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#r-band contribution to the optical properties of carbon nanotubes: Effects of chirality
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We study them-band contribution to the optical properties of the carbon nanotubes based on the tight-
binding model, including optical absorptions, optical rotatory power, and circular dichroism. By taking into
account not only the interband contributions but also the free-carrier contributions, the dielectric functions and
the third-rank tensor responsible for the optical activity are calculated. The following have been Ehdla.
features of the dielectric functions are consistent with the ellipsometry experiments by de Heer and co-workers
[Science268, 845(1995]; (ii) The calculated plasma frequency is of the same order of magnitude as the one
recently observed by Bommeiit al. [Solid State Commun99, 513 (1996)]. (iii) Chiral nanotubes are, as
expected, optically active and the spectra of their optical rotatory p@@rand circular dichroisniCD) are
highly oscillatory.(iv) Nanotubes with a diameter about 4 nm can give RP and CD that are of the same order
of magnitude as those of certain organic compousThe RP and CD decrease as the diameter increases.
[S0163-182608)06608-9

[. INTRODUCTION functions due tor bands within the gradient approximation
and investigated a low-energy peak of EELS. Mintmire and
Since their discoveryby lijima, carbon nanotubes have White?® calculated the dielectric functions using a first-
been intensively studied both experimentalfy and  principles local-density-functional method and taking into
theoretically’~2* Nanotubes consist of coaxial cylinders of account bothr- and o-band contributions.
graphene sheets, the number of sheets ranging from 1 to 50. The energy bands of a nanotube, as a rolled graphite
They are predicted to be metallic or semiconducting dependgh€et, consist of the ones originated from theorbits (7

ing on the structure, mainly the way of connection of carbonPand$ and the ones from the orbits (o bands and, accord-
atoms” 5 It is also predicted that their geometry gives rise Nd 0 the band calculation of the graphite sfigand zigzag

1 .

to interesting properties. Due to the cylindrical shape, a uni_nanotul_oeé, there exists a threshold energy of 6-10 eV, be-
form magnetic field along the tubule axis causes thdow which only the -7 transitions are allowed. Hence we
Aharonov-Bohm effect>=18 which can be observed as an focus our attention on the response of light with energy up to
oscillation of the magnetic susceptibility as a function of thethis threshold so that ther- transitions give a dominant
external magnetic field or as a magnetic-field-induced shifeentribution. _ _ _
of optical absorption edges. The Peierls instadfify-2-?4s In the rest of this section the electronic property of the
expected because of the quasi-one-dimensionality. On tHeands of nanotubes is pnefly reviewed. In Sec_. Il we calcu-
other hand, the chirality due to the spiral alignment, which ig/t€ the response functions to a monochromatic electromag-
one of the main features of the nanotube geometry, and jfaetic field (i.e., the dielectric function and third-rank tensor
consequence are not investigated so well. Since one of tH&SPoOnsible for the optical activityvith the aid of the linear-
consequences of chirality is the optical activity, we study thg©Sponse theory. Then we find the following relation between
optical properties of nanotubes including the optical rotatoryfh€ electric displacemeil(k,«) and the electric field (k,w)
power and circular dichroism. for the components with wave vecthrand frequencyw:

Experimentally, optical properties of nanotubes have been _
studied by the optical ellipsomefryor by the electron- DP(K.@)=€[E(k,w)-&]&+ e {E(k,0)~[E(k,0)-&]e;}

energy-loss spectroscogELS).” More recently, Bommeli i kX E(k . +ivDre. E(k
etal® reported the reflectivity measurements of aligned il (kio)]-eje+iyile Etko)]
nanotubes, particularly paying attention to the free-carrier X (e,x k) +iy?{e,x[kXE(k,w)]},

(Drude contributions. Theoretically, Ajiki and Andd stud-

ied the low-energy optical absorption due to the interbandvheree; is the unit vector along the tubule axis, and e,
transitions as a probe of the Aharonov-Bohm effect. Lin ancare the dielectric functions, and , y*), andy{? are related
Shund® reported the frequency dependence of the dielectri¢o the optical activity. In Sec. lIl the frequency dependences

0163-1829/98/5(15)/9301(18)/$15.00 57 9301 © 1998 The American Physical Society



9302 SHUICHI TASAKI, KOJI MAEKAWA AND TOKIO YAMABE 57

of the dielectric functionse; and €, are investigated and
compared with previous worké-2° Our results agree well
with the previous ones. Then, by using a very short relax-
ation time, we simulate the dielectric functions for a bundle
of nanotubes, which qualitatively explain the difference be-
tween the observed parallel and perpendicular dielectric
functions with respect to the sample a%idlso, for large
nanotubes, the square of the plasma frequency is shown to be
proportional to the carbon densipt and inversely propor-
tional to the tubule diametdd. The experimental value of
the plasma frequenc{.215 eVj obtained from the data by
Bommeli et al® is of the same order of magnitude as, but
smaller by a factor of- § than, the calculated or(®.686 e\f

for a sample of randomly synthesized multilayer nanotubes
with the outermost diametd.,~11 nm and the hollow di-
ameterD;,=2.2 nm. In Sec. IV the optical activity of the

ensemble of nanotubes is considered and the differefice formed by rolling the graphite sheet from the front to the back so

- y(f) is shown to be related to the optical rotatory powery i ihe hexagon D is overlapped with the hexagom,b).
and circular dichroism. It shows negative and positive Cotton

?ffects alternalt(telyf ?15 the frlequency increases. Tge Ir(])w irection is in between 0 and/6 and the chirality of the
requency peaks of the optical activity are suppressed, w icﬁ t . if the t f rollitige.. f h
indicates the achiral nature of the electronic states near tr@ano ube is specified by the type of rollirige., from the

T . ack of the sheet to the front or from the front to the Hack
Fermi points. We have also found that the magnitude of themstead once we fix the way of rolling the shéetg., from

circular dichroism for nanotubes with diameter about 4 nmy . .
. . ; e front to the back we can uniquely specify the structures
and density 30% of the graphite crystal is of the same orde{)f nanotubes by th)ei vect®,, wit(al _)7/7/6p< afZ< /6. Here
N < Oy )

of mag”gé‘ge as tEOS?‘ f_o_bslervled in certati)n _orgﬁnine use a tubule indexa(b) satisfyinga=1 and —a+1
compounds? Since the infinitely large nanotube is the : ; ;
achiral two-dimensiona(2D) graphite, the optical activity §b$o' Then the mirror image of the nanotuba,l) is

FIG. 1. Parametrization of nanotubes. Vectwiandy stand for
the unit vectors of the graphite lattice. The nanotulagby is

diminishes when the diameter becomes larger. Section V i 3,0) forb=0 and @ —a—b) for b+0. Hence the achiral

devoted to the summary and concluding remarks. Details a;gtube 4,b) is characterized bp=0 ora+2b=0 with

the calculations of response functions are shown in Appen- The 7 bands of the nanotube are well described by the

dix A—C_. Particularly, in Append|x_B we s_how the explicit tight-binding mode?~ Its Hamiltonian is given by
expressions of the response functions valid for a more gen-
eral case where each carbon atom is describefl d&tpmic-
centered basis functions. _ _ H=—t,> {Cl,C;,+H.c},

The structure of a nhanotube, as a rolled graphite sheet, is o
specified by the way of rolling, i.e., by the relative lattice
vectorR,,=ax+ by between two hexagons to be identified, whereC;,, andCiTU are annihilation and creation operators of
wherea andb are integers and andy are two unit vectors a 7 electron with spino at theith site,ty is the hopping
of the two-dimensional graphite lattié’ (Fig. 1). In the  energy, and the sum runs over the nearest-neighbor pairs.
discussions of the band structdfe'! usually the index is The HamiltonianH gives, for the nanotubea(b), a one-
confined so that the angtg,, of R, with respect to a given dimensional1D) band$1:1924.27

27N a+2b k/ k/
E.(N,k)==*t,\/1+4co T——k/ cos—+4co§7,

2a 2 (.

where/ is 2 times the interatomic distancBl=0,1,...a  for n=—b since expressiofi.1) does not include the effects
—1, and — w//<k=<m//. The plus and minus subscripts of curvature on the electronic structdfe'**However, the
stand for the conduction and valence band, respectively. energy gaps for nanotubes wita2b=3n (n# —b) are
Equation(1.1) predicts the following. A nanotubea(b) small[less than 10 meVRefs. 10 and 1) even for a small
is a metal when 8+ b=3n (n an integer and generally has nanotube with a diameter of 1 nm, which is negligible at
four metallic bands with energieE..(n,k) (Fermi wave room temperature. Also, as will be seen in Sec. Ill, the band
numberk= ke =27/3/) andE .. (a—n,k) (Fermi wave num- structuré® calculated by the local-density-functional method
ber k= —kg=—27w/3/). When 2a+b=3n andn=a—n, agrees well with Eq(1.1) at energy less than about 3 eV
the nanotube has only two metallic bands and is achiral besven for a very small nanotulidiameter=0.7 nm). Clearly
cause ofa+2b=0. Strictly speaking, this is not true except the effects of curvature diminishes as the tubule diameter
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increases and hence at energy less than 5 eV, they are esymmetric tensor wittk, the Ith component of. Thus the

pected to be negligibly small for nanotubes with a diameter, tis

more than a few nanometers at room temperature. Note th
when 2a+b is not divisible by 3, a nanotubea(b) is a
semiconductor.

II. OPTICAL RESPONSE FUNCTIONS

The electromagnetic response to the weak applied field i
fully characterized by the dielectric functios;(k,w), de-
pending on the frequency and wave vectok, and the

optical processes such as absorption and diffraction are well

described by its long-wavelength lirffit eijs?ij(o,w).
However, in order to take into account the optical activity,
we need to considét-linear terms of?ij(k,w) as they may
have different symmetry from thie-independent one$.
The dielectric functione;; is given by°~31819
8me’h

=Sijt 2z, PT > > | dk

7=+ N,N’
dek’ (N’k’T'|f)i|NkT><NkT|f)j|N’k'T'>
f(E,(N"k"))—f(E,(N,k))

E (N ,K)—E.(N,K) +hw+i0
E..(N",kK')—E.(N,k)

eij

, (2.9
whereiO in the denominator stands for a pure imaginary
infinitesimal with a positive imaginary pam,andm are the
electron charge and mass, respectivélys the Planck con-
stant,py is the volume density of nanotubgs, is the elec-
tron momentum, and is the Fermi distribution function:
f(E)=1Aexd B(E—w)]+1} with inverse temperaturg@ and
chemical potentiaj.. For the half-filled case, which we are
interested inu=0.

Thek-linear terms oﬁ(k,w) are specified by its deriva-
tives with respect to theth component of the wave vectkr
We divide them intoy]), and y;; , which are, respectively,
antisymmetric and symmetric in the subscriptd X:

(96_”-(k,w)
ak,

Ei{?’ﬁ + 7’%}-
k=0
Recall that the long-wavelength limit of the dielectric func-
tion ¢;; is obtained from the coefficient of the average polar-
ization 4(P) to the field strengtlt, by neglecting the elec-
tron coordinater in the applied field: E, exdik-(R+T)
—iwt]=E; expik-R—iwt), whereR stands for the center-

of-mass coordinate of the nanotube. Similarly, the sum of the

third-rank tensorsis{a/ﬁI + yﬁ|} is obtained as the coefficient
of the average polarization7 P;) to the produckEg; by
replacing the applied field to its first-order correction with
respect to the electron coordinates(k-r)E, expik-R
—iwt). This replacement corresponds to the substitution o

i{(k-r)f)j+H.c.}=i2|: [g emﬁﬁé“] K,

in place ofp; in Eq.(2.1), wheree;, is the alternating tensor
of third rank, L, the Ath component of the angular-
momentum operator, and;={X,p;+X;p;+H.c}/2 the

i

al ymmetric third-rank tensq;’i'}I is given by

47e*h

Mi=2 e iy
fdk’ (N'K' 7| pi| NKr)(NKr| L, [N"K' 7)
X E.(N .K)—EN.K)+haoti0
f(E,(N",K"))—f(E(N,K))
E.(N'.K')—E.(N.K

pr > X | dk

r !
7,7 =% N,N

S

(2.2

and the symmetric oqefﬁ| is obtained from Eq(2.2 by
replacing>, €L\ by Q. Expression2.2) corresponds to
Rosenfeld’s formula for the rotatory strength of molecules.
The matrix elements of the momentum operator can be
estimated as the derivative of the corresponding matrix ele-
ments of the Hamiltonian with respect to the wave
vectori81930However, such a method is not available for the
matrix elements of the angular momentwmand quadratic
momentQ. So we directly estimate the matrix elements in a
way similar to the first-principle calculatiofi.First we note
that since the Bloch statfNkr) is a superposition of the
states|j) localized at thejth site, [Nk7)=X;g;(N,k,7)[j),
the matrix elemen{Nkr|O[N'k’7") in Egs.(2.1) and (2.2
(O=pj, L, orQ;) is expanded as

<Nk7-|6|N’k’7-’>:2 g (N,k, )g; (N',k',7)(j[Olj").
" 2.3

As will be outlined in Appendixes A and B, the suff.3)
can be calculated with the aid of the symmetry argument by
White, Robertson, and Mintmiré. Along with the line of
thought that leads to the-band energy1.1), we estimate
the response functions under the following assumptions.

(i) The sum(2.3) is well approximated only by the con-
tributions from the on-site and nearest-neighbor pairs.

(i) The localized statg ) is well described by a superpo-
sition of 2p Slater orbits for carbon atoms with their axes
perpendicular to the tubule surface:

1)=N; |l/f}2p)>+% il i)t (2.9

where the leading 2 Slater orbit| ¢J(2p)> is placed at the site
j, the summation in the second term runs over the nearest-
eighbor sites,and the coefficients, are chosen such that
|j) is approximately orthogonal to the other localized states
(for more details see Appendix)C

The consistency of these assumptions with earlier
workst®=2% will be discussed in Sec. lll. For details of the
calculations see Appendixes A—C. We then obtain

€ij = €1€;i€25 €0, [ 5 — €€,

(2.5
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El k|{7ﬁ| + Yﬁ|}: Yorezi(&x k) + vV (e, xk) e+ ¥

X{kie;;— ij(k-e)} = {(k-&,)e e,
—{i(k-e){5j—esie ), (2.6)

whereg, is the unit vector along the tubule aXiss direction
is identical to that of the lattice vector (a+2b)x+(2a
+b)yl, e, is itsith componentg;; is the Kronecker delta,
andk andk, stand for the wave vector and lth component,

respectively. The explicit expressions of the dielectric func-

tionse, andey, and those of the coefficients, andy{" are
given, respectively, in Secs. Ill and IV, and thatyf) is in
Appendix C. The subscript O iey, andy, implies that they
are “bare” quantities. By comparing Egq2.5 with Eq.
(2.6), we see that the last two terms of E®.6) gives a
correction with relative order of¢,|k|/e,~ (interatomic
distancé/(wavelength of light to the dielectric function
€, . In the energy range we are interestedup to 10 eV,
the correction is at most I6e, and thus will be neglected.

Because a nanotube is a cylinder, we have to take into
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2V3(eq —1)| 7 *

EJ_:].‘F 1+W2D— (GOJ_—l), (283
2V3(e, — 1)) 71

7|:{1+ ﬁ] Yol - (2.8b

Note that the above renormalization factor does not depend
on the carbon density-. The depolarization effect can also
be obtained from the electron-electron Coulomb interaction
via the time-dependent Hartree approximation.

Note that formulag2.1) and(2.2) are still valid for more
general case where each carbon atom is described by
atomic-centered basis functions and hence the tubule elec-
tronic states by P sets of band$N,k,7) (7=1,2,...,3).

In Appendixes A and B the matrix elements in E¢&1) and

(2.2) and the general expressions of the response functions
are calculated with the aid of the symmetry argument of Ref.
14. The frequency dependences of the coefficieptse, ,

v, andy{") will be described in the following sections.

[ll. DIELECTRIC FUNCTIONS

account the depolarization effect. As discussed by Ajiki and

Ando,'® the effective fieldE?" parallel to the tubule axis is
identical to the applied fieldE, and the effective fieldE®"

A. Parallel dielectric function

The dielectric functiorg; of a nanotubed,b) for the field

perpendicular to the tubule axis is different from the appliedparallel to the tubule axis consists of the one due to the

field E, by a factor of {1+4mio, /Dw} !, where D
=|R,p|/ 7 is the diameter of the nanotube anmd stands for

interband transitiore? and the one from the free carriéthe
Drude term ¢/ :

the surface conductivity along the peripheral direction. On

the other hand, when one neglects the depolarization effect,

the surface conductivity, gives the perpendicular polariza-
tion of iISo, 2w for a tubule with surface are@, which is

equal to the polarizability per tubule calculated via the linear

response theory: iSo, 2w=(€q, —1)/4mpr=v3(e€q,
—1)/47/?pc, with pc the density of carbon atoms per vol-

ume. Thus the total effective field experienced by the tubule

is

2‘/§(GOL -

1) ?
Ef=Ef"+ES"=(E-e)6,+ /%D }

1+

X[E—(E-&)e&,].
By substituting this into

Di_Ei:; {€ij _5ij}E?ﬁ+i; {vi+ 7ﬁ|}klE?ﬁ

and neglecting the terms that may give small corrections to

the dielectric functions; and ey, (cf. the last arguments in
the preceding paragraptone obtains

D(k, )= [E(k,0)-&,]e,+ e, {E(K,®)
~[E(k,0)-&le} +in{[kXE(k,0)]-e}e,
+iy Ve E(k,0)](exk)
+iy?{ex[kxE(k,0)1}, (2.7)

wheree, andvy, are, respectively, the renormalized values of
€0, andyy,

h%\2 4
E‘?: +<em pCE
w1/ HEL(NK)— FE_(N,K))
XL// E.(N.K)—E_(N.k)

[Re Ko(N,k)]?
X(hw)2+iﬁ2wlrr—[E+(N,k)—E_(N,k)]z’

3.1
F (ﬁwpl)2
7" ho(hotinln)’ (3.23
with oy, the plasma frequency
fi\c 2
wi=- (Tn ch f dk[Im Ko(N,k)]2
X{f"(E+(N,k)+f"(E_(N,K)}, (3.2b

where we have introduced a phenomenological relaxation
time!®193031 - The quantityKo(N,k) in Egs. (3.1) and
(3.2b corresponds to théimensionlessmatrix element of
the momentum operator and is given by

3

Ko(N,k)=e T/NK > e I NK[ 3, cos 7,
A=1

+Jy(1—cos 7,)?%1é,, (3.3

where 6(N,k) is the argument of
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TABLE I. Auxiliary variables 7, , &, , and ¢,(N,k). The indexa=1,2,3 stands for the three nearest
neighbors for a given site. The pair(,£,) stands for the cylindrical coordinate of a nearest neighbor
measured from the given site. The anglg N, k) is the phase difference of the Block wave function for each
nearest-neiahbor pair.

Variable \ Index \ 1 2 3
/N —m(a+b) b Ta
altab+b? al+ab+b’ altab+b’
& —a+b 2a+b —a—2b
.’J\/az+ab+b2 3\/(12+ab+b2 3\/a2+ab+b2
2aN b
& (N, k) 0 kl LA &/
a a
(27N b » Nl to the Drude term. Indeed, fdrw>#Avgdk:> B~ 1 with v
N PP Fexp—ik/)+ 1, =t,/ \Ja’+ab+b?af the Fermi velocity, we have
) . . eh?\? 4p
the variablesp, (N,k), », , andé¢, are listed in Table I, and =Pt 2) — Zre
J; and J, are matrix elements of the momentum operator m a’ ) jk—kel< ok,

with respect to two localized states listed in Table Il. The

subscriptsh=1, 2, and 3 correspond to three different d fE+(n.k)—f(E_(n.k)
nearest-neighbor pair&f. Fig. 1). Note that the interband E,(n,k)—E_(n,k)
contribution eh’ arises from the wave-number-preserving [ReKq(n,k)]2

(“vertical” ) transitions between the bands with same indi- X s 5
ces, as in the case of bulk semiconduc{afs Fig. 2a)]. (ho) +it /7, —[E,(nk)—E_(n,k)]
qu thg nelk)notubgsa(p) with .2a+ b=23n, the interband _, [eh 2 8#ipe [ReKo(nke)]?
contributione logarithmically diverges for low temperature =€ _(F a v holhwtikin) In(BSE,),
B— because of the crossing of two metallic bands at the F '
Fermi wave number. Strictly speaking, the divergence is an (3.9

artifact since an energy gap appears at the Fermi wave num-

ber due to the nonzero curvattfté! [for metallic nanotubes wheree, ® is the finite part of the interband dielectric func-
(a,b) with 2a+b# —3b] or to the spontaneous lattice tion, k. the wave-number cutoffkp=2=/3/ the Fermi
distortiorf*?2 (at very low temperatue Still, the contribu- wave number, andE,=1.13iv 8k, the cutoff energy. The
tion from the vicinity of the Fermi wave number could be singular term of Eq(3.4) gives an additional contribution to
large as the above-mentioned gap is very small. We see th#te Drude term3.2), but it is negligible because its relative
it is not the case and this contribution is negligible comparednagnitude to the Drude term is approximately 50~ * for

TABLE Il. Matrix elements of the differential operat@; and of the angular-momentum operaios;
—X;d; with respect to two localized states. The vector from one center to the other is deinateidh points
to the positivex direction. They andz directions are orthogonal to it. The functigfy (h=X,y,z) stands for
the 2p Slater orbit with its axis in thé direction,/ is % times the C-C distance of the graphite sheet, Bnd
is the tubule diameter. The parameteis given byu=Z/"/3ag.,,, with Z the effective charge for the carbon
2p orbit andag,,, the Bohr radius.

1 3/ & q =9t [u? L
=58 Foy(r+d)dxpy(n)=—ao— U 3 Futl/,
27D2 —97D2a-U
JZEm[f d’r (Px(r+d){‘9x¢’x(r)_ay@y(r)}_zfdgr @y(r+d)‘?x¢y(r)}zm U4(U+1),
2 s -2/%7 Y (u® 6u?
ngfng d°r @y(r+d)(y32*23y)(pz(r)zw g+?+3u+3
9 s . 9e " [(u?
J“Em ad>r @y(r+d)(yd,—zd) e, (r)— | d°r @u(r+d)(xdy—yd)ey(r)|= 20N u §+u+1
9 2 —2u 2u2 u3 2
=1_2 3 —1_ - 4
N=1 7 [f d°r <py(r+d)(py(r)] 1 1+u+ 5 + 1
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FIG. 2. Real part of the parallel conductivity in unitet/h. (a)

Schematic representation of the “vertical” transitions responsible

for the parallel dielectric functiontb) and (c) Frequency depen-
dence of the real part of the parallel conductivity calculated from
the parallel dielectric function as Rg=w Im €/47Sp+, with Sthe
area of a single nanotube apd the tubule density, foth) a me-
tallic nanotube (50;10) with a diameter of 3.59 nm an@) a
semiconductive nanotube (6020) with a diameter of 4.14 nm.
The abscissa represerits/2t,. The insets show the overall views
Note that Rey; does not depend on the carbon dengpity

the nanotube (5;1) and is less for larger nanotubes.

growth of the conductivity of the metallic nanotube at low
frequency is due to the Drude ter(®.2). The low-frequency
conductivity (i w/2ty=<0.25), except for the Drude term,
agrees well with the one obtained from tkep model®
Indeed, the Ilatter predicts a peak atiw/2t

=3/ /3(a?+ab+b?) for metallic nanotubes of typea(b)
and peaks at Aw/2ty=mw/\3(@%+ab+b?) and
27/\/3(@’+ab+b?) for semiconductive nanotubes. Those
correspond to the peak &tw/2ty=0.119 for the nanotube
(50,—10) and to the peaks &tw/2t;=0.034 and 0.068 for
the nanotube (66;20), which agree well with the present
results[cf. Figs. 2b) and Zc)].

This can be shown analytically. First, we note that when
the tubule radius is large, the dielectric functiai@sl) and
(3.2 reduce to the ones obtained within the derivative
approximation'’® except for a numerical factor
(m/?ty/%23;)%. Indeed, at absolute zero temperature, one
has

m/zto 2 b pc// dk 1
1M\ = _ 27 -
( h?Jl) e 1=—8me = | S fen(NK

[0,c(N,K)[?
a)(a)—i—i/Tr)—ch(N,k)z'

whereiw,.(N,k)=E(N,k) —E_(N,k) is the energy dif-
ference between the valence and conduction bands and the
velocity matrix elemend,.(N,k) along the tubule axis with
respect to the valence and conduction bands is calculated
from the wave-number derivative of the Hamiltonian matrix
elements®3° Furthermore, when one deals with only the
low-energy excitations, the dielectric functig8.5) is well
approximated by the contributions from the states near the
Fermi points, which are just the ones given by thep
model®

Finally, we compare the present results with the ones ob-
tained by a first-principles local-density-functiondlDF)
method?® Mintmire and Whité° have reported their calcula-
tions on the imaginary parts of the dielectric functions for the
nanotube(5,7), which has a diameter of 0.84 nm and is
equivalent to the nanotube (125) in our notation. At the
energyh 0<10 eV, the imaginary part of the parallel dielec-
tric function has a large peak &tw= Egapz 0.86 eV with a
shoulder at ﬁwzl.?E'g'ap and a smaller peak atiw
:4.4E;ap. This results can be compared with the one ob-
tained from Eq.(3.1) for #/7,=0.3,, which has a large
peak ath o= Egy,,=0.3%, with a shoulder afiw=1.73y,,
and smaller peaks ditw=4.08 ., and 5.4E ,,. This dif-
ference is due to the difference in the calculated band struc-
tures. The LDF calculation prediétssix local minima in the
energy difference between the valence and conduction bands,
namely,E, —Ec=Egap, 1.%Egap 3.6Eqap 3-Fgap 4-FEgap,
and 4-E'§ap- The first two minima correspond to the first
peak and the associated shoulder ofdrand the rest to the
second peak® On the other hand, the band ener@y.1)
gives six local minimaE, —E.=Egap, 1.9 g5, 3.7 gap,
4.26E 54& and 5.5& 4., and the first two minima,

(3.5

gap» gap:

The frequency dependence of the real part of the parallghiddle two minima, and the last two minima generate three

conductivity o= — i w(€,— 1)/4mSp+ for metallic and semi-

peaks in Ime;. If one usegy=2.4 eV, which is obtained for

conductive chiral nanotubes are shown respectively in Figghe nanotube5,5 by the LDF calculatiort? instead oft,

2(b) and Zc) using the parameters listed in Table IIl. The

=2.7 eV, we havéey,,=0.35,=0.84 eV and hence the first
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three minima in the energy difference and the first two peaks 4
in Im ¢, obtained respectively from Eqel.1) and(3.1) agree

well with the LDF results. At higher energy tharEgap
=3.4 eV, a difference appears in both the band structure anc
Im ¢, because of the tubule curvature. Since the curvature
effects become less significant for larger nanotubes, the difs
ference is expected to be very small for nanotubes with di-o
ameter more than a few nanometers, which we are mainlyﬁ
interested in.

B. Perpendicular dielectric function

Only the interband transitions contribute to the bare di-
electric functioney, of the nanotubed,b) for the field per- 4
pendicular to the tubule axis:

WAVE NUMBER

_, eh?\? pc(a?+ab+b?) 5 wl/ dk (€*/h)
R 3a/ < ) E (b)  tube(50,-10) N
f(E, (N+1Kk+xg)—F(E_(N,K)) 5 20 /}«h\_
E. (N+1Kk+ o) —E_(N,k) % , :
1K, (N Lk+ rg) + K* (N, K)|2 }; ST
X )2+ k2wl 7, —[E;(N+ LK+ rg)— E_(N,K) %" s .
(3.6) % "
wherexo=m(a+2b)//(a®>+ab+b?) and, as before, a phe- E i
Ay 0. o

nomenological relaxation time; is introduced. AKy(N,k),
K. (N,k) corresponds to the matrix element of tftdmen-
sionles$ momentum operator

o
o
=3
=3
o
3
=3
o
=3

FREQUENCY

_

5 /)

1 . .
Ko(Nk)=—e 1Nk > e N0 3, (2 cospy— 1)
V2 r=1

(c) tube(60,-20) 61

g
=3

+J,(1—cos 7,)?](1—e*' ™). (3.7

Contrarily to the previous case, the perpendicular dielec-
tric function €y, arises from the transitions accompanied by
a wave-number change between the bands with different
band indicegcf. Fig. 3a)]. Indeed, if one maps the bands of
the nanotubes to the Brillouin zone of the graphite, the
change of the band index and wavenumbé,k)— (N 0.0 :
+1k=* kg) corresponds to the wave-vector change perpen- ~ 0.90 0.25 0.50
dicular to the tubule axis with magnitude 1/(tubule radius). FREQUENCY
As discussed in Ref. 18, this is due to the cylindrical shape . ., _ .
of the nanotubes: The uniform field perpendicular to the tu- !¢ 3- ZReaI part of the “reduced" perpendicular conductivity
bule axis corresponds to the sinusoidal field on the tubuld? Unit of e7/h. (& Schematic representation of the transitions re-
surface with period 2 times the tubule radius and thus in- sponsible for the perpendicular dielectric functido, a.nd(c) Fre-
duces transitions accompanied by the change of the Wav.?euency dependence of the real part of .the pe.rpend'qmar .Conducnv'
vector corresponding to this periodicity. Note that our tran—l y calculated from the_ perpendlcular c_:llelectrlc function viaRRe
siion rule (N,K)—(N=1k+x,) and Ajiki and Ando's @M ef4mSpr (solid ling and its bare value R

18 N . " =wIm €y, /47Sp+ (broken ling, for (b) a metallic nanotube (50,
rule® (N,k)—(N=1Kk) are actually identical. They look —10) with a diameter of 3.59 nm ar{d) a semiconductive nano-

different simply because of the difference of the parametriy pe (60-20) with a diameter of 4.14 nm. The abscissa represents
zation of the bandsgour k is along the inverse lattice vector 7 ,/2t,. The insets show the overall views of the conductivity with
Ky for the graphite lattice and Ajiki and Andols is along  depolarization effect. Note that Re does not depend on the car-
the tube axis bon densitypc.

In Figs. 3b) and 3c) we show the real parts of the bare
and renormalized “reduced” perpendicular conductivity peripheral direction, but we use these quantities in order to
09, =—lw(ey, —1)/4wSp+ and o =—liw(e compare the perpendicular dielectric function with the paral-
—1)/47wSp+, respectively. Note that the reduced conductivi-lel one. We see that the depolarization almost completely
tiesop, ando, are twice the surface conductivity along the smears out the low-frequency resonance peaks. As before,

-
=3
r

PERPENDICULAR CONDUCTIVITY
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FIG. 4. Dielectric functions for aligned nanotubes (6@0)
with the carbon density 60% of the crystalline graphite. The shorte
relaxation time#/7,=0.1X2t, is used to simulate the effect of
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tence of a peak in the imaginary parts and a cutoff in the real
parts at aboutiw=2t;=5.4eV as well as the difference

between the parallel and perpendicular dielectric functions.

C. Drude term

In this subsection we discuss the Drude contribution. As
seen from Eq(3.2b), for large nanotubes at temperatures less
than a few hundred kelvin, the plasma frequengy is a
function of carbon density: and tubule diameteD:

5

where the values listed in Table Il are used. This behavior
can be understood as follows. A nanotube with diamBxer
has a number of 1D bands, each of which is specified by the
guantized wave number along the peripheral direction:

/’_ 41re?
Pc D - m

eh

m

oo 1633
Pl \/3’77/2':0

(0-3480c 5),
(3.9

averaging over a tubule size distribution. The bare perpendiculat=27s/7wD (s=0,1, ...). Themaximum number of the in-
dielectric function is presented instead of the renormalized ongegers, i.e., the number of 1D bands, is given by the
since the depolarization effects are suppressed for large nanotubggndition ma)kLzzﬂ//zzwwa, which leads tos

such as used in the ellipsometry experim@ef. 6, with which the

=aD//. As one of those 1D bands is conductives &f the

present results are compared. The imaginary and real parts of thga| - electrons behave as free carriers. Thus, because each

dielectric functions are shown, respectively,
curves. The curves labeled PARA stand fgrand those labeled
PERP fore, .

for large nanotubes at low frequency, the present resu
agrees well with Ajiki and Ando’s result. Indeed, when the

tubule radius is large and the frequency is low, the perpen-

dicular dielectric function reduces to the oef* obtained by
the k-p model® e, —1={#2J,/m/?t,}?[ - 1], except
for a numerical factof#2J,/m/?%ty}? close to unity. This

can also be seen in the figure: Ajiki and Ando’s bare perpen
dicular conductivity for a metallic nanotube has a relatively

broad peak at w/2t,=1.697//3(a?+ab+b?), which cor-
responds to a peak &tw/2ty=0.067 for the nanotube (50,
—10) and thus agrees with the first peak shown in Fig).3
Also, the overall shape of the low-frequency part of Fig)3

by the solid and broken.arhon atom provides one electron, the free-electron den-

sity n, is given byn,=pc/s=pc//wD. Substituting this
into the well-known formula of the plasma frequena.af)I
4me’ng/m, we get

which depends on carbon density and tubule diameter in the
same way as our resu(8.8). Note that the limiting value

Mp_.wy=0 correctly corresponds to the plasma fre-
quency of the 2D graphite, which is a gapless semiconductor
and has zero plasma frequency.

Now we compare the result with the plasma frequency of

an assembly of aligned nanotubes observed by Bommeli
et al® Their samples consist of multilayer nanotubes. For

It
1/
=P

47e
m

including the suppression of peaks is quite similar to that o,y samples, the plasma frequency is given by the average

Ref. 18.

of Eq. (3.8) with respect to a tubule distribution. Here we

Another remarkable feature of the imaginary parts of thegstimate it by assuming that the assembly is a square lattice

dielectric functions Ing; and Ime, is the existence of a rela-
tively broad peak at w=2t;=5.4 eV irrespective of the tu-
bule type. As discussed by Lin and Shufighis feature is
consistent with the(5—-7)-eV plasmon peak found in the
EELS experiments on carbon nanotubeslso, this result
qualitatively agrees with the behavior of the dielectric func-
tion observed by de Heer and co-workeiar an assembly of

aligned nanotubes, where its real and imaginary parts hav€sc™ . S
respectively, a cutoff and a peak at about 4.6 eV: For suckect graphite crystal witre

of multilayer nanotubes with length, outer diameteD,,,

and an inner hollow of diametd;,. The densityp(D) of
carbon atoms belonging to single-layer tubules with diameter
D is pc(D)= TrpGCDc’/DgX since the number of carbon at-
oms _contained in a single-layer tubule of diameEeris
7DLV3//? and the density of such tubules iDEJL. Here
v3/c'/2=0.113 A 3 is the carbon density of the per-
=3.37 A the interlayer distance

samples, the oscillatory behavior of the dielectric functions if graphite. Hence
suppressed as a result of averaging over tubules with differ-

ent sizes. This aspect can be taken into account qualitative
by employing a much shorter relaxation time. In Fig. 4 we

show the real and imaginary parts of the dielectric functions

€,+Ae ande, +Ace as a function of energy, where the offset
dielectric constani\e=1.4 is the value for graphit€, the
relaxation time i¢i/7,=0.1X 2ty, and the other parameters

are given in Table Ill. The result reproduces well the exis-

mc’
ly (pc/D)= Dchx(number of layers in a tubule
ex
. mC' pec Dext2¢" =Dy
-2 D,
and
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0.8 . Table 11l within a physically reasonable range. For example,
to=3 eV, D;;=5 nm, and the other parameter values as be-
N fore give wp|/wg,>‘pt:2.5, which is still large. One possible

. reason for this discrepancy is the band-structure change due

LA to interlayer and/or intertubule interactions. In the case of

0.4 * . graphite, the interlayer interaction changes the free-carrier
density from 0 to about 8 cm™2 and the similar change is
expected for nanotubes. However, since this value is one
order smaller than the free-electron density>31®*° cm™3
obtained fromi o™, the interlayer and/or intertubule inter-
actions might not be a main reason for the difference be-
0 10 20 30 40 tween the calculated and observed plasma frequencies. Other
possible reason may be the low rate of the metallic tubule
synthesis. We have assumed the rate tc; Hmsed on the

FIG. 5. Diameter dependence of the plasma frequency of rancondition of metallic tubule formation &+b=3n. How-
domly synthesized multilayer nanotubes with an inner hollow of€Ver, the metallic tubule synthesis seems to be restricted by
diameterD;,=2.2 nm. A solid square and a horizontal bar indicatethe matching of hexagonal patterns between two adjacent
the experimental value obtained from the data of Refsé& the layers in a multilayer nanotube as well as other experimental
text). The solid square corresponds to the most probable tubulgonditions, and the rate of synthesizing metallic tubules
diameter of 11 nm and the horizontal b@-18 nm to the half- might be much smaller thag, which is estimated to be
width of the tubule-diameter distribution, both for the sample of aboutzz from the present result.
Ref. 5.

PLASMA FREQUENCY (eV)
.
.

0.0

TUBULE DIAMETER (nm)

IV. THIRD-RANK TENSOR AND OPTICAL ACTIVITY

(ﬁwpl)Zz A. Optical activity of the nanotube ensemble

1603 (ehz)z ¢’ pse Dext 2¢"— Dy,
) " 2 ’
33w/t M 2 Dex 39 As seen from the explicit expressiofisee Egs.(3.1),
B9 (32, (3.6, 4.3, (4.9, (4.6), and(C7)], the dielectric func-

where the interlayer distance of =3.4 A for a multilayer tions ¢, ey, of the nanotubed,b) are the same as those of
nanotube and the hollow diameter Bf,=22 A are taken its mirror image ,—a—b), and the components of the
from lijima’s observatior!. Also, we have replacegsc in  third-rank tensorsyy,, ¥\¥), and!{? are opposite:
Eq. (3.9 by pgc/3 since only the metallic tubules contribute
to the Drude term and they account for one-third of the ran- ¢,(a,—a—b)=¢(a,b), €p (a,—a—b)=¢g (a,b),
domly synthesized tubules due to the metallic conditien 2

+b=3n. In Fig. 5 we plot the plasma frequency as a func- yoi(a,—a—b)=—yq(a,b),
tion of tubule diameteD,.
The plasma frequencigsw, and% w, , respectively, for yf)(a,—a—b)= _ il)(a,b),

the parallel and perpendicular polarization with respect to the
sample axis reported by Bommel al® are
Y?(a,—a-b)=—y"(ab).

hw;=0.14 eV, fw, =0.115 eV. 3.1 . . i
@ @u (3.10 It is also the case for the renormalized quantitesandy, .

Since, in their samples, the anglebetween the tubule axis Therefore, the parts of the linear relati¢h7) containingy,

and the sample axis distributes over some range, the Drudend y{") (j=1,2) are responsible for the optical activity of

contribution to the average dielectric function is given by the chiral nanotube. To see it more concretely, we consider
_ ¢ — . ¢ the propagation of the light through a film of nanotubes
e=(coS a)e;, € =3(1—(coS a))e. (31D (3 b) with their axes distributed randomly.

Assuming the uniform distribution of within an interval By averaging Eq(2.7) with respect to the direction @&,

O<a<ag, one has(cod a)=(cod ap+cosag+1)/3 and Ve have

then (@, /w))?=¢ /e, =(1Kcog a)—1)/2, which givesa,

=76.9°. For this distribution, the mean valueand the stan- TABLE Ill. Numerical values of the parameters used to draw

dard deviationda are, respectivelyw=50° and da=13°. the figures.
Also, we find | (&) ~ o (V) hir eV
hogP=(ho)?+2(ho,)?~0.215 eV, (312 213 3.13¢ 2.7 0.03

which is, for the multilayer nanotubes, of diameter 8—182Three-halves of the in-plane C-C distance of the graphite.
nm? This value is also shown in Fig. 5. Although the ob- bThe “best atom" effective charge for carbon in units for the
served and calculated plasma frequencies have the same opp Sater orbital(Ref. 32.

der of magnitude, the calculated owg, is about three times  °The value obtained for @ graphite by a local-density-functional
larger than the observed ong,™. This discrepancy cannot method(Ref. 33.

be explained by simply adjusting the parameters listed irfThe value for graphite from Ref. 31.
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As is well known?® when the incident light is linearly

€ €
D(k,w)= 5“ {E(k, )= [E(K, ) -s]s} + jl {E(k, ) polarized, the transmitted light is elliptically polarized. For a
nanotube film with widthd, the angle of rotation of the
— polarized planep, , which measures the strength of the op-
SN YL X T o
+[E(K,0)-s]|s} +i 5 kXE(k ) tical rotatory power, and the ellipticity of the polarization of
the transmitted light,, which measures the strength of cir-
Y cular dichroism, are give by
—i —{[kxE(kw -sts
(1) 2 2
0% dw dw
—i 5 [sE(k,0)]-s%k, (4.9 ¢=207 Rely— 7V} o=z Im{y— ()

wheres s the unit normal to the film. From E¢.1) and the “.2

Maxwell equations, for the light traveling along the film nor-
mals, the electric fieldE(k, w) is found to be orthogonal to | the following subsection we study the coefficientsand

the wave vectok and, up to the first order iry, and 'yS_l), 75_1) in more detail.
the complex refractive indices are given by
(1
n. — €1t fi w{y— )}‘ B. Third-rank tensor and circular dichroism
= 2 4c ’ . - .

As the parallel dielectric function, the bare componggt
wheren, andn_ are the refractive indices, respectively, of of the third-rank tensor for the nanotube ) consists of the
the right-handed and left-handed circularly polarized hghtgnterband contnbu'uonyOH and the free-carrier contribution

andc the velocity of light. 70” ;
|
,  [€h®\? 2pc(a®+ab+b?) » fw// f(EL(N,k))—f(E_(N,k)) Re Ko(N,k)Re Ly(N,k)
Yo~ Zm 3a < ) E.(NK—E_(N,k) (ho)>+ih2wlr,—[E,(N,K)—E_(N,k)]?’
4.3
¢ _[617)° pelairabib? F//dkl Ko(N.K)IM Lo(N,K){f" (E. (N,K)+f"(E_(N,K 4.4
Yoi= m 3aﬁw(ﬁw+iﬁ/7'r) N iy m 0( ’ )m 0( ’ ){ ( +( -))+ ( 7( ’ ))}1 ()

where the phenomenological relaxation times introduced as before ang,(N,k) corresponds to the matrix element of the
magnetic dipole moment,

3
Lo(N,k)=e TNK D' o=ix(NK) gin 5 [J,(2 cos 7y, — 1) + Jo(1—COS 7y )2+ 2J5+ 2J4(1—cos 7)1, 4.5
A=1

with J; andJ, the (dimensionlessmatrix elements of the magnetic dipole moment with respect to two localized states listed
in Table II. As the perpendicular dielectric function, the other componéhtarises from the interband transitions accompa-
nied by the wave-number change,

1 eh?\? po(a’+ab+b?) 5 fw// f(E.(N+1Kk+ko))—fF(E_(N,K))
+am 6v2a N - E+(N+1k+ko)—E_(N,k)

IM{[KE(N+1Kk+ ko) +K_(NK)J[L*(N,K)+ L, (N+1k+ ko) ]}
(hw)?+ih2wlr,—[E.(N+1k+ ko) —E_(N,k)]? :

(4.9

whereL . (N,k) corresponds to the matrix element of some As in the case ofeﬁ’, for the half-filled metallic nano-

component of the operatfr;p; + p;f;], tubes, the interband contributioff may become very large
3 at low temperatureB— [cf. the arguments above Eq.
Lt(N,k):e—ia(N,k)z e 1N 113 cos 7, (3.4)]. Howeyer, actually, it is negligibly small because the
N=1 ratio of the singular term to the typical peak value-gfat

room temperature is 10 for nanotube (5;1) and is less
for larger ones.

+2iJ,sin 7,(1—e* M)}, 4.7 The frequency dependences of Re(/c) and Refy\"/c)

+J,(1—cos 7,)?](1+e" ™)
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are shown respectively in Figs. 6 and 7. They oscillate with 202 12 7 ,
a pitch corresponding to the band gap between adjacentag”:—z(i) I pe 'J'SKC dx %
bands. Their imaginary parts lmg;/c) and Im@y\"/c) have m /) V3rty N J-oc  {k(N)*Hxj
similar frequency dependences. We also show the bare quan- £ (N, —f_ (N, k)
tity Re(wyy /c) in Fig. 6 and find that the effect of depolar- % N KT TR KG
ization is not significant compared to the perpendicular di- (hw)?*+ih2wl 7 —4tg k, (N)?+«f]
electric function. In contrast to the dielectric functions, the
+O(#/ 7, 6E,), 4.9

quantitiesy, and y{*) do not exhibit low-energy peaks. This

can be understood as follows. As seen in Sec. Ill, the low-

energy peaks come from the transitions between bands neheref (N, k)= (xto\r, (N)*+ «j),

the Fermi energy, which are well described by thep

modell®>161824However, it does not distinguish nanotubes 2/ b—a

from their mirror images. Indeed, the tubule parameters in

the k-p model are the tubule diamet® and an indexv

distinguishing the metallic ¥k=0) and semiconductivey(

= +1) cases. For example, the nanotube{5) and its mir- _ 1 |37D " b

ror image (5-4) have the same diameter and the index = pal 2 ok—(a+2b)x, (N)f,

=0, but are different. Therefore, in the frequency range

where thek-p model works well, the nanotubes show no yith sk the deviation ofk from the Fermi wave numbeke

optical activity. Also, this can be checked directly. As an_o./3/ the cutoffs of the integrabic~ Sk~ SE /to,

exar_nple, the componemgH will be con5|dere(_j. LebE, be_ . and theN-summation running over the bands that pass the

ar:/.wﬂthh of the en(jgrgy shell_near”the Fermi ende[)gy V}’.'th'nvicinity of the Fermi energ\Eg; |E—Eg|<JE.. The error

:‘ltlmlgtiotn eo?Tﬁ(ragzval\?gerzﬁﬁgé?swe'l'hae?\?r?c;(rlr?c?vtle eng rgy)mearintroduced/ by replacing _the interva! of integration

<OF,, because of the factor {Ho(hw+ih/z) L 9kc.dkc] by (=) in Eq. (4.8 is also of order

—4EZ(N,K)}, the integrand ofyy at energy|E~(N,K)| ﬁ/rraEc and the mtegrql over-{ »,x) vams_hgs as it is an

< 5E, is larger than the rest by a factor bf, 5E, . Hence integral of an odq function over a symmetric interval. Hgnce

Eq. (2_3) can be evaluated as we have the desired resu,=O(#/,5E.). Note that this
implies that the electrons of large nanotubes near the Fermi

0.025 energy do not “feel” the chirality.
o (a) tube(50,-10)
S~
; 0.025
3 2] (a) tube(50,-10)
) -~
= X
0.0001 3
Q
'
0.0001
-0.025 T T
0.0 0.5 1.0 1.5
FREQUENCY
-0.025 T
0.0 0.5 1.0 1.5
0028 FREQUENCY
o (b) tube(60,-20)
\§ 0.025
& o (b) tube(60,-20)
3 ~
& S
0.0001 3
N Q
~
0.000
-0.025 T
0.0 0.5 1.0 1.5
FREQUENCY -0.025 . .
0.0 0.5 1.0 1.5
FIG. 6. Frequency dependence of the real part of a dimension- FREQUENCY
less quantityw y, /c. The renormalized quantity Re¢, /c) is shown
by the solid curve and the bare one Ref,/c) by the broken curve, FIG. 7. Frequency dependence of the real part of a dimension-

for (a) a metallic nanotub&50,—10) with a diameter of 3.59 nm less quantitywy(f)/c, for (@) a metallic nanotube (56,10) with a
and (b) a semiconductive nanotul@0,—20) with a diameter of diameter of 3.59 nm andb) a semiconductive nanotube (60,
4.14 nm. The abscissa represefts/2t,. —20) with a diameter of 4.14 nm. The abscissa repregeat&t,.
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FIG. 8. Frequency dependence of the rotation angle for a film of
randomly oriented nanotubes with a width of 1 cm and a carbo
density of 1 mol/drd for (a) a metallic nanotube (56,10) with a

FIG. 9. Frequency dependence of the ellipticity of transmitted
Night for a film of randomly oriented nanotubes with a width of 1

: | i k cm and a carbon density of 1 mol/drfor (a) a metallic nanotube
diameter of 3.59 nm(b) a semiconductive nanotube (620) with (50, 10) with a diameter of 3.59 nnib) a semiconductive nano-

a diameter of 4.14 nm, an(t) a semiconductive nanotube (12, pe (60:-20) with a diameter of 4.14 nm, ar(d) a semiconduc-
_5)2W'th a diameter of 0.82 nm. The rotation angle is proportionalgjye nanotube (12; 5) with a diameter of 0.82 nm.The ellipticity is
to »® Re(y—). The abscissa represerite/2t, proportional tow? Im(y—Y). The abscissa represerits/2t,.

We show the angle of rotatios, [asze(yH— "] of  When the frequency of the incident light increases, the nega-
transmitted light in Fig. 8 and the ellipticityd, tive and positive Cotton effects appear alternately. The pitch
[cw? Im (W—y(f))] in Fig. 9, both of which are given by Eq. of this oscillation corresponds to the band gap between ad-
(4.2), as a function of frequency. The values correspond tdacent bands and hence is smaller for larger tubes.
the carbon density of 1 mol/dhs 6.02<10 A3, nanotube ~ Since the graphite is achiral, the componepts y{",
film width d=1 cm, and the other parameters as listed inand y‘f) should become smaller for larger tubes. This is in-
Table Ill. For the nanotube film of 30% density of the graph-deed the case. The way they disappear can be understood
ite crystal, the molar ellipticity 6, =400 (deg dni/mol)/cm  from their oscillatory nature mentioned above: When the
corresponds to the difference 6.8 chrbetween the decadic tubes are large enough so that the pitch of the oscillation is
absorption coefficients for the left- and right-handed circu-smaller than the width of each peak, the adjacent peals in
larly polarized lights. The value is of the same order of mag-with opposite signs cancel each other apdvanishes. This
nitude as those observed in certain organic compotfhds.implies that the optical activity is higher for smaller nano-
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tubes and thus may provide a way of detecting small-size ACKNOWLEDGMENTS
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aboutf w=2ty=5.4 eV, which is consistent with the EELS
experiments. These results agree well with the previous the-
oretical works'®~2° Moreover, the dielectric functions simu-  In this appendix, following the symmetry argument by
lated using a very short relaxation time are consistent withwhite, Robertson, and Mintmir¥, we calculate the matrix
the ellipsometry results on aligned multilayer nanotubes bylements appearing in the expressions of the response func-
de Heer and co-workefs. tions (2.1) and(2.2) for the case where each carbon atom is
(i) For large nanotubes, the square of the plasma fredescribed byj atomic-centered basis functions. First we
quency is shown to be proportional to the carbon density an@riefly review the arguments of Ref. 14 in terms of slightly
inversely proportional the tube diameter. The calculatedjifferent notations. Since the unit tubule cell consists of two
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mation 2a+b=23n. translationh units along the cylinder axis in conjunction
(iii) Chiral nanotubes are optically active. The optical ro-wjth an « radian rotation around this axis. In the abolejs
tatory power and the circular dichroism oscillates as the frethe |argest common divisor ofa and [b|, h
quency of the external field increases. Their low-frequency= 1 //,/aZ+ab+b?, and a=m{(2a+b)p,+(a
peaks are suppress_ed since, in this frequency range, therb)pz}/(aerabJr b2), where a pair of integersp,p,)
nanotubes are described well by thep model, which does (> 0) satisfiesap,— bp; =M and minimizes p,x+ p,y|.

not describe the chirality. , Then two different basis functiongn,n,\) and |[m=0,n
(iv) For the nanotubes with a diameter of about 4 nm and_ 0) are related by those symmetry operatidns

30% density of graphite crystal, the optical rotatory power

APPENDIX A: MATRIX ELEMENTS

and circular dichroism are found to have peak values of the Im,n )\>=C"(m'”)8(h )" ™ |m=0n=0 Ay, (AL)
same ordez of magnitude as those of certain organic T M ' ' Al
compounds! whereu(m,n)=p,m—p;n andv(m,n)=(an—bm)/M. As

(v) The optical activity diminishes for nanotubes with g regylt, symmetry-adapted generalized Bloch bases
larger diameteb and thus it may provide a way of detecting

small-size nanotubes once the asymmetric synthesis suc- 7

ceeds. INKA)=\5— > fu(mn)mn\), (A2a)
In the present work, only ther-band contributions are 2ma i,

considered. To obtain more precise information on the opti-

cal properties, one should take into account the virtzat . |[27N b

and 7-o transitions since they also contribute to the real fN'k(m'n)EEXp{'/ (ﬁ_ a2 K

parts of the dielectric functiong; and the third-rank tensor

vij - However, such contributions are expected to have nare simultaneous eigenstates of the two symmetry operations

structure and to be nearly constant in the frequency range W&, and S(h,a), where N=0,1,...a—1 and ke

are interested in and thus may not affect the qualitative feg-— =/, w//]. Also, they block diagonalize the Hamiltonian

tures of the present results. H:

m+kn (A2b)
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(NLK A HIN' K )= 8y 0 8(k—K') ) f(m’,n’)

m’,n’

X{m=0n=0\|H|m’,n" \")

EgN’Nré(k_k,)M(N,k))\’)\’ ’ (A3)

where a 3Xx2j matrix M(N,K), \. is introduced. The
eigenenergieg (N,k) (7=1, ...,2) are eigenvalues of the
matrix M(N,K), ,» and the corresponding eigenfunctions

IN,k,7) are superposition of 2generalized Bloch bases
2j

INJK, 7)= 27 b (N,K)|N,K,\), (A4)
A=1
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-1, . 27T ~
Cm (L-e+)CM=exr{i| V)(La), (A6a)

S(h,a) YL -e.)S(h,a)=exp(*ia){(L e.)*ifi(p-e.)}.
(ABb)

Using Eq. (A1) and repeatedly applying Eq$A6a) and
(A6b), we have

(m,n,)\l(I:~et)|m’,n’,)\’)
—etil@mMurarlo oN|{(L-e.)

+ivh(p-e.)}l/m’—m,n’—n,\"),

with b, being the coefficients. Note that the energy eigenWherex(m,n) andv(m,n) are abbreviated, respectively, as
states|N,k, 7) are also the simultaneous eigenstates of the¢t @ndv. Then, because of

symmetry operations

S(h,a)|N,k, 7y =exp{—i(2mNp;+Mk/)/a}|N,k,7),
(A5a)

CuIN,k, 7y =exp[—27iN/M}|N,k, 7). (A5b)

As an example, we calculate the matrix element of the
L-e., where
e.=(e*ie)/v2 with (g,g ,e,) an orthonormal basis set
including the unit vectoe, along the tubule axis. Sinag, is
a rotation andS(h, «) is a screw operation, both with respect

angular-momentum component alorg :

toe,, we have

(N,k,)\|(l:~ei)|N’,k’,)\’>=ZL >

Ta m,n,m’,n’

27u (27 b
W-f—al/:/ V—a Ko | M+ kgny,
/(na—mb)
V: —1
Va’+ab+b?
with ko= m(a+2b)/{/(a?+ab+b?)} and the formula

y

oma % Ny NF 1k k(M) = Sy nx18(K =K+ ko),

we obtain

f’,\‘,,k(m,n)fN,,k,(m’n’)(m,n,)\|(I:-ei)|m’,n’,)\’>

= v nx10(K —k=E ko) > fNr,kr(m’n’)<0,OJ\I(|:~e¢)lm’,n’,>\’>
m’,n’

iaﬁN,’Nilﬁ (k —k= Ko)

Ja?+ab+b?

where Sy n+1 IS Kronecker's delta ands(k’—k= «q)

Dirac’s delta function. In terms of symmetrized matrix ele-

ments

Nk, 7OIN" K, 7'))=1 > b* (N,K)b,,/(N’,k’)

AN

X[ frr 4 (M,N)(0,0A|O]m,n,\")

+fﬁ,’k(m,n)<m,n,)\|6|0,0)\’>],
(A7)

we have
(Nk, (L -e.)|N’ k', 7")

= Sy e 10K — k= ko) (N, K, 7|(L - . )|N", k', 7))

2 e (m'n')(0,0M[(P-ex)[m’,n" \'),

+a5N!‘N;15,(kl —k=+ Ko)
- Ja’+ab+b?

X((Nk, 7/(p-e.)[N" k', 7")). (A8)

The other matrix elements can be calculated in a similar way.
Here we list only the ones necessary in Appendix B:

<va-7'|(ﬁ'ez)|N,!k,vT,>:5N’,N5(k,_k)
X{(N,Kk, 7|(p-&)|N" K", 7)),
(A9a)

(N.K,7](L-&)IN" K", 7"y = 8y N (K —K)

XN, K, (L -€)|N" K, 7')).
(A9b)
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Before closing this appendix, we show that, as a result of théPPENDIX B: RESPONSE FUNCTIONS (GENERAL CASE)
time-reversal symmetry, there exists a bijective function

of the indexr and The response functions can be obtained by a straightfor-

ward but tedious calculation. Here we only outline the deri-
vation and give the final results, which are valid for the case

E,(N,K)=E,,(a—N,—k), (A10a)

((N,k, 7|O|N" k', 7)) = —€&l®=0")((a—N,—k,o(7)|Oa
—N’, =K', o(7)))*, (A10b)

where O is (p-a), (L-a), or (@Qb)=%; ;(aiQ;ijb;) (ab
=e.,e,) and the phas® — O’ depends only oMN, N', k,
k', 7, and7’.

Let 7 be the time-reversal operator; then it satisfles

Ta=o*T, (YT'T|¢)=(¢|¥),

TP=—PT, TH=HT, (A11)

wherea is an arbitrary complex numbeR, is either a mo-
mentumf)J , an angular momenturi;, or an electric quad-
rapoleQ;; , and¢ and ¢ are any pair of wave functions. As
a result of Eq.(A11), the wave function7 |N,k,7) is an
eigenfunction of the HamiltonianH with eigenenergy
E,(N,k). On the other hand, from EqAll) and Cy
=exd2mi(L-e)/AM], one finds

CuT INK, 7y =TCy|N,k, 7y =Te 2"NM|N k, )
:e_ZWi(a_N)/MT|N,k,T>.

Similarly, 7 |N,k, ) is an eigenfunction of the screw opera-

tion S(a,h) with an eigenvalue eXp-i[2m(a—N)p,
—Mk//a}. Therefore, the stat& |N,k,7) must be propor-
tional to one of the energy eigenfunctiofgs— N, —k,7’) as

the statesla—N,—k,7’') are generally nondegenerate for

each @—N,—Kk):
TINk,7y=€9NkDa—N,—k,o(7)), (A12)

where O (N,k,7) is some phase and is denoted asr(7).

Since the eigenenergy of the state on the right-hand side

Es(n(a—N,—k), we have Eq(A10a).
Now we show Eq(A10b). Let O be one of the operators

listed after Eq(A10b); then7OT=—0T follows from Eq.
(A1l) and we have

(N,k,7|O|N" k', ")

=(N' k', 7'|TTTO'N k, 7)

= —(N'.,K',7'|TTOT|N k,7)

= —el0-0(a—N',—k’,a(7)|0la—N,—k,a(7))

—€©=90a—N
-k’ a(7'))*,

where © and O’ are abbreviations forO(N,k,7) and

O(N’,k’,7"), respectively. EquatiofA10b) follows imme-

diately from this relation. Note that relatiofs10) guarantee
the uniaxial symmetry of the dielectric functiag with re-

spect to the unit vectog, .

,—k,O'(T)|6T|a—N',

where each carbon atom is described jbgtomic-centered
basis functions.

We consider a componeﬁ?t,—eziyﬁI of the third-rank ten-
sor. It can be rewritten as

471-e 72

Z &= Z €jx» —=2— P10\, (Bla
G=> > dkf dk’ (N'k’ 7'|(p- &) [Nkr)
7,7 N,N’
X(NK7|L,[N'K' 7" )R(NK7|N'k'7'),  (Blb)
with
R(NKk7|N'k'7")= 1

AW[E, (N K)—E(N,K)+Aw+i0]

F(E(N' k)~ F(E,(N,K)
E,(N" k')~ E,(N.K)

(B1o)

For notations, see the explanation after E42). Hence Eq.
(A9a) gives

63 3 [ dk(NKrl( e INKe)

X(Nkr|L,|Nk7' )R(NkrNK7' )e,;i.  (B2)
ExpandingIA_)\ as IA_)\=(I:~eZ)eU+(I:-e+)e_x+(I:~e_)e+A
and using Eqs(A8) and (A9b), we get

is - . /N¢ - ,
(Nk7|L\|N,k, 7 )=m(<NkT|(L-eZ)|N,k,7' »eu

where we have used(0)=/Nc/(4ma) with N¢ the num-
ber of carbon atoms per tubule. From EA.10) one finds
that the functionR(Nk7|N’k’7’) in Eq. (B2) can be re-
placed by

1
5 [R(NK7|N'K’ 7")+ R(N"k’ 7' |Nk7)]
1
" (hw+i10)2—[E(N,kK)—E.(N" k)]

f(ET’(NI!k,))_f(ET(N!k))
E-(N",k") —E,(N,k)

(B3)

A phenomenological relaxation time is introduced into the
response functions by changing ¢-+i0)? in Eq. (B3) to
ho(how+ifl/r). Substtuting them into Eq(B2), one fi-
nally obtains
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efi\? /pc
A== = .
Ei €2i%ijl (m a ; €jr

<33 [ dioie| (e Nke)

X((NK7|(L - &)|NKkr'})G(Nkr|Nkr'),
(B4)

wherepc=Ncp7 is the carbon density and the functi@nis
defined by

G(NKk7|N'k’ 7")
B 1
" ho(hw+ihlt)—[E(N,K)—E, (N k)]?

f(E,(N",K"))—f(E(N,K))
E.(N',kK)—E.(N,k)

(B5)

The other components of}, , €, andy;; can be calcu-
lated in a similar way and we finally obtain

(B6a)

€ij = €1€,i€,j T €0, [ 6ij — ;€]

2 ko) + 7= voea(ex k) + VP (e xK)iey
+ v P{kie— 8ij(k-e)} + égjezik;
—bo(k-e) 2 ejea—{i(k-e)eze;,
— (i (k-e){dj—eze ), (B6b)

where the relevant coefficients are given by

eh

22/ pc
a

22>

7,7 N

EH:1+

xfdk|((NkT’|(f)-ez)|NkT>>|ZG(Nk7-|NkT’),
(B7a

22/Pc
a

et
Eolzl“l‘ H

> > jde(Nk7-|N+1,k
T,T’ N

+ ko, T )((NK7|(P-e_) [N+ 1k+ ko, 7 )2,
(B7b)

and

efi\?

Yoi= m

/ .
LSS [ dkonkel(p-ennke)
T,T’ N

X{((NK7|(L - &) |NKkr'})G(Nkr|Nk7'), (B8a)
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eh\?/
y V= - T”CE > fdk G(Nk7|N+1k+ kg, 7")
T,T’ N
XIM[((N+1k+xo,7'|(p-€;)|NKT))
X((Nkrl{(T-e-),(p-&)}|N+1k+xo,7'))], (B8D)
eh\2/
e %2 % fdk GINKrN+ LK+ kg, 7")

XRL((N+1k+ KO,T’|(ﬁ~e+)|NkT>>
X((Nk7|{(F-e_),(p-&)}N+1k+ko,7'))], (B8O

eh
m

2 / R
s S [ awnke|p-edlnkn)

ol a

X{(Nkr|(e,Qe_)|Nkr'})G(Nkr|Nks'),  (B8d)

eh
m

2/’Pc

oL a

Z, % f dk G(NK7|N+1k+ kg, 7')

XIM[{({(N+1Kk+ ko, 7 |(p-€;)|NKT))
X((NK7|{(T-&,),(p-e)}IN+1k+ko,7'))]. (B8

Note that if the depolarization effect is taken into account as

discussed in Sec. Il, one obtains

D(k,w)=¢[E(k,w)-&]e,+ € {E(k,w)—[E(K,0)-&,]&,}
+iy{[kXE(k,0)]-eje, +iv{"[e E(k,0)]
X (e, K) +i 7P {e X [kXE(k, )]}
+ig[k-E(k,)]e,Ti& (k-e)[exE(k,0)],
(B9)

wheree, , vy, §, and¢, are, respectively, the renormalized
values ofeg, , o, oy, @ndéo,

2vV3(€p —1)

-1
EJ_=1+ 1+WZD—] (EOJ_—:I.), (BlOa)

2V3(ey, — 1)) 7t
7|:[1+ ﬁ] Yoi - (B10b)
_[4 2V3(e, — 1)) 71 B10
a + pC/ZD gOa’ ( C)

with a=Il or L.

APPENDIX C: RESPONSE FUNCTIONS (#-BAND
CONTRIBUTIONS)

Here we outline the derivation of Eq$2.5 and (2.6)
from Eqgs.(B6), (B7), and(B8) under assumption$) and(ii)
in Sec. Il.

1. Localized states

As discussed, the localized stafe [j=(m,n,\)] is as-
sumed to be well approximated by a superposition



§2p)>+§k: cil i) (Cy

=10
==

N
where |¢{??) is the 2o Slater orbit of a carbon atom at a
positionR; with its directional vector; perpendicular to the
tubule surface:

PPP(r)ecg;- (r—Ry)exd — Z|r —Rj|/(2agon) ], (C2)

with Z the effective charge for carborp2orbit®? and aggp,
the Bohr radius. In Eq(C1), N; is the normalization con-
stant, thek summation runs over the nearest-neighbor sites,
and the coefficients;, will be determined such that the lo-
calized statdj) is orthogonal to the other states up to the
lowest order ine=exd —Z//3agyy], Where/ is 3 times the
C-C distance.

Let j=(m,n,\) andk=(m’,n’,\") be nearest-neighbor
pairs of lattice sites, then EC1) gives

) 1
(1l = e (PP 1) + i+ cfid + O,
i "Nk
whose leading-order term must vanish. Because

(${?P| i) is real and the sitegandk are equivalent, the
coefficientc;, is real symmetric. Also, as the coefficiemtg
themselves are small, the effects of the tubule curvature can
be neglected ify{*”|y{*”) and one obtains

cu= 1=~ KPP =co
E_%f d3r ‘Py(r"_d)ﬁpy(r)y (C3

where ¢, is the 20 Slater orbit along thg axis andd the
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((NLK, +[(p- &) INk+)) = —((N.k, = (p- &) [Nk—))

%
=~ Im Ko(N,k), (C6b
((N+1k+ o, +[(P-er)[Nk=))
#D
= 2 [Ko(N+ Lk ko) * +K_(N.K)],  (C60)

R iAD?
((N,k,—|(L-e)|Nk+))= 27 Re Lo(N,k), (C6d)

((NJk,+ (L&) [NK+))= = ((Nk—|(L- &,)|NKk—))

2

:_T/Q Im LO(N,k), (C6e
((N,k, 7|(e. Qe_)|Nks’))=0, (C6f)
((Nk=[{(T-e.),(p-&)}IN+1k+xo,+))
_ %D L_(N,K)* +L,(N+1k+ko)], (C69
_4‘&/[—(! +( ’ KO]!
((Nk=[{(7-&),(p-e)}IN+1k+xo,+))
=—/E((N+ 1K+ ko, +|(D-e,)[Nk—))*,
(Céh

whereD the tubule diameter is the Planck constant, the
auxiliary quantity £&; is given in Table I, and functions

vector from one site to its nearest-neighbor site, which pointéo(NK), K+(NK), Lo(Nk), and L.(NK) are defined, re-
in the positivex direction. Then the normalization condition SPectively, by Eqs(3.3), (3.7), (4.9, and(4.7).

gives

1
<j|j>:N—j{1—9c%}+0<e““§>=1

and henceNJ-=1—903+ O(e'™). The so-prepared states

|j) satisfy
(K|j)= 8;+O(e™). (C4H

In addition, sinceu|O|u)=0 (6=E),— , I:j : oréij) for a real
wave functionu(r), we have

(jlolj)=o,

(|0l
(k|Olj)= kl—_gcojz—JrO(E‘@),

(C5a

(C5b
wherek is one of the nearest neighbors of the gite

2. Response functions

The symmetrized matrix elemen(ta7) are evaluated with
the aid of Eq.(C5) and one obtains

N h
((Nk+[(p-&)[N,k,—))=-— ReKq(N,k), (C6a

First, because of Eq$C6f) and (C6éh), &, =&,=0 and
thus Eqgs.(B6a and (B6b) reduce to Egs(2.5 and (2.6),
respectively. Next we consider the other components. We
observe that, in the sums in E@®8), two terms correspond-
ing to (r,7')=(+,—) and(—,+) are identical as a result of
the time-reversal symmet§A10). Also, terms correspond-
ing to (7,7")=(+,+) and(—,—) do not contribute ta, ,

1, and!?) except at very high temperature because the
initial and final states of the matrix elements are simulta-
neously occupied or unoccupied. Hengg’ is given by

ef
m

2_p

2y
I\ ) %C% fdk G(NK—|N+1k+ kg, +)

XRE((N+1k+ Ko, +|(p-€;)|Nk—))

X((Nk—[{(T-e_),(p-&)}IN+ 1K+ ko, +))]

eﬁz)z D2pc J
— dk G(Nk—|N+1k+ o, +
| e (k=] ot
X Re[[K 4 (N+ 1K+ x)* +K_(N,K)]

XLy (N+ LK+ ko) +L_(N,K)*]} (C7)
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andey, andy{? by Egs.(3.6) and(4.6). The interband con- (3.2) to €, and(4.4) to y,, come from the terms correspond-
tributions toe, and y,q are calculated in a similar way and ing to (7,7')=(+,+) and (—,—) with the aid of
one obtains Eqs(3.1) and (4.3. The Drude contributions G(Nk7|Nk7)=f"(E(N,K)/hw(ho+ifil/z).
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