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Hartree-Fock approximation for the quasiparticle properties of the coupled electron-phonon
system in quantum-well wires in the presence of a magnetic field

L. Wendler
Anna-Siemsen-Straße 66, D-07745 Jena, Germany

~Received 9 July 1997; revised manuscript received 6 November 1997!

A theory is presented that allows the calculation of the quasiparticle properties of lower-dimensional semi-
conductor nanostructures in the framework of a diagrammatic approach of many-particle Green’s-function
technique in subband space. We apply this theory to consider the interaction of quasi-one-dimensional elec-
trons and longitudinal-optical~LO! phonons in the presence of a quantizing magnetic field. An expression for
the electron matrix self-energy in subband space has been derived in the Hartree-Fock approximation of
Feynman-Dyson perturbation theory. Numerical results for the energy-momentum relation and the effective
mass have been obtained for the magnetopolaron states in quantum-well wires. It is shown that the Tamm-
Dancoff approximation and its on-mass-shell version fail for the calculation of the renormalization of the
excited subband energies in quantum-well wires with strong lateral confining potentials even for vanishing
magnetic field and polaron momentum. In this case only the Hartree-Fock approximation gives the correct
quasiparticle properties.@S0163-1829~98!02315-7#
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Quasi-one-dimensional~Q1D! electron systems, such a
occur in semiconductor quantum-well wires~QWW’s!, are
particularly interesting systems to study interaction p
cesses. Here, we study the electron-phonon interaction in
presence of a quantizing magnetic field and investigate
quasiparticle properties of the coupled electron-phonon
tem.

Most of the currently studied QWW’s are based on III-
compound semiconductors that are weakly polar. Electr
moving through such samples polarize their surroundi
and couple to this self-induced polarization field, which
connected with lattice vibrations in optical modes. Only t
long-wavelength optical phonons have large electric dip
moments and, thus, only these phonons take part on
electron-phonon interaction. The electron-phonon interac
modifies the electronic properties by~i! forming quasiparti-
cle states, the Q1D magnetopolarons, consisting of an e
tron and its surrounding phonon cloud and~ii ! forming a
phonon continuum for energies above a threshold energy
3D bulk semiconductors~see, e.g., Refs. 1 and 2!, strict 2D
and Q2D semiconductor quantum-well systems~see, e.g.,
Refs. 3–11! polarons and magnetopolarons are intensiv
investigated. It has been shown12 that the polaronic effects
increase as the dimensionality of the structure is reduc
Q1D polarons13–16and Q1D magnetopolarons17 calculated in
Rayleigh-Schro¨dinger, Wigner-Brillouin, and improved
Wigner-Brillouin perturbation theory show interesting fe
tures. So, for Q1D magnetopolarons it depends on the r
of the confinement energy to the phonon energy, whether
the first excited subband a resonant magnetopolaron
near the lower boundary of the one-phonon continuum
possible or not. Further, the Q1D cyclotron mass show
minimum for a finite value of the magnetic field.17

The aim of the present paper is to develop a more co
plete theory of the quasiparticle properties, i.e., of
energy-momentum relation, damping, renormalization fac
and effective mass, for interacting electrons in low
dimensional nanostructures using many-particle Gree
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function technique. Applying this theory to the Q1D magn
topolaron problem, we calculate an expression for
electron matrix self-energy in the subband space in
framework of the Hartree-Fock approximation of th
Feynman-Dyson perturbation theory, i.e., in a diagramm
approach.

We study the QWW by a model in which the electrons a
confined in a zero-thicknessx-y plane along thez direction
at z50. In they direction the electron motion is assumed
be quantum confined by a parabolic potential,V(y)
5meV

2y2/2, where me is the effective conduction-band
edge mass andV is the confining frequency. Choosing th
Landau gaugeA„x…5(2yB,0,0) for the vector potential o
the externally applied static magnetic fieldB5(0,0,B), the
single-particle Hamiltonian is exactly solvable with th
single-particle wave function

^x,suN,kx ,ms&5CNkxms
~x,s!

5
1

ALx

eikxxFN~y2Ykx
!w~z!xms

~s!,

wherex is the spatial ands the spin coordinate,$uN,kx ,ms&%
is the complete set of single-particle states in the relev
Hilbert space,Lx is the length of the wire in thex direction,
assuming Born-von-Ka´rmán periodic boundary conditions
FN(y2Ykx

) is the displaced-center harmonic-oscillat

wave function with N50,1,2, . . . the subband index,
uw(z)u25d(z), andxms

(s)5dsms
is the sth component of

the eigenspinor @x#ms
5( xms

(21/2)
xms

(11/2) ) , where ms561/2

([↑↓) is the spin quantum number. The center coordinat
Ykx

5g l̃ 0
2kx , whereg5vc /ṽc , vc5eB/me is the cyclotron

frequency, ṽc5(vc
21V2)1/2 is the hybrid frequency,l̃ 0

5@\/(meṽc)#1/2 is the typical width of the wave function in
the y direction, andkx is the x component of the electron
wave vector. The associated energy eigenvalues
9214 © 1998 The American Physical Society
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ENms
(kx)5EN1\2kx

2/(2m̃e)1g* mBBms , where EN

5\ṽc(N11/2), m̃e5me(ṽc /V)25me /(12g2) is the
magnetic-field-dependent effective mass,mB5e\/(2m0) de-
notes Bohr’s magneton withm0 the free ~bare! electron
mass, andg* is the effective spin-splitting factor.

The energy levelsENms
(kx) of an electron are shifted b

the interaction with the long-wavelength optical phono
For simplicity we will assume that the electrons inside t
QWW only interact with 3D bulk LO phonons. The Hami
tonian of the magnetopolaron,Ĥp5Ĥe1Ĥph1Ĥep , is

Ĥp5(
a

E d3xĈa
†~x!H pe

2

2me
2vcypex

1
me

2
ṽc

2y21V~z!

1
g*

2
mBBsz1(

q
\vL@ âL

†~q!âL~q!1 1
2 #

1
M0

VG
1/2(q

eiq•x
1

uqu @ âL~q!1âL
†~2q!#J Ĉa~x!, ~1!

where\vL is the LO phonon energy,âL(q… and âL
†(q… are

the phonon destruction and creation operators, respectiv
q5(qx ,qy ,qz) is the 3D wave vector of the LO phonon
VG5LxLyLz is the ~unit! volume of the sample, andM0
5@4papr p(\vL)2#1/2 with the dimensionless 3D polaro
coupling constant

ap5
1

2

e2

4p«0r p
S 1

«`
2

1

«s
D 1

\vL

and the polaron radiusr p5@\/(2mevL)#1/2. Herein,«` and
«s are the high-frequency~optical! and the static dielectric
constant, respectively, and«0 is the permittivity in vacuum.
Further, ĉa

†(x) and ĉb(x) are the electron field operator
which can be represented by the closed set of single-par
states of the QWW anda,b are spin coordinates, used qui
generally as spin indices because of the choosen$sz% repre-
sentation. Dyson’s equation for the retarded single-part
~temperature! Green’s functionGab

R (x,x8uE) becomes in the
subband space a matrix equation18

GN
a

N8
b

R
~kx ,E!5GN

a
N8
b

~0!R
~kx ,E!1 (

N1 ,N18
(
s,s8

GN
a

N1
s

~0!R
~kx ,E!

3SN1
s

N18

s8

R
~kx ,E!GN18

s8
N8
b

R
~kx ,E!. ~2!

Herein,

GN
a

N8
b

~0!R
~kx ,E!5

dabdNN8
E2ENa~kx!1m1 id

~3!
.

ly,

le

le

is the unperturbed~noninteracting! matrix Green’s function,

wherem is the chemical potential,d→01, andSN1
s

N18

s8

R
(kx ,E)

is the irreducible~or proper! retarded self-energy. Because
the case considered here the spin is a good quantum num
the matrix Green’s function is diagonal in the spin indice

GN
a

N8
b

R
(kx ,E)5dab GNN8;a

R (kx ,E). Then, Eq. ~2! can be

transformed in the form

(
N1

„EdNN1
2$@ENa~kx!2m#dNN1

1SNN1 ;a
R ~kx ,E!%…

3GN1N8;a
R

~kx ,E!5dNN8. ~4!

With MNN8;a(kx ,E)5EdNN82$@ENa(kx)2m#dNN8
1SNN8;a

R (kx ,E)% the dressed Green’s functionGR(kx ,E)
[„GNN8;a

R (kx ,E)… is given by the inverse ofM (kx ,E):
GR(kx ,E)5M21(kx ,E). The quasiparticles, i.e., the Q1D
magnetopolarons, are given by the poles of the Green’s fu
tion GR(kx ,E). For obvious reasons the matrix Green
function GNN8;a

R (kx ,E) of an electron in a QWW withM
subbands taken into account~an M -subband model! has 2M
isolated single poles at the complex energiesE5Eh(kx)
2m2 iGh(kx); h51,2,3, . . . ,2M connected with subband
(N50,1,2, . . . ,M21) and spin index (a56 1

2 ). From the
theory of complex functions it follows that the matri
Green’s function can be represented near the quasipar
poles in the following form:19

GNN8;a
R

~kx ,E!' (
h51

2M zh
NN8;a~kx!

E2Eh1m1 iGh~kx!
, ~5!

where the so-called renormalization factorszh
NN8;a(kx) are

the residues ofGNN8;a
R (kx ,E) at the polesE5Eh(kx)2m

2 iGh(kx). If and only if Gh!uEh2mu is valid, i.e., the
poles occur very close to the real energy axis, are the ab
states true quasiparticle states. Their energies and dam
functions are then determined from the equation

det @MNN8;a~kx ,Eh2m2 iGh!uSNN8;a~kx ,Eh2m!#50, ~6!

where in the matrix elements of the self-energy, which oc
in MNN8;a(kx ,E) according to the quasiparticle picture,Gh
→0 is assumed. The renormalization factor reads

zh
NN8;a~kx!5 Res

E5Eh~kx!2m
$@M21~kx ,E!#NN8;a%, ~7!

where (M21)NN8;a denotes the (NN8;a)th element ofM21,
Res means the residue at the pole, and in the self-en
Gh→0 is assumed. If the quasiparticle damping is vani
ingly small, the Lorentz profiles of the spectral functio
ANN8;a(kx ,E) at the quasiparticle energies
-

FIG. 1. Feynman diagrams

which are included in the irreduc
ible Hartree-Fock matrix self-
energySNN8;a

HF (kx ,inn) of the in-
teracting electron-phonon system
in QWW’s.
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ANN8;a~kx ,E!'
1

p (
h51

2M zh
NN8;a~kx!Gh~kx!

@E2Eh~kx!1m#21Gh
2~kx!

,

~8!

become sharp delta peaks:

ANN8;a~kx ,E!' (
h51

2M

zh
NN8;a~kx!d„E2Eh~kx!1m…. ~9!

In the quasiparticle approximation~QPA! one uses this ma
trix spectral function in the whole spectrum and, thus, in t
approach the sum rule

(
h51

2M

zh
NN8;a~kx!5dNN8 ~10!
s

becomes valid. From the energy-momentum relationEh(kx)

one can calculate the magnetopolaron effective massm̃h* of
the quasiparticle stateuh,kx&:

1

m̃h*
5 lim

kx→0

1

kx\
2

d

dkx
Eh~kx!. ~11!

Let us now calculate the matrix self-energy in the fram
work of the Hartree-Fock approximation~HFA! using the
Matsubara technique for the temperature Green’s funct
The Feynman diagram of the irreducible HF self-energy
shown in Fig. 1 and given by
tion of

potential
d

e
t

gral
ies here,
SNN8;a
HF

~kx ,inn!5
1

Lx
(
qx

(
N1N18

S 2
1

b D(
ivn

VN
kx

N1
kx2qx

N18
kx2qx

N8
kx

ph
~qx ,ivn!GN1N

18 ;a~kx2qx ,inn2 ivn!, ~12!

where the~Matsubara! frequencies arevn52pn/(b\) and nn5p(2n11)/(b\) with n50,61,62, . . . andb51/(kBT),
wherekB is Boltzmann’s constant. The electron-phonon interaction potential in subband space is18,20

V N1
kx1qx

N2
kx

N3

kx82qx

N4

kx8

ph
~qx ,ivn!5 f N1

kx1qx

N2
kx

N3

kx82qx

N4

kx8

LO
~qx!

2vL /\

~ ivn2vL!~ ivn1vL!
, ~13!

where the form factorf N1
kx1qx

N2
kx

N3

kx82qx

N4

kx8

LO
(qx) is given by

f N1
kx1qx

N2
kx

N3

kx82qx

N4

kx8

LO
~qx!52apr p~\vL!2E

2`

`

dy E
2`

`

dy8 FN1
* ~y2Ykx1qx

!FN2
~y2Ykx

!K0@ uqx~y2y8!u#

3FN3
* ~y82Yk

x82qx
!FN4

~y82Yk
x8
!, ~14!

with K0@ uqx(y2y8)u# the modified Bessel function of zeroth order~for calculation and result see Ref. 21!. Note that the lower
indices of the form factor denote the center coordinates of the single-particle electron wave function. Explicit calcula

f N1
kx1qx

N2
kx

N3

kx82qx

N4

kx8

LO
(qx) shows that this form factor is independent of the wave-vector componentskx andkx8 . The electron-phonon

interaction may be interpreted as a phonon-mediated electron-electron interaction potential. Such an interaction
signifies the scattering of an electron from subbandN2 to N1 by another electron, which becomes scattered from subbanN4
to N3 by exchanging a LO phonon. The frequency sum in Eq.~12! can be easily performed with the result

SNN8;a
HF

~kx ,E!5
1

Lx
(
qx

(
N1N18

f N
kx

N1
kx2qx

N18
kx2qx

N8
kx

LO
~qx!$@nB~vL!11#GN1N

18 ;a
R

~kx2qx ,E2\vL!

1nB~vL!GN1N
18 ;a

R
~kx2qx ,E1\vL!%, ~15!

whereGR(kx ,E) is the dressed retarded HF Green’s function andnB(vL)5@eb\vL21#21 is the Bose occupancy factor for th
LO phonons. This Green’s function has to be calculated self-consistently from Eqs.~4! and~15!. This is the general HF resul
for the EPI in QWW’s in the presence of a magnetic field. The HF self-energySNN8;a

HF (kx ,E), with GNN8;a
R (kx ,E) in terms of

SNN8;a
HF (kx ,E) via Dyson’s equation, Eq.~4!, is then given by a very complicated matrix equation, including an inte

equation forqx and a difference equation in frequency. Because we are mostly interested in the quasiparticle propert
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it is more profitable to perform the frequency sum overivn in Eq. ~12! by using the QPA for the dressed Green’s function~I
call this internal QPA!. Then, we obtain for the retarded self-energy

SNN8;a
HF

~kx ,E!5
1

Lx
(
qx

(
N1N18

f N
kx

N1
kx2qx

N18
kx2qx

N8
kx

LO
~qx! (

h50

2M

zh
N1N18 ;a

~kx2qx!H nB~vL!11

E2Eh~kx2qx!2\vL1 id

1
nB~vL!

E2Eh~kx2qx!1\vL1 idJ , ~16!
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assuming now for simplicity a single electron in the QW
by changing i\nn→E2m1 id in the final result. In this
equation, Eh(kx2qx) is a solution of Eq. ~6! and

zN1N18 ;a(kx2qx) is determined by Eq.~7! and fulfills the sum
rule ~10!. Equation~16! generalizes our earlier result22 to the
case that all possible intersubband processes are inclu
The first term in the curly brackets comes from the emiss
of a LO phonon by the electron and the second term, wh
vanishes at zero temperature, is connected with the abs
tion of a LO phonon. A nonvanishing imaginary part resu
from the emission and absorption of real LO phonons.
T50 and forE,\vL there are no real LO phonons ava
able and thus, the true magnetopolaron states are z
phonon magnetopolaron states.

The generaln-phonon magnetopolaron state is describ
by the set uh,kx

pol ;$nq%&5uh,kx
pol& ^ u$nq%&, where u$nq%&

5)q(1/Anq!) @(aL
†(q)#nqu$0%& is the state vector of the LO

phonons, withnq LO phonons in each mode, each with m
mentum\q and energy\vL and kx

pol5kx1(qqxnq is the
magnetopolaron wave vector component along the wire a
For the zero-phonon magnetopolaron stateuh,kx

pol5kx ;0q& is
valid. Thus, in the case investigated here the renormaliza
is due to virtual LO-phonon emission and reabsorption p
cesses only. Only a finite number of renormalized subba
will lie in the regionE,\vL , which have a unique energy
momentum relation: there is only one state for each subb
at a given energy. This picture is drastically changed for
one-phonon magnetopolaron statesuh,kx

pol5kx1qx ;1q&.
Due to the different possibleqx52pnx /Lx ; nx50,61,
62, . . . there is a quasicontinuum of states. The low
boundary of this phonon continuum has the threshold ene
Eth

(h)5min$Eh(kx1qx)1\vL%5Eh(0)1\vL , which is in-
dependent fromkx but depends on the magnetic field. Ea
zero-phonon magnetopolaron stateuh,kx

pol5kx ;0q& is acom-
panied by its one-, two-, three-phonon, etc. continuum. Th
the phonon continuum of all states exists above the thres
of the one-phonon continuum of the energetically lowe
lying state. Because the electron-phonon interaction is in
pendent from the electron spin, the self-energy given by
~16! is indeed independent from the spin index too. The Z
man energy only scales the quasiparticle energy, i.e., it m
be dropped by redefiningE. Thus, spin-up and spin-dow
electrons are independent and each group may be consid
separately. Henceforth, two different threshold energiesEth

(↑)

andEth
(↓) of the two-phonon continua arise for all spin-up a

all spin-down electrons, respectively.
ed.
n
h
rp-

t

ro-

d

is.

n
-

ds
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e

r
y

s,
ld
-
e-
q.
-
y

red

Considering for the moment the energy-momentu
relation ENa;nq

(kx
pol ;B)5\ṽc~N11/2!1g* mBBa

1(\2/2m̃e)~kx
pol2(qqxnq)

21(q\vLnq for the n-phonon
unperturbed magnetopolaron stateuN,kx

pol ,a;$nq%&, the un-
renormalized phonon continuum is above the threshold
ergy Eth

(a)5Eth
(a)(B)5\ṽc /21\vL1g* mBBa. Obviously,

without the interaction the zero-phonon magnetopolaron
persion curves with bottoms that occur forkx50 belowEth

(a) ,

i.e., if Nṽc,vL , would cross this line with increasing wav
vector at kx5kL

(N)5@(2m̃e /\)(vL2Nṽc)#1/2. Further, the
zero-phonon magnetopolaron unperturbed states withN.0
and bottoms belowEth

(a) , i.e., if NV,vL is valid for B50,
cross with increasing magnetic field the lower boundary
the one-phonon continuum at

vc5vc
~N!5H F 1

NS vL2
\kx

2

2m̃e
D G 2

2V2J 1/2

.

In this case also the unshifted levelE0a;0q
(kx ;B) crossesEth

(a)

at vc5vc
(0)5V@(kxr p)221#1/2 but only if kxr p>1. For lev-

els ENa;0q
(0;B) with vL<NV there is no crossing with the

line Eth
(a) with increasing magnetic field and forvL<Nṽc the

same is true for increasing wave vector. Thus, there are
different ways to cross the lower boundaryEth

(a) of the one-
phonon continuum: one with increasing magnetic field a
the other one with increasing kinetic energy. As known,
3D and strict 2D systems the magnetopolaron behavio
quite different on these two ways. Hence, with increas
magnetic field and wave vector the zero-phonon levels w
bottoms below the threshold energy,ENa;0q

(0;0),Eth
(a) , be-

come degenerate with the continuous states inside the
phonon continuum. But the perturbation that couples e
state with the phonon continuum will lead to a splitting
each zero-phonon magnetopolaron energy-momentum
tion with one branch below and one branch inside the p
non continuum. Thus, all zero-phonon magnetopolaron st
with energy bottoms below the threshold of the renormaliz
phonon continuum atEth

(a) must bend over at the associate
threshold energy for spin-up and spin-down electrons if th
energies approach with increasing momentum and magn
field the lower boundaryEth

(a) of the one-phonon continuum
because of the anticrossing repulsion of the levels. For la
momenta and/or magnetic fields these states are then pi
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at this line. This effect is called resonant magnetopola
level coupling ~RMPLC! and the associated quasipartic
state is called resonant magnetopolaron.

In general, the numerical calculation of the self-energy
the form of Eq.~16! is possible but very cumbersome. Thu
we will look for further suitable approximations. At first it i
profitable to perform a diagonal approximation for t
dressed Green’s function in Eq.~12!, i.e., to set
GNN8;a(kx ,inn)⇒dNN8GNN;a(kx ,inn). I call this an internal
diagonal approximation, because in this case the resu
self-energy as well as the Green’s function given by Dyso
equation remain nondiagonal matrices. The internal diago
-
th
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approximation is well justified in most cases, because
nondiagonal matrix elements are usually only 1210% in
magnitude of the diagonal ones. In the case of the inte
diagonal approximation, from Eq.~4! it follows that
GNN;a

R (kx ,E)5@E2ENa(kx)2SNN;a
R (kx ,E)#21 for the

matrix Green’s function and, thus, quasiparticle energ
and damping function are determined byENa(kx)
5ENa(kx)1ReSNN;a

R @kx ,ENa(kx)# and GNa(kx)5

2ImSNN;a
R @kx ,ENa(kx)#, respectively. In the QPA the spec

tral function in the diagonal approximation isANN;a(kx ,E)
5d„E2ENa(kx)…. Applying this internal diagonal approxi
mation to Eq.~16! and assumingT50, we obtain
SNN8;a
HF

~kx ,E!5
1

Lx
(
qx

(
N1

f N
kx

N1
kx2qx

N1
kx2qx

N8
kx

LO
~qx!

E2EN1a~kx2qx!2ReSN1N1 ;a
HF @kx2qx ,EN1a~kx2qx!#2\vL1 id

. ~17!
the
e

ing
c-

a-
all

e

gy

nce

or,

of

g

This self-energy combined with Eq.~6! determines the qua
siparticle properties of the Q1D magnetopolaron in
framework of the HFA. Setting ReSN1N1 ;a

HF 50 in the de-

nominator gives the Tamm-Dancoff approximation~TDA!
for the self-energy. This result follows directly from the firs
order self-energy Feynman graph depicted in Fig.
SNN8;a

TDA (kx ,E)[SNN8;a
(1)R (kx ,E). Comparing the HFA with

the TDA it becomes obvious that the HF self-energy conta
the same scattering processes as in the Tamm-Dancoff
but between the renormalized subband energies. Thus,
the point of view of the EPI, the HF approach given by E
~17! is an improved Tamm-Dancoff approximation~ITDA !.
It is known ~see, e.g., Ref. 16! that the TDA gives the wrong
pinning behavior of the zero-phonon magnetopola
energy-momentum relations at the one-phonon energy\vL
above the unrenormalized ground stateE0(0;B).

In principle, the HF matrix self-energy of Eq.~17! may be
calculated numerically. However, this is a very cumberso
procedure because for the calculation of each matrix elem
all the other matrix elements must be known from the fo
going step of the self-consistent procedure. Thus, it is p
itable to perform a further simplifying approximation. How
ever, this approximation of the HF self-energy of Eq.~17!
shall be an improved TDA and, therefore, it has to fulfill tw
requirements. Firstly, forkx→0 the matrix self-energy of the
ground state should approach the corresponding matrix
energy calculated on-mass shell@OMS: E5E0a(kx) in
ReS00;a

TDA(kx ,E)⇒ReS00;a
OMS(kx)#. Secondly, for largekx the

matrix self-energy should give the correct pinning behav
of the zero-phonon magnetopolaron energy-momentum r
tions at the one-phonon energy\vL above the renormalized
ground stateE0(0;B). From Eq. ~17! it becomes obvious
that the real part of the HF self-energy at the quasipart
energies shows the energetically lowest resonance
Eh(kx)5E0a(0)1ReS00;a

HF @0, E0a(0)#1\vL because the
phonon wave vector componentqx can take all possible val
ues. Therefore, it should be a reasonable approach to
e
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ReSN1N1 ;a
HF @kx2qx ,EN1a(kx2qx)#⇒ReS00;a

HF @0, E0a(0)# in

the denominator of Eq.~17!. I call Eq. ~17! with
ReSN1N1 ;a

HF @kx2qx ,EN1a(kx2qx)#⇒ReS00;a
HF @0, E0a(0)# in

the denominator together with Eq.~6! the modified Hartree-
Fock approximation~MHFA! for the interacting electron-
phonon system in the subband space. Let us discuss
physical meaning of this approach in detail. In the MHFA w
use in the calculation of the matrix self-energy, when start
from Eq.~15!, instead of the exact dressed HF Green’s fun
tion GNN8;a

R (kx ,E) an approximated one:GNN8;a
R (kx ,E)

5dNN8 /$E2ENa(kx)2S00;a
HF @0, E0(0)#%. It becomes obvi-

ous that the MHFA exactly fulfills the first requirement~see
also discussion below!. The MHF self-energy simplifies the
HF self-energy, Eq.~17!, twofold: ~i! At first it is assumed as
the starting point of the self-consistent calculation of the m
trix self-energy that the renormalization is the same for
levels. ~ii ! Secondly, for the reference levelsEN1a(kx2qx)

1\vL5EN1a(kx2qx)1ReSN1N1 ;a
HF @kx2qx , EN1a(kx2qx)#

1\vL'EN1a(kx2qx)1ReS00;a
HF @0, E0a(0)#1\vL the pin-

ning atEN1a(0)12\vL is neglected. As described above th

denominator of the fraction 1/$Eh(kx)2@EN1a(kx2qx)

1\vL#% is responsible for electron scattering betweenEh
andEN1a1\vL . Assuming for the momentEh andkx to be
fixed, the most important contributions to the self-ener
SNN8;a

HF result from the electron scattering betweenEh and
the energetically lowest reference levels, i.e., the refere
levels E0a(kx2qx)1\vL . As shown above,E0a(kx2qx)
1\vL bends over atE0a(0)12\vL . Because the self-
energy is nearly independent from the wave vect
ReS00;a

HF @kx2qx ,E0a(kx2qx)#.ReS00;a
HF @0, E0a(0)#, as

long as the energy is below the bend-over region@see, e.g.,
Fig. 5~a! below#, the sum over all quasicontinuous values
qx gives a sum of fractions 1/$Eh(kx)2@E0a(kx2qx)
1\vL#%, in which the most important large terms, arisin
from energies below ofE0a(0)12\vL , are correct in the
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MHFA. Only the unimportant smallest terms~i.e., the small-
est fractions in the sum overqx), arising for energies in the
bend-over region of the reference levels,E0a(kx2qx)
1\vL'E0a(0)12\vL , are in the MHFA smaller than in
the HFA. Thus, compared with the HFA, the MHFA slight
underestimates the EPI self-energy, but this is a neglig
small effect. This is true because of the quasicontinuum
states according to the differentqx , we have for a givenkx a
quasi-infinite number of correct states, which have the la
est contribution to the self-energy. For this reason, the e
getically higher states,N1.0, give only a minor contribution
to the self-energy, so that part~i! of the approximations ha
practically no consequence for the numerical value of
matrix self-energy. Thus, we can conclude that the MH
drastically simplifies the calculation of the matrix self-ener
but still gives highly accurate results especially for the low
subbands and, most important, it results in the correct
ning behavior of the zero-phonon magnetopolaron disper
relations. Compared with the exact HFA, the MHFA is co
putationally much simpler and highly efficient.

The numerical calculation we have applied to
GaAs-Ga12xAl xAs QWW with the material parametersap
50.07, rp53.987 nm,\vL536.17 nm,me50.06624m0 for
GaAs and for the confinement energy\V512 meV is used.
For the chosen parameters the nondiagonal elements o

FIG. 2. The matrix self-energies ReS00 ~a! and ReS11 ~b! of the
Q1D subbandsE0 andE1, respectively, forkx50 as a function of
the magnetic field calculated in MHFA, TDA, and TDA on-ma
shell ~OMS!.
ly
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e

r
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the

matrix self-energy are small compared to the diagonal e
ments and, thus, the diagonal approximation is a suita
approach to calculate the magnetopolaron dispersion rela
ENa(kx). Note that with decreasing confining energy t
contribution of the nondiagonal elements to the quasipart
properties increases. With these approximations the real
of the MHF self-energy of Eq.~17! can be written at the rea
quasiparticle energiesE5EN(kx) below the phonon con-
tinuum, introducing 3D polaron units~energies are measure
in units of \vL and lengths in units ofr p), in the form

FIG. 3. Dependence of the renormalized levelsE0, E1 ~heavy
solid lines! and E01\vL ~thin solid line! and of the unrenormal-
ized levelsE0, E1, and E01\vL ~dashed lines! on the magnetic
field: ~a! calculated in MHFA,~b! in TDA, and ~c! in OMS.



o-
ed

9220 57L. WENDLER
FIG. 4. The lowest Q1D magnetopolaron levelE0(kx ;B) ~heavy solid line! as a function of the magnetic field for different magnet
polaron momenta:~a! kxr p50; ~b! kxr p50.5; ~c! kxr p51.0, and~d! kxr p51.5 calculated in MHFA. The corresponding unperturb
dispersion relationE (k ;B) is plotted by the dashed line. The renormalized phonon continuum is shown by the hatched area.
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ReSNN
MHF@kx ,EN~kx!#

52
ap

2pE0

`

dqi E
2p

p

dw e2aE
0

`

dt exp$2@12l2N

1~12g2!qi
2 cos2w22~12g2!kxqi cosw

2DNN
MHF~kx!#t% (

N850

`
N2!

N1!
aN12N2

3@LN2
N12N2~a!#2e2l2N8t, ~18!

where DNN
MHF(kx)5ReSNN

MHF@kx ,EN(kx)#2
ReS00

MHF@0, E0(0)#. Further, we have introducedqi5(qx
2

1qy
2)1/2, cosw5qx /qi , sinw5qy /qi , a5(qi

2/l2)@12(1
2g2)cos2w#, l25ṽc /vL , N15max(N,N8), N2

5min(N,N8) andLN
N8(j) is the associated Laguerre polyn

mial. By scaling the energy, the Zeeman energy does
occur in this equation. Note further that the spin splitting
the levels is very small compared to the subband separa
of 12 meV under consideration, e.g., forBL[mevL /e
520.7 T, wherevc5vL , we haveug* mBBu50.527 meV
for GaAs, whereg* 520.44.

The approach for the self-energy in Eq.~18! is identical to
the second-order~modified! improved Wigner-Brillouin per-
turbation theory~IWBPT!.16,17,23Further, if one takes in Eq
ot
f
on

~18! ReS00
MHF@0, E0(0)#50 in DNN

MHF(kx), the result of the
TDA in the diagonal approximation follows, which i
equivalent to the Wigner-Brillouin perturbation theo
~WBPT!. If additionally ReS00

MHF@kx ,EN(kx)# is set equal to
zero in DNN

MHF(kx), which is equivalent to considering th
diagonal elements of the first-order self-energy on-m
shell,E5EN(kx) in ReSNN

TDA(kx ,E)⇒ReSNN
OMS(kx), the result

of the Rayleigh-Schro¨dinger perturbation theory~RSPT! fol-
lows. From this discussion it becomes obvious that the ex
HF Green’s-function result, given by Eqs.~15! and~16!, and
the MHFA include much more intersubband processes t
the orthodox perturbation theories. The basic differences
tween the results for Q1D magnetopolarons obbtained
using the Green’s-function technique and by using the o
fashioned perturbation theories are the following:~i! The
Feynman-Dyson perturbation theory gives real and ima
nary self-energy contributions for intrasubband and inters
band processes, while the old-fashioned perturbation theo
give only real self-energy contributions for intrasubband a
some intersubband processes.~ii ! The matrix self-energy cal-
culated with the Green’s-function technique contains scat
ing processes of two electrons from subbandsN1 to N and
from N8 to N1, whereas RSPT, WBPT, and IWBPT includ
only the symmetric processes of scattering fromN1 to N and
from N to N1. The asymmetric scattering of the tw
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electrons by exchanging an optical phonon give rise to
nondiagonal elements of the matrix self-energy.~iii ! Ne-
glecting these asymmetric scattering processes, the diag
elements of the real part of the self-ener
ReSNN@kx ,EN(kx)# at T50 calculated in MHFA and in
TDA become equivalent to the second-order IWBPT a
e

ag
en
d

in
e

nal

d

WBPT, respectively.~iv! The diagonal elements of the TDA
matrix self-energy in the mass-shell approximation beco
the same as in second-order RSPT.

The sum overN8 and the integral overqi in Eq. ~18! can
be easily performed analytically. For the renormalization
the lowest subband we obtain from Eq.~18!
m
ic field.

ol, and
on
ReS00
MHF@kx ,E0~kx!#52ap

l

Ap
E

0

p/2

dw E
0

`

dt e2@12D00
MHF

~kx!#t

3
exp$l2t2kx

2~12g2!2cos2w/@12e2l2t1~12g2!cos2w~e2l2t1l2t21!#%

A12e2l2t1~12g2!cos2w~e2l2t1l2t21!
. ~19!

If the lateral confining potential vanishes, i.e., forV50 and, thus,g51 andl25vc /vL in Eq. ~18!, one derives, e.g., from
Eq. ~19!, the analytical result

ReS00
MHFu2D52ap

Ap

2l
BS 1

l2 ,
1

2D ~20!

for the 2D magnetopolaron self-energy, whereB(x,y) is the beta function and obviouslyD00
MHF50. This result was first

obtained by Larsen.4 It becomes obvious that this expression is independent ofkx . This is true because electrons quantu
confined in thex-y plane are totally quantized in Landau levels in the presence of a perpendicular quantizing magnet

In the case of a vanishing magnetic field (B50), Eq. ~18! is valid with g50, l25V/vL , and a5(qi
2/l2)sin2w, as

discussed in detail in Ref. 16. In this case Eq.~19! reads

ReS00
MHF@kx ,E0~kx!#52

ap

Ap
E

0

`

dt
e2@12D00

MHF
~kx!#t

At
E

0

p/2

dw
exp„tkx

2cos2w/$12@~e2l2t1l2t21!/~l2t !#sin2w%…

A12@~e2l2t1l2t21!/~l2t !#sin2w
. ~21!

Performing now the 2D limit one obtains the polaron correction to the 2D energy-momentum relationE2D(kx)5(12g2)kx
2 :

ReS2D
MHF@kx ,E2D~kx!#52

ap

A12D2D
MHF~kx!

K S kx

A12D2D
MHF~kx!

D , ~22!

whereK (x) is the complete elliptical integral of the first kind. This result was first discussed by Peeters, Warmenb
Devreese,24 who showed thatuReS2D

MHF@kx ,E2D(kx)#u→` if E2D(kx)2E2D(0)→1 and thus the 2D energy-momentum relati
is pinned at this line. The TDA on-mass-shell result6 is obtained withD2D

MHF(kx)50 and is only valid forkx!kL[A2mevL /\.
In the case of vanishing wave-vector componentkx , from Eq. ~22! and withK (0)5p/2 the well-known result

ReS2D
MHF@0, E2D~0!#52ap

p

2
~23!

follows. It is noticeable that the~modified! Hartree-Fock self-energy for the ground-state renormalization atkx50 is identical
to that in OMS, but differs from the TDA result, where

ReS2D
TDA@0, E2D~0!#52

app

2

1

A12ReS2D
TDA@0, E2D~0!#

~24!
ed
follows for B50 andV50.
In Figs. 2~a! and 2~b! the energy renormalizations of th

ground-state level and of the first excited level, ReS00 and
ReS11, respectively, are depicted as functions of the m
netic field in the case of vanishing wave-vector compon
kx50. The calculations are done for MHFA, TDA, an
OMS. The absolute values of ReS00 and ReS11, i.e., the
Q1D magnetopolaron binding energies, increase with
-
t

-

creasing magnetic field. Please note that ReS00
MHF5ReS00

OMS

but ReS11
MHFÞReS11

OMS. For B50 we find for the matrix
self-energies: ReS00

MHF524.057 meV, ReS00
TDA523.850

meV, ReS11
MHF524.482 meV, ReS11

TDA524.206 meV, and
ReS11

OMS524.516 meV. These values are slightly enhanc
compared to the strict 2D case (ReS2D

HF523.978 meV! and
the 3D case (ReS3D

HF522.532 meV!. It is seen that the OMS
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result for ReS11 diverges negatively at the resonance ofE1;0q

with Eth , i.e., slightly belowvc5vL . It should be noted tha
the behavior of these self-energies on the magnetic fiel
very similar to that on the confining frequency.

The dependence of the first two renormalized and
renormalized levels on the magnetic field is plotted in Fig
for kx50. Here and in the following figures the energ
momentum relations are plotted as mentioned above with
the Zeeman energy. If necessary one may add it with
result that two pictures arise, one shifted up and the o
down by the Zeeman energy. The renormalized ground-s
energyE0 is slightly below the unrenormalized ground-sta
energyE0, the first excited levelE1 diverges negatively a
the resonance, which appears in dependence on the confi
frequency below ofvc5vL , if calculated in TDA on-mass
shell. Further,E1 approaches for large magnetic fieldsE011
if calculated in TDA@see Fig. 3~b!#, i.e., the pinning appear
at the wrong energy inside the renormalized phonon c
tinuum. Only the MHFA gives the correct pinning ofE1 for
large magnetic fields at the threshold of the renormali
one-phonon continuum@see Fig. 3~a!#, i.e., at the correct
ground state plus one LO phonon:E011. Because the be
havior of the renormalized energy levels in dependence
the magnetic field is very similar to that on the lateral co
fining potential of the QWW, we come to the conclusion th

FIG. 5. The matrix self-energies ReS00 ~a! and ReS11 ~b! of the
Q1D subbandsE0 and E1, respectively, forB50 as a function of
wave-vector componentkx calculated in MHFA, TDA, and TDA
on-mass shell~OMS!.
is

-
3

ut
e

er
te

ing
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d
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-
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even atB50 andkx50, TDA and TDA on-mass shell are
useful only for QWW’s with weak confinement potentia
i.e., if V!vL .

The lowest subband energyE0(kx ;B) including the po-
laronic corrections in MHFA is plotted in Fig. 4 as a functio
of the magnetic field for different~zero-phonon! magnetopo-
laron momenta\kx

pol5\kx . It is seen from Fig. 4~a! that for
vanishing magnetopolaron momentum the energyE0(kx
50;B) increases with increasing magnetic field. For a fin
magnetopolaron momentum the energyE0(kxÞ0;B) shows
a minimum atBÞ0 @see Fig. 4~b!#. This minimum is caused
by the magnetic-field dependence of the effective massm̃e .
With increasing magnetic field the effective massm̃e in-
creases and thus the kinetic energy decreases while the
fining energy\ṽc increases. In Figs. 4~c! and 4~d! it is as-
sumed that the ground-state plus kinetic energy is so la
that the noninteracting single-particle energyE0(kxÞ0;B
50) lies within the phonon continuum. The electron-phon
interaction will result in a shift of the zero-phonon magne
polaron quasiparticle energy below the boundary of the o
phonon continuum. This is valid for all coupling strengt
ap and thus is a special feature of the resonance of a disc
state with a continuum of states.

FIG. 6. The energy-momentum relation of the lowest lev
E0(kx) ~a! and of first excited levelE1(kx) ~b! calculated in MHFA,
TDA, and OMS forB50 ~heavy solid lines!. The corresponding
unperturbed dispersion relationsE0(kx) and E1(kx) are plotted by
the dashed lines. The hatched areas show the renormalized an
unrenormalized phonon continuum.
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In Figs. 5~a! and 5~b! we show the wave-vector depen
dence of the self-energies ReS00 and ReS11 for B50 calcu-
lated with MHFA, TDA, and OMS. It is seen that with in
creasing momentum the absolute value of the self-ene
increases, and ReS00

OMS and ReS11
OMS diverge negatively at

kx5kL
(0)51 andkx5kL

(1)5A12V/vL, respectively.
The resulting energy-momentum relations of the Q1D

larons in subbandsN50 andN51 are plotted in Figs. 6~a!
and 6~b! for B50. It is seen that the TDA on-mass-she

FIG. 7. Energy-momentum relation for Q1D magnetopolaro
in the lowest subbandE0(kx ;B) ~heavy solid line! calculated in
MHFA for different magnetic field strengths:~a! vc /vL50, ~b!
vc /vL50.5, and~c! vc /vL51.0. The corresponding unperturbe
dispersion relationE0(kx ;B) is plotted by the dashed line. Th
renormalized phonon continuum is shown by the hatched area
y

-

dispersion curves diverge negatively atkx5k(N), the TDA
dispersion curves bend over and become pinned at
threshold of the unrenormalized one-phonon continuum,Eth
5E0(0)11, and only the MHFA dispersion curves show th
correct pinning at the threshold of the renormalized o
phonon continuumEth5E0(0)11.

The energy-momentum relation of the Q1D magneto
laronE05E0(kx ;B) calculated in MHFA is plotted in Fig. 7
for different strengths of the magnetic field. It can be se
from these figures that the magnetopolaron dispersion cu
bends over at the thresholdEth5E0(0)11 of the one-
phonon continuum. The bend-over region shifts to high
magnetopolaron momenta with increasing magnetic fi
@see Figs. 7~a! to 7~c!#. It should be noted that atT50 a Q1D
magnetopolaron with energy-momentum relation as plot
in Figs. 4 and 7 cannot emit a real LO phonon, because
the always finite energy difference betweenE0(kx ;B) and
Eth . In real systems, however, the energy levels are bro
ened due to impurity scattering processes. Then, it could
possible that the magnetopolaron emits a real LO phono
its energy is large enough. After emitting this LO phonon t
magnetopolaron relaxes to the subband bottom. This pro
should result in an oscillation of the electron group veloc
if an electric field is applied along the wire. In the high-fie
magnetotransport, which is essentially ballistic
GaAs-Ga12xAl xAs QWW’s, these electron velocity oscilla
tions should be measurable.

The magnetopolaron effective massm̃0* of the lowest sub-
band E0(kx) is plotted in Fig. 8. It is calculated from Eq
~11!, which can be written in diagonal approximation in th
form

m̃N*

m̃e

5 lim
kx→0

H 11
1

12g2

1

2kx

d

dkx
ReSNN

MHF@kx ,EN~kx!#J 21

.

~25!

The effective mass quotientm̃0* /m̃e decreases for smalle
magnetic fields with increasing magnetic field becau
in this range 12g2 tends to zero more slowly than~1/2kx!~d/
dkx!ReS00

MHFukx→0. For B50 we have m̃0* /m̃e5m0* /me

s

FIG. 8. Magnetopolaron effective mass of the lowest subb

m̃0* in dependence on the magnetic field calculated in MH
~heavy solid line!. The magnetic-field-dependent noninteracting

fective massm̃e is plotted by the dashed line.
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51.029, a value somewhat larger than for the strict 2D
teracting electron-phonon system (m2D* /me51.028) and for
the 3D counterpart (m3D* /me51.012) For larger magnetic
fields the mass quotient increases with increasing magn
field. It should be noted that this mass is quite different fro
the magnetopolaron cyclotron mass mc* /me

5\vc /A(EN2EN21)22(\V)2, discussed in detail in Ref
17.

In summary, we have developed a theory based
Feynman-Dyson perturbation theory that allows quite gen
ally the calculation of the quasiparticle properties in the s
band space of lower-dimensional semiconductor nanost
tures. Using this theory the quasiparticle properties of Q
magnetopolarons in QWW’s are investigated in the fram
work of a modified Hartree-Fock approximation. It is show
that compared with the old-fashioned perturbation theo
tte
-

tic

n
r-
-
c-
D
-

s

only the Green’s-function method allows one to consider
different intersubband scattering processes. The results
sented here for the Q1D magnetopolaron become identic
the modified improved Wigner-Brillouin perturbatio
theory16,17 if two diagonal approximations for the intersub
band processes are performed. It is shown that the obta
energy-momentum relations show the correct bend over
pinning at the threshold of the one-phonon continuum. TD
and TDA on-mass shell fail for the calculation of the reno
malized subband energies in QWW’s with strong lateral c
finement potentials even atB50 andkx50. In this case only
the MHFA gives correct results for the renormalized subba
energies. Thus, the modified Hartree-Fock approximation
the simplest procedure to obtain in a suitable way corr
results for the magnetopolaronic quasiparticle properties
all B, kx , and confining potentials of quantum-well wires.
one
part,

rib-
nal
c-

s-

hys.
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