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We study the nonequilibrium dynamics of solitons in model Hamiltonians for Peierls dimerized quasi-one-
dimensional conducting polymers and commensurate charge-density-wave systemesal-Tinee equation of
motion for the collective coordinate of the soliton and the associated Langevin equation is found in a consistent
adiabatic expansion in terms of the ratio of the optical phonon or phason frequency to the soliton mass. The
equation of motion for the soliton collective coordinate allows one to obtain the frequency-dependent soliton
conductivity. In lowest order we find that although the coefficierdtaficfriction vanishes, there is dynamical
dissipation represented by a non-Markovian dissipative kernel associated with two-phonon processes. The
correlation function of the noise in the quantum Langevin equation and the dissipative kernel are related by a
generalized quantum-fluctuation dissipation theorem. To lowest adiabatic order we find that the noise is
Gaussian, additive, and colored. We numerically solve the equations of motion in lowest adiabatic order and
compare to the Markovian approximation which is shown to fail both inghend the sine-Gordon models
even at high temperaturdsS0163-182€08)05202-3

I. INTRODUCTION AND MOTIVATION tions of the soliton velocity and using Mori’'s formulation.
There are very few experimental data available on the

Since the original work of Krumhansl and Schrieffen  dynamics of soliton diffusion. Although neutral soliton dif-
solitons as excitations in quasi-one-dimensional systems, fusion has been observéfibr a thorough review see Refs. 3
has been realized that solitons play a fundamental role in thend 10, the main dependence seems to be determined by
transport properties of quasi-one-dimensional Peierlssoliton trapping and pinning. Thus the experimental evidence
dimerized conducting polymé and commensurate for soliton diffusion is at best inconclusive.
charge-density-wave systems. Recently a more microscopic approach to the study of the

An important line of experimental and theoretical studynonequilibrium aspects of soliton dynamics has been
has been to determine the dissipative aspects of solitoproposed® This approach is based on the treatment of
dynamics>° Soliton diffusion may play an important role in particle-reservoir models in which the soliton is taken to be
the dynamics of photoexcitations, in the photoconductivity inthe particle and the phonon fluctuations as the reservoir. The
conducting polymers, and in the transport phenomena assphonon degrees of freedom are “integrated out” in a pertur-
ciated with phase solitons in charge-density-wavebative manner, leading to a nonequilibrium effective action
systems™® of the soliton.

Early numerical simulations of classical model Hamilto- In this article we study the nonequilibrium dynamics of
nians revealeld that solitons undergo Brownian-like motion. the soliton following this latest approach applied to micro-
A study of the interaction of solitons with phonon wave scopic models relevant to the description of solitons. The
packets showed that wave-packet—soliton collisions induce soliton dynamics is treated via the collective coordinate
randomlike motion of the solitotf. One of the main focuses method in which the coordinate representing the center of
of study was the determination of the diffusion constantmass of the soliton becomes a quantum mechanical variable.
which was estimated in Ref. 12 for thg* model Hamil- We use the Schwinger-Keldy§h?® formulation of non-
tonian and in Ref. 13 for the continuum model of equilibrium statistical mechanics to obtain theal-time
trans-polyacetylené” In these studies the process of soliton equations of motion for this collective coordinate and the
scattering off opticd?*®and acousticaf phonons was stud- corresponding Langevin equation by tracing out the phonon
ied and input in(semijclassical estimates of the diffusion degrees of freedom in a consistent adiabatic expansion in the
constant based on the classical fluctuation dissipation theaatio of the optical phonofphason frequency to the soliton
rem. A more microscopic formulation of the calculation of mass.
the friction and diffusion coefficients of solitons based on the This Langevin equation allows the unambiguous identifi-
linear response analysis in terms of Mori's formulation wascation of the dissipative kernels and the noise correlation
presented in Ref. 15. These authors focused on obtaining tHanction, thus allowing us to establish a generalized fluctua-
static friction coefficient by evaluating the correlation func- tion dissipation relation.
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To lowest order in the adiabatic expansion we find that j
H= ] dx -
dx

the dissipative kernels have memory and a Markovian ap-
proximation is unreliable. For the materials of interest, such
as polyacetylene with a typical optical phonon frequency of
~0.1-0.2 eV or charge-density-wave systems with a typical U(d)= i(mz_ 94?)?, )
phason frequency= 102 eV and bandwidths of several eV, 29

we find that the classical limit of the generalized fluctuation . -
dissipation theorem is not applicable. where the constant® andg are determined by the original

To our knowledge none of the previous approaches parameters in Eq1). These two parameters can be related to

soliton dynamics focused on obtaining the real-time equa'ghe_optigal phonon frequenay,=2m and the soliton mass
tions of motion, and its solutions in particularly relevant M =4m"/3g (see next sectionAs will become clear in the -
cases, nor on the quantum Langevin equation and the proIgc_JIIowmg sections, the equation of motion can be obtained in

erties of the stochastic noise and the quantum-fluctuation di SyStématic expansion in the adiabatic ratiM Whiczh is
sipation relation. identified with the dimensionless coupling constghin“ of

In Sec. Il we introduce and motivate the models to beth€ field theory. In this model we identify the soliton mass
studied and determine the range of parameters that are eith the rest energy of the solitom and using the parameters
perimentally relevant. Section Il summarizes the relevanio! transpolyacetylene given l?y w,~0.12 eV andM
aspects of collective coordinate quantization as applied to th& 0-4 €V we find that the adiabatic raim/M~0.15 is small
problems under study. Section IV presents the nonequilib@nd @ perturbative expansion in this ratio may be appropriate.
rium formulation for obtaining the equations of motion and !N charge-density-wave systems, beginning from the
the Langevin equation in the general case and discusses th@ndau-_%mzburg_ description of the quasi-one-dimensional
features of the solution and the generalized quantumSystemt °and fixing the amplitude of the order parameter
fluctuation dissipation relation between the noise correlatiofgaP but allowing the phase to fluctuate, the dynamics is
function and the dissipative kernel. Section V studies specifiél€términed by the effective Hamiltonian for the phase of the
model Hamiltonians—the ¢* and sine-Gordon field ©order parameteffor details see Refs. 5.9
theories—and analyzes the Markovian approximation and

+U(¢)},

the validity of the classical limit. Section VI summarizes our B n(eg) ,(de 2 m§(de)\?
conclusions, and poses further questions and possible future H= 4 dx v dx/ | me| dt
directions.
L TR M) ®
co ,
Il. MODELS M>Pm, M

' Although we are pr.ima.rily interested iln Stud.ying nonequi- ity m, andmj the electron mass and its effective massg,
librium soliton dynamics in quasi-one-dimensional Cond“Ct'andvF the Fermi frequency and velocity, and the com-
ing polymers such asranspolyacetylene and charge- nengrapility of the charge density wavd. Again, after
density-wave systems which are electron-phonon systemsiiape rescalings of time and space and a canonical trans-

we will use microscopic model Hamiltonians that are somezqmation. the Hamiltonian can be cast as in E2). above
what simpler to study. In what follows we will set for con- |+ \with ﬂ’1e potential given by

venience fi=kg=1. For polyacetylene in principle we

should start our analysis from the continuum model of m* \/a
Takayama, Lin-Liu, and Maki* however, as these authors U(e)=U(p)= —(1—005{—¢ ) (4
showed the solitons in this continuum model are similar to g m

those of the Hamiltonian model studied by Krumhansl an
Schrieffer! In particular Ogataet al® had previously used
the ¢* field theory as model Hamiltonians for conducting
polymers. Thus we will study the simpler microscopic model
defined by the Hamiltonidn

dx
H=J|—

Clearly the quantitative details of the dissipative pro-
cesses in this model will be different from those of the con-
tinuum model since this model does not incorporate elec-
trons. However, we expect the qualitative features to be Ill. COLLECTIVE COORDINATE QUANTIZATION
robust. Upon rescaling the length and time scales, perform-
ing a canonical transformation, and adding suitable con- In the previous section we have provided a rational for
stants, the Hamiltoniatil) obtains the form of ap* field  studying the dynamics of solitons in model field theories
theory, described by Hamiltonians of the form

dIn this model the gap in the phason spectrum is identified
with m and the soliton energy is given by =8m?3g. For a
typical material, such as §gM,O5 the gap in the phason
spectrum is~10"3 eV whereas the soliton energy is
~3X 102 eV.>™® Therefore for this type of material the
adiabatic ratiom/M=0.03 and a perturbative expansion is
P2(x) A B mc du(x))2 reliable.

YA 4 7
om +2u(x)+4u(x)+ >

dx We must note that for both cases the temperatures of ex-
(1) perimental relevance correspond Te<3x 10 2 eV which

are of the order ofor smaller thaihthe typical optical pho-

non or phason frequencies and the nature of a classical limit

must be understood carefully.
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m 1/d¢ As a consequence of translational invariance, there is a

H =f dx) 5+ 5| gx) TY(®) (5  mode with zero eigenvalue given By
after suitable rescaling of the parameters. 1 (do

A static soliton is a solution of the time-independent field Up(X—Xo) = _< _5> ) (13
equation Mt dx

3 d2¢>s+ dU(ds) 6 Depending on the particular form of the potentia( ¢)

dx2 ap 6) there may be other bound states is the case with the*

potentia). There is a continuum of scattering states with fre-
with boundary conditions such thak|—%, ¢s—=*¢..,  quenciesv;=k?+ o> andw’=d?U($)/d*¢|, . These scat-

and U(¢.)=07?" Translational invariance implies that tering states correspond asymptotically to phase-shifted
such a solution is of the formps(x—Xo) with xo an arbitrary  plane waves in the cases under consideration because the
translation chosen such thét(0)=0; thereforex, is iden-  relevant potentials are reflectionlé$$” The frequencies,
tified with the position of the soliton. are identified with the optical phonon frequencies in the case
Including the time derivatives in the equations of motion of the ¢4 modet*2%°and of the phason gap in the case of
one sees that after proper rescalings of time and spagghase solitons in charge-density-wave syst&fis.
that led to the form of the Hamiltonian given above they are  The fluctuation along the functional direction correspond-
invariant under a “Lorentz” transformation. A soliton jng to the zero-frequency mode represents an infinitesimal
moving with constant velocity is given byp{(X—Xo translation of the soliton that costs no energy. Since this
—vt)/(1-v?)].1**°The energy of a static soliton is iden- mode has no restoring force, any arbitrarily large-amplitude
tified in these models with the soliton massand is given  fluctuation along this direction is energetically allowed.
by Therefore fluctuations along this direction must be treated
5 nonperturbatively. The variablg, i.e., the center of mass of
M=E[ ¢ ]:f dx(d¢s> the_sohton, is elevated to the status of a quantum mechanical
s dx ) ° variable, and the fluctuations are orthogonal to the zero
mode. This treatment is the basis of the collective coordinate
Quantization around the static soliton solution impliesmethod®-**which was previously used within the context of
writing soliton dynamics by Wada and SchriefférMaki,'®* and
Ogataet al'® and within the context of polaron dynamics by
H(X,1) = he(X—Xo) + P(X—Xg:1), (8)  Holstein and TurkevicA* More recently Castro Neto and
Caldeira implemented the collective coordinate quantization
where the fluctuation operator is expanded in terms of gnethod combined with influence functional techniques for
complete set of harmonic modes around the soliton, the treatment of solitons and polardifs.

In collective coordinates quantization instead of the ex-

(@)

- - ansion(8) with (9) we expandg(x,t) as
Hx=%0:)= S Qu(Ol(x—Xo), (9 ~ Pansion(® wih () we expandd(x.()
where the mode functiorig,(x—X,) obey B, 1) = ds(X—Xo(1))+ 2, Qn(t)Us(X—Xo(1)). (14)
n#0
d? d?U 5
- WJFF Un(X—=Xo) = @ln(X—Xo),  (10) This amounts to a change of basis in functional space,
¢ from the “Cartesian” coordinate&q,} to “curvilinear” co-

ordinates{Xq, Qo).
The next step is to express the Hamiltonian in terms of the

new variable§<o(t) and Q,(t). For this we find more clear

with the completeness relation given by

E u,’;(x—xo)ub(x’—xo)Jrf Ak (X—Xo)Ui(X" —Xo) and convenient the analysis presented by Holstein and
b Turkevich** which we summarize below for the cases under
= 5(x—x") (12) consideration.

and the subscriph stands for summation over bound states
andk for scattering states. For bound states, the eigenvectors . . o
are chosen to be real, and for scattering states, we label them I the Schrdinger representation the kinetic energy can
asUy(x—Xo) and are chosen such thaf =2/_,, in which be expressed as a functional derivative as
case the coordinate operators obey the Hermiticity condition
A (D) =0 -(1). I L

These eigenvectors are normalized as == Ej dx5s (15

A. Kinetic and potential energies

8¢ 6¢°

where the functional derivative is written in the new coordi-

f XA (X = Xo)Ug(X—X0) = Sp q- (12 nates using the chain rule
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5 _ % 8§ Qn o
Sh(X)  8p(X) 5%, 7o dp(X) SQm’

(16)

Taking the functional variation of the fielg, Eq. (14),
we obtain

dp(x)

Sh(X)
ox 5Qm

Op(X)= N

0

+ 2

m#0

5Qm

0

_[1X X0 5 o XX |
X

m 0

axo m#0

+ 2, Un(X—X0) 8Qp. (17
n#0
Projecting both sides of the above equation &f
(x—X) and theru;(x—io) with p#0, using Eq.(13) and
the orthonormalization conditiofl2), we obtain

5;(0 l 1 v{*( 9 )
- U (X—Xo),
600 M [1+ (AWM S QuSul
(18
5Qp ~ 1 2nsﬁoGann
o =Us (X—Xg) ———
8600 P T M [+ (1M) S 0QueSi]
XZ/{S(X_;(()), (19)
where the matrix elementS,, are defined as
o U (X—X
Gm:f dxu;(x—xo)%. (20
R (?Um(X—;(o)
Sn=Gom= | dXUp(X—Xo)———. (21)

ax

At this stage it is straightforward to follow the procedure
detailed in Ref. 34 to find the final form of the kinetic term in
the Hamiltonian in the Schdinger representation of the co-

ordinatesxXg,Qm-o:

i1 s 18 GpnQm &
2| D sx 0% \/55;(091”‘*‘0 yD  9Qp
5 GpnQm| 1 P)
- — — o_ D
Q, D \/prq'%;r”&0 5Qp p'q\/_
GpmQm 3
+ \/5 anQn 5_Qq ) (22)

where D is the Jacobian associated with the change o
coordinate¥"?® and is given by

B=\W

(23

1
1+ ano QmSm].
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The total potential energy, including the elastic term
V[ ¢] [see Eq(5)] is given by

1/ 9\ ?
V[qﬁ]zfdx E(a_f) +U(¢) (24)

Using the expansion given by E(l4) we find that it can
be written in terms of the new coordinates as

Vig¢]=M+ 1;} QnQ-m@ntO(Q%)+---. (25

By translational invariance the potential energy does not de-
pend on the collective coordinate. Identifying the canonical

momenta conjugate %y,,Q,, as

1)

me=P=—Ii me=—1 for k+0, (26)

OXo

o
0Q
and using the commutation relation ¢b and 1A/D with
Q.. m,, andP given by

[Wny\/B]:_iSn and | my, — =_i%! (27)
\/5 D
we find the final form of the Hamiltonian:
1/P? P G G
H:M+— - . mem’]T_p'f"]T_p mem
2| D \/Bp,msﬁo \/B \/5
£ W20t S w6 D
p#0 pp=—p \/Bp,q,m,n¢0 TP TTRA
GpmQ
+%anQn T_qp +O(QY)+- -, (28)

whereQ,, are now operators. The coordinat@g associated
with the scattering states describe optical phot@mrphason
degrees of freedom with the optical phongrhason fre-
quency w,=d?U($)/d?4|, . Since the Hamiltonian does

not depend orx,, its canonical momentur® is conserved,
and it is identified with the total momentum of the soliton-
phonon(phason systent*2® The soliton velocity, however,
is not proportional toP and depends on the momentum of
the phonon(phason field.

B. Coupling to external fields

The main goal of studying the nonequilibrium dynamics
of soliton is a deeper understanding of transport processes by
these topological excitations. In the case of conducting poly-
mers in which the underlying physics is described by

Flectron—phonon interactions, the soliton excitation in the

dimerized state induces a fractionally charged state associ-
ated with an electronic bound state in the middle of the elec-
tronic gap®® The charge density associated with the elec-

tronic bound state is proportional to the profile of the phonon

zero mode given by Eq13), i.e., p(X,t) =eCly(X— Xq(t))



57 REAL-TIME DYNAMICS OF SOLITON DIFFUSION 923

which is localized at the center of mass of the soliton, theprocesses that conserve the phonon number were considered,
constantC depends on thgfractiona) charge localized we account for all the two-phonon processes consistently to
around the solitor?®*’ lowest order in the adiabatic expansion.

In the case of charge density waves, the transport current The time evolution is completely contained in the time-
is identified with the topological curren';ﬂocewav¢.5‘9 dependent density matrix
Therefore in both cases the charge density is associated with
the translational zero mode. Furthermore, current p()=U(t,t)p(t)HU (1,1, (33
conservatio®f implies that the spatial current is given by ' _ _ _ _
jx(x,t):eCko(t)L{o(x—xo(t)). Hence, a spatially constant with U(t,t;) the time evolution operator. Real-time nonequi-

external electric field couples to the translational zero moddPrium expectation values and correlation functions can be
and introduces a term in the Lagrangian of the form obtained via functional derivatives with respect to souttes

of the generating functions~2*

o= [ axenpn (29 Z[j*j = TrU(oe, o1 1)U (om, 51 ) Trp(t),
. (34)
Taking pc(X) =eCly(X—Xq) we find that an external spa-
tially constant electric field induces a linear terminin the
Lagrangian as a consequence of the breakdown of transl
tional invariance,

wherej~ are sources coupled to the fields. This generating
(Ijlgnctional is readily obtained using the Schwinger-Keldysh
method which involves a path integral in a complex contour
in timeX’~2* a branch corresponding to the time evolution

5ﬁ=—T(t)§<o, T=eCE(t). (30) fprward, a'backward branch corresponding to th'e inyerse
time evolution operator, and a branch along the imaginary

This term is responsible for accelerating the soliton andime axis fromt; to t;—iB to represent the initial thermal

changing the total momentum of the system. density matrix. We will obtain the equation of motion for the
The total(spatially integratercurrent transported by the soliton collective coordinate in an expansion of the “adia-
soliton is then given by batic” parametem/M ~ wy/M; as discussed in Sec. I, this
is also the weak-coupling limit of the scalar field theories
f dX T, (X,t) =CA dXo(1), (31  under consideratioff. As will be shown explicitly below in
the particular cases studied, the matrix elements given by

With A p= ¢p(x=)— ¢p(x=—). The expression given by Eds.(20) and(21) \{viII proyide the necessary powers of.
Eq. (31) will allow us to obtain the soliton conductivity when The lowest order ir/M is formally obtained by keeping

the equation of motion for the collective coordinate is ob-Only the 1M terms in the Hamiltonian and neglecting the
tained. nonlinear O(Q®) terms. Under these approximationsp1/

=1/M and the Hamiltonian has the form
IV. SOLITON IN THE PHONON HEAT BATH

21
Our goal is to study the dynamics of a soliton in interac- H=M+ 5| P+ > DunmmQn| + 52 [TmT—m
tion with the phonongor phasons This is achieved by ob- mn#0 m#0
taining theA real—time. equations of motion of the collective +w§1Qmem]+T(t);(Oa (35)
coordinatex, by treating the phonon@hasongas a “bath”
and obtaining an influence functiod&i*?by “tracing out”  where we define
the phonon degrees of freedom. We assume that the total
density matrix for the soliton-phonon system decouples at Drn=G_mn- (36)
the initial timet;, i.e.,
At this point it proves convenient to write the coordinates

p(t)=ps(ti) ® pr(ti), 32 and momenta of the phonons in terms of creation and anni-
where p4(t;) is the density matrix of the system which is hilation operators obeying the standard Bose commutation
taken to be that of a free particle associated with the collecrelations,
tive coordinate of the soliton, i.eps(t;)=|Xo){Xo| and

pr(t;) is the density matrix of the phonon bath and describes 1 Wy
harmonic phonongor phasonsin thermal equilibrium at a Q= [ax+ aik], = —I \/;[ak—aik].
temperaturerl. 2wy

Since the solitons can never be separated from the phonon (37
fluctuations, this factorization must be understood to hold in o )
the limit in which the initial timet;— — o with an adiabatic The Hamiltonian can be expressed in termaainda’ as

switching-on the soliton-phonon interaction. An approximate
influence functional has been previously obtained in Iowes(j_|_ 1 F oo + ~ o
order in Ref. 16, but our approach is different in the sense N(P+F[a al) +k;0 o(@@t12)+ ] ()xo+ M,
that we obtain the real-time nonequilibrium evolution equa- (39)
tions for the collective coordinate as well as the quantum

Langevin equation. Furthermore, whereas in Ref. 16 onlywhere
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equilibrium. The signst in the above expressions corre-

Fla'a]= %0 [ToR(apa—al ,al ) +Th) (@l jay spond to the fields and sources on the forward @nd back-
P ward (=) branches. The contribution from the branch along
—a'f_kap)]_ (39 the imaginary time is canceled by the normalization factor.

This is the nonequilibrium generalization of the coherent-
We have made use of the symmetries of the operators argtate path integrals. For more details the reader is referred to
defined the symmetrig( and antisymmetrid@’) matrices the literature'®** Nonequilibrium Green’s functions are now
that provide the interaction vertices as obtained as functional derivatives with respect to the sources
j*. There are four types of free phonon propagatéré*

I D LT 1 . et
741 Vo, Vo < (ag" (Dag (1)) =dcpe 000t ) +ny], (44)
1] fo w (@ (nal ™ (1'))= 8 &' V[ ot—t")+ny],
T ="\ —+ \/ —|Dyp. (40) o P
P 4i wp Wy

(af ) (malt"))=o,
To use the path integral formulation we need the Lagrang- . .
ian, which to the order that we are workifi@(m/M)] and (a”(vag™(t))=0,
properly accounting for normal ordering, is given by _
M (&l (1) (7)) =S pe K V[ 140y,
o o 52 % t a1 +
L[Xg,a,a'] >Xo XoF[a',a] go o(agagt1/2) (a,j(r)aé’(r’))z5k,pe“"k“'*“nk,
—T()Xe—M. (41) wheren, is Bose-Einstein distribution for phonons of quan-
tum numberk and(- - - ) refer to averages in the initial den-
The interaction of the collective coordinate and the pho-Sity matrix. The++ (——) propagators correspond to the
non degrees of freedom is now clear. Only time derivativedime-orderedanti-time-orderej whereas the- + are linear
of the collective coordinate couple, a consequence of théombinations of the advanced and retarded propagtors.
Goldstone character of the collective coordinate. There are An important point to notice is that
two processes described by the_ interacti(_ihx:reation and N _
destruction of two phonons an@) scattering of phonons. (Fla',a])=0 (45)
Whereas the first type can contribute with the phonons inn the noninteracting case, since it is proportional to
their ground state, the second can only contribute if phonomka,fk:o_
states are occupied.
Since we have preferred to work in terms of the creation A. Soliton equation of motion
and annihilation operators, it is convenient to write the path . . , !
integral for the nonequilibrium generating functional in the The equation of motion of the soliton can be derived by
coherent state representatizollowing the steps presented €XPanding<™(t)=q(t)+ £ (t) and requiring(£™())=0 to
in Refs. 16 and 43, we find that the generating functional of!! Orders in perturbation theory. Imposing the condition

nonequilibrium Green'’s functions is given by (£7(7'))=0, treating the interaction term up to second order
in perturbation theory, and using E@5), we obtain the
o following equation of motion:
Z[J*,J’]=fDX+fDX’f Dzv*f D?y~

[ i 3 t
f_wdt’<§+(t)§+(t')> Mq(t')+ f_ocdt”l“m(t’ —t")

xexp{ i f dt(L[x vyt
Xq(t")

. +<§*(t)§+(t’)>j(t’)}=0, (46)
_E[X,'}’,')’*,j])], (42)
where the retarded kernel is given by
with the Lagrangian density defined on each branch given by
=il (t=t"He—-t")

5[)'(45 + *i-i]_M()'(i)2+2 jyx T T+ + s P
Y= 2|17 =(Fla"(1),a* (1] F[a™ (t"),a"(t")])
—(F[a™"(),a™ ()] F[a""(t").a"(t)]). (4D

Alternatively this equation of motion may be obtained by
. computing the influence functiorfdr*?in second-order per-
X5 j o = XTFLy* =,y =T (Hx* turbation theory. The resulting influence functional is qua-
43 dratic in the collective coordinate, and performing the shift
x=(t)=q(t) + £*(t) the above equation of motion is ob-
and with proper boundary conditions on the fields that reflectained by requesting that the linear termstinvanish(there
the factorized initial condition with the phonons in thermal are two linear terms; both give the same equation of mation

oYk Yk Tk TRk
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The kernell' ,(t—t") is found by using Eqg47) and(45)
and it is given by
To(t—t')= —4%0 {TOTS)_ (14 2n)sin (wp+ wy)
X (t=t)]=2THRTA _n,
X sin (wp— wi) (t—t")]}. (49

Performing the integral over’ in Eq. (46) by parts, we
obtain the final form of the equation of motion,

. t - —~
MQ(t)+f_ dt'Z n(t=t")q(t’)=j (1), (49)
where the nonlocal kernel is given by
o (t—t’ ol y(t—t’
s gy Tntt) ety

ot at’

Using Eq.(48) we find the final expression for the kernel
m:
)= — (9T(S)

S(t—t)= 4p%0{Tka,p,k(1+2np)(wp+wk)
X cog (wpt+ w)(t—t")]
—2THTH o wp— wy)

X cog (wp— w) (t—t)]}. (51

We will see in the next sections that the two kerne}s and
I',, have a very special significance: Wheréas is identi-

fied with the real-time retarded self-energy of the collective

coordinate]I’,,, will provide the coefficient oflynamical fric-
tion in the Markovian approximation.

REAL-TIME DYNAMICS OF SOLITON DIFFUSION
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B. General properties of the solution

Consider switching on a spatially constant electric field at
t=0 to study the linear response of the soliton velocity. As-
suming that fort<0 the soliton traveled with a constant
velocity v, after switching on the electric field the soliton
will accelerate, but it will also transfer energy and excite the
phonon degrees of freedom and this will lead to dissipative

processes. Therefore writing(t)=v,+uv(t) with ] (t<0)
=0 and] (t>0)#0 and using the propert{s3) the equa-
tion of motion for the velocity change becomes

Mi;(t)+f;dt’Em(t—t’)v(t’)=T(t). (54)

The solution of this equation is found by Laplace trans-

form, in terms ofo (s), 3(s), andJ(s), the Laplace trans-
forms of the velocity, self-energy kernel, and current, respec-
tively, in terms of the Laplace variabe We find that the
solution is given by

7 _L(S‘_Z/M)_ (55)
s+ (1/M)Z ()
The quantity
1
G(S)= e — (56)
s+ (1/M)Z (s)

is the Laplace transform of the propagator of the velocity of
the collective coordinate. We can now extract the frequency-
dependent conductivity associated with the moving soliton
by takingv,=0 and analytically continuing—iw+0" to
obtain the retarded Fourier transform. We find

It is more convenient to express the equation of motion of

the soliton in terms of the velocity

t

MV (1) + J (52

dt'S (t—t)HV(t) =T (1),

with 3, given by Eq.(52).

A¢p(eC)?

M G(s=iw+0").

o(w)=

(57)

Therefore the frequency-dependent conductivity is solely de-
termined byG(s) which can be found in a consistent adia-
batic expansion.

The relation(51) ensures to this order in the perturbative  The real-time evolution is found by the inverse Laplace
expansion that with an adiabatic switching on the convertransform
gence factor introduced to regularize the lower limit of the
integral and to provide an initial factorization of the density
matrix ast;— —o the total integral of the retarded self-
energy kernel vanishes, i.e.,

1 —
v(t)= 5 ceStv(s)ds, (58)

whereC refers to the Bromwich contour running along the
imaginary axis to the right of all the singularities @fs) in

the complexs plane. Therefore we need to understand the
analytic structure of5(s) in Eq. (55) to obtain the real-time
dynamics. The Laplace transform of the self-energy kernel is
given by

ﬁ Sa(t—t")dt'=0. (53

Therefore, in the absence of a driving term that explicitly

breaks translational invariance, i.e., fpi=0, any constant
velocity of the soliton is a solution of the equation of motion
(52). This result is a consequence of the Galilean invariance
of the effective Lagrangian.

Sm(s)=sTn(s), (59)
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~ (w,+ o) T M
T(s)=—4 TETS (1+2n)5——— v= with M= 64
m( ) p,k2¢0 I pk p k( p)82+(wp+wk)2 M off eff Zs ( )

(60)  Thus the wave function renormalization can also be under-
stood as a renormalization of the soliton mass. The ratio of
the asymptotic acceleration to the initial acceleration is given
by Z,. As the soliton moves, the interaction with the phonon
(phasom bath “dresses” it, changing its effective mass,
which will be seen in specific models to terger than the

: . . . ..~ bare mass. This result is similar to that found by Holstein
will translate into an exponential relaxation of the velocity. : . o .
and Turkevich in the polaron case within a different

In the absence of interactiord(s) has a simple pole at approach*

s=0. Since we obtained the expression for the kernels in . . . .
. o ) A further understanding of the dynamics will necessarily
perturbation theory, the position of a pole must be foundina__ . . .
. ) . L require knowledge of the matrix elements to establish the
consistent perturbative expansion by writisg=(1/M)s;

+ .. we find details of the kernels. This will be studied in particular mod-
T we els in the next section.

oty o (@pT K
2Tka—p—knp 2 20"
s+ (wp— wy)

wherel (s) is the Laplace transform of the kerrigl, given
above.

The presence of a static friction coefficient will be re-
vealed by a pole il5(s) with a negative real part, since this

Sp=2(s=0)=0. (61)

Therefore the coefficient aftatic friction vanishes. This is a C. Semiclassical Langevin equation

consequence of the vanishing of the intedf8). Therefore The classical Langevin equation is an adequate phenom-
up to this order in perturbation theory the position of the poleenological description of Brownian motion obtained by con-
in the s variable remains ag=0. This is consistent with the sidering the dynamics of oner few) degrees of freedom
results of Ogatat al'® who also found that to lowest order that interact with a bath in equilibrium. It contains a term
in the adiabatic expansion tfstatic friction coefficient van-  proportional to the velocity of the particle which incorpo-
ishes. rates friction and dissipation and a stochastic term which
From the expressiof60) we also find thatG(s) has cuts reflects the random interaction of the heat bath with the par-
along the imaginarg axis: (i) a two-phonon cut beginning at ticle. These two terms are related by the classical fluctuation-
s= * 2iw, corresponding to the virtual processes of spontadissipation relation.
neous and stimulated two-phonon creation and destruction At the quantum mechanical level it is also possible to
and (i) a cut with a pinch singularity beginning at=i0~ obtain a “reduced” or coarse-grained description of the dy-
corresponding to the processes of phonon scattering. Theamics of one(or few) degrees of freedom in interaction
contribution from this second cut vanishesTat0. In sum-  with a bath. The coarse-graining procedure has a very precise
mary, the analytic structure @(s) in the complexs plane  meaning: The full time-dependent density matrix is traced

corresponds to a pole at=0 with residue over the bath degrees of freedom, yielding an effective or
“reduced” density matrix for the degrees of freedom whose
1 dynamics is studied.
L= (62 Such a description of the nonequilibrium dynamics of a
1+(1M)I'(0) guantum mechanical particle coupled to a dissipative envi-

ronment by a Langevin equation was presented by Caldeira
and Legget? and by Schmid® Their technique is based on
the influence-functional method of Feynman and Verfion
that naturally leads to a semiclassical Langevin equation.

In this section we follow the procedure of Refs. 39-42
generalized to our case to derive the Langevin equation for

derstood in two alternative manners. . ) ! ) .
. . L~ i . solitons in a heat bath to lowest order in the adiabatic cou-
Consider the case in which=0 in Eq. (55). Performing pling.

the inverse Laplace transfo_rm and inyokin_g the Riemann- 1o main step is to perform the path integrals over the

Lebesgue lemma, the long-time behavior will be completelyyponon gegrees of freedom, thus obtaining an effective func-
dominated by the pole @=0. Therefore, if the velocity of 54 for the collective coordinate of the soliton. Unlike the

the soliton has been changed &t0 by some external 4t ysually studied cases of a particle linearly coupled to an
source, this disturbance will relax in time to an asymptotici, 5 monic reservoi®*2we have here a bilinear coupling to
value given by the phonons(phasons Therefore the influence functional

_7 63) cannot be obtained exactly, but it can be obtained in a con-

Vo= &sVo- sistent perturbative expansion. For this we treat the interac-

Alternatively, consider the case of=0 but with an elec- tion term £,[x=,y=,y* *] in perturbation theory up to sec-
tric field switched on at=0 and constant in time thereafter. ond order in the vertex proportional t&* (which is
Again the inverse Laplace transform at long time will be equivalent to lowest order in the adiabatic couplimgM).
dominated by the pole, and we find that the soliton movedntegrating over the phonon variables and usjfga’,a])
with constant acceleration given by =0, we obtain

and cuts along the imaginary axis beginninga2i », and
+ie with e—0 to clarify that the beginning of this cut
pinches the pole.

The residueZg has a very clear interpretation; it is the
“wave function renormalization” and its effect can be un-
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Z[j+,j—=0]:f Dx*Dx‘ex;{ijidt’(ﬁo[i(Jr]

—co['xb)f['x*,'x], (65)

where

. 1 . ~
Lo[x~]= EM(Xi)Z— j X (66)

and A[x",x"] is the influence functionaf—*2 To lowest
adiabatic order we find

f[>'<+,>'<—]=exp[ - ;j dtdt'[x* (1)G* H(t,t")x (1)
+XT ()G (t,t)x (1))
+XxT()GT T (t,t)x (1)
+>'<‘(t)G‘+(t,t')>'<+<t’)]] (67

in terms of the real-time phonon correlation functidisse
Appendix A

G (t,t)=(F[a™(t),a* () ]F[a"*(t"),a* (t")]),
G~ (t,t")=(F[a' (t),a~(t)JF[a’~(t"),a"(t")]),
G (t,t)=—(F[a'"(v),a" () ]F[aT(t"),a"(t")]),

G~ (t,t")=—(F[a" (v),a”(t)JF[aT"(t'),a" (t")]).
(68)

At this stage it is convenient to introduce the center of

Ky(t—t')=8i 0(t—t’)p%0 {TOTS) (14, + N (w,

+wy)cod (wp+ ) (t—t)]=TWTA _ (n,
—Ni)(wp— @) cog (wp— @) (t—t")]}
=—2i,3,(t—t") (72

and
K(t—t')=— zp%o {TOTS)((L+n+ Nt npn) (o,
+wy)%cod (wp+ o) (t—t) ]+ 2TH/ T (1

p
+np)(wp— w0 ?c0f (wp— 0 (1=t} (73)

At this stage it proves convenient to introduce the identity

[{ 1 ! ! li )
ex _EJ dtdt’ R()K(t—t")R(t")

=C(t)ngexp(—%J dtdt’' (K H(t—t")&(t")

+if dtg(t)R(t)), (74
with C(t) being an inessential normalization factor, to cast
the nonequilibrium effective action of the collective coordi-
nate in terms of a stochastic noise variable with a definite
probability distributiorf!®=4?

Z[O]zf DxDRpgp[g]exp[if dtR(t)[—M'k(t)

—'Ef dt/ Ko (t—t")x(t') + &(t) ) (75)

where the probability distribution of the stochastic noise,

mass and relative coordinatesandR, respectively, which P[£], is given by

are defined as

1
x(1)=35[XT(O+X (O], RO=Xx"(1)=x"(1). (69

These are recognized as the coordinates used in the Wign
transform of the density matiX?in terms of which the

partition function becomes

Z[0]= f DxDRSRI (70

with the nonequilibrium effective action given by

S[x,R]zJ'dtR(t) —Mi’((t)—%f dt/[K(t—t")x(t")

—K(t—t’)R(t’)]} (71)

in terms of the kernel&,(t—t’) and K(t—t") which are
given by (see Appendix B

1
P[g]:fpgexp{—zf dtdt’g(t)Kl(t—t')g(t')].
(76)

g} this approximation we find that the noise is Gaussian,
additive, and with a correlation function given by

(E(DEM))=K(t—t"). (77

The semiclassical Langevin equation is obtained by ex-
tremizing the effective action in Eq75) with respect to
R(t) ,39—42

MX(t) + ﬁwdt’zm(t—t')k(t')—T(t)z &t). (79

Two features of the semiclassical Langevin equation de-
serve comment. The first is that the kerKgt—t'), as can
be seen from Eq(72), is non-Markovian. The second is that
the noise correlation functiok(t—t') is colored; i.e., it is
not a delta functions(t—t’). The relationship between the
kernelsK,(t—t’') and K(t—t") established in Appendix B
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constitutes a generalized quantum-fluctuation-dissipation m?#
relation®*~*2Finally we recognize that taking the average of U(p)=—
Eq. (78) with the noise probability distributiofP[ £] yields g
the equation of motion for the expectation value of the col-3, the static soliton solution is given %7633
lective coordinat¢ Eq. (52)].

A classical description is expected to emerge when the
occupation distribution for the phonons can be approximated
by their classical counterparis,i.e., whenn~T/w, (in
units in which the natural constants had been seb tbitw-
ever, this classical limit requires th@it=m, and withm be-
ing identified with the optical phonon or phason frequency in
these models, such a classical approximation will be vali
when temperatures are much larger than these frequencies. In
the models under consideration the optical phonon frequen- d? 2 2m o
cies are in the range,~0.1 eV and the phason frequencies B §+m - cosR(mx) Yn(X) = @phn(X).  (81)

(in the case of charge-density-wave systemg~10 2 eV.

A more stringent criterion for the validity of the classical The solutions of the above differential equation are well
limit is when the temperature is Iarger than the band\/\ﬁath knOerM’ZZS:? There is 0n|y one bound state with zero eigen-
In the situations under consideration the bandwidth is typivalue, the zero mode, followed by a continuum with wave
cally several eV. Hence a classical description will be validfynctions given by

in a temperature regime that far exceeds the experimentally

relevant region in the case of conducting polymers. In the

case of charge-density-way€DW) systems the experimen- U(X) =
tally relevant temperatures are of the order of a few times k

w,. For these systems whether the fluctuation and dissipa-

tion kernels achieve a classical limit for these temperaturegith ,2=k2+m?2. The scattering states represent the phason
must be studied in detail. This will be done with particular (harmonic fluctuations of the phasexcitations around the
model Hamiltonians below. soliton3-2

_If the kernelsX, andK admit a Markovian limit, thena — The matrix element® ,, were already calculated by de
diffusion coefficient could be extracted by computing theyega3 [see Eqs(36) and(20)] and are given by
long-time limit of the correlation function {{[x(t)

m

ECH R

P(X) 4marctalﬁe””‘] (80)
(X)=— .
Vo

The normal modes of this theory are the solutions of the
guation[see Eq(10)]

2

[—ik+m tanhmx)]e'*, (82
27wy

—x(0)]?))/t where({- - -}) stand for average over the noise i(p2—k?)
distribution function. However, when the kernels do not be- Dyp=ip&(k+p)+ -
come Markovian, such a definition is not appropriate. 4owpSini (m/2)(p+k)/m]
This summarizes the general formulation of the descrip- for p#k, (83)

tion of the dynamics of the collective coordinate both at the
level of the evolution equation for the expectation value asyhich determine the symmetric and antisymmetric matrix
well as for the effective Langevin dynamics in terms of sto-glements
chastic noise terms arising from the fluctuations in the pho-
non bath. We are now in condition to study specific models. U w2 [\ 102

S CREY

Pa 4]\ 0 wp
V. SPECIFIC MODELS (92— p?)
4wyopsint (m/2)(q+p)/m]}’

In the previous sections we established the general aspects
of the real-time dynamics of solitons in the presence of the
phonon bath, obtaining the equation of motion as well as the 1

(_:
4 Wgq

+

Langevin equation for the collective coordinate in IowestTf)/Z):—
adiabatic order. Further progress in the understanding of the
dynamics necessarily involves the details of particular mod-
els which determine the matrix elemefMi¢ and therefore Since in this theory there are no bound states other than

the time dependence of the kernels involved. In this sectiotgh T A7 e :
; . e zero modek[a',a] is given only by the first two terms
we study these details for the sine-Gordon affdmodels. in Eq. (B6). Substituting Eq(84) into Eqs.(48) and(51), we
obtain the final form of the kernels in this case,

1/2
&)

@p

(9°-p?
4wyopsint] (m/2)(q+p)/m]|
(84)

A. Sine-Gordon
As di d in Sec. Il, sine-Gordon field th desT(t—t")= — [ dpdk (P*— k5
s discussed in Sec. Il, sine-Gordon field theory provides I',,(t—t')=— 3 =
an effective r%nigcroscopic description for phase solitons in ) = ooy SINRF[ (/2)(p+k)/m]
CDW system$™ in the limit in which the amplitude of the xI(1+2n — wu)2si + t—t’
lattice distortion is kept constant. i pll@p= @) s (@ + o) (t=1)]
For the sine-Gordon model the potential is given by —2ny(wp+ wk)zsir[(wp—wk)(t—t')]}, (85
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FIG. 1. The functiond"(7) and3 () for temperature§=0, 1.0, 5.0, and 10.0 for sine-Gordon theory.

. 1=dpdk  (p>-k?)?
20t~ 35 S50 st e

— o) (1+ny+n)cog (wy+ o) (t—t") ]—(n,

N (wp+ wy)cog (wp—wi) (t—t")]}.  (86)

At this point it proves useful to expreds, (t—t’) and

3 n(t—t’) in terms of dimensionless quantities to display at
once the nature of the adiabatic expansion. To achieve this

let us make the following change of variables:

p k T
p——, k——, 7=mt and 7=—.
m m m

(87)
ThenT'(t—t") andX(t—t") can be written as

[(t—t)=m?T(7—7") and Z(t—t")=m3(7—17),

(88)
where
F(r)=J:dpdk{rl(p.k>sir{<wp+wk><r>]
+T5(p,K)sin (wp—wi) (7)1}, (89
3(1)= | dpdkE1(pIcOg (W wi)(1)]
+2,(p.k)cog (wp—wi) (7)1}, (90)
with

1 (1+2np) (PP KA AWy —wy)?
PR = 3 awe s (=2 (p k0]

1 ng(pP— kDXt w)?
32 wywg sint?[(m/2)(p+k)]’

I'o(p.k)=

24(p,K) = (wp+w )Ty (p,k),

2o(p,K) = (Wy—w)[5(p,k),

2__ 2 —
wp=p°+1, ny= (91

eVr’r -1

Figure 1 shows the numerical evaluation I6{7) and
3,(7) vs 7 for different values of7. We clearly see that the
self-energy kernel, is peaked nearr=0 and localized
within a time scalere~=m~'~w, ! at low and intermediate
temperatures. We find numerically that this time scale be-
comes very short, of the order ®f * for T=10m which for
the case of charge-density-wave systems is about the maxi-
mum temperature scale of experimental relevance. Similarly,
the kernell’ varies slowly over a large time scate(5—-10
m~?! for large temperatures, but at small and intermediate
temperatureI =m(w,) it oscillates within time scales com-
parable to the inverse phason frequency.

1. Equation of motion: (i) Exact solution

With the purpose of providing a numerical solution to the
equations of motion, we now consider the case of an exter-
nally applied electric field switched on &0 and main-
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FIG. 2. Numerical evaluation of the velocity of the soliton in the presence of a constant electric field for tempé&ratek0, 5.0, and
10.0 in sine-Gordon theory.

tained constant in time thereafter. In terms of dimensionlesand thus this second stage cannot be invoked. Recognizing
quantities the equation of motidd2) becomes in this case that [{3(7— 7')d7' =I(7) the Markovian approximation to
Eqg. (92) is given by

. m{(r .
U(T)+Mfod7 S (7= Yo () =], (92 D)+ o(nI (7= (94)

wherej = j/(mM) and the overdot stands for derivative with  As advanced in the previous section, we now identify the
respect to the dimensionless variable kernelT'(7) as thedynamicalfriction coefficient in the Mar-
We will choose the initial conditiorvo=v(7=0)=0.  kovian approximation. The propert{s3) determines that
From the solutiorv;(7) of Eqg. (92) with this initial condi- I'(7—%)=0.
tion, the solution to the homogeneous equation wih 0 is Figure 2 shows numerical solutions of E¢82) and(94)
obtained as for temperatures7=0, 1.0, 5.0, and 10.0. As can be seen
from the figures, the departure of the exact solufiwa refer
v;(7) to the numerical solution of Eq92) as the exact solution to
v(T)=vo— (93 distinguish it from the numerical solution in the Markovian
J approximation, Eq(94)] from a straight line(free casgis
and the general solution is given by the sum of the inhomolalrger b Ir;_\rger the ratlm(M and thg t‘?mp‘?fat“rﬁ This is
geneous and homogeneous ones, e>§pected since Ia_rger adiabatic ratio implies a stronger cou-
pling between soliton and bath, whereas larger the tempera-
ture implies that more phonons are excited in the bath that
contribute to the scattering term and stimulated creation and
As shown in Fig. 1, the kernél(7) has “memory” on  absorption of excitations. At zero temperature, the soliton
time scales a few times the inverse of the phason frequenayoves, experiencing negligible dissipative force, since to
at low and intermediate temperatur€ssm. If the soliton  dissipate energy the soliton needs to excite two phonons in a
velocity varies on time scales larger than the “memory” of virtual state, but there is a gap for this process, making it
the kernel, a Markovian approximation to the dynamics mayrather inefficient. The solution in the Markovian approxima-
be reasonable. The first step in the Markovian approximatiotion, v,(7), is almost indistinguishable from the free evolu-
corresponds to replacing(7") by v(7) inside the integral in  tion even at very large temperature and couplings. Thus we
Eqg. (92 and taking it outside the integral. A second stage ofsee that memory effects are extremely important even at high
approximation would take the upper limit of the integral to temperatures and a Markovian approximation will be unwar-
o, thus integrating the peak of the kernel. However, we haveanted at least to the order in which this calculation has been
shown above that the total integral of the kernel vanishesperformed.

2. Equation of motion: (i) The Markovian approximation
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FIG. 3. Numerical evaluation of the velocity of the soliton fer0 andvy=1 for temperature§=0, 1.0, 5.0, and 10.0 in sine-Gordon
theory.

3. Velocity relaxation and wave function renormalization 1

Vo
In order to display more clearly the dissipative effects, we Zs= = o (95)
now study the relaxation of the soliton velocity. For this 1+(m/M)I'(s=0) 70
consider thagf (t>0)=0 but an initial velocityvy, att=0.
With this initial condition andj=0, Eq. (92) becomes an Table | below compares the ratio, /v, obtained from
initial value problem. the numerical solution to the exact evolution equation, with

As the soliton moves in the bath, its velocity decreaseshe value of the wave function renormalization. Clearly the
because of the interaction with the fluctuations, theggreement is excellent, confirming the analysis of the
asymptotic final velocity is related to the initial velocity asymptotic behavior of the solution in real time.
through the wave function renormalization as explained Sec.
IV B above. We present the numerical solution of the homo-
geneous equation with initial velocityy=1 in Fig. 3, where
we also present the homogeneous solution in the Markovian Knowledge of the matrix element&” andT® allows us
approximation described above. We clearly see that the inito obtain the final form of the kernels that enter in the semi-
tial velocity relaxes to an asymptotic valug . However, the  classical Langevin equation given by E¢&2) and(73), and
time dependence cannot be fit with an exponential. Eq. (84). These kernels can be written in terms of the dimen-

According to the analysis of the general solution, the ratiosionless quantities given by E@87). Since K (t—t')=
v.lvg should be given by the wave function renormaliza- —2i %, (t—t"), we focus onK(t—t’). In terms of dimen-
tion, i.e., sionless quantities (t) =m*(7), where

4. Kernels for the semiclassical Langevin equation

TABLE I. Numerical evaluation oZg andV../V, in sine-Gordon theory fom/M =0.1, 0.25.

V. lvg Z
m/M=0.1 m/M =0.25 m/M=0.1 m/M = 0.25
Zero Temperature 0.999808 0.999521 0.999808 0.999521
Temperature 1.0 0.993438 0.983754 0.993438 0.983753
Temperature 5.0 0.96055 0.906885 0.96055 0.90687

Temperature 10.0 0.923458 0.828352 0.923446 0.828303
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FIG. 4. The correlation functiofC(7) for temperature§=0, 1.0, 5.0, and 10.0 in the sine-Gordon theory.

” d? 6m?
IC(r)=f dpdKCy(p,k)cod (wp+wi)(7)] — —+AmP— ———— | Y(X) = w3hy(x). (101
- dx? costf(mx)
+Ca(p,k)cod (Wy—wi) (1) ]}, (96) The solution of the above differential equation is well
with known**27|t has two bound states followed by a continuum.

The normalized eigenvectors are given by

2 (L+ny+n+npn)(p2—k?)*

= — \V3m d
CalPK)= 72 wiwg sin?[(m/2)(p+K)] ©7 Uy(X) = Tsecﬁ[mx]%% with  we=0,
1 n(1+np)(p?—k?)* J3m
= — 3m
CAPN T s (w2 (p ] ) Uy(x)= seclimx] tanifmx] with  wf=3m?
Figure 4 showdC(r) for different temperature$. Notice
that at large temperatures the kernel becomes strongly m2e'kx J ’ k
peaked at—=0 and one would be tempted to conclude that U(X)= tantf[mx] —3i— tanff mx]
the classical limit corresponds tod&function. However, the v2m(k*+ mz)‘*’kl
coefficients(97) and(98) are such that the total integral in K2
(leading tod functions of sums and differences of frequen- —1——, (102
cies vanishes. We then conclude that even in the high- m?

temperature limit the noise-noise correlation function is not a
s function; i.e., the noise is “colored,” and the classical With w;=k?+4m?. The scattering states are identified with

fluctuation-dissipation relation does not emerge and a diffuoptical phonon modes and the optical phonon frequency is

sion coefficient cannot be appropriately defined. identified with w,=2m.
The bound state with zero frequency is the “zero mode,”
B. ¢* theory whereas the bound state withi=3m? corresponds to an

. o _ amplitude distortioh?® of the soliton.

Schrieffer! the interaction is given by (20)]

1 V3

T (2 h2)2 7 sech wk/2m]
U(g1¢)_ Zg(m gd) ) ' (99) Dbk: 8 m3/2wk R k2+ mz(k2+3m2)
wherem is a parameter with dimension of mass. The static
soliton solution is given by (from the bound staje
im(k?—p?)(p?+k*+4m?)
m .
#:(xx0) = tanfmO—xo)) (100 D=k +K)+ ZraN Nesint (72) (p+ Ky/m]
for p#Kk, (103

and the normal modes are the solutions to the equasiea
Eqg. (10)] whereN, is defined as
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order as the coupling to the continuum-continuum transition

2w (k24 m?) _ ne ce , !
Ny=\/———F— (104 matrix elementsD,,. This will have interesting conse-
m p

quences for the dissipational dynamics. The symmetric and
We notice that the Coup”ng to the continuum through theantisymmetric matrix elements for the continuum states are

bound state given by the matrix elemddy, is of the same ~ given by

T(S)_ 34<wp)1/2_ ( wq) 1/2} (q2_ pZ)(p2+q2+4m2)
P9 32\ wq wp Vo2 +m?p?+ mPwqw,sint (7/2)(q+p)/m] ,

T(A)_%{(ﬂ) 1/2_1_(&) 1/2“ (92— p2)(p2+ 42+ 4m?) ] 105
VoZ+ m2pZt m2wqw,sint (7/2) (g +p)/m] )

whereas those involving the bound state are obtained by rqﬂi(p)
placing the matrix elementSy, for the D .

Since in this model there is one bound state other thanthe  7,/3 (p*+4p2+ 3)2(Wp—Wy) (14N, +np) 7p
zero mode, the interaction verté{a',a] is given by Eq. = S H[—}

sec

(B6) in Appendix B. The contributions from bound-state— 128 W(Wp+Wp) 2
continuum virtual transitions do not mix with the continuum- 4 5 5

continuum transition to this order in the adiabatic expansiony-b )EW\E (p*+4p°+3) (Wp+Wb)(nb_np)necﬁ[W_p}
As a consequence of this simplification the dimensionless 2 128 W3(Wp—wb) > 2
kernels[in terms of the dimensionless variables introduced P

in Eq. (87)] become 21(p.k)=(wp+w )T (p.k),

EZ(pvk)z(Wp_Wk)FZ(p!k)l

r(n)= fidp(r2<p>sir{<wp+wb><r>]+r2<p>sir{<wp
22(P)=(Wpt W) T3(P), 33(P) = (Wp— W) T'5(P),

_Wb)(T)]+f7 dk{I"1(p,K)sin (wp+wy)(7)] wh=p®+4, (107
whereZ (7) andI'(7) are defined as in Eq88). The func-

+Fz(pvk)Sir[(Wp_Wk)(T)]}), tions3 (7) andI'(7) were evaluated numerically at different
temperatured, and the results are displayed in Fig. 5. The

behavior of these functions differ from those in the sine-
Gordon theory because of the presence of the bound state

(7= f_md p(zg(p)coi(wpﬂLWb)(T)]+22(P)005{(Wp which is interpreted as an excited state of the soliton. As the

soliton moves in the dissipative medium, energy is trans-

2 ferred between the soliton and the bound state, resulting in
_Wb)(T)]+f dk{Z1(p,k)cog (Wp+w,)(7)] the Rabi-like oscillations displayed in the figure. We notice
o that the contribution of the bound state is of the same order
of magnitude as that of the continuum.
+Ez(p.k)COS{(Wp—Wk)(T)]}), (106)

1. Equation of motion: Exact solution

. vs Markovian approximation
with PP

The solution to the equation of motion and the compari-
I'y(p,k) son to the Markovian approximation proceeds just as in the
the case of the sine-Gordon model. The equation of motion is

2 2 L2 s 22 L2 2 again solved for the case of a constant electric figliier
3_ (L+np M) (p7— K (Wp = W) "(p™ k" +4) switching on att=0). The exact and Markovian solutions

4% wowi(p?+ 1)(K2+ Dsint[(7/2)(p+k)] are displayed in Fig. 6.
The new feature of the solution is the oscillations that
I'>(p,k) result from virtual transitions to the bound state. We interpret
these in the following manner: As the soliton moves it ex-
32 (nk—np)(pz—k2)2(Wp+Wk)2(p2+k2+4)2 cites the bound state that corresponds to a soliton distortion;

4% wowi(p?+1)(k?+1) sint[(7/2)(p+k)] collective coordinate in a retarded manner.

= this excitation in turn reacts back in the dynamics of the
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FIG. 5. The functiond"(7) and3(7) for temperature§=0, 1.0, 5.0, and 10.0 ig* theory. Contributions from bound and scattering
states are displayed separately.

While the exact solution in this model is qualitatively the oscillations arising from the excitation of the bound state
similar to that of the sine-Gordon model, we see, howeverare not very noticeable in the exact solution, the Markovian
that quantitatively they are different: There is stronger dy-approximation is very sensitive to these oscillations and pro-
namical dissipation in theé* model as compared to the sine- vides a misrepresentation of the dynamics. We infer from
Gordon case, due to the strong coupling to the bound-staté¢his analysis that the memory terms are very important and
continuum intermediate states. Figure 6 reveals that where@sinnot be neglected.
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TABLE Il. Numerical evaluation oZs andV../V, in ¢* theory form/M =0.1, 0.25.

v, /vg Z,
m/M=0.1 m/M =0.25 m/M=0.1 m/M=0.25
Zero temperature 0.999225 0.998064 0.999176 0.997943
Temperature 1.0 0.961561 0.911004 0.96376 0.914072
Temperature 5.0 0.784934 0.593058 0.787734 0.597494
Temperature 10.0 0.642698 0.417231 0.646577 0.422562

2. Velocity relaxation and wave function renormalization

In this model the Laplace transform of the functidisr)
andX(7) are given by

=SSN 2a(p.k)s 3,(p,K)s
3(s)= fwdpdk{ SZ+(Wp+Wk)2 52+(Wp_wk)2]
» 32(p)s 35(p)s

|

+
S+ (Wp+Wp)?  S%+ (W, —Wp)*

S(s)=sl(s),

Iy(p, k) (wp+wy)
S%+ (W +wy)?

Ia(p, k) (wp—wy)
S%+ (Wy—Wy)?

|
|

(108)

F(s)=f:dpdk

+j dp

with the quantitiesS? and I'® given above. The homoge-
neous equations of motion given by H§2) (exac} and its
Markovian approximation(94) both with j=0 are solved
with the kernelsX(7) and I'(7) given above with initial
conditionvy=1. The asymptotic behavior of the exact solu-
tion will be compared with the prediction., /vy=2Zg, with
the wave function renormalizatiaf given by Eq.(95) but
with the I'(s=0) appropriate to theb* model.

Figure 7 shows the numerical solutions of E¢(#2) and
(94) with j =0 for temperature§=0, 1.0, 5.0, and 10.0 with
initial conditionvg=1. Again the Rabi-like oscillations as-

T8%(p)(wWp+wy)  T5(p)(Wp—wp)
SZ+(Wp+Wb)2 S2_"(Wp_Wb)2

where3 (7—7') is given by Eq.(106) and K(t)=m*K(7)
with

k- | :dp(CE(p>co$<wp+wb><r>]+cg<p>co$<wp
w1+ [ dkICu(pk)cog Wy +wi (7]

+C2(p,k)005{(wp_wk)(T)]}), (110)

with the dimensionless matrix elements

. 18 (1+ny+n+nyn) (p2—k?)*(p?+ k2 +4)?
Cupkl=75 Wowg (p2+1)(K*+ 1)sinkP[ (/2)(p+k)] ’

9

n(1+ny)(p?—k?)*(p?+k?+4)2
Co(p.K)= 72 -

Wiwg(p?+ 1) (K2 + 1)sint?[ (m/2) (p+k)]’

b
1

)= w3 (p*+4p2+3)4(p2+1)(1+n,+ Np+NpNp)
=

wicosi wp/2]

273 (p*+4p2+3)%(p?+ 1)ny(1+ny)

Cap=—,3

wicosH[ 7p/2]
(111)

Figure 8 showsC(7) vs 7 for temperature§=0,1,5,10.
Again the oscillations are a consequence of the bound-state
contribution, and as in the sine-Gordon case we find that
despite the fact that in the high-temperature limit the kernel
becomes very localized in time, the total integral

sociated with the excitation of the bound state are apparent iﬁ—.ocd TK(7) ZQ, prevepting a reprgsentatjon of the_ noise-
the solutions. We have checked numerically that asymptotiniSe correlation function as&function in time even in the

cally the velocity tends to a constant valug but not expo-
nentially. Table Il shows the values of, and Z for these
temperatures fom/M =0.1 and 0.25 where,, was evalu-
ated atr=200 for the exact solution withg=1. Within our
numerical errors, we can see that E@H) is fulfilled.

3. Kernels for the semiclassical Langevin equation

From the definition of the kernel&,(t—t') and K(t
—1t'), Egs.(72) and(73), and Eq.(105), these kernels can be

high-temperature limit, which, for example, forans
polyacetylene is beyond the experimentally relevant scales.
The “color” in the noise-noise correlation function is en-
hanced by the strong coupling to the continuum via the
bound state which is also responsible for the strong oscilla-
tory behavior of the real-time correlation function.

The high-temperature limiT>m also implies a break-
down of the adiabati¢perturbativeé expansion. In this limit
the relevant scale in the kernels Tsand the rescaling of
variables in Eqs(87) should be in terms of rather thamm.

written in terms of the dimensionless quantities given by EqThis implies that the expansion is now in terms of the ratio

(87) as

Ki(r—7")==2i2(r—1'), (109

T/M which for high temperatures will imply strong coupling
for the models under consideration when the parameters are
fixed to make contact with the materials of interest. This is
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FIG. 6. Numerical evaluation of the velocity of the soliton in the presence of a constant electric field for tempé&ratdirds0, 5.0, and
10.0 in ¢* theory.
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FIG. 7. Numerical evaluation of the velocity of the soliton for 0 andv,=1 for temperature§=0, 1.0, 5.0, and 10.0 ig* theory.
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FIG. 8. The correlation functiofC(7) for temperature§=0, 1.0, 5.0, and 10.0 in theé* theory.

common to both thep* and sine-Gordon models, leading us whether the classical limit emerges, and found that to first
to conclude that the classical limit requires a nonperturbativediabatic order and for the experimentally relevant range of
approach, which is clearly beyond the realm of this work. temperatures, the classical limit of these kernels is not
achieved. We pointed out that formally the high-temperature
limit leads to a breakdown of the adiabatic expansion and
requires a nonperturbative treatment.

We have studied the nonequilibrium dynamics of solitons _There are several possible avenues to pursue: a higher-
by obtaining the real-time equations of motion for the expec-order calculation for example as carried out by Oggtal.™
tation value of the collective coordinate and also the quanbut implemented in real time to obtain the nonequilibrium
tum Langevin equation to lowest order in the adiabatic ex£volution of solitons and the associated quantum Langevin

pansion. These allowed us to obtain the frequency-dependefifluation with a detailed study of the classical limit.
soliton conductivity in this expansion. In the case oftrans-polyacetylene the adiabatic ratio is

The Hamiltonian for ag* field theory was studied as a not so small and a perturbativadiabati¢ expansion could
model for conducting polymers and the sine-Gordon modeP€ deemed suspect and certainly untrustworthy in the high-
was used to describe the phase soliton dynamics for chargi@mperature regime. A possible avenue to pursue in this case

density-wave systems. In both cases parameters were chos#Ruld be a variational calculation with a few variational pa-
to describe the experimental realizations of these systems.f@meters; one of them would be the collective coordinate and

To lowest order in the adiabatic coupling we found thatothers related to the soliton distortion. Such a treatment
the real-time equation of motion involves a non-MarkovianWould also be valuable to study the situation of large soliton
self-energy kernel and that the static friction coefficient van-velocities which necessarily imply a “Lorentz contraction”
ishes. However, there is dynamical friction which is a resultof the soliton profile. In this case a more realistic model to
of the memory effects in the self-energy and is associateétUdylg"’O‘“d, be the continuum model of Takayama, Liu, and
with two-phonon processes. We studied the Markovian apl_\/la_kl that incorporates the electr_onlic degrees of freedom,
proximation and showed numerically that this approximationhich we expect would add quantitative changes to the dis-
is unreliable in the relevant range of temperatures. sipative contrl_butlons. Furth_ermore, in order to e_stablls_h a

The quantum Langevin equation was obtained by comput9|ose conne_cupn with ex.perlments, the effects of impurities
ing the influence functional obtained by tracing out the pho-2nd other pinning potentials must be understood.
non (or phasoi degrees of freedom to the same order in the Work on some of these aspects is in progress.
adiabatic expansion. We found that the dissipative kernel and
the noise correlation function obey a generalized form of
fluctuation-dissipation relation but that a Markovian limit is
not available and the noise is Gaussian, additive, but colored. The authors would like to thank D. Jasnow, H. deVega, J.
We have studied the high-temperature limit to establish.evy, R. Willey, and D. Campbell for helpful discussions

VI. CONCLUSIONS AND FURTHER QUESTIONS
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APPENDIX A: REAL-TIME PHONON
CORRELATION FUNCTIONS

In this appendix, we will calculate the Green’s functions

which are defined in Eq68) in terms of the vertex given by
Eq. (39).

Applying Wick's theorem and Eq45), it is a matter of
straightforward algebra to find the following results:

G r(tt)=-2 > (TRTS
p,k#0

t—t’
Sk T )[npnk

{e*i(u)p

+0(t—t")(1+n,+ny) ]+e i@ttt
X[npne+o(t" —t)(1+ny+n) 1}
+2TWTA) _ fe(ep= =) n ny +ny 0t

—t)+no(t—t")1}),
__(tt )__2 2 (T(S) _p_ {e—l(a) +wp)(t— t)[n Nk

+0(t" —1)(1+n,+n) ] +eti@pten=t)
X[npng+o(t—t")(1+ny,+n) 1}
+2TRTA fem @pm (= n

Nt —t)+npo(t—t")1}),

G 7(t,t,): 2 kz#:o (TE]Sk)T(isl))ik{efi(a)erwk)(tftl)npnk
p.

+etieptenttrn n +n +n+1)71}
A)T(A —i(wy—w)(t—t’
+2TE)k)T(,g,k[e i(wp=@p)(t t)np(l-i-hk)]),

G T (tt)= 22 {Tpk TS [[eept @0t nn +n,

+nt 1) +etieptent=tn
+2TWTA  fe(ep= e In, (14n,)]}.
(A1)

These Green'’s functions satisfy the following relation:

G'"*"+G +GT +G *=0, (A2)

which is a consequence of unitary time evolutfén.

G (t,t")=[G™ *(t,t")]*. (A3)
The Green's function$G**(t,t’) and G~ (t,t’) can be
written in terms ofG* ~(t,t’) and its complex conjugate;
therefore we see that there is only one independent Green'’s
function (and its complex conjugake
APPENDIX B: CALCULATING Ky(t—t’) AND K(t—t")

Performing the coordinate transformation in E9), the
influence functional becomes

. 1 )
FIx,R]=ex _EJ dtdt

+G T (t,t)-GT(1,t")—

R(tR(t')

76Tt

G (t,t))]

ER(t)>'<(t’)[<3++(t,t’)—G“(t,t’)

*132

+GH (Lt -G (t t’)]+35<(t)R(t')
: : 2

X[GT(t,t") -G~ (t,t')—

+G‘+(t,t’)])H.

Integrating the linear term iR by parts once and the
quadratic term twice, the influence functional can be cast in
the following form:

G (tt")

(B1)

f[x,R]=exp{%f dtdt' [R()K(t—t")x(t")

—R(t)K(t—t')Ra')]], (B2)

where

19
K(t—t")=2 5 m{[G“(tt =G~ (t,t)+GH(1,t")

-G ()]G ) -G (t',1)

-G (' H)+G Tt 1]}, (B3)

! 1 (92 ++ ’ - = ! + - ’
K(t—t )=Z?[G (t,t)+G ~(t,t) -G (1,t))

-G (t,t)]. (B4)

The generalized fluctuation-dissipation relation is ob-
tained by writing the two kernels above in terms of
G*(t,t"), the only independent Green’s function.
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Substituting the values of the Green’s functions from Eq.
(A1) in the above equations, one obtains the expressions for F[aT,a]=J dpdK TiR(apa—a’ jal )+ T (al jay
Ki(t—t") andK(t—t') in Egs.(72) and(73).

In the case that there are bound states other than the zero ¥ (S Fot
mode, such as the case ¢f, the sum in Eq(39) runs over —asap) ]+ | dKThg(ady—at,ap)
all bound and scattering states, i.e.,

+TW (@l ap—atay], (B6)
1 o where the matrice§(Y and T%) for scattering states are
Fra' al= dodk/—PD ot ot t : Pk, pk .
[a',a]= 5| 9P o pl@k@p—a-a-pt+aa, given by Eq.(40), and if one of the states is a bound state,
then
1 w
T b t oot
—al a ]+ = dk\/—Dpda@,—a’ a
pa] ZIE f P T N T 3
bk = 5 oy bk s
1 Wy
+a1kab_agak]+ ZE f dk \[w_Dkb[abak
b i Ll LI (B7)
—ala’, +ala,—a’,ay] 21 Vo Vap|
1 w In the sine-Gordon theory, the last two terms in
+za§k‘4) \ w_ZDab[abaa_aga;+agaa_a;ab], . Ei56)

do not contribute since in this theory there are no bound
(B5) states other than the zero mode and the Green'’s functions are

given by Eq.(Al) but with integration ovep andk instead
where the indicea andb stand for summation over discrete of the summation.

bound states ang and k stand for summation over con- In the ¢* case, to lowest adiabatic order the contributions
tinuum scattering states. The models which we considered ifrom the bound and scattering states decouple. This implies
this paper have at most one bound state, that is, the case that the Green’s functions will have a contribution from the
the ¢* theory. In this case, the last term will not contribute bound state which is given by the same expression as that of
sinceDy,, vanishes. Thus for only one bound state, Bp)  the scattering states, with— b, but multiplied by a factor of
can be written as 1/2 since the bound-state wave function is chosen to be real.

“Electronic address: smast15@vms.cis.pitt.edu 14y, Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev.A, 2388
Electronic address: boyan@vms.cis.pitt.edu (1980.

*Electronic address: takakura@fisica.ufjf.br

1J. Krumhansl and J. R. Schrieffer, Phys. Revi B 3535(1975.

2W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. 4aft. 2305(1986; 56, 3220(1987; M. Ogata and Y. Wada, J. Phys.
1698(1979; Phys. Rev. B22, 2099(1980. Soc. Jpn54, 3425(1985.

°A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Revisa_ . Castro Neto and A. O. Caldeira, Phys. RevAB 8858
Mod. Phys.60, 781 (1988. (1992; Phys. Rev. E48, 4037 (1993; Phys. Rev. A42, 6884

4Yu Lu, Solitons and Polarons in Conducting Polymek&/orld (1990.

_ Scientific, Singapore, 1988 173, Schwinger, J. Math. Phyg, 407 (1962.
G. GrunerDensity Waves in Solidé\ddison-Wesley, New York,

109 3 ref herei 18K, T. Mahanthappa, Phys. Re%26, 329 (1962; P. M. Bakshi
, 1994, and references therein. and K. T. Mahanthappa, J. Math. Phyd, 12 (1963.

G. Gruner, Rev. Mod. Phys60, 1129 (1988, and references 190, V. Keldysh, Sov. Phys. JETRO, 1018(1965

therein. 200 1 ' ' . i '
"P.A. Lee, T. M. Rice, and P. W. Anderson, Solid State Commun,zl\é' I;orzerr:manz, ABnn'SPhéS(JCI'T_i) 39 751 (59\6(6' Phvs. R 1

14, 703 (1974, . Z. Zhou, Z. B. Su, B. L. Hao, and L. Yu, Phys. Rd4.§
8M. J. Rice, A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger, 22J(1:85‘ d H. Smith. R Mod. Phge, 323(1986

Phys. Rev. Lett36, 432 (1976; M. J. Rice, inSolitons and - Rammer and H. smith, kev. Mod. )

23 - . - .o . . .
Condensed Matter Physicedited by A. R. Bishop and T. E. M. Lifshitz and L. P. PitaevskiiPhysical Kinetic§Pergamon,

M. Ogata and Y. Wada, Prog. Theor. Phys. Suppt, 115
(1988; M. Ogata, A. Terai, and Y. Wada, J. Phys. Soc. k).

SchneiderSpringer-Verlag, Berlin, 1978 New York, 1983; G. D. MahanMany Particle Physics2nd ed.

°B. Horowitz, in Solitons edited by S. Trullingeret al. (North- (Plenum, New York, 1990 H. Kleinert, Path Integrals in
Holland, Amsterdam, 1986 Quantum Mechanics, Statistics and Polymer Physkgl ed.

Ogee, for example, the summary by Y. Wada, Prog. Theor. Phys. (World Scientific, Singapore, 1996R. Mills, Propagators for
Suppl.113 1 (1993. Many Particle System&ordon and Breach, New York, 1969

1T, R. Koehler, A. R. Bishop, J. A. Krumhansl, and J. R. Schrief- /L. P. Kadanoff and G. BaymQuantum Statistical Mechanics
fer, Solid State Commurl7, 1515(1975. (Benjamin, New York, 196

12y, Wada and J. R. Schrieffer, Phys. Rev1B, 3897(1978. 25E, Calzetta and B. L. Hu, Phys. Rev.35, 495(1987; 37, 2878

13K, Maki, Phys. Rev. B26, 4539(1982; Mol. Cryst. Lig. Cryst. (1988; 40, 656 (1989 and references therein.
77, 277 (198)). 26R. Rajaramangolitons and Instantons: An Introduction to Soli-



940 S. M. ALAMOUDI, D. BOYANOVSKY, AND F. I. TAKAKURA 57

tons and Instantons in Quantum Field ThedNorth-Holland,
Amsterdam, 198R

273, Rubinstein, J. Math. Phy$1, 258 (1970.

283, L. Gervais and B. Sakita, Phys. Rev.1l, 2943(1975.

293. L. Gervais, A. Jevicki, and B. Sakita, Phys. Rev1D) 1038
(1975.

30N. H. Christ and T. D. Lee, Phys. Rev. I?, 1606 (1975.

31E. Tomboulis, Phys. Rev. 2, 1678(1975.

323, L. Gervais and A. Jevicki, Nucl. Phys. 8, 113(1976.

33H. de Vega, Nucl. Phys. B15, 411(1976.

34T, D. Holstein and L. Turkevich, Phys. Rev. 38, 1901(1988);
38, 1923(1988; T. Holstein, Mol. Cryst. Lig. Cryst77, 235
(1981).

35D, Jasnow and J. Rudnick, Phys. Rev. Létt, 698 (1978; J.
Rudnick and D. Jasnow, Phys. Rev.2B, 2760(1981).

36R. Jackiw and J. R. Schrieffer, Nucl. Phys1B0, 253(1981); R.
Jackiw and C. Rebbi, Phys. Rev. I3, 3398(1976.

57]. Goldstone and F. Wilczek, Phys. Rev. Ldff, 986 (1981).

38R. Feynman and F. Vernon, Ann. PhybLY.) 24, 118(1963.

39A. O. Caldeira and A. J. Leggett, Physical®1, 587 (1983.

40A. Schmid, J. Low Temp. Phyg9, 609 (1982.

4IH. Grabert, P. Schramm, and G.-L. Ingold, Phys. RE§8 115
(1988.

42y, Weiss,Quantum Dissipative Systenfi#/orld Scientific, Sin-
gapore, 1998 and references therein.

43J. W. Negele and H. OrlandQuantum Many-Particle Systems
(Addison-Wesley, Redwood City, 1988

4“p. Morse and H. FeshbacMethods of Mathematical Physics
(McGraw-Hill, New York, 1953, p. 1650.



