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Hartree-Fock approximation for the quasiparticle properties of the coupled electron-phonon
system in quantum-well wires in the presence of a magnetic field
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A theory is presented that allows the calculation of the quasiparticle properties of lower-dimensional semi-
conductor nanostructures in the framework of a diagrammatic approach of many-particle Green’s-function
technique in subband space. We apply this theory to consider the interaction of quasi-one-dimensional elec-
trons and longitudinal-opticdLO) phonons in the presence of a quantizing magnetic field. An expression for
the electron matrix self-energy in subband space has been derived in the Hartree-Fock approximation of
Feynman-Dyson perturbation theory. Numerical results for the energy-momentum relation and the effective
mass have been obtained for the magnetopolaron states in quantum-well wires. It is shown that the Tamm-
Dancoff approximation and its on-mass-shell version fail for the calculation of the renormalization of the
excited subband energies in quantum-well wires with strong lateral confining potentials even for vanishing
magnetic field and polaron momentum. In this case only the Hartree-Fock approximation gives the correct
quasiparticle propertie$S0163-182808)02315-7

Quasi-one-dimensiondlQ1D) electron systems, such as function technique. Applying this theory to the Q1D magne-
occur in semiconductor quantum-well wir€@WW's), are  topolaron problem, we calculate an expression for the
particularly interesting systems to study interaction pro-electron matrix self-energy in the subband space in the
cesses. Here, we study the electron-phonon interaction in tHeamework of the Hartree-Fock approximation of the
presence of a quantizing magnetic field and investigate thEeynman-Dyson perturbation theory, i.e., in a diagrammatic
guasiparticle properties of the coupled electron-phonon sysapproach.
tem. We study the QWW by a model in which the electrons are

Most of the currently studied QWW's are based on IlI-V confined in a zero-thicknessy plane along the direction
compound semiconductors that are weakly polar. Electronatz=0. In they direction the electron motion is assumed to
moving through such samples polarize their surroundingbe quantum confined by a parabolic potentidl(y)
and couple to this self-induced polarization field, which is=m,02%y?/2, wherem, is the effective conduction-band-
connected with lattice vibrations in optical modes. Only theedge mass anf is the confining frequency. Choosing the
long-wavelength optical phonons have large electric dipolé.andau gauge(x)=(—yB,0,0) for the vector potential of
moments and, thus, only these phonons take part on thie externally applied static magnetic fied=(0,0B), the
electron-phonon interaction. The electron-phonon interactiogingle-particle Hamiltonian is exactly solvable with the
modifies the electronic properties By forming quasiparti-  single-particle wave function
cle states, the Q1D magnetopolarons, consisting of an elec-
tron and its surrounding phonon cloud afit) forming a <x,o|N,kX,ms>=*I'kamS(x,o)
phonon continuum for energies above a threshold energy. In
3D bulk semiconductorésee, e.g., Refs. 1 and,&trict 2D o
and Q2D semiconductor quantum-well syste(sse, e.g., :\/Te CONY =Y ) P(2) Xm(0),

Refs. 3—-1] polarons and magnetopolarons are intensively X

investigated. It has been shotfrihat the polaronic effects wherex is the spatial and- the spin coordinate|N,k, ,mg)}
increase as the dimensionality of the structure is reduceds the complete set of single-particle states in the relevant
Q1D polaron&~**and Q1D magnetopolarctsalculated in  Hilbert spacel., is the length of the wire in the direction,
Rayleigh-Schrdinger, Wigner-Brillouin, and improved assuming Born-von-Kanan periodic boundary conditions,
Wigner-Brillouin perturbation theory show interesting fea- ®(y—Y, ) is the displaced-center harmonic-oscillator
tures. So, for Q1D magnetopolarons it depends on the ratig 5, fur?ction with N=0,1,2... the subband index,

of thg confin_ement energy to the phonon energy, whether fclr¢(z)|z: 8(2), and y, (o) =6, _is the ath component of
the first excited subband a resonant magnetopolaron case ° . , *_ [ xm(+12) _
near the lower boundary of the one-phonon continuum iNe e|gensp|nor[)(]ms—(X";?(fllz) » Where my==*1/2
possible or not. Further, the Q1D cyclotron mass shows @=1|) is the spin quantum number. The center coordinate is
minimum for a finite value of the magnetlc fietd. Y, = yTSkX, wherey= wc/;;c, w.=eB/m, is the cyclotron
The aim of the present paper is to develop a more com- _ ) i , ~
plete theory of the quasiparticle properties, i.e., of theffequency, wc=(w;+Q is the hybrid frequency,l o
energy-momentum relation, damping, renormalization factor=[%/(mew.) ]2 is the typical width of the wave function in
and effective mass, for interacting electrons in lower-they direction, andk, is the x component of the electron

dimensional nanostructures using many-particle Green'swave vector. The associated energy eigenvalues are

2) 1/2
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Enm (kx) =En+ 7 2k2/(2me) + g* ugBm, where & is the uhperturbedneninteractihg matr+ix Greeg’s function,
= (N+1/2), me: Me(@,/Q)2=m./(1—9?) is the wherepu is the chemical potentiaf— 0™, andENlNi(kx,E)
magnetic-field-dependent effective magg=eh/(2mg) de- 7o

notes Bohr's magneton witm, the free (bar@ electron is the irreduciblgor propej retarded self-energy. Because in
mass, andy* is the effective spin-splitting factor. the case considered here the spin is a good quantum number,

The energy IeveI&%?Nm (k,) of an electron are shifted by thg matrix Green’s function is diagonal in the spin indices:

R
the interaction with the long-wavelength optical phononsGNN (K« E)=045 Gnnr.olkx,E). Then, Eq.(2) can be
For simplicity we will assume that the electrons inside thetransformed in the form
QWW only interact with 3D bulk LO phonons. The Hamil-

tonian of the magnetopolarohl, = He+H yn+ Hep, is S E oy — 1K) — ] 8un PSR (kG E)D)
N 1 o 1 a 1

2 1
p2 m
Hp= deX‘I’ (X){ —WcYPe, —%§y2+v(2) ><GN N7 alKx E) = S (4)
g* With MoKy, E) = ESuny = {[Enalky) — 1] Snnr
+5 ,uBBoZ+E ho[a](q)a (g)+ 1] +ENN, (ke ,E)} the dressed Green's functioBR(k, ,E)

—(GNN, (ky,E)) is given by the inverse oM (k,,E):
. GR(kX,E) M~ 1(k,,E). The quasiparticles, i.e., the Q1D
1/22 ed |[aL q)+aL q)]] %), @ magnetopolarons, are given by the poles of the Greensfunc-
tion GR(k,,E). For obvious reasons the matrix Green’s

. R . .

wherefiw, is the LO phonon energya, (q) and &} (q) are function GNN,;a(hx,E) of an electron in a QWW withv
the phonon destruction and creation operators, respectivelyuPPands taken into accouian M-subband modghas M
4=(0y.0y.qy) is the 3D wave vector of the LO phonons, solated single poles at the complex energies E,(k,)

Ve=L,L,L, is the (unit) volume of the sample, anM, p—il,(k); 7=1,23... .M _connected with subband
—[47Taprp(ﬁw|_)2]1/2 with the dimensionless 3D polaron (N 01,2...M~1) and spin index == 3). From the
coupling constant theory of complex functions it follows that the matrix
Green’s function can be represented near the quasiparticle
1 e 1 1)\ 1 poles in the following fornt?
ap_i 47780rp(850_8_3)h(0|_ 2M ZNN,;a(k )

- 12 - (ke E)= >, 2= (5)

and the polaron radius,=[#/(2mew )]*“. Herein,e., and NN/ X FLE-E,+u+il k)’

g are the high-frequencyoptical) and the static dielectric

constant, respectively, ang, is the permittivity in vacuum. where the so-called renormalization factm‘j#“ “(ky) are
Further, ¢ (x) and lﬂB(X) are the electron field operators, the residues OGNN, (k«,E) at the polesE=E,(k,)—u
which can be represented by the closed set of single-particle il’,(k,). If and onIy if " <|E —u| is valid, i.e., the
states of the QWW and, 8 are spin coordinates, used quite poles occur very close to the real energy axis, are the above
generally as spin indices because of the chodsghrepre-  states true quasiparticle states. Their energies and damping
sentation. Dyson’s equation for the retarded single-particléunctions are then determined from the equation
(temperatureGreen’s functiorG 5(X,X '|E) becomes in the

subband space a matrix equat’t%n det [Mw;alk By = =il )ls 4 8,01 =0, (6)
where in the matrix elements of the self-energy, which occur
GNN (K, ,E)= GNN (kx,E)Jr D 2 G;VOKIT(kX,E) in Myn.a(kx,E) according to the quasiparticle picturg,
ap ap Ny Nj o0 —0 is assumed. The renormalization factor reads
R NN’ ;o _ -1 ,
szlN;(kX,E)GN;N,(kX,E). ) z," (k) E:ER:ES)_ {IM™ (k. E)Innriads (D)
T 5! U”B LA
, where M~ )., denotes theNN'; a)th element oM 2,
Herein, Res means the residue at the pole, and in the self-energy
5.5 I',—0 is assumed. If the quasiparticle damping is vanish-
GO Ey= @BTNN’ 3 ingly small, the Lorentz profiles of the spectral function
NN’ ( X1 ) k : ( ) . . .
ag E—&na(ka) tut+id Anno(Ky,E) at the quasiparticle energies
ZHF . - . hFIhG 1. Ilzedyndrttartth di.agrgms
= 4 ” \ which are included in the irreduc-
NN iv, - oo, ible Hartree-Fock matrix self-
- - energyENN, (Ky,ivy,) of the in-
— - S LN teracting electron -phonon system

= et b3 T bddbdadd T n QWW's.
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2M NN/;a KT (k becomes valid. From the energy-momentum relakqk,)
A (kE)12 (KT, lculate th | ffective masof
NN’ ol Ky = E,](k +M]2+F k)’ one can calculate the magnetopolaron effective maso

) the quasiparticle statey,k,):

become sharp delta peaks:

2M

1
"o — =i
ANNr;a<kx,E>~n§lzﬁ,N'(ka(E—E,,(kX)w). ) M o ket

1 d
2 gic Bk 1y

In the quasiparticle approximatidi®@PA) one uses this ma-

trix spectral function in the whole spectrum and, thus, in this | et ys now calculate the matrix self-energy in the frame-

approach the sum rule work of the Hartree-Fock approximatiofifFA) using the
oM Matsubara technique for the temperature Green’s function.
E ZL\;N k) = Sy (10) The Feynm_an d|agram of the irreducible HF self-energy is
= shown in Fig. 1 and given by

1 1 h
EZFN’ (ky,ivn)= L E 2 <__)2 VF')\I Ni  Np N(QXrlwn)gN iNgs o(Ky—= Oy, ivp—iwy), (12

X Ox NgNj Blian ek, ~Ox ky—dy Kx

where the(Matsubara frequencies arev,=2wn/(Bh) and v,=w(2n+1)/(B#) with n=0,=1,+2,... andB8=1/(kgT),
wherekg is Boltzmann’s constant. The electron-phonon interaction potential in subband sPCe is

Vph N Na(G i) fLO Ns Na(q) 2w /h 13
Ny N Jdwg)=f Ny N - - ,
kx+qu kf k;_sqx k: el eon kx+qu kX2 k)’(_sqx k: o (iog= o) (iog+ o)
LO . .
where the form factof n; N, N3 Na(q,) is given by
kx+ Ay Ky k) —ay ks,
Lo 2 * ” ’ * '
fng Ny N3 Na(G) =2eprp(hw)® [ dy | dy" DF (Y=Y 1q)Pn, (Y=Y )Kol lax(y—y")I]
kx+qx kx k;—qx k)/( - -
XDRY' = Yio—q)Pu,(y' = Yio), (14

with Ko[|g,(y—Yy")|] the modified Bessel function of zeroth ordésr calculation and result see Ref.)2Note that the lower
indices of the form factor denote the center coordinates of the single-particle electron wave function. Explicit calculation of

Lo

f Ny N, N3 Ng(q,) shows that this form factor is independent of the wave-vector compokgatsik;, . The electron-phonon
Kyt Ay Kyck), — ay ks,
interaction may be interpreted as a phonon-mediated electron-electron interaction potential. Such an interaction potential
signifies the scattering of an electron from subbahdo N, by another electron, which becomes scattered from subNand

to N3 by exchanging a LO phonon. The frequency sum in @§) can be easily performed with the result

S el K E) = —E St N N<qx>{[na o) +11Gy, el G E—fro)
Lxax NaNp  Kicky— ko — gy K

+nB(a)L)GN N" (kx_qX!E+ﬁwL)}l (15)

whereGR(k, ,E) is the dressed retarded HF Green’s function g, ) =[e#"“t— 1]~ is the Bose occupancy factor for the
LO phonons. This Green'’s function has to be calculated self-consistently fron{4t@sd(15). This is the general HF result
for the EPIl in QWW's in the presence of a magnetic field. The HF self- er@ﬁﬁy (ky,E), with GNN, (ky,E) in terms of
NN, (ky,E) via Dyson’s equation, Egé), is then given by a very complicated matrix equation, including an integral
equation forq, and a difference equation in frequency. Because we are mostly interested in the quasiparticle properties here,
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it is more profitable to perform the frequency sum owvef, in Eq. (12) by using the QPA for the dressed Green'’s functibn
call this internal QPA Then, we obtain for the retarded self-energy

2M

1 Lo NiNj e
E:Z’;a(anE):L_z 2 fn Np  Np N’(qx)E an ! (kx_qx) E—_E
X Qx N]_Ni Kx Ky—dy Ky— Oy Ky 7=0

nB(wL)-I—l
K= 0 —fhw +i6

n Ng(w,)
E-E,(k\— QW) +ho +id]’

(16)

assuming now for simplicity a single electron in the QWW  Considering for the moment the energy-momentum
by changingifv,—E—u+id in the final result. In this relation Enan (k§°';B)=hZ}C(N+1/2)+g*,uBBa
g

equzation, E,(kx—ay) is a solution of Eg.(6) and +(h2/2ﬁe)(k§°'—quan)2+2qﬁw,_nq for the n-phonon
21N1i%(k,—q,) is determined by Eq7) and fulfills the sum  ynperturbed magnetopolaron stane kP, a;{ny}), the un-
rule (10). Equation(16) generalizes our earlier restflto the  renormalized phonon continuum is above the threshold en-
case that all possible intersubband processes are includeéir S A BY=2./2+ Ao +0* unBa. ObVi

= = ) viously,
The first term in the curly brackets comes from the emissioqugy i =& (B) =/ @Lt9 Keba Y
of a LO phonon by the electron and the second term, whic
vanishes at zero temperature, is connected with the absorp- N d his i i i .
tion of a LO phonon. A nonvanishing imaginary part results'€- ! Nwc<w_ , would cross this line with increasing wave

thout the interaction the zero-phonon magnetopolaron dis-
ersion curves with bottoms that occur fge=0 below&(®

from the emission and absorption of real LO phonons. Atvector atk=k{™=[(2m/f)(w —Nwc)]" Further, the
T=0 and forE<#w, there are no real LO phonons avail- Z€ro-phonon magnetopolaron unperturbed states Mit0
able and thus, the true magnetopolaron states are zerghd bottoms belovfyy, i.e., if NQ<w,_is valid for B=0,
phonon magnetopolaron states. cross with increasing magnetic field the lower boundary of
The generah-phonon magnetopolaron state is describedn® one-phonon continuum at
by the set|n,ki%:{ng})=|7,ki) ®|{ng}), where |[{ng})
=(1ng")[(al(a)]"|{0}) is the state vector of the LO 1 A2\ 12 112
phonons, wit, LO phonons in each mode, each with mo- wc:wémzl _( w — TX) _92] i
mentum#qg and energyiw, and k§°'=kx+2qqan is the N 2me
magnetopolaron wave vector component along the wire axis.
For the zero-phonon magnetopolaron sfatdk "=k, ;0g) 'S" " In this case also the unshifted le\&)],.o (ky;B) crossest{®
valid. Thus, in the case investigated here the renormalization. ) 2 a1 $a -
is due to virtual LO-phonon emission and reabsorption pro-at“’c_‘”C _Q[(I_(er) 117 but only if erp/i' For_ lev-
cesses only. Only a finite number of renormalized subband%IS ENQ?Oq(O;B) with w <N there is no crossing Xv'th the
will lie in the regionE<#w, , which have a unique energy- line £ with increasing magnetic field and far, <N, the
momentum relation: there is only one state for each subbangame is true for increasing wave vector. Thus, there are two
at a given energy. This picture is drastically changed for thalifferent ways to cross the lower boundafy” of the one-
one-phonon magnetopolaron stat¢s;,k§°'= Kt ayx;1g)- phonon continuum: one with increasing magnetic field and
Due to the different possible,=2mn,/L,; n,=0,+1, the other one with increasing kinetic energy. As known, in
+2,... there is a quasicontinuum of states. The lower3D and strict 2D systems the magnetopolaron behavior is
boundary of this phonon continuum has the threshold energguite different on these two ways. Hence, with increasing
Eﬁr?)=min{E,,(kX+ Ux) +hw }=E,(0)+%w., which is in- magnetic field and wave vector the zero-phonon levels with
dependent fronk, but depends on the magnetic field. Eachbottoms below the threshold ener%a;oq(0;0)<5§”‘), be-
zero-phonon magnetopolaron stbtgkgo':kx ;04) is acom-  come degenerate with the continuous states inside the one-
panied by its one-, two-, three-phonon, etc. continuum. Thusgphonon continuum. But the perturbation that couples each
the phonon continuum of all states exists above the thresholstate with the phonon continuum will lead to a splitting of
of the one-phonon continuum of the energetically lowest-each zero-phonon magnetopolaron energy-momentum rela-
lying state. Because the electron-phonon interaction is indgion with one branch below and one branch inside the pho-
pendent from the electron spin, the self-energy given by Egnon continuum. Thus, all zero-phonon magnetopolaron states
(16) is indeed independent from the spin index too. The Zeewith energy bottoms below the threshold of the renormalized
man energy only scales the quasiparticle energy, i.e., it maghonon continuum &gﬁ) must bend over at the associated
be dropped by redefining. Thus, spin-up and spin-down threshold energy for spin-up and spin-down electrons if their
electrons are independent and each group may be consideredergies approach with increasing momentum and magnetic
separately. Henceforth, two different threshold energigs  field the lower boundarg{® of the one-phonon continuum

andEﬁP of the two-phonon continua arise for all spin-up andbecause of the anticrossing repulsion of the levels. For larger
all spin-down electrons, respectively. momenta and/or magnetic fields these states are then pinned
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at this line. This effect is called resonant magnetopolarorapproximation is well justified in most cases, because the
level coupling (RMPLC) and the associated quasiparticle nondiagonal matrix elements are usually only- 10% in
state is called resonant magnetopolaron. magnitude of the diagonal ones. In the case of the internal
In general, the numerical calculation of the self-energy indiagonal approximation, from Eq(4) it follows that
the form of Eq.(16) is possible but very cumbersome. Thus, GR. o(Kx,E) =[E— Ena(ke) = SRn.o(ke,E)]™1  for the
we will look for further suitable approximations. At first it is matrix Green’s function and, thus, quasiparticle energies
profitable to perform a diagonal approximation for theand damping function are determined by, (k)
dressed Green’s function in EQ(12), ie., to set =Enal(Kx)+RE RN olKe:Enal(Ky)] and  Tna(ky)=
Oy al K 1 v0) = O O o (K, T vp) - | call this an internal —ImEﬁN;a[kx,ENa(kx)], respectively. In the QPA the spec-
diagonal approximation, because in this case the resultingal function in the diagonal approximation Ay .(Ky,E)
self-energy as well as the Green’s function given by Dyson’'s= 6(E—Ey,(Ky)). Applying this internal diagonal approxi-
equation remain nondiagonal matrices. The internal diagonahation to Eq.(16) and assuming@ =0, we obtain

LO
fNNg Np o N(Oy)

1 K k= 0y k= Al Ky
=2 —. (17)
Lx ax Ni E_gNla(kx_qx)_Rez“le;a[kx_QXaENla(kx_qx)]_th_H5

3 insalke E) =

T.his §elf-energy gombined with E¢6) determines the qua- ReEHENl;a[kX_qX1EN1a(kX_qX)]2Rezgg;a[oi Eo,(0)] in
siparticle properties of the Q1D magnetopolaron in the

tramework of the HEA. Settin E 0 in the de the denominator of Eq.(17). | call Eqg. (17) with
W . ing R ., =0 i - :

, s i J . RES TN, ol K O Enalki— 0 1= RESGG,,[0, Ega(0)] i
nominator gives the Tamm-Danco approxmatl() A). the denominator together with E¢5) the modified Hartree-
for the self-energy. This result follows directly from the first-

q it = h depicted in Fi 1_Fock approximation(MHFA) for the interacting electron-
order: sefi-energy  Feynman  grap epicted i Fig. ‘phonon system in the subband space. Let us discuss the

3 Mol E) =27 o(ky E). Comparing the HFA with physical meaning of this approach in detail. In the MHFA we
the TDA it becomes obvious that the HF self-energy containgse in the calculation of the matrix self-energy, when starting
the same scattering processes as in the Tamm-Dancoff cagem Eq.(15), instead of the exact dressed HF Green’s func-
but between the renormalized subband energies. Thus, frogy, GEN" (k,,E) an approximated oneGﬁN,. (K, ,E)

the point qf view of the EPI, the HF approa_lch given by Eq. _ 5NN,/{Eﬂ ENa(kx)_Eg('):-a[O, EL(O)]}. It becorhaes v
(17) is an improved Tamm-Dancoff approximatiéfTDA). ) \5'that the MHFA exactly fulfills the first requiremeisee

It.is knowg (iee,' e.g.,fReL. Jahat thehTDA gives the Wrolng also discussion belowThe MHF self-energy simplifies the
pinning  behavior OI the zer%-p ononh magnetzpo aro'yE self-energy, Eq17), twofold: (i) At first it is assumed as
energy-momentum relations at the one-phonon engm@y  he starting point of the self-consistent calculation of the ma-

ab?ve t'he'ulnrerrlormglized .grouhrc]d StgéeO;E’l)E' b trix self-energy that the renormalization is the same for all
h principle, the matrix self-energy o (L7) may be levels. (i) Secondly, for the reference leve, ,(ky—Qqy)
calculated numerically. However, this is a very cumbersome 1

— HF
procedure because for the calculation of each matrix elemerﬁﬁwL_gNla(kx_qx) + RéNlNl;a[kx_ Ox ENla(kx_qx)]
all the other matrix elements must be known from the fore-+ﬁwL%€Nla(kX—qx)+Re25'op;a[0, Eo,(0)]+Aw_ the pin-

going step of the self-consistent procedure. Thus, it is profning atEy ,(0)+ 2% w,_ is neglected. As described above the
itable to perform a further simplifying approximation. How- o ominator of the fraction 1En(kx)—[ENla(kx—qX)

ever, this approximation of the HF self-energy of Efj7) . . .
shall be an improved TDA and, therefore, it has to fulfill two 7 @1} iS responsible for electron scattering betwdep
andEy, ,+7%w . Assuming for the momertt, andk, to be

requirements. Firstly, fok,— 0 the matrix self-energy of the
ground state should approach the corresponding matrix selfixed, the most important contributions to the self-energy
energy calculated on-mass shglDMS: E=&;,(k,) in EE,F\,,;Q result from the electron scattering betweep and

ReS {on(ky, E)=ReZ535(k,)]. Secondly, for largek, the the energetically lowest reference levels, i.e., the reference
matrix self-energy should give the correct pinning behaviolevels Eq,(k,—0ay) +#w_ . As shown aboveEg,(ky—ay)

of the zero-phonon magnetopolaron energy-momentum relar#w, bends over aty,(0)+2%w, . Because the self-
tions at the one-phonon enerfjy, above the renormalized energy is nearly independent from the wave vector,
ground stateEq(0;B). From Eq.(17) it becomes obvious ReSHE [ke— 0y, Eqal(kx— ) 1=REGE[0, El(0)],  as
that the real part of the HF self-energy at the quasiparticléong as the energy is below the bend-over redieee, e.g.,
energies shows the energetically lowest resonance d&ig. 5a) below], the sum over all quasicontinuous values of
E,(Ko) =E&0,(0)+ ReEEOF;a[O, Eo.(0)]+hw_ because the q, gives a sum of fractions {E,(ky)—[Eq.(Kx—0x)
phonon wave vector componeny can take all possible val- +7%w_]}, in which the most important large terms, arising
ues. Therefore, it should be a reasonable approach to skbm energies below oEy,(0)+ 2% w, , are correct in the
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FIG. 2. The matrix self-energies Bg, (a) and R& , (b) of the
Q1D subband€, and &, respectively, fokk,=0 as a function of
the magnetic field calculated in MHFA, TDA, and TDA on-mass
shell (OMS).

Ey/fiwp,

MHFA. Only the unimportant smallest ternfise., the small-
est fractions in the sum ovey,), arising for energies in the
bend-over region of the reference levelgy,(k,—0qy)
+hw ~Eq,(0)+2Ahw, , are in the MHFA smaller than in
the HFA. Thus, compared with the HFA, the MHFA slightly
underestimates the EPI self-energy, but this is a negligibly
small effect. This is true because of the quasicontinuum of
states according to the differeqpt, we have for a givek, a wlwy
quasi-infinite number of correct states, which have the larg-
est contribution to the self-energy. For this reason, the ener- _
getically higher states\; >0, give only a minor contribution FIG. 3. Dependence of the renormalized levEls E, (heavy
to the self-energy, so that pai} of the approximations has .SO|Id lineg and Ey+ A w (thin solid line aqd of the unrenormalll-
practically no consequence for the numerical value of th‘%zjg- lé\)/?:l;fgcodlzagtle; da}r;ldhiﬁti?g) ?gangid ;';‘;fcg’?ntgeMgagnet'c
matrix self-energy. Thus, we can conclude that the MHFA™™" ‘ ' '
drastically simplifies the calculation of the matrix self-energy
but still gives highly accurate results especially for the lowermatrix self-energy are small compared to the diagonal ele-
subbands and, most important, it results in the correct pinments and, thus, the diagonal approximation is a suitable
ning behavior of the zero-phonon magnetopolaron dispersioapproach to calculate the magnetopolaron dispersion relation
relations. Compared with the exact HFA, the MHFA is com-Ey,(k,). Note that with decreasing confining energy the
putationally much simpler and highly efficient. contribution of the nondiagonal elements to the quasiparticle
The numerical calculation we have applied to aproperties increases. With these approximations the real part
GaAs-Ga_,Al,As QWW with the material parameters,  of the MHF self-energy of Eq.17) can be written at the real
=0.07, r,=3.987 nm/i 0 = 36.17 nm,m,=0.06624n, for quasiparticle energiegk=Ey\(k,) below the phonon con-
GaAs and for the confinement enerfgf) =12 meV is used. tinuum, introducing 3D polaron uni{gnergies are measured
For the chosen parameters the nondiagonal elements of tlie units of 7w _ and lengths in units of ), in the form
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FIG. 4. The lowest Q1D magnetopolaron legj(k, ;B) (heavy solid ling as a function of the magnetic field for different magneto-
polaron momenta(a) k,r,=0; (b) ky,=0.5; (c) ks p=1.0, and(d) k,r,=1.5 calculated in MHFA. The corresponding unperturbed
dispersion relatior£y(k, ;B) is plotted by the dashed line. The renormalized phonon continuum is shown by the hatched area.

ReS MAF K, En(Ky) ] (18) ReEMIFI0, Ex(0)]=0 in AMHF(k,), the result of the
TDA in the diagonal approximation follows, which is

:_ﬂf“’ j” _aJ'°° 42 equivalent to the Wigner-Brillouin perturbation theory
2w ) 491 | de e | dt exp—[1=A°N (WBPT). If additionally R&NMFk, ,Ex(k,)] is set equal to
s , zero in ANNT(ky), which is equivalent to considering the
+(1-y%)qf cose—2(1-y?)kq cosp diagonal elements of the first-order self-energy on-mass

shell,E=&y(ky) in ReX (R (ky ,E)=ReZ IMS(k,), the result

— AV S No! aN1-N2 of the Rayleig.h—S_ch'rcdinger perturbation the_orgRSP'D fol-
N =o Ni! lows. From this discussion it becomes obvious that the exact

HF Green's-function result, given by Eq4.5) and(16), and
X[LNL-N2(gq)]2e NNt (18  the MHFA include much more intersubband processes than
where AMIF (k) =ReSMIFT K, En(k]—  the orthodox perturbation theories. The basic differences be-

Rezg"oHF[O, Eo(0)]. Further, we have introduceqnz(qﬁ tween the results for Q1D magnetopolarons obbtained by
+q§)1/2, cosp=ay/q;, Ssinp=qy/q, a:(qﬁ/)\z)[l—(l using the Green’s—fl_mction te.chnique and by u§ir_19 the old-
— y))coy], )\zzz)c/wb N, =max(N,N’), N, fashioned perturbation the_'orles are th.e followiriD: The .
—min(N,N") andLN'(g) is the associated Laguerre polyno- Feynman-Dyson perturbation theory gives real and imagi-

mial. By scaling the energy, the Zeeman energy does n ary self-energy contributions for intrasubband and intersub-

occur in this equation. Note further that the spin splitting ofP@nd processes, while the old-fashioned perturbation theories

the levels is very small compared to the subband separatiodVe only real self-energy contributions for intrasubband and
of 12 meV under consideration, e.g., f@, =m.w /e SOMe intersubband process@s. The matrix self-energy cal-

=20.7 T, wherew,= w,, we have|g* ugB|=0.527 meV culated with the Green’s-function technique contains scatter-
for GaAs, whereg* = —0.44. ing processes of two electrons from subbahdsto N and
The approach for the self-energy in E@8) is identical to  from N’ to N;, whereas RSPT, WBPT, and IWBPT include
the second-ordeimodified improved Wigner-Brillouin per- only the symmetric processes of scattering fridmto N and
turbation theory(IWBPT).1617-2Fyrther, if one takes in Eq. from N to N;. The asymmetric scattering of the two
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electrons by exchanging an optical phonon give rise to th&VBPT, respectively(iv) The diagonal elements of the TDA
nondiagonal elements of the matrix self-enerdyi.) Ne-  matrix self-energy in the mass-shell approximation become
glecting these asymmetric scattering processes, the diagorthle same as in second-order RSPT.

elements of the real part of the self-energy The sum oveN’ and the integral oveq in Eq.(18) can
ReX yn[ Ky, En(ky)] at T=0 calculated in MHFA and in be easily performed analytically. For the renormalization of
TDA become equivalent to the second-order IWBPT andhe lowest subband we obtain from HG8)

ReS M Ky Eo(ky) 1= — > ﬂ/Zd “dt e (1AM
00 [Kx,Eo(ky)] ap ¢ t e
JaJo 0

exp{\2t2k2(1— y2)2coel[1— e M1+ (1— y?)coLp(e M+ N2t —1)]}
X .

(19

\/1—e**2‘+(1— y?)coLe(e M+ N2t —1)

If the lateral confining potential vanishes, i.e., for=0 and, thusy=1 and\?= ./, in Eq.(18), one derives, e.g., from
Eq. (19), the analytical result

Vo (11
~aoy Blyzg
for the 2D magnetopolaron self-energy, wh@gx,y) is the beta function and obviouslgs"™ =0. This result was first
obtained by Larsefi.It becomes obvious that this expression is independef, ofThis is true because electrons quantum
confined in thex-y plane are totally quantized in Landau levels in the presence of a perpendicular quantizing magnetic field.

In the case of a vanishing magnetic fielB£0), Eq. (18) is valid with y=0, \?=Q/w_, anda=(qf/\?)sirPe, as
discussed in detail in Ref. 16. In this case EIp) reads

ReSNG " | 0= (20)

e 17200 a1t fp expltkZcofe/{1—[ (e 14+ N2t—1)/(N2t) ]sire})

a o0
RSMHF K Eok)]=— — | dt —————— P
o ° \/;fo Vt 0 V1-[(e ™4\ —1)/(\2)sirPe

Performing now the 2D limit one obtains the polaron correction to the 2D energy-momentum rélajilp) = (1— %) ki:

a Ky

RES Y Ky Expl(ky)]=— L , (22
T Al ko | V1- A%k

whereK(x) is the complete elliptical integral of the first kind. This result was first discussed by Peeters, Warmenbol, and

Devreesé, who showed thatReS, 35 [k, ,E,p(Ky) 1| — if Exp(ky) — Eop(0)— 1 and thus the 2D energy-momentum relation

is pinned at this line. The TDA on-mass-shell reSidtobtained withA ¥F(k,) =0 and is only valid fok,<k, =\2mew, /%.

In the case of vanishing wave-vector componient from Eq. (22) and withK(0)= #/2 the well-known result

RSO, Exn(0)]= - apy (23

follows. It is noticeable that thémodified Hartree-Fock self-energy for the ground-state renormalizatidg=a0 is identical
to that in OMS, but differs from the TDA result, where

RSO0, Exp(0)]=— 5 = (24)
2D ’ -
2 \1-Rex 120, E»p(0)]
|
follows for B=0 andQ=0. o creasing magnetic field. Please note thak i = Res S
In Figs. 2a) and 2b) the energy renormalizations of the p . REMHFLReSOMS For B=0 we find for the matrix

ground-state level and of the first excited level SBgand o MHE TDA
Re>,,;, respectively, are depicted as functions of the mag_self-energllvleHsF. Req =—4.057 rpDeAV, REg = —3.850
netic field in the case of vanishing wave-vector componenmevéMzeEll = —4.482 meV, RE;;"= —4.206 meV, and
k,=0. The calculations are done for MHFA, TDA, and R&1; = —4.516 meV. These values are slightly enhanced
OMS. The absolute values of Rg, and R&;, i.e., the compared to the strict 2D case (Rgh=—3.978 meV and

Q1D magnetopolaron binding energies, increase with inthe 3D case (RBS,=—2.532 meV. It is seen that the OMS
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FIG. 5. The matrix self-energies Bg, (a) and R& 4, (b) of the FIG. 6. The energy-momentum relation of the lowest level

Q1D subbands’, and &, respectively, foB=0 as a function of g (k) (a) and of first excited leveE; (k,) (b) calculated in MHFA,
wave-vector componerkt, calculated in MHFA, TDA, and TDA TDA, and OMS forB=0 (heavy solid lines The corresponding
on-mass shelfOMS). unperturbed dispersion relatiogg(k,) and &;(k,) are plotted by

the dashed lines. The hatched areas show the renormalized and the

result for R& 1, diverges negatively at the resonancef, unrenormalized phonon continuum.

with &, i.e., slightly beloww.= w, . It should be noted that
gven atB=0 andk,=0, TDA and TDA on-mass shell are

the behavior of these self-energies on the magnetic field i S g 5
very similar to that on the confining frequency. useful only for QWW’s with weak confinement potential,
ie., ifQ<w,.

The dependence of the first two renormalized and un'
P anc un The lowest subband enerdy,(k, ;B) including the po-

renormalized levels on the magnetic field is pl in Fig. . . ; . A .
the magnetic field is plotted 9 3Iaron|c corrections in MHFA is plotted in Fig. 4 as a function

for k=0. Here_and in the following f|gures the ENEIYY" 1t the magnetic field for differenfzero-phonopmagnetopo-
momentum relations are plotted as mentioned above witho pol_ . .

L aron momenta k. =7k, . Itis seen from Fig. &) that for

the Zeeman energy. If necessary one may add it with the ", .

vanishing magnetopolaron momentum the enetp(k,

result that two pictures arise, one shifted up and the Other=0;B) increases with increasing magnetic field. For a finite

down by the Z_eeman energy. The renorm_alized ground'Staﬁ%agnetopolaron momentum the enefgy(k,#0:B) shows
energyE, is slightly below the unrenormalized ground-statea minimum atB# 0 [see Fig. 4b)]. This minimum is caused

energy&,, the first excited leveE; diverges negatively at - . ~
the resonance, which appears in dependence on the confini@é th? magnguc—ﬂeld depengence of the gﬁect|vim?§s
ith increasing magnetic field the effective masg in-

frequency below ofw.= w_, if calculated in TDA on-mass =te :
shell. FurtherE, approaches for large magnetic fielflgr1 ~ creases and thijs the kinetic energy decreases while the con-
if calculated in TDA[see Fig. 8&)], i.e., the pinning appears fining energy% w, increases. In Figs.(d) and 4d) it is as-

at the wrong energy inside the renormalized phonon consumed that the ground-state plus kinetic energy is so large
tinuum. Only the MHFA gives the correct pinning Bf for ~ that the noninteracting single-particle energy(k,#0;B

large magnetic fields at the threshold of the renormalized=0) lies within the phonon continuum. The electron-phonon
one-phonon continuunjsee Fig. 8a)], i.e., at the correct interaction will result in a shift of the zero-phonon magneto-
ground state plus one LO phonoBy+ 1. Because the be- polaron quasiparticle energy below the boundary of the one-
havior of the renormalized energy levels in dependence ophonon continuum. This is valid for all coupling strengths
the magnetic field is very similar to that on the lateral con-a, and thus is a special feature of the resonance of a discrete
fining potential of the QWW, we come to the conclusion thatstate with a continuum of states.
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FIG. 8. Magnetopolaron effective mass of the lowest subband
ﬁ{; in dependence on the magnetic field calculated in MHFA
(heavy solid ling. The magnetic-field-dependent noninteracting ef-
fective masam, is plotted by the dashed line.

dispersion curves diverge negatively lgt=k™), the TDA
dispersion curves bend over and become pinned at the
threshold of the unrenormalized one-phonon continugg,
=&,(0)+1, and only the MHFA dispersion curves show the
correct pinning at the threshold of the renormalized one-
phonon continuunt,=E,(0)+1.

The energy-momentum relation of the Q1D magnetopo-
laronEy=E(k,;B) calculated in MHFA is plotted in Fig. 7
for different strengths of the magnetic field. It can be seen
from these figures that the magnetopolaron dispersion curve
bends over at the threshold;,=Ey(0)+1 of the one-
phonon continuum. The bend-over region shifts to higher
1. 5 \ magnetopolaron momenta with increasing magnetic field
y [see Figs. @) to 7(c)]. It should be noted that &1=0 a Q1D
magnetopolaron with energy-momentum relation as plotted
in Figs. 4 and 7 cannot emit a real LO phonon, because of
the always finite energy difference betweEg(k,;B) and
Ew. In real systems, however, the energy levels are broad-
ened due to impurity scattering processes. Then, it could be
possible that the magnetopolaron emits a real LO phonon if
its energy is large enough. After emitting this LO phonon the
magnetopolaron relaxes to the subband bottom. This process
should result in an oscillation of the electron group velocity
if an electric field is applied along the wire. In the high-field

FIG. 7. Energy-momentum relation for Q1D magneto Olaronsmagnetotransport, which is essentially pallistic_ in
in the lowest sugbybanEO(kX;B) (heavy soliélgline ca?culatgd in QaAs-Gq_XAIXAs QWWrs, these electron velocity oscilla-
MHFA for different magnetic field strength$a) w./w =0, (b)  HONS should be measurable. _
w./w =0.5, and(c) w./w_=1.0. The corresponding unperturbed ~ The magnetopolaron effective masj of the lowest sub-
dispersion relationgy(ky ;B) is plotted by the dashed line. The bandEy(k,) is plotted in Fig. 8. It is calculated from Eg.
renormalized phonon continuum is shown by the hatched area. (11), which can be written in diagonal approximation in the

Ey/fiw,

Ey/tiw;

form
In Figs. 5@ and §b) we show the wave-vector depen- __ 1
dence of the self-energies Rg, and R& ,; for B=0 calcu- my

—=lim{1+ & NN Tk, En(k)]

lated with MHFA, TDA, and OMS. It is seen that with in-  m, k0 1— 972 2_kX dk

creasing momentum the absolute value of the self-energy (25)
increases, and Rgy'® and R&MS diverge negatively at o
kye=k{9=1 andk,=kP=1-Q/w, respectively. The effective mass quotienhy/m, decreases for smaller

The resulting energy-momentum relations of the Q1D pomagnetlc fields W|th increasing magnetic field because
larons in subbandli=0 andN=1 are plotted in Figs.@ in this range -y tends to zero more slowly thafi/2k,)(d/
and @b) for B=0. It is seen that the TDA on-mass-shell de)ReSOHFlk _o. For B=0 we have m}/m,=mé/m,
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=1.029, a value somewhat larger than for the strict 2D in-only the Green’s-function method allows one to consider all
teracting electron-phonon systemmy,/m.=1.028) and for different intersubband scattering processes. The results pre-
the 3D counterparti3,/me=1.012) For larger magnetic sented here for the Q1D magnetopolaron become identical to
fields the mass quotient increases with increasing magnetiie modified improved Wigner-Brillouin perturbation
field. It should be noted that this mass is quite different fromtheory*®*” if two diagonal approximations for the intersub-
the magnetopolaron cyclotron mass my/m.  band processes are performed. It is shown that the obtained
=hw/\(Ey—En-1)°— (AQ)?, discussed in detail in Ref. energy-momentum relations show the correct bend over and
17. pinning at the threshold of the one-phonon continuum. TDA
In summary, we have developed a theory based omnd TDA on-mass shell fail for the calculation of the renor-
Feynman-Dyson perturbation theory that allows quite genermalized subband energies in QWW'’s with strong lateral con-
ally the calculation of the quasiparticle properties in the subfinement potentials even Bt=0 andk,=0. In this case only
band space of lower-dimensional semiconductor nanostrud¢he MHFA gives correct results for the renormalized subband
tures. Using this theory the quasiparticle properties of QlDenergies. Thus, the modified Hartree-Fock approximation is
magnetopolarons in QWW'’s are investigated in the framethe simplest procedure to obtain in a suitable way correct
work of a modified Hartree-Fock approximation. It is shownresults for the magnetopolaronic quasiparticle properties for
that compared with the old-fashioned perturbation theoriesll B, k., and confining potentials of quantum-well wires.
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