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Real-time dynamics of soliton diffusion
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We study the nonequilibrium dynamics of solitons in model Hamiltonians for Peierls dimerized quasi-one-
dimensional conducting polymers and commensurate charge-density-wave systems. Thereal-timeequation of
motion for the collective coordinate of the soliton and the associated Langevin equation is found in a consistent
adiabatic expansion in terms of the ratio of the optical phonon or phason frequency to the soliton mass. The
equation of motion for the soliton collective coordinate allows one to obtain the frequency-dependent soliton
conductivity. In lowest order we find that although the coefficient ofstatic friction vanishes, there is dynamical
dissipation represented by a non-Markovian dissipative kernel associated with two-phonon processes. The
correlation function of the noise in the quantum Langevin equation and the dissipative kernel are related by a
generalized quantum-fluctuation dissipation theorem. To lowest adiabatic order we find that the noise is
Gaussian, additive, and colored. We numerically solve the equations of motion in lowest adiabatic order and
compare to the Markovian approximation which is shown to fail both in thef4 and the sine-Gordon models
even at high temperatures.@S0163-1829~98!05202-3#
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I. INTRODUCTION AND MOTIVATION

Since the original work of Krumhansl and Schrieffer1 on
solitons as excitations in quasi-one-dimensional system
has been realized that solitons play a fundamental role in
transport properties of quasi-one-dimensional Peie
dimerized conducting polymers2–4 and commensurate
charge-density-wave systems.5–9

An important line of experimental and theoretical stu
has been to determine the dissipative aspects of so
dynamics.3,10 Soliton diffusion may play an important role i
the dynamics of photoexcitations, in the photoconductivity
conducting polymers, and in the transport phenomena a
ciated with phase solitons in charge-density-wa
systems.5–9

Early numerical simulations of classical model Hamilt
nians revealed11 that solitons undergo Brownian-like motion
A study of the interaction of solitons with phonon wav
packets showed that wave-packet–soliton collisions indu
randomlike motion of the soliton.12 One of the main focuse
of study was the determination of the diffusion consta
which was estimated in Ref. 12 for thef4 model Hamil-
tonian and in Ref. 13 for the continuum model
trans-polyacetylene.14 In these studies the process of solit
scattering off optical12,13 and acoustical13 phonons was stud
ied and input in~semi!classical estimates of the diffusio
constant based on the classical fluctuation dissipation th
rem. A more microscopic formulation of the calculation
the friction and diffusion coefficients of solitons based on
linear response analysis in terms of Mori’s formulation w
presented in Ref. 15. These authors focused on obtaining
static friction coefficient by evaluating the correlation fun
570163-1829/98/57~2!/919~22!/$15.00
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tions of the soliton velocity and using Mori’s formulation.
There are very few experimental data available on

dynamics of soliton diffusion. Although neutral soliton di
fusion has been observed~for a thorough review see Refs.
and 10!, the main dependence seems to be determined
soliton trapping and pinning. Thus the experimental evide
for soliton diffusion is at best inconclusive.

Recently a more microscopic approach to the study of
nonequilibrium aspects of soliton dynamics has be
proposed.16 This approach is based on the treatment
particle-reservoir models in which the soliton is taken to
the particle and the phonon fluctuations as the reservoir.
phonon degrees of freedom are ‘‘integrated out’’ in a pert
bative manner, leading to a nonequilibrium effective acti
of the soliton.

In this article we study the nonequilibrium dynamics
the soliton following this latest approach applied to micr
scopic models relevant to the description of solitons. T
soliton dynamics is treated via the collective coordina
method in which the coordinate representing the cente
mass of the soliton becomes a quantum mechanical varia

We use the Schwinger-Keldysh17–25 formulation of non-
equilibrium statistical mechanics to obtain thereal-time
equations of motion for this collective coordinate and t
corresponding Langevin equation by tracing out the phon
degrees of freedom in a consistent adiabatic expansion in
ratio of the optical phonon~phason! frequency to the soliton
mass.

This Langevin equation allows the unambiguous ident
cation of the dissipative kernels and the noise correlat
function, thus allowing us to establish a generalized fluct
tion dissipation relation.
919 © 1998 The American Physical Society
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To lowest order in the adiabatic expansion we find t
the dissipative kernels have memory and a Markovian
proximation is unreliable. For the materials of interest, su
as polyacetylene with a typical optical phonon frequency
'0.1–0.2 eV or charge-density-wave systems with a typ
phason frequency'1023 eV and bandwidths of several eV
we find that the classical limit of the generalized fluctuati
dissipation theorem is not applicable.

To our knowledge none of the previous approaches
soliton dynamics focused on obtaining the real-time eq
tions of motion, and its solutions in particularly releva
cases, nor on the quantum Langevin equation and the p
erties of the stochastic noise and the quantum-fluctuation
sipation relation.

In Sec. II we introduce and motivate the models to
studied and determine the range of parameters that are
perimentally relevant. Section III summarizes the relev
aspects of collective coordinate quantization as applied to
problems under study. Section IV presents the nonequ
rium formulation for obtaining the equations of motion a
the Langevin equation in the general case and discusse
features of the solution and the generalized quantu
fluctuation dissipation relation between the noise correla
function and the dissipative kernel. Section V studies spec
model Hamiltonians—the f4 and sine-Gordon field
theories—and analyzes the Markovian approximation
the validity of the classical limit. Section VI summarizes o
conclusions, and poses further questions and possible fu
directions.

II. MODELS

Although we are primarily interested in studying noneq
librium soliton dynamics in quasi-one-dimensional condu
ing polymers such astrans-polyacetylene and charge
density-wave systems which are electron-phonon syste
we will use microscopic model Hamiltonians that are som
what simpler to study. In what follows we will set for con
venience \5kB51. For polyacetylene in principle we
should start our analysis from the continuum model
Takayama, Lin-Liu, and Maki;14 however, as these autho
showed the solitons in this continuum model are similar
those of the Hamiltonian model studied by Krumhansl a
Schrieffer.1 In particular Ogataet al.15 had previously used
the f4 field theory as model Hamiltonians for conductin
polymers. Thus we will study the simpler microscopic mod
defined by the Hamiltonian1

H5E dx

l FP2~x!

2m
1

A

2
u2~x!1

B

4
u4~x!1

mc0
2

2 S du~x!

dx D 2G .
~1!

Clearly the quantitative details of the dissipative pr
cesses in this model will be different from those of the co
tinuum model since this model does not incorporate e
trons. However, we expect the qualitative features to
robust. Upon rescaling the length and time scales, perfo
ing a canonical transformation, and adding suitable c
stants, the Hamiltonian~1! obtains the form of af4 field
theory,
t
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H5E dxFP2

2
1

1

2S df

dx D 2

1U~f!G ,
U~f!5

1

2g
~m22gf2!2, ~2!

where the constantsm andg are determined by the origina
parameters in Eq.~1!. These two parameters can be related
the optical phonon frequencyvo52m and the soliton mass
M54m3/3g ~see next section!. As will become clear in the
following sections, the equation of motion can be obtained
a systematic expansion in the adiabatic ratiom/M which is
identified with the dimensionless coupling constantg/m2 of
the field theory. In this model we identify the soliton ma
with the rest energy of the soliton, and using the parame
for trans-polyacetylene given by2–4 vo'0.12 eV andM
'0.4 eV we find that the adiabatic ratiom/M'0.15 is small
and a perturbative expansion in this ratio may be appropri

In charge-density-wave systems, beginning from
Landau-Ginzburg description of the quasi-one-dimensio
system,5–9 and fixing the amplitude of the order paramet
~gap! but allowing the phase to fluctuate, the dynamics
determined by the effective Hamiltonian for the phase of
order parameter~for details see Refs. 5–9!,

H5
n~eF!

4 E dxFv f
2S df

dx D 2

1
me*

me
S df

dt D
2

1
vF

2me*

M2me

cos~Mf!G , ~3!

with me andme* the electron mass and its effective mass,vF

and vF the Fermi frequency and velocity, andM the com-
mensurability of the charge density wave.5–9 Again, after
suitable rescalings of time and space and a canonical tr
formation, the Hamiltonian can be cast as in Eq.~2! above
but with the potential given by

U~f!5U~f!5
m4

g S 12cosFAg

m
fG D . ~4!

In this model the gap in the phason spectrum is identifi
with m and the soliton energy is given byM58m3/g. For a
typical material, such as K0.3MoO3 the gap in the phason
spectrum is '1023 eV whereas the soliton energy
'331022 eV.5–9 Therefore for this type of material th
adiabatic ratiom/M'0.03 and a perturbative expansion
reliable.

We must note that for both cases the temperatures of
perimental relevance correspond toT,331022 eV which
are of the order of~or smaller than! the typical optical pho-
non or phason frequencies and the nature of a classical
must be understood carefully.

III. COLLECTIVE COORDINATE QUANTIZATION

In the previous section we have provided a rational
studying the dynamics of solitons in model field theori
described by Hamiltonians of the form
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57 921REAL-TIME DYNAMICS OF SOLITON DIFFUSION
H5E dxH p2

2
1

1

2S df

dx D 2

1U~f!J ~5!

after suitable rescaling of the parameters.
A static soliton is a solution of the time-independent fie

equation

2
d2fs

dx2
1

]U~fs!

]f
50, ~6!

with boundary conditions such thatuxu→`, fs→6f` ,
and U(f`)50.26,27 Translational invariance implies tha
such a solution is of the formfs(x2x0) with x0 an arbitrary
translation chosen such thatfs(0)50; thereforex0 is iden-
tified with the position of the soliton.

Including the time derivatives in the equations of moti
one sees that after proper rescalings of time and sp
that led to the form of the Hamiltonian given above they a
invariant under a ‘‘Lorentz’’ transformation. A soliton
moving with constant velocity is given byfs@(x2x0

2vt)/(A12v2)].1,12,5The energy of a static soliton is iden
tified in these models with the soliton massM and is given
by

M[E@fs#5E dxS dfs

dx D 2

. ~7!

Quantization around the static soliton solution impli
writing

f̂~x,t !5fs~x2x0!1ĉ~x2x0 ;t !, ~8!

where the fluctuation operator is expanded in terms o
complete set of harmonic modes around the soliton,

ĉ~x2x0 ;t !5(
n

`

qn~ t !Un~x2x0!, ~9!

where the mode functionsUn(x2x0) obey

F2
d2

dx2 1
d2U

df2 U
fs

GUn~x2x0!5vn
2Un~x2x0!, ~10!

with the completeness relation given by

(
b
Ub* ~x2x0!Ub~x82x0!1E dkUk* ~x2x0!Uk~x82x0!

5d~x2x8! ~11!

and the subscriptb stands for summation over bound stat
andk for scattering states. For bound states, the eigenvec
are chosen to be real, and for scattering states, we label
asUk(x2x0) and are chosen such thatUk* 5U2k , in which
case the coordinate operators obey the Hermiticity condi
qk* (t)5q2k(t).

These eigenvectors are normalized as

E dxUp* ~x2 x̂0!Uq~x2 x̂0!5dp,q . ~12!
ce
e

a
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n

As a consequence of translational invariance, there
mode with zero eigenvalue given by26

U0~x2x0!5
1

AM
S dfs

dx D . ~13!

Depending on the particular form of the potentialU(f)
there may be other bound states~as is the case with thef4

potential!. There is a continuum of scattering states with fr
quenciesvk

25k21vo
2 andvo

25d2U(f)/d2fuf`
. These scat-

tering states correspond asymptotically to phase-shi
plane waves in the cases under consideration because
relevant potentials are reflectionless.26,27 The frequenciesvo
are identified with the optical phonon frequencies in the c
of the f4 model1,12,15 and of the phason gap in the case
phase solitons in charge-density-wave systems.5–9

The fluctuation along the functional direction correspon
ing to the zero-frequency mode represents an infinitesi
translation of the soliton that costs no energy. Since t
mode has no restoring force, any arbitrarily large-amplitu
fluctuation along this direction is energetically allowe
Therefore fluctuations along this direction must be trea
nonperturbatively. The variablex0, i.e., the center of mass o
the soliton, is elevated to the status of a quantum mechan
variable, and the fluctuations are orthogonal to the z
mode. This treatment is the basis of the collective coordin
method28–35which was previously used within the context
soliton dynamics by Wada and Schrieffer,12 Maki,13 and
Ogataet al.15 and within the context of polaron dynamics b
Holstein and Turkevich.34 More recently Castro Neto an
Caldeira implemented the collective coordinate quantizat
method combined with influence functional techniques
the treatment of solitons and polarons.16

In collective coordinates quantization instead of the e
pansion~8! with ~9! we expandf(x,t) as

f~x,t !5fs„x2 x̂0~ t !…1 (
nÞ0

`

Qn~ t !Un„x2 x̂0~ t !…. ~14!

This amounts to a change of basis in functional spa
from the ‘‘Cartesian’’ coordinates$qn% to ‘‘curvilinear’’ co-
ordinates$x̂0 ,QnÞ0%.

The next step is to express the Hamiltonian in terms of
new variablesx̂0(t) andQn(t). For this we find more clear
and convenient the analysis presented by Holstein
Turkevich34 which we summarize below for the cases und
consideration.

A. Kinetic and potential energies

In the Schro¨dinger representation the kinetic energy c
be expressed as a functional derivative as

T52
1

2E dx
d

df

d

df
, ~15!

where the functional derivative is written in the new coord
nates using the chain rule
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d

df~x!
5

d x̂0

df~x!

d

d x̂0

1 (
mÞ0

dQm

df~x!

d

dQm
. ~16!

Taking the functional variation of the fieldf, Eq. ~14!,
we obtain

df~x!5
df~x!

d x̂0

d x̂01 (
mÞ0

df~x!

dQm
dQm

5F ]fs~x2 x̂0!

] x̂0

1 (
mÞ0

Qm

]Um~x2 x̂0!

] x̂0
Gd x̂0

1 (
nÞ0
Un~x2 x̂0!dQn. ~17!

Projecting both sides of the above equation onU0*

(x2 x̂0) and thenUp* (x2 x̂0) with pÞ0, using Eq.~13! and
the orthonormalization condition~12!, we obtain

d x̂0

df~x!
52

1

AM

1

@11~1/AM !(mÞ0QmSm#
U0* ~x2 x̂0!,

~18!

dQp

df~x!
5Up* ~x2 x̂0!2

1

AM

(nÞ0GpnQn

@11~1/AM !(mÞ0QmSm#

3U0* ~x2 x̂0!, ~19!

where the matrix elementsGpm are defined as

Gpm5E dxUp* ~x2 x̂0!
]Um~x2 x̂0!

]x
, ~20!

Sm[G0m5E dxU0~x2 x̂0!
]Um~x2 x̂0!

]x
. ~21!

At this stage it is straightforward to follow the procedu
detailed in Ref. 34 to find the final form of the kinetic term
the Hamiltonian in the Schro¨dinger representation of the co
ordinatesx̂0 ,QmÞ0:

T52
1

2H 1

D

d

d x̂0

d

d x̂0

1
1

AD

d

d x̂0
(

p,mÞ0
FGpmQm

AD

d

dQp

1
d

dQp

GpmQm

AD
G1

1

AD
(

p,q,m,nÞ0

d

dQp
Fd2p,qAD

1
GpmQm

AD
GqnQnG d

dQq
J , ~22!

where AD is the Jacobian associated with the change
coordinates34,26 and is given by

AD[AMF11
1

AM
(

mÞ0
QmSmG . ~23!
f

The total potential energy, including the elastic ter
V@f# @see Eq.~5!# is given by

V@f#[E dxF1

2S ]f

]x D 2

1U~f!G . ~24!

Using the expansion given by Eq.~14! we find that it can
be written in terms of the new coordinates as

V@f#5M1
1

2 (
mÞ0

QmQ2mvm
2 1O~Q3!1•••. ~25!

By translational invariance the potential energy does not
pend on the collective coordinate. Identifying the canoni
momenta conjugate tox̂0 ,Qn as

p0[P52 i
d

d x̂0

, pk52 i
d

dQ2k
for kÞ0, ~26!

and using the commutation relation ofAD and 1/AD with
Qn , pn , andP given by

@pn ,AD#52 iSn and Fpn ,
1

AD
G52 i

Sn

D
, ~27!

we find the final form of the Hamiltonian:

H5M1
1

2H P2

D
1

P

AD
(

p,mÞ0
FGpmQm

AD
p2p1p2p

GpmQm

AD
G

1 (
pÞ0

vp
2QpQ2p1

1

AD
(

p,q,m,nÞ0
p2pFd2p,qAD

1
GpmQm

AD
GqnQnGp2qJ 1O~Q3!1•••, ~28!

whereQp are now operators. The coordinatesQk associated
with the scattering states describe optical phonon~or phason!
degrees of freedom with the optical phonon~phason! fre-
quency vo5d2U(f)/d2fuf`

. Since the Hamiltonian doe

not depend onx̂0, its canonical momentumP is conserved,
and it is identified with the total momentum of the solito
phonon~phason! system.34,26 The soliton velocity, however
is not proportional toP and depends on the momentum
the phonon~phason! field.

B. Coupling to external fields

The main goal of studying the nonequilibrium dynami
of soliton is a deeper understanding of transport processe
these topological excitations. In the case of conducting po
mers in which the underlying physics is described
electron-phonon interactions, the soliton excitation in t
dimerized state induces a fractionally charged state ass
ated with an electronic bound state in the middle of the el
tronic gap.36 The charge density associated with the ele
tronic bound state is proportional to the profile of the phon
zero mode given by Eq.~13!, i.e., rc(x,t)5eCU0„x2x0(t)…
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57 923REAL-TIME DYNAMICS OF SOLITON DIFFUSION
which is localized at the center of mass of the soliton,
constant C depends on the~fractional! charge localized
around the soliton.36,37

In the case of charge density waves, the transport cur
is identified with the topological currentj m}emn]nf.5–9

Therefore in both cases the charge density is associated
the translational zero mode. Furthermore, curr
conservation37 implies that the spatial current is given b
Jx(x,t)5eCẋ0(t)U0„x2x0(t)…. Hence, a spatially constan
external electric field couples to the translational zero m
and introduces a term in the Lagrangian of the form

dL52E dxE~ t !xrc~x!. ~29!

Taking rc(x)5eCU0(x2 x̂0) we find that an external spa
tially constant electric field induces a linear term inx̂0 in the
Lagrangian as a consequence of the breakdown of tran
tional invariance,

dL52 j̃ ~ t !x̂0 , j̃ 5eCE~ t !. ~30!

This term is responsible for accelerating the soliton a
changing the total momentum of the system.

The total~spatially integrated! current transported by th
soliton is then given by

E dxJx~x,t !5CDf ẋ0~ t !, ~31!

with Df5f(x5`)2f(x52`). The expression given by
Eq. ~31! will allow us to obtain the soliton conductivity whe
the equation of motion for the collective coordinate is o
tained.

IV. SOLITON IN THE PHONON HEAT BATH

Our goal is to study the dynamics of a soliton in intera
tion with the phonons~or phasons!. This is achieved by ob-
taining the real-time equations of motion of the collecti
coordinatex̂0 by treating the phonons~phasons! as a ‘‘bath’’
and obtaining an influence functional38–42 by ‘‘tracing out’’
the phonon degrees of freedom. We assume that the
density matrix for the soliton-phonon system decouples
the initial time t i , i.e.,

r~ t i !5rs~ t i ! ^ rR~ t i !, ~32!

where rs(t i) is the density matrix of the system which
taken to be that of a free particle associated with the col
tive coordinate of the soliton, i.e.,rs(t i)5ux0&^x0u and
rR(t i) is the density matrix of the phonon bath and descri
harmonic phonons~or phasons! in thermal equilibrium at a
temperatureT.

Since the solitons can never be separated from the pho
fluctuations, this factorization must be understood to hold
the limit in which the initial timet i→2` with an adiabatic
switching-on the soliton-phonon interaction. An approxima
influence functional has been previously obtained in low
order in Ref. 16, but our approach is different in the se
that we obtain the real-time nonequilibrium evolution equ
tions for the collective coordinate as well as the quant
Langevin equation. Furthermore, whereas in Ref. 16 o
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processes that conserve the phonon number were consid
we account for all the two-phonon processes consistentl
lowest order in the adiabatic expansion.

The time evolution is completely contained in the tim
dependent density matrix

r~ t !5U~ t,t i !r~ t i !U
21~ t,t i !, ~33!

with U(t,t i) the time evolution operator. Real-time nonequ
librium expectation values and correlation functions can
obtained via functional derivatives with respect to source24

of the generating functional17–24

Z@ j 1, j 2#5TrU~`,2`; j 1!r iU
21~`,2`; j 2!/Trr~ t i !,

~34!

where j 6 are sources coupled to the fields. This generat
functional is readily obtained using the Schwinger-Keldy
method which involves a path integral in a complex conto
in time:17–24 a branch corresponding to the time evolutio
forward, a backward branch corresponding to the inve
time evolution operator, and a branch along the imagin
time axis from t i to t i2 ib to represent the initial therma
density matrix. We will obtain the equation of motion for th
soliton collective coordinate in an expansion of the ‘‘ad
batic’’ parameterm/M'v0 /M ; as discussed in Sec. II, thi
is also the weak-coupling limit of the scalar field theori
under consideration.26 As will be shown explicitly below in
the particular cases studied, the matrix elements given
Eqs. ~20! and ~21! will provide the necessary powers ofm.
The lowest order inm/M is formally obtained by keeping
only the 1/M terms in the Hamiltonian and neglecting th
nonlinearO(Q3) terms. Under these approximations, 1/D
.1/M and the Hamiltonian has the form

H5M1
1

2M S P1 (
m,nÞ0

DmnpmQnD 2

1
1

2 (
mÞ0

@pmp2m

1vm
2 QmQ2m#1 j̃ ~ t !x̂0 , ~35!

where we define

Dmn5G2mn . ~36!

At this point it proves convenient to write the coordinat
and momenta of the phonons in terms of creation and a
hilation operators obeying the standard Bose commuta
relations,

Qk5
1

A2vk

@ak1a2k
† #, pk52 iAvk

2
@ak2a2k

† #.

~37!

The Hamiltonian can be expressed in terms ofa anda† as

H5
1

2M
~P1F@a†,a# !21 (

kÞ0
vk~ak

†ak11/2!1 j̃ ~ t !x̂01M ,

~38!

where
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F@a†,a#5 (
p,kÞ0

@Tpk
~S!~apak2a2p

† a2k
† !1Tpk

~A!~a2p
† ak

2a2k
† ap!#. ~39!

We have made use of the symmetries of the operators
defined the symmetricTpk

(S) and antisymmetricTpk
(A) matrices

that provide the interaction vertices as

Tkp
~S!5

1

4i FAvk

vp
2Avp

vk
GDkp ,

Tkp
~A!5

1

4i FAvk

vp
1Avp

vk
GDkp . ~40!

To use the path integral formulation we need the Lagra
ian, which to the order that we are working@O(m/M )# and
properly accounting for normal ordering, is given by

L@ ẋ̂0,a,a†#5
M

2
ẋ̂0

22 ẋ̂0F@a†,a#2 (
kÞ0

vk~ak
†ak11/2!

2 j̃ ~ t !x̂02M . ~41!

The interaction of the collective coordinate and the ph
non degrees of freedom is now clear. Only time derivativ
of the collective coordinate couple, a consequence of
Goldstone character of the collective coordinate. There
two processes described by the interaction:~i! creation and
destruction of two phonons and~ii ! scattering of phonons
Whereas the first type can contribute with the phonons
their ground state, the second can only contribute if pho
states are occupied.

Since we have preferred to work in terms of the creat
and annihilation operators, it is convenient to write the p
integral for the nonequilibrium generating functional in t
coherent state representation.43 Following the steps presente
in Refs. 16 and 43, we find that the generating functiona
nonequilibrium Green’s functions is given by

Z@ j 1, j 2#5E Dx1E Dx2E D2g1E D2g2

3expH i E dt~L@ ẋ1,g* 1,g1, j 1#

2L@ ẋ2,g2,g* 2, j 2# !J , ~42!

with the Lagrangian density defined on each branch given

L@ ẋ6,g6,g* 6, j 6#5
M

2
~ ẋ6!21 (

kÞ0
F igk*

6
dgk

6

dt

2vkgk*
6gk

61gk
6 j k*

61gk*
6 j k

6G
1x6 j o

62 ẋ6F@g* 6,g6#2 j̃ ~ t !x6

~43!

and with proper boundary conditions on the fields that refl
the factorized initial condition with the phonons in therm
nd

-

-
s
e
re

n
n

n
h

f

y

t
l

equilibrium. The signs6 in the above expressions corre
spond to the fields and sources on the forward (1) and back-
ward (2) branches. The contribution from the branch alo
the imaginary time is canceled by the normalization fact
This is the nonequilibrium generalization of the cohere
state path integrals. For more details the reader is referre
the literature.16,43Nonequilibrium Green’s functions are now
obtained as functional derivatives with respect to the sour
j 6. There are four types of free phonon propagators:17–24

^ak
†1~ t !ap

1~ t8!&5dk,pe2 ivk~ t82t !@u~ t82t !1nk#, ~44!

^ak
1~t!ap

†1~t8!&5dk,peivk~ t82t !@u~ t2t8!1nk#,

^ak
†~6 !~ t !ap

†~6 !~ t8!&50,

^ak
~6 !~ t !ap

~6 !~ t8!&50,

^ak
†1~t!ap

2~t8!&5dk,pe2 ivk~ t82t !@11nk#,

^ak
1~t!ap

†2~t8!&5dk,peivk~ t82t !nk ,

wherenk is Bose-Einstein distribution for phonons of qua
tum numberk and^•••& refer to averages in the initial den
sity matrix. The11 (22) propagators correspond to th
time-ordered~anti-time-ordered!, whereas the67 are linear
combinations of the advanced and retarded propagators24

An important point to notice is that

^F@a†,a#&50 ~45!

in the noninteracting case, since it is proportional
(kDk,2k50.

A. Soliton equation of motion

The equation of motion of the soliton can be derived
expandingx6(t)5q(t)1j6(t) and requirinĝ j6(t)&50 to
all orders in perturbation theory. Imposing the conditi
^j1(t8)&50, treating the interaction term up to second ord
in perturbation theory, and using Eq.~45!, we obtain the
following equation of motion:

E
2`

`

dt8^j1~ t !j̇1~ t8!&F H Mq̇~ t8!1E
2`

t

dt9Gm~ t82t9!

3q̇~ t9!J 1^j1~ t !j1~ t8!& j̃ ~ t8!G50, ~46!

where the retarded kernel is given by

2 iGm~ t2t8!u~ t2t8!

5^F@a†1~ t !,a1~ t !# F@a†1~ t8!,a1~ t8!#&

2^F@a†1~ t !,a1~ t !# F@a†2~ t8!.a2~ t8!#&. ~47!

Alternatively this equation of motion may be obtained
computing the influence functional38–42 in second-order per-
turbation theory. The resulting influence functional is qu
dratic in the collective coordinate, and performing the sh
x6(t)5q(t)1j6(t) the above equation of motion is ob
tained by requesting that the linear terms inj6 vanish~there
are two linear terms; both give the same equation of motio!.
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57 925REAL-TIME DYNAMICS OF SOLITON DIFFUSION
The kernelGm(t2t8) is found by using Eqs.~47! and~45!
and it is given by

Gm~ t2t8!524 (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~112np!sin@~vp1vk!

3~ t2t8!#22Tpk
~A!T2p2k

~A! np

3sin@~vp2vk!~ t2t8!#%. ~48!

Performing the integral overt8 in Eq. ~46! by parts, we
obtain the final form of the equation of motion,

Mq̈~ t !1E
2`

t

dt8Sm~ t2t8!q̇~ t8!5 j̃ ~ t !, ~49!

where the nonlocal kernel is given by

Sm~ t2t8!5
]Gm~ t2t8!

]t
52

]Gm~ t2t8!

]t8
. ~50!

Using Eq.~48! we find the final expression for the kern
Sm :

Sm~ t2t8!524 (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~112np!~vp1vk!

3cos@~vp1vk!~ t2t8!#

22Tpk
~A!T2p2k

~A! np~vp2vk!

3cos@~vp2vk!~ t2t8!#%. ~51!

We will see in the next sections that the two kernelsSm and
Gm have a very special significance: WhereasSm is identi-
fied with the real-time retarded self-energy of the collect
coordinate,Gm will provide the coefficient ofdynamical fric-
tion in the Markovian approximation.

It is more convenient to express the equation of motion
the soliton in terms of the velocity

MV̇~ t !1E
2`

t

dt8Sm~ t2t8!V~ t8!5 j̃ ~ t !, ~52!

with Sm given by Eq.~51!.
The relation~51! ensures to this order in the perturbati

expansion that with an adiabatic switching on the conv
gence factor introduced to regularize the lower limit of t
integral and to provide an initial factorization of the dens
matrix as t i→2` the total integral of the retarded sel
energy kernel vanishes, i.e.,

E
2`

t

Sm~ t2t8!dt850. ~53!

Therefore, in the absence of a driving term that explici
breaks translational invariance, i.e., forj̃ 50, any constant
velocity of the soliton is a solution of the equation of motio
~52!. This result is a consequence of the Galilean invaria
of the effective Lagrangian.
f

r-

e

B. General properties of the solution

Consider switching on a spatially constant electric field
t50 to study the linear response of the soliton velocity. A
suming that fort,0 the soliton traveled with a constan
velocity v0, after switching on the electric field the solito
will accelerate, but it will also transfer energy and excite t
phonon degrees of freedom and this will lead to dissipat
processes. Therefore writingV(t)5v01v(t) with j̃ (t,0)
50 and j̃ (t.0)Þ0 and using the property~53! the equa-
tion of motion for the velocity change becomes

M v̇~ t !1E
0

t

dt8Sm~ t2t8!v~ t8!5 j̃ ~ t !. ~54!

The solution of this equation is found by Laplace tran

form, in terms ofṽ (s), S̃m(s), and J̃ (s), the Laplace trans-
forms of the velocity, self-energy kernel, and current, resp
tively, in terms of the Laplace variables. We find that the
solution is given by

ṽ ~s!5
v01„ J̃ ~s!/M …

s1~1/M !S̃m~s!
. ~55!

The quantity

G~s!5
1

s1~1/M !S̃m~s!
~56!

is the Laplace transform of the propagator of the velocity
the collective coordinate. We can now extract the frequen
dependent conductivity associated with the moving soli
by taking v050 and analytically continuings→ iv101 to
obtain the retarded Fourier transform. We find

s~v!5
Df~eC!2

M
G~s5 iv101!. ~57!

Therefore the frequency-dependent conductivity is solely
termined byG(s) which can be found in a consistent adi
batic expansion.

The real-time evolution is found by the inverse Lapla
transform

v~ t !5
1

2p i EC
estṽ ~s!ds, ~58!

whereC refers to the Bromwich contour running along th
imaginary axis to the right of all the singularities ofṽ (s) in
the complexs plane. Therefore we need to understand
analytic structure ofG(s) in Eq. ~55! to obtain the real-time
dynamics. The Laplace transform of the self-energy kerne
given by

S̃m~s!5sG̃m~s!, ~59!
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G̃m~s!524 (
p,kÞ0

H Tpk
~S!T2p2k

~S! ~112np!
~vp1vk!

s21~vp1vk!
2

22Tpk
~A!T2p2k

~A! np

~vp2vk!

s21~vp2vk!
2J , ~60!

whereG̃m(s) is the Laplace transform of the kernelGm given
above.

The presence of a static friction coefficient will be r
vealed by a pole inG(s) with a negative real part, since th
will translate into an exponential relaxation of the velocit

In the absence of interactionsG(s) has a simple pole a
s50. Since we obtained the expression for the kernels
perturbation theory, the position of a pole must be found i
consistent perturbative expansion by writingsp5(1/M )s1
1•••; we find

sp5S̃m~s50![0. ~61!

Therefore the coefficient ofstatic friction vanishes. This is a
consequence of the vanishing of the integral~53!. Therefore
up to this order in perturbation theory the position of the p
in thes variable remains ats50. This is consistent with the
results of Ogataet al.15 who also found that to lowest orde
in the adiabatic expansion thestatic friction coefficient van-
ishes.

From the expression~60! we also find thatG(s) has cuts
along the imaginarys axis:~i! a two-phonon cut beginning a
s562ivo corresponding to the virtual processes of spon
neous and stimulated two-phonon creation and destruc
and ~ii ! a cut with a pinch singularity beginning ats5 i06

corresponding to the processes of phonon scattering.
contribution from this second cut vanishes atT50. In sum-
mary, the analytic structure ofG(s) in the complexs plane
corresponds to a pole ats50 with residue

Zs5
1

11~1/M !G̃m~0!
~62!

and cuts along the imaginary axis beginning at62ivo and
6 i e with e→0 to clarify that the beginning of this cu
pinches the pole.

The residueZs has a very clear interpretation; it is th
‘‘wave function renormalization’’ and its effect can be u
derstood in two alternative manners.

Consider the case in whichj̃ 50 in Eq. ~55!. Performing
the inverse Laplace transform and invoking the Riema
Lebesgue lemma, the long-time behavior will be complet
dominated by the pole ats50. Therefore, if the velocity of
the soliton has been changed att50 by some externa
source, this disturbance will relax in time to an asympto
value given by

v`5Zsv0 . ~63!

Alternatively, consider the case ofv050 but with an elec-
tric field switched on att50 and constant in time thereafte
Again the inverse Laplace transform at long time will
dominated by the pole, and we find that the soliton mo
with constant acceleration given by
in
a

e

-
n

he

-
y

c

s

v̇5
j̃

Meff
with Meff5

M

Zs
. ~64!

Thus the wave function renormalization can also be und
stood as a renormalization of the soliton mass. The ratio
the asymptotic acceleration to the initial acceleration is giv
by Zs . As the soliton moves, the interaction with the phon
~phason! bath ‘‘dresses’’ it, changing its effective mas
which will be seen in specific models to belarger than the
bare mass. This result is similar to that found by Holste
and Turkevich in the polaron case within a differe
approach.34

A further understanding of the dynamics will necessar
require knowledge of the matrix elements to establish
details of the kernels. This will be studied in particular mo
els in the next section.

C. Semiclassical Langevin equation

The classical Langevin equation is an adequate phen
enological description of Brownian motion obtained by co
sidering the dynamics of one~or few! degrees of freedom
that interact with a bath in equilibrium. It contains a ter
proportional to the velocity of the particle which incorpo
rates friction and dissipation and a stochastic term wh
reflects the random interaction of the heat bath with the p
ticle. These two terms are related by the classical fluctuat
dissipation relation.

At the quantum mechanical level it is also possible
obtain a ‘‘reduced’’ or coarse-grained description of the d
namics of one~or few! degrees of freedom in interactio
with a bath. The coarse-graining procedure has a very pre
meaning: The full time-dependent density matrix is trac
over the bath degrees of freedom, yielding an effective
‘‘reduced’’ density matrix for the degrees of freedom who
dynamics is studied.

Such a description of the nonequilibrium dynamics o
quantum mechanical particle coupled to a dissipative en
ronment by a Langevin equation was presented by Cald
and Leggett39 and by Schmid.40 Their technique is based o
the influence-functional method of Feynman and Verno38

that naturally leads to a semiclassical Langevin equation
In this section we follow the procedure of Refs. 39–

generalized to our case to derive the Langevin equation
solitons in a heat bath to lowest order in the adiabatic c
pling.

The main step is to perform the path integrals over
phonon degrees of freedom, thus obtaining an effective fu
tional for the collective coordinate of the soliton. Unlike th
most usually studied cases of a particle linearly coupled to
harmonic reservoir39–42 we have here a bilinear coupling t
the phonons~phasons!. Therefore the influence functiona
cannot be obtained exactly, but it can be obtained in a c
sistent perturbative expansion. For this we treat the inte
tion termLI@ ẋ6,g6,g* 6# in perturbation theory up to sec
ond order in the vertex proportional toẋ6 ~which is
equivalent to lowest order in the adiabatic couplingm/M ).
Integrating over the phonon variables and using^F@a†,a#&
50, we obtain
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Z@ j 1, j 250#5E Dx1Dx2expS i E
2`

`

dt8~L0@ ẋ1#

2L0@ ẋ2# ! DF@ ẋ1,ẋ2#, ~65!

where

L0@ ẋ6#5
1

2
M ~ ẋ6!22 j̃ x6 ~66!

and F@ ẋ1,ẋ2# is the influence functional.38–42 To lowest
adiabatic order we find

F@ ẋ1,ẋ2#5expH 2
1

2E dtdt8@ ẋ1~ t !G11~ t,t8!ẋ1~ t8!

1 ẋ2~ t !G22~ t,t8!ẋ2~ t8!

1 ẋ1~ t !G12~ t,t8!ẋ2~ t8!

1 ẋ2~ t !G21~ t,t8!ẋ1~ t8!#J ~67!

in terms of the real-time phonon correlation functions~see
Appendix A!

G11~ t,t8!5^F@a†1~ t !,a1~ t !#F@a†1~ t8!,a1~ t8!#&,

G22~ t,t8!5^F@a†2~ t !,a2~ t !#F@a†2~ t8!,a2~ t8!#&,

G12~ t,t8!52^F@a†1~ t !,a1~ t !#F@a†2~ t8!,a2~ t8!#&,

G21~ t,t8!52^F@a†2~ t !,a2~ t !#F@a†1~ t8!,a1~ t8!#&.
~68!

At this stage it is convenient to introduce the center
mass and relative coordinates,x andR, respectively, which
are defined as

x~ t !5
1

2
@x1~ t !1x2~ t !#, R~ t !5x1~ t !2x2~ t !. ~69!

These are recognized as the coordinates used in the W
transform of the density matrix39–42 in terms of which the
partition function becomes

Z@0#5E DxDReiS@x,R#, ~70!

with the nonequilibrium effective action given by

S@x,R#5E dtR~ t !F2Mẍ~ t !2
i

2E dt8@K1~ t2t8!ẋ~ t8!

2K~ t2t8!R~ t8!#G ~71!

in terms of the kernelsK1(t2t8) and K(t2t8) which are
given by ~see Appendix B!
f

er

K1~ t2t8!58iu~ t2t8! (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~11np1nk!~vp

1vk!cos@~vp1vk!~ t2t8!#2Tpk
~A!T2p2k

~A! ~np

2nk!~vp2vk!cos@~vp2vk!~ t2t8!#%

522i ,Sm~ t2t8! ~72!

and

K~ t2t8!522 (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~11np1nk1npnk!~vp

1vk!
2cos@~vp1vk!~ t2t8!#12Tpk

~A!T2p2k
~A! nk~1

1np!~vp2vk!
2cos@~vp2vk!~ t2t8!#%. ~73!

At this stage it proves convenient to introduce the iden

expS 2
1

2E dtdt8R~ t !K~ t2t8!R~ t8! D
5C~ t !E DjexpS 2

1

2E dtdt8j~ t !K21~ t2t8!j~ t8!

1 i E dtj~ t !R~ t ! D , ~74!

with C(t) being an inessential normalization factor, to ca
the nonequilibrium effective action of the collective coord
nate in terms of a stochastic noise variable with a defin
probability distribution,40–42

Z@0#5E DxDRDjP@j#expH i E dtR~ t !F2Mẍ~ t !

2
i

2E dt8K1~ t2t8!ẋ~ t8!1j~ t !G J , ~75!

where the probability distribution of the stochastic nois
P@j#, is given by

P@j#5E Dj expH 2
1

2E dtdt8j~ t !K21~ t2t8!j~ t8!J .

~76!

In this approximation we find that the noise is Gaussi
additive, and with a correlation function given by

^j~ t !j~ t8!&5K~ t2t8!. ~77!

The semiclassical Langevin equation is obtained by
tremizing the effective action in Eq.~75! with respect to
R(t),39–42

Mẍ~ t !1E
2`

t

dt8Sm~ t2t8!ẋ~ t8!2 j̃ ~ t !5j~ t !. ~78!

Two features of the semiclassical Langevin equation
serve comment. The first is that the kernelK1(t2t8), as can
be seen from Eq.~72!, is non-Markovian. The second is tha
the noise correlation functionK(t2t8) is colored; i.e., it is
not a delta functiond(t2t8). The relationship between th
kernelsK1(t2t8) and K(t2t8) established in Appendix B
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928 57S. M. ALAMOUDI, D. BOYANOVSKY, AND F. I. TAKAKURA
constitutes a generalized quantum-fluctuation-dissipa
relation.39–42Finally we recognize that taking the average
Eq. ~78! with the noise probability distributionP@j# yields
the equation of motion for the expectation value of the c
lective coordinate@Eq. ~52!#.

A classical description is expected to emerge when
occupation distribution for the phonons can be approxima
by their classical counterparts,39 i.e., when nk'T/vk ~in
units in which the natural constants had been set to 1!. How-
ever, this classical limit requires thatT@m, and withm be-
ing identified with the optical phonon or phason frequency
these models, such a classical approximation will be va
when temperatures are much larger than these frequencie
the models under consideration the optical phonon frequ
cies are in the rangevo'0.1 eV and the phason frequenci
~in the case of charge-density-wave systems! vo'1023 eV.
A more stringent criterion for the validity of the classic
limit is when the temperature is larger than the bandwidth39

In the situations under consideration the bandwidth is ty
cally several eV. Hence a classical description will be va
in a temperature regime that far exceeds the experimen
relevant region in the case of conducting polymers. In
case of charge-density-wave~CDW! systems the experimen
tally relevant temperatures are of the order of a few tim
vo . For these systems whether the fluctuation and diss
tion kernels achieve a classical limit for these temperatu
must be studied in detail. This will be done with particul
model Hamiltonians below.

If the kernelsSm andK admit a Markovian limit, then a
diffusion coefficient could be extracted by computing t
long-time limit of the correlation function ^^@x(t)
2x(0)#2&&/t where^^•••&& stand for average over the nois
distribution function. However, when the kernels do not b
come Markovian, such a definition is not appropriate.

This summarizes the general formulation of the desc
tion of the dynamics of the collective coordinate both at
level of the evolution equation for the expectation value
well as for the effective Langevin dynamics in terms of s
chastic noise terms arising from the fluctuations in the p
non bath. We are now in condition to study specific mode

V. SPECIFIC MODELS

In the previous sections we established the general asp
of the real-time dynamics of solitons in the presence of
phonon bath, obtaining the equation of motion as well as
Langevin equation for the collective coordinate in lowe
adiabatic order. Further progress in the understanding of
dynamics necessarily involves the details of particular m
els which determine the matrix elementsT(A,S) and therefore
the time dependence of the kernels involved. In this sec
we study these details for the sine-Gordon andf4 models.

A. Sine-Gordon

As discussed in Sec. II, sine-Gordon field theory provid
an effective microscopic description for phase solitons
CDW systems5–9 in the limit in which the amplitude of the
lattice distortion is kept constant.

For the sine-Gordon model the potential is given by
n
f

-

e
d

d
. In
n-

i-

lly
e

s
a-
s

-

-
e
s
-
-
.

cts
e
e
t
he
-

n

s
n

U~f!5
m4

g S 12cosFAg

m
fG D ~79!

and the static soliton solution is given by27,26,33

fs~x!5
4m

Ag
arctan@emx#. ~80!

The normal modes of this theory are the solutions of
equation@see Eq.~10!#

F2
d2

dx2
1m22

2m2

cosh2~mx!
Gcn~x!5vn

2cn~x!. ~81!

The solutions of the above differential equation are w
known44,27,33. There is only one bound state with zero eige
value, the zero mode, followed by a continuum with wa
functions given by

Uk~x!5
1

A2pvk

@2 ik1m tanh~mx!#eikx, ~82!

with vk
25k21m2. The scattering states represent the pha

~harmonic fluctuations of the phase! excitations around the
soliton.5–9

The matrix elementsDpk were already calculated by d
Vega33 @see Eqs.~36! and ~20!# and are given by

Dkp5 ipd~k1p!1
i ~p22k2!

4vkvpsinh@~p/2!~p1k!/m#

for pÞk, ~83!

which determine the symmetric and antisymmetric mat
elements

Tpq
~S!5

1

4F S vp

vq
D 1/2

2S vq

vp
D 1/2G

3H ~q22p2!

4vkvpsinh@~p/2!~q1p!/m#J ,

Tpq
~A!5

1

4F S vp

vq
D 1/2

1S vq

vp
D 1/2G H ~q22p2!

4vkvpsinh@~p/2!~q1p!/m#J .

~84!

Since in this theory there are no bound states other t
the zero mode,F@a†,a# is given only by the first two terms
in Eq. ~B6!. Substituting Eq.~84! into Eqs.~48! and~51!, we
obtain the final form of the kernels in this case,

Gm~ t2t8!5
1

43E
2`

` dpdk

vp
3vk

3

~p22k2!2

sinh2@~p/2!~p1k!/m#

3$~112np!~vp2vk!
2sin@~vp1vk!~ t2t8!#

22np~vp1vk!
2sin@~vp2vk!~ t2t8!#%, ~85!
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FIG. 1. The functionsG(t) andS(t) for temperaturesT50, 1.0, 5.0, and 10.0 for sine-Gordon theory.
be-

axi-
rly,

ate
-

e
ter-
Sm~ t2t8!5
1

43E
2`

` dpdk

vp
3vk

3

~p22k2!3

sinh2@~p/2!~p1k!/m#
$~vp

2vk!~11np1nk!cos@~vp1vk!~ t2t8!#2~np

2nk!~vp1vk!cos@~vp2vk!~ t2t8!#%. ~86!

At this point it proves useful to expressGm(t2t8) and
Sm(t2t8) in terms of dimensionless quantities to display
once the nature of the adiabatic expansion. To achieve
let us make the following change of variables:

p→
p

m
, k→

k

m
, t5mt, and T5

T

m
. ~87!

ThenGm(t2t8) andSm(t2t8) can be written as

Gm~ t2t8!5m2G~t2t8! and Sm~ t2t8!5m3S~t2t8!,
~88!

where

G~t!5E
2`

`

dpdk$G1~p,k!sin@~wp1wk!~t!#

1G2~p,k!sin@~wp2wk!~t!#%, ~89!

S~t!5E
2`

`

dpdk$S1~p,k!cos@~wp1wk!~t!#

1S2~p,k!cos@~wp2wk!~t!#%, ~90!

with
at
this

G1~p,k!5
1

43

~112np!~p22k2!2~wp2wk!
2

wp
3wk

3 sinh2@~p/2!~p1k!#
,

G2~p,k!52
1

32

np~p22k2!2~wp1wk!
2

wp
3wk

3 sinh2@~p/2!~p1k!#
,

S1~p,k!5~wp1wk!G1~p,k!,

S2~p,k!5~wp2wk!G2~p,k!,

wp
25p211, np5

1

ewp /T21
. ~91!

Figure 1 shows the numerical evaluation ofG(t) and
S(t) vs t for different values ofT. We clearly see that the
self-energy kernelS is peaked neart50 and localized
within a time scalets'm21'v0

21 at low and intermediate
temperatures. We find numerically that this time scale
comes very short, of the order ofT21 for T>10m which for
the case of charge-density-wave systems is about the m
mum temperature scale of experimental relevance. Simila
the kernelG varies slowly over a large time scale'~5–10!
m21 for large temperatures, but at small and intermedi
temperaturesT<m(vo) it oscillates within time scales com
parable to the inverse phason frequency.

1. Equation of motion: (i) Exact solution

With the purpose of providing a numerical solution to th
equations of motion, we now consider the case of an ex
nally applied electric field switched on att50 and main-
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FIG. 2. Numerical evaluation of the velocity of the soliton in the presence of a constant electric field for temperaturesT5 0, 1.0, 5.0, and
10.0 in sine-Gordon theory.
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tained constant in time thereafter. In terms of dimensionl
quantities the equation of motion~52! becomes in this case

v̇~t!1
m

ME
0

t

dt8S~t2t8!v~t8!5 j , ~92!

wherej 5 j̃ /(mM) and the overdot stands for derivative wi
respect to the dimensionless variablet.

We will choose the initial conditionv05v(t50)50.
From the solutionv j (t) of Eq. ~92! with this initial condi-
tion, the solution to the homogeneous equation withv0Þ0 is
obtained as

v~t!5v0

v̇ j~t!

j
~93!

and the general solution is given by the sum of the inhom
geneous and homogeneous ones.

2. Equation of motion: (ii) The Markovian approximation

As shown in Fig. 1, the kernelS(t) has ‘‘memory’’ on
time scales a few times the inverse of the phason freque
at low and intermediate temperaturesT<m. If the soliton
velocity varies on time scales larger than the ‘‘memory’’
the kernel, a Markovian approximation to the dynamics m
be reasonable. The first step in the Markovian approxima
corresponds to replacingv(t8) by v(t) inside the integral in
Eq. ~92! and taking it outside the integral. A second stage
approximation would take the upper limit of the integral
`, thus integrating the peak of the kernel. However, we h
shown above that the total integral of the kernel vanish
s

-

cy

y
n

f

e
s,

and thus this second stage cannot be invoked. Recogni
that*0

tS(t2t8)dt85G(t) the Markovian approximation to
Eq. ~92! is given by

v̇~t!1
m

M
v~t!G~t!5 j . ~94!

As advanced in the previous section, we now identify t
kernelG(t) as thedynamicalfriction coefficient in the Mar-
kovian approximation. The property~53! determines that
G(t→`)50.

Figure 2 shows numerical solutions of Eqs.~92! and~94!
for temperaturesT50, 1.0, 5.0, and 10.0. As can be se
from the figures, the departure of the exact solution@we refer
to the numerical solution of Eq.~92! as the exact solution to
distinguish it from the numerical solution in the Markovia
approximation, Eq.~94!# from a straight line~free case! is
larger the larger the ratiom/M and the temperatureT. This is
expected since larger adiabatic ratio implies a stronger c
pling between soliton and bath, whereas larger the temp
ture implies that more phonons are excited in the bath
contribute to the scattering term and stimulated creation
absorption of excitations. At zero temperature, the soli
moves, experiencing negligible dissipative force, since
dissipate energy the soliton needs to excite two phonons
virtual state, but there is a gap for this process, making
rather inefficient. The solution in the Markovian approxim
tion, vm(t), is almost indistinguishable from the free evol
tion even at very large temperature and couplings. Thus
see that memory effects are extremely important even at h
temperatures and a Markovian approximation will be unw
ranted at least to the order in which this calculation has b
performed.
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FIG. 3. Numerical evaluation of the velocity of the soliton forj 50 andv051 for temperaturesT50, 1.0, 5.0, and 10.0 in sine-Gordo
theory.
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3. Velocity relaxation and wave function renormalization

In order to display more clearly the dissipative effects,
now study the relaxation of the soliton velocity. For th
consider thatj (t.0)50 but an initial velocityv0 at t50.
With this initial condition andj [0, Eq. ~92! becomes an
initial value problem.

As the soliton moves in the bath, its velocity decrea
because of the interaction with the fluctuations, t
asymptotic final velocity is related to the initial velocit
through the wave function renormalization as explained S
IV B above. We present the numerical solution of the hom
geneous equation with initial velocityv051 in Fig. 3, where
we also present the homogeneous solution in the Marko
approximation described above. We clearly see that the
tial velocity relaxes to an asymptotic valuev` . However, the
time dependence cannot be fit with an exponential.

According to the analysis of the general solution, the ra
v` /v0 should be given by the wave function renormaliz
tion, i.e.,
e

s
e

c.
-

n
i-

o
-

Zs5
1

11~m/M !G̃~s50!
5

v`

v0
. ~95!

Table I below compares the ratiov` /v0 obtained from
the numerical solution to the exact evolution equation, w
the value of the wave function renormalization. Clearly t
agreement is excellent, confirming the analysis of
asymptotic behavior of the solution in real time.

4. Kernels for the semiclassical Langevin equation

Knowledge of the matrix elementsT(A) andT(S) allows us
to obtain the final form of the kernels that enter in the sem
classical Langevin equation given by Eqs.~72! and~73!, and
Eq. ~84!. These kernels can be written in terms of the dime
sionless quantities given by Eq.~87!. Since K1(t2t8)5
22iSm(t2t8), we focus onK(t2t8). In terms of dimen-
sionless quantities,K(t)5m4K(t), where
TABLE I. Numerical evaluation ofZs andV`/V0 in sine-Gordon theory form/M50.1, 0.25.

v` /v0 Zs

m/M50.1 m/M50.25 m/M50.1 m/M 5 0.25

Zero Temperature 0.999808 0.999521 0.999808 0.999521

Temperature 1.0 0.993438 0.983754 0.993438 0.983753

Temperature 5.0 0.96055 0.906885 0.96055 0.90687

Temperature 10.0 0.923458 0.828352 0.923446 0.828303
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FIG. 4. The correlation functionK(t) for temperaturesT50, 1.0, 5.0, and 10.0 in the sine-Gordon theory.
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K~t!5E
2`

`

dpdk$C1~p,k!cos@~wp1wk!~t!#

1C2~p,k!cos@~wp2wk!~t!#%, ~96!

with

C1~p,k!5
2

44

~11np1nk1npnk!~p22k2!4

wp
3wk

3 sinh2@~p/2!~p1k!#
, ~97!

C2~p,k!5
1

43

nk~11np!~p22k2!4

wp
3wk

3 sinh2@~p/2!~p1k!#
. ~98!

Figure 4 showsK(t) for different temperaturesT. Notice
that at large temperatures the kernel becomes stron
peaked att50 and one would be tempted to conclude th
the classical limit corresponds to ad function. However, the
coefficients~97! and~98! are such that the total integral int
~leading tod functions of sums and differences of freque
cies! vanishes. We then conclude that even in the hig
temperature limit the noise-noise correlation function is no
d function; i.e., the noise is ‘‘colored,’’ and the classic
fluctuation-dissipation relation does not emerge and a di
sion coefficient cannot be appropriately defined.

B. f4 theory

In this model, originally studied by Krumanshl an
Schrieffer,1 the interaction is given by

U~g,f!5
1

2g
~m22gf2!2, ~99!

wherem is a parameter with dimension of mass. The sta
soliton solution is given by

fs~x2x0!5
m

Ag
tanh@m~x2x0!#, ~100!

and the normal modes are the solutions to the equation@see
Eq. ~10!#
gly
t

-
h-
a
l
u-

ic

F2
d2

dx2
14m22

6m2

cosh2~mx!
Gcn~x!5vn

2cn~x!. ~101!

The solution of the above differential equation is we
known.44,27It has two bound states followed by a continuum
The normalized eigenvectors are given by

U0~x!5
A3m

2
sech2@mx#}

dfs

dx
with v050,

Ub~x!5
A3m

2
sech@mx# tanh@mx# with vb

253m2,

Uk~x!5
m2eikx

A2p~k21m2!vk

H 3tanh2@mx#23i
k

m
tanh@mx#

212
k2

m2J , ~102!

with vk
25k214m2. The scattering states are identified wi

optical phonon modes and the optical phonon frequency
identified withvo52m.

The bound state with zero frequency is the ‘‘zero mode
whereas the bound state withvb

253m2 corresponds to an
amplitude distortion1,26 of the soliton.

The matrix elementsDpk are given by@see Eqs.~36! and
~20!#

Dbk5
A3p

8

sech@pk/2m#

m3/2 vk
Ak21m2~k213m2!

~ from the bound state!,

Dpk5 ikd~p1k!1
3ip~k22p2!~p21k214m2!

4m4NpNksinh@~p/2!~p1k!/m#

for pÞk, ~103!

whereNk is defined as
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Nk5A2pwk
2~k21m2!

m4 . ~104!

We notice that the coupling to the continuum through
bound state given by the matrix elementDbk is of the same
r

th

–
-

on
es
e

e

order as the coupling to the continuum-continuum transit
matrix elementsDpk. This will have interesting conse
quences for the dissipational dynamics. The symmetric
antisymmetric matrix elements for the continuum states
given by
Tpq
~S!5

3

32F S vp

vq
D 1/2

2S vq

vp
D 1/2G H ~q22p2!~p21q214m2!

Aq21m2Ap21m2vqvpsinh@~p/2!~q1p!/m#
J ,

Tpq
~A!5

3

32F S vp

vq
D 1/2

1S vq

vp
D 1/2G H ~q22p2!~p21q214m2!

Aq21m2Ap21m2vqvpsinh@~p/2!~q1p!/m#
J , ~105!
t
he
e-
tate
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whereas those involving the bound state are obtained by
placing the matrix elementsDbk for the Dpk .

Since in this model there is one bound state other than
zero mode, the interaction vertexF@a†,a# is given by Eq.
~B6! in Appendix B. The contributions from bound-state
continuum virtual transitions do not mix with the continuum
continuum transition to this order in the adiabatic expansi
As a consequence of this simplification the dimensionl
kernels@in terms of the dimensionless variables introduc
in Eq. ~87!# become

G~t!5E
2`

`

dpXG1
b~p!sin@~wp1wb!~t!#1G2

b~p!sin@~wp

2wb!~t!#1E
2`

`

dk$G1~p,k!sin@~wp1wk!~t!#

1G2~p,k!sin@~wp2wk!~t!#%C,
S~t!5E

2`

`

dpXS1
b~p!cos@~wp1wb!~t!#1S2

b~p!cos@~wp

2wb!~t!#1E
2`

`

dk$S1~p,k!cos@~wp1wk!~t!#

1S2~p,k!cos@~wp2wk!~t!#%C, ~106!

with

G1~p,k!

[
32

44

~11np1nk!~p22k2!2~wp2wk!
2~p21k214!2

wp
3wk

3~p211!~k211!sinh2@~p/2!~p1k!#
,

G2~p,k!

[
32

44

~nk2np!~p22k2!2~wp1wk!
2~p21k214!2

wp
3wk

3~p211!~k211! sinh2@~p/2!~p1k!#
,

e-

e

.
s

d

G1
b~p!

[
pA3

128

~p414p213!2~wp2wb!~11nb1np!

wp
3~wp1wb!

sech2Fpp

2 G ,
G2

b~p![
pA3

128

~p414p213!2~wp1wb!~nb2np!

wp
3~wp2wb!

sech2Fpp

2 G ,
S1~p,k![~wp1wk!G1~p,k!,

S2~p,k!5~wp2wk!G2~p,k!,

S1
b~p![~wp1wb!G1

b~p!, S2
b~p!5~wp2wb!G2

b~p!,

wp
25p214, ~107!

whereS(t) andG(t) are defined as in Eq.~88!. The func-
tionsS(t) andG(t) were evaluated numerically at differen
temperaturesT, and the results are displayed in Fig. 5. T
behavior of these functions differ from those in the sin
Gordon theory because of the presence of the bound s
which is interpreted as an excited state of the soliton. As
soliton moves in the dissipative medium, energy is tra
ferred between the soliton and the bound state, resultin
the Rabi-like oscillations displayed in the figure. We noti
that the contribution of the bound state is of the same or
of magnitude as that of the continuum.

1. Equation of motion: Exact solution
vs Markovian approximation

The solution to the equation of motion and the compa
son to the Markovian approximation proceeds just as in
the case of the sine-Gordon model. The equation of motio
again solved for the case of a constant electric field~after
switching on att50). The exact and Markovian solution
are displayed in Fig. 6.

The new feature of the solution is the oscillations th
result from virtual transitions to the bound state. We interp
these in the following manner: As the soliton moves it e
cites the bound state that corresponds to a soliton distort
this excitation in turn reacts back in the dynamics of t
collective coordinate in a retarded manner.
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FIG. 5. The functionsG(t) andS(t) for temperaturesT50, 1.0, 5.0, and 10.0 inf4 theory. Contributions from bound and scatterin
states are displayed separately.
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While the exact solution in this model is qualitative
similar to that of the sine-Gordon model, we see, howev
that quantitatively they are different: There is stronger d
namical dissipation in thef4 model as compared to the sin
Gordon case, due to the strong coupling to the bound-st
continuum intermediate states. Figure 6 reveals that whe
r,
-

te-
as

the oscillations arising from the excitation of the bound st
are not very noticeable in the exact solution, the Markov
approximation is very sensitive to these oscillations and p
vides a misrepresentation of the dynamics. We infer fr
this analysis that the memory terms are very important
cannot be neglected.
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TABLE II. Numerical evaluation ofZs andV`/V0 in f4 theory form/M50.1, 0.25.

v` /v0 Zs

m/M50.1 m/M50.25 m/M50.1 m/M50.25

Zero temperature 0.999225 0.998064 0.999176 0.997943

Temperature 1.0 0.961561 0.911004 0.96376 0.914072

Temperature 5.0 0.784934 0.593058 0.787734 0.597494

Temperature 10.0 0.642698 0.417231 0.646577 0.422562
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2. Velocity relaxation and wave function renormalization

In this model the Laplace transform of the functionsG(t)
andS(t) are given by

S̃~s!5E
2`

`

dpdkH S1~p,k!s

s21~wp1wk!
2 1

S2~p,k!s

s21~wp2wk!
2J

1E
2`

`

dpH S1
b~p!s

s21~wp1wb!2 1
S2

b~p!s

s21~wp2wb!2J ,

S̃~s![sG̃~s!,

G̃~s!5E
2`

`

dpdkH G1~p,k!~wp1wk!

s21~wp1wk!
2 1

G2~p,k!~wp2wk!

s21~wp2wk!
2 J

1E
2`

`

dpH G1
b~p!~wp1wb!

s21~wp1wb!2 1
G2

b~p!~wp2wb!

s21~wp2wb!2 J ,

~108!

with the quantitiesSb and Gb given above. The homoge
neous equations of motion given by Eq.~92! ~exact! and its
Markovian approximation~94! both with j 50 are solved
with the kernelsS(t) and G(t) given above with initial
conditionv051. The asymptotic behavior of the exact sol
tion will be compared with the predictionv` /v05Zs , with
the wave function renormalizationZs given by Eq.~95! but

with the G̃(s50) appropriate to thef4 model.
Figure 7 shows the numerical solutions of Eqs.~92! and

~94! with j 50 for temperaturesT50, 1.0, 5.0, and 10.0 with
initial condition v051. Again the Rabi-like oscillations as
sociated with the excitation of the bound state are appare
the solutions. We have checked numerically that asympt
cally the velocity tends to a constant valuev` but not expo-
nentially. Table II shows the values ofv` and Zs for these
temperatures form/M50.1 and 0.25 wherev` was evalu-
ated att5200 for the exact solution withv051. Within our
numerical errors, we can see that Eq.~95! is fulfilled.

3. Kernels for the semiclassical Langevin equation

From the definition of the kernelsK1(t2t8) and K(t
2t8), Eqs.~72! and~73!, and Eq.~105!, these kernels can b
written in terms of the dimensionless quantities given by E
~87! as

K1~t2t8!522iS~t2t8!, ~109!
in
ti-

.

whereS(t2t8) is given by Eq.~106! and K(t)5m4K(t)
with

K~t!5E
2`

`

dpXC1
b~p!cos@~wp1wb!~t!#1C2

b~p!cos@~wp

2wb!~t!#1E
2`

`

dk$C1~p,k!cos@~wp1wk!~t!#

1C2~p,k!cos@~wp2wk!~t!#%C, ~110!

with the dimensionless matrix elements

C1~p,k![
18

45

~11np1nk1npnk!~p22k2!4~p21k214!2

wp
3wk

3 ~p211!~k211!sinh2@~p/2!~p1k!#
,

C2~p,k![
9

44

nk~11np!~p22k2!4~p21k214!2

wp
3wk

3~p211!~k211!sinh2@~p/2!~p1k!#
,

C1
b~p![

pA3

44

~p414p213!2~p211!~11nb1np1nbnp!

wp
3cosh2@pp/2#

,

C2
b~p![

2pA3

44

~p414p213!2~p211!np~11nb!

wp
3cosh2@pp/2#

.

~111!

Figure 8 showsK(t) vs t for temperaturesT50,1,5,10.
Again the oscillations are a consequence of the bound-s
contribution, and as in the sine-Gordon case we find t
despite the fact that in the high-temperature limit the ker
becomes very localized in time, the total integr
*2`

` dtK(t)50, preventing a representation of the nois
noise correlation function as ad function in time even in the
high-temperature limit, which, for example, fortrans-
polyacetylene is beyond the experimentally relevant sca
The ‘‘color’’ in the noise-noise correlation function is en
hanced by the strong coupling to the continuum via
bound state which is also responsible for the strong osc
tory behavior of the real-time correlation function.

The high-temperature limitT@m also implies a break-
down of the adiabatic~perturbative! expansion. In this limit
the relevant scale in the kernels isT and the rescaling of
variables in Eqs.~87! should be in terms ofT rather thanm.
This implies that the expansion is now in terms of the ra
T/M which for high temperatures will imply strong couplin
for the models under consideration when the parameters
fixed to make contact with the materials of interest. This
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FIG. 6. Numerical evaluation of the velocity of the soliton in the presence of a constant electric field for temperaturesT50, 1.0, 5.0, and
10.0 inf4 theory.

FIG. 7. Numerical evaluation of the velocity of the soliton forj 50 andv051 for temperaturesT50, 1.0, 5.0, and 10.0 inf4 theory.
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FIG. 8. The correlation functionK(t) for temperaturesT50, 1.0, 5.0, and 10.0 in thef4 theory.
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common to both thef4 and sine-Gordon models, leading u
to conclude that the classical limit requires a nonperturba
approach, which is clearly beyond the realm of this work

VI. CONCLUSIONS AND FURTHER QUESTIONS

We have studied the nonequilibrium dynamics of solito
by obtaining the real-time equations of motion for the exp
tation value of the collective coordinate and also the qu
tum Langevin equation to lowest order in the adiabatic
pansion. These allowed us to obtain the frequency-depen
soliton conductivity in this expansion.

The Hamiltonian for af4 field theory was studied as
model for conducting polymers and the sine-Gordon mo
was used to describe the phase soliton dynamics for cha
density-wave systems. In both cases parameters were ch
to describe the experimental realizations of these system

To lowest order in the adiabatic coupling we found th
the real-time equation of motion involves a non-Markovi
self-energy kernel and that the static friction coefficient va
ishes. However, there is dynamical friction which is a res
of the memory effects in the self-energy and is associa
with two-phonon processes. We studied the Markovian
proximation and showed numerically that this approximat
is unreliable in the relevant range of temperatures.

The quantum Langevin equation was obtained by comp
ing the influence functional obtained by tracing out the ph
non ~or phason! degrees of freedom to the same order in
adiabatic expansion. We found that the dissipative kernel
the noise correlation function obey a generalized form
fluctuation-dissipation relation but that a Markovian limit
not available and the noise is Gaussian, additive, but colo
We have studied the high-temperature limit to estab
e

s
-
-
-
nt

l
e-

sen
.
t

-
lt
d
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n

t-
-
e
d
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d.
h

whether the classical limit emerges, and found that to fi
adiabatic order and for the experimentally relevant range
temperatures, the classical limit of these kernels is
achieved. We pointed out that formally the high-temperat
limit leads to a breakdown of the adiabatic expansion a
requires a nonperturbative treatment.

There are several possible avenues to pursue: a hig
order calculation for example as carried out by Ogataet al.15

but implemented in real time to obtain the nonequilibriu
evolution of solitons and the associated quantum Lange
equation with a detailed study of the classical limit.

In the case oftrans-polyacetylene the adiabatic ratio
not so small and a perturbative~adiabatic! expansion could
be deemed suspect and certainly untrustworthy in the h
temperature regime. A possible avenue to pursue in this c
would be a variational calculation with a few variational p
rameters; one of them would be the collective coordinate
others related to the soliton distortion. Such a treatm
would also be valuable to study the situation of large soli
velocities which necessarily imply a ‘‘Lorentz contraction
of the soliton profile. In this case a more realistic model
study would be the continuum model of Takayama, Liu, a
Maki14 that incorporates the electronic degrees of freedo
which we expect would add quantitative changes to the
sipative contributions. Furthermore, in order to establish
close connection with experiments, the effects of impurit
and other pinning potentials must be understood.

Work on some of these aspects is in progress.
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APPENDIX A: REAL-TIME PHONON
CORRELATION FUNCTIONS

In this appendix, we will calculate the Green’s functio
which are defined in Eq.~68! in terms of the vertex given by
Eq. ~39!.

Applying Wick’s theorem and Eq.~45!, it is a matter of
straightforward algebra to find the following results:

G11~ t,t8!522 (
p,kÞ0

„Tpk
~S!T2p2k

~S! $e2 i ~vp1vk!~ t2t8!@npnk

1u~ t2t8!~11np1nk!#1e1 i ~vp1vk!~ t2t8!

3@npnk1u~ t82t !~11np1nk!#%

12Tpk
~A!T2p2k

~A! $e2 i ~vp2vk!~ t2t8!@npnk1npu~ t8

2t !1nku~ t2t8!#%…,

G22~ t,t8!522 (
p,kÞ0

„Tpk
~S!T2p2k

~S! $e2 i ~vp1vk!~ t2t8!@npnk

1u~ t82t !~11np1nk!#1e1 i ~vp1vk!~ t2t8!

3@npnk1u~ t2t8!~11np1nk!#%

12Tpk
~A!T2p2k

~A! $e2 i ~vp2vk!~ t2t8!@npnk

1nku~ t82t !1npu~ t2t8!#%…,

G12~ t,t8!52 (
p,kÞ0

„Tpk
~S!T2p2k

~S! $e2 i ~vp1vk!~ t2t8!npnk

1e1 i ~vp1vk!~ t2t8!@npnk1np1nk11!#%

12Tpk
~A!T2p2k

~A! @e2 i ~vp2vk!~ t2t8!np~11nk!#…,

G21~ t,t8!52 (
p,kÞ0

$Tpk
~S!T2p2k

~S! @e2 i ~vp1vk!~ t2t8!~npnk1np

1nk11!1e1 i ~vp1vk!~ t2t8!npnk#

12Tpk
~A!T2p2k

~A! @e2 i ~vp2vk!~ t2t8!nk~11np!#%.

~A1!

These Green’s functions satisfy the following relation:

G111G221G121G2150, ~A2!

which is a consequence of unitary time evolution.24
rt
e
-
-

-

Furthermore, using the antisymmetry property of the m
trix elementsTpk

(A) one finds that

G12~ t,t8!5@G21~ t,t8!#* . ~A3!

The Green’s functionsG11(t,t8) and G22(t,t8) can be
written in terms ofG12(t,t8) and its complex conjugate
therefore we see that there is only one independent Gre
function ~and its complex conjugate!.

APPENDIX B: CALCULATING K1„t2t8… AND K„t2t8…

Performing the coordinate transformation in Eq.~69!, the
influence functional becomes

F@ ẋ,Ṙ#5expH 2
1

2E dtdt8F Ṙ~ t !Ṙ~ t8!

4
@G11~ t,t8!

1G22~ t,t8!2G12~ t,t8!2G21~ t,t8!#

1S 1

2
Ṙ~ t !ẋ~ t8!@G11~ t,t8!2G22~ t,t8!

1G12~ t,t8!2G21~ t,t8!#1
1

2
ẋ~ t !Ṙ~ t8!

3@G11~ t,t8!2G22~ t,t8!2G12~ t,t8!

1G21~ t,t8!# D G J . ~B1!

Integrating the linear term inṘ by parts once and the
quadratic term twice, the influence functional can be cas
the following form:

F@ ẋ,Ṙ#5expH 1

2E dtdt8@R~ t !K1~ t2t8!ẋ~ t8!

2R~ t !K~ t2t8!Ṙ~ t8!#J , ~B2!

where

K1~ t2t8!5
1

2

]

]t
$@G11~ t,t8!2G22~ t,t8!1G12~ t,t8!

2G21~ t,t8!#1@G11~ t8,t !2G22~ t8,t !

2G12~ t8,t !1G21~ t8,t !#%, ~B3!

K~ t2t8!5
1

4

]2

]t2
@G11~ t,t8!1G22~ t,t8!2G12~ t,t8!

2G21~ t,t8!#. ~B4!

The generalized fluctuation-dissipation relation is o
tained by writing the two kernels above in terms
G6(t,t8), the only independent Green’s function.
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Substituting the values of the Green’s functions from E
~A1! in the above equations, one obtains the expressions
K1(t2t8) andK(t2t8) in Eqs.~72! and ~73!.

In the case that there are bound states other than the
mode, such as the case off4, the sum in Eq.~39! runs over
all bound and scattering states, i.e.,

F@a†,a#5
1

2i E dpdkAvp

vk
Dpk@akap2a2k

† a2p
† 1a2k

† ap

2a2p
† ak#1

1

2i(b
E dkAvb

vk
Dbk@akab2a2k

† ab
†

1a2k
† ab2ab

†ak#1
1

2i(b
E dkAvk

vb
Dkb@abak

2ab
†a2k

† 1ab
†ak2a2k

† ab#

1
1

2i(a,b
Ava

vb
Dab@abaa2ab

†aa
†1ab

†aa2aa
†ab#,

~B5!

where the indicesa andb stand for summation over discret
bound states andp and k stand for summation over con
tinuum scattering states. The models which we considere
this paper have at most one bound state, that is, the cas
the f4 theory. In this case, the last term will not contribu
sinceDbb vanishes. Thus for only one bound state, Eq.~B5!
can be written as
q.
for

ero

in
e in
e

F@a†,a#5E dpdk@Tpk
~S!~apak2a2p

† a2k
† !1Tpk

~A!~a2p
† ak

2a2k
† ap!#1E dk@Tbk

~S!~akab2a2k
† ab

†!

1Tbk
~A!~a2k

† ab2ab
†ak!#, ~B6!

where the matricesTpk
(S) and Tpk

(A) for scattering states are
given by Eq.~40!, and if one of the states is a bound sta
then

Tbk
~S!5

1

2i FAvb

vk
2Avk

vb
GDbk ,

Tbk
~A!5

1

2i FAvb

vk
1Avk

vb
GDbk . ~B7!

In the sine-Gordon theory, the last two terms in Eq.~B6!
do not contribute since in this theory there are no bou
states other than the zero mode and the Green’s functions
given by Eq.~A1! but with integration overp andk instead
of the summation.

In thef4 case, to lowest adiabatic order the contributio
from the bound and scattering states decouple. This imp
that the Green’s functions will have a contribution from th
bound state which is given by the same expression as tha
the scattering states, withp→b, but multiplied by a factor of
1/2 since the bound-state wave function is chosen to be r
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