~C6h!

whereD the tubule diameter,\ is the Planck constant, th
auxiliary quantity j1 is given in Table I, and functions
K0(Nk), K6(Nk), L0(Nk), and L6(Nk) are defined, re-
spectively, by Eqs.~3.3!, ~3.7!, ~4.5!, and~4.7!.

First, because of Eqs.~C6f! and ~C6h!, j0'5j0i50 and
thus Eqs.~B6a! and ~B6b! reduce to Eqs.~2.5! and ~2.6!,
respectively. Next we consider the other components.
observe that, in the sums in Eq.~B8!, two terms correspond
ing to (t,t8)5(1,2) and~2,1! are identical as a result o
the time-reversal symmetry~A10!. Also, terms correspond
ing to (t,t8)5(1,1) and ~2,2! do not contribute toe0' ,
g'

(1) , andg'
(2) except at very high temperature because

initial and final states of the matrix elements are simul
neously occupied or unoccupied. Henceg'

(2) is given by

g'
~2!52S e\

m D 2 l rC

a (
N

E dk G~Nk2uN11,k1k0 ,1 !

3Re@^^N11,k1k0 ,1u~ p̂•e1!uNk2&&

3^^Nk2u$~ r̂•e2!,~ p̂•ez!%uN11,k1k0 ,1&&#

5S e\2

m D 2 D2rC

8&l 2a
(
N

E dk G~Nk2uN11,k1k0 ,1 !

3Re$@K1~N11,k1k0!* 1K2~N,k!#

3@L1~N11,k1k0!1L2~N,k!* #% ~C7!
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ande0' andg'
(1) by Eqs.~3.6! and~4.6!. The interband con-

tributions toe i and g i0 are calculated in a similar way an
one obtains Eqs.~3.1! and ~4.3!. The Drude contributions
m

d

c

a

~3.2! to e i and~4.4! to g0i come from the terms correspond
ing to (t,t8)5(1,1) and ~2,2! with the aid of
G(NktuNkt)5 f 8„Et(N,k)…/\v(\v1 i\/t r).
.
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