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Scattering matrix theory for nonlinear transport
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We report a scattering matrix theory for dynamic and nonlinear transport in coherent mesoscopic conductors.
In general this theory allows predictions of low-frequency linear dynamic conductance, as well as weakly
nonlinear dc conductance. It satisfies the conditions of gauge invariance and electric current conservation, and
can be put into a form suitable for numerical computation. Using this theory we examine the third-order
weakly nonlinear dc conductance of a tunneling did&£163-182@08)03916-3

I. INTRODUCTION were not needed when dealing with the familiar dc linear
transport'?

Quantum transport under a time-dependent field in coher- The problems of current conservation and gauge invari-
ent mesoscopic systems is the subject of many recergnce have been recognized in the literature. For conductors
studiest™’ Another problem of interest is the nonlinear con-that maintain quantum coherence, tker and his co-
ductance of such a system, whether under a time-dependenbrkers have developed an approatiased on the single
field or not® A difficult theoretical issue is the prediction, for electron scattering matrix theory to deal with the linear ac
a general mesoscopic conductor, for the transport coefficientdynamic conductance as well as the second-order nonlinear
as a function of the ac field frequency and the bias voltageconductance coefficients. The original scattering matrix
Once these parameters are known, one can predict usefilleory was invented to investigate dc linear transport coeffi-
information such as the nonlinear current-voltage characterients, as is represented by the LandaueitiBer
istics in the dc case, the emittance in the linear frequencyformulation®® Such a theory calculates particle current from
linear voltage ac case, and further nonlinear dynamic conthe scattering matrix, thus a direct application to the ac situ-
ductance. Indeed, it is now possible to experimentally meaation would violate current conservatiéf? To solve this
sure the nonlinear ac transport properties such as the secoptbblem, the scattering matrix theory for ac transport con-
harmonic generation, as has been demonstrated by sevesits of two step&? First, it calculates the particle current
laboratories ! and finds that this current is not conserved. Second, it con-

When a conductor is subjected to time-varying externakiders the e-e interaction that alters the scattering potential
fields such as an ac bias voltage, the total electric currerlandscape, and this effect generates an internal response that
flowing through the conductor consists of the usual particlecancels exactly the nonconserved part of the particle current
current plus the displacement current. The presence of thimereby restoring the current conservation. For the dc
latter is crucial, such that the total electric current is con-second-order nonlinear conductance coefficient, similar con-
served. Hence, for a theory to deal with ac transport, in prinsiderations led to the desired gauge invariance.
ciple one should include the displacement current into the In a recent work, the authors have developed a micro-
consideration. Because a displacement current originatexopic and general theoretical formalism for electric re-
from induction, and the necessary condition for electric in-sponse that is appropriate for both dc and ac weakly nonlin-
duction is the electron-electrofe-8 interaction, one thus ear quantum transpot. That formalism was based on the
concludes that an important ingredient for ac transport theoryesponse theory and it formalized the connection of the re-
should be the consideration of e-e interactions. These issuaponse theory to the scattering matrix theory at the weakly
have been emphasized by tBker and Christed? On the  nonlinear level. One of the useful conceptual advances of the
other hand, for dc transport undapnlinear conditions, a general formalistf was the introduction of a frequency-
necessary requirement is the gauge invaridnite physics dependent characteristic potential at the nonlinear level. The
should not change when electrostatic potential everywhere isharacteristic potential describes the changes of scattering
changed by the same constant amount. Gauge invariang@otential landscape of a mesoscopic conductor when the
puts severe conditions on the form of the nonlinear transportlectrochemical potential of an electron reservoir is per-
coefficients. From these physical arguments, it is clear thaurbed externall.|t is the nonlinear order characteristic po-
ac as well dc nonlinear transport contains ingredients thatential that allowed us to analyze the weakly nonlinear ac
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responsé’ as well as the nonlinear dc conductance, order byture of this Hamiltonian is cleaty must be determined, in
order in the bias voltage. In contrast, so far the scatteringeneral, from the Maxwell equations where the charge den-
matrix theory can be applied up to the second-order nonlinsity is obtained from solving the quantum-mechanical prob-
earity and linear order ac. lem of the Hamiltonian.

Using the concept of nonlinear characteristic potential de- Next let us consider the series expansion of the energy in
veloped in the response thedfywe have found that the terms of the potential landscapk
scattering matrix theory can actually be further developed to
apply to higher-order nonlinear dc situations. In addition, _ " R
recognizing that an ac transport problem requires the self-  Eum+€V,cogwt)=E,n+e0, cog wt) + 20
consistent solution of the Schiimger equation coupled with
Maxwell equations, we have found a way to derive both the xX[cogwt)]?+ -, @
external and internal responseseqgual footingwithin the

scattering matrix approach. Itis the purpose of this paper tvhere the operator®)) are a spatial integration of ti¢h
report these results. In particular, we shall start from theyrdercharacteristic potentialsee belowfolded with theith
scattering matrix theory and formulate an approach that igrder functional derivative of ., with respect to the poten-

appropriate for analyzing linear order dynamic conductanceia| landscapel (r). For instance, the linear order operator,
and the weakly nonlinear dc conductance beyond the seconghich is linear in voltage/,, is given by

order. We emphasize the properties of electric current con-
servation and gauge invariance, and these properties are
maintained by considering electron-electron interactions. A1)
The approach developed here is particularly useful for non- O, _% (5“ﬁ+&VﬂE“m)VB’ ®)
linear dc conductance calculations, and we shall analyze the
third-order weakly nonlinear transport coefficient for a
double-barrier tunneling diode. Since the approach presente\'&
here can be cast into a form that allows numerical computa-
tion, many further applications of it to complicated device SE
structures can be envisioned. dv,E = f d3r Ug(r)m
The rest of the article is organized as follows. In the next
section we present the development of the formalism. Sec-
tion 11l presents two applications of this formalism: the linearWith ug(r)=dU(r)/dV; the linear order characteristic
ac dynamic conductance and the third-order nonlinear corpotential?> The expressions for higher-order operat@¥’
ductance. Finally, a short conclusion is included in Sec. IV.are more difficult to write down in a general form, but they
are proportional to theth power of the bias. In addition, they
Il. THEORETICAL FORMALISM can be easily determined after we formally obtain the trans-
mission function and then apply the current conservation and

In this section we briefly go through the formal develop- gauge invariance to the results. Using E2), the Hamil-
ment of our scattering matrix theory and concentrate more Okpnian now reads

the conceptually important physical quantities that will be

here

needed.
We start by writing the Hamiltonian of the system in the [, _ A(i) ilat (& =
. . H= E, nt E E .
presence of an external time-dependent field as ;n om 2.: O (Com) 8am(Eam ) am(Eam. )
4
H=> (E,mt+eV, coswt)al(E.m.t)aum(Eam.t), _
am @ The operatorga,(E.m,t) satisfy the equation of motion
wherea! . is the creation operator for a carrier in the incom- . 1 —
ing channelm in probe «, eV, coswt is the shift of the Aam(Bam V)= 57 [@am(Eam 1), H], 5

electrochemical potential , away from the equilibrium state
associated withu®9, i.e., eV, coswt=pu,—u% The energy
E.m is a functional of the internal e!ectrical potential land- simple. For instance, to linear order in voltage, we only need
scapeU(r,{V,}) that depends oWV, in the low-frequency A o )

regime. Potential includes the internal response to the ex- 0 Us€O™™ in the Hamiltonian and the result is

ternal perturbation and it generates such effect as the dis-
placement current. In genertl is also an explicit function

of time (or of the ac frequencw) as discussed in Ref. 14,
but in this work we shall only be concerned with the dy-
namic conductance to first power of and for this case& is X exp
static. Note that we have explicitly included into the

Hamiltonian, which helps in dealing with both external and

internal responses in equal footing. The self-consistent ndts Fourier transform is given by

which can be integrated because the time dependendeasf

aa,m( Eozm ) =agm( Eam)

i

f
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- — . 1
aa(E)=J dta,(E, ,t)e'EV" edU(r)=EB ug(r)dug+ EﬁE Ug,(Ndugdu,+ ...,
Y
e .. ®
=a,(E)- %Oi [a(E+fiw)—a,(E-fw)] whereuy is the characteristic potential,s,, (which is sym-
metric in 8 and v) is the second-order characteristic poten-
e? A (12 tial tensor, and {--) are higher-order terms written in a
+ a2 50, ) Ta,(E+27iw) similar fashion. Because we are only interested in ac trans-
@ port to the first power of frequenay, the electrodynamics is
—2a,(E)+a,(E—2kw)]+--- solved by the Poisson equation
—_eOD\N
=3 i'( zeﬁoa ) (ehwde_ g hwig)ng (E).  (6) —V2dU(r)=4me?dn(r)=4me?>, dn,(r), 9)
= n! w T @

wheredn,, is the variation of the charge density at contact
due to a change in electrochemical potential at that contact.
There are two contributions to the charge density at contact
a: the injected charge density due to the variation of the
cthemical potential at contaet, and the induced charge den-
sity dnj, g, due to the electrostatic potential. Hence,

where we have suppressed the indexnda, is in a vector
form of the operatorsa,,,. In Eq. (6) the physics is trans-
parent: a,(E*+fw) is just the one-photon sideband and
a,(Ex2hw) corresponds to the second harmonic genera
tion. More tedious expressions can be obtained if higher

order operator©® are included in the Hamiltonian.

To calculate the total electrical current, we shall apply the dn, 1d°n,
formula derived in Ref. 15, which is exact up to linear order dn,=gg drat Eﬁdﬂiﬂr < +dNipg e, (10
of w and for larger frequency it is an approximation to a
space-dependent expression of the current operator wheredn, /dE is the injectivity, which is the local density of

state at contact, andd?n,/dE? is the energy derivative of
the injectivity. The induced charge density involves the
Lindhard function. Using the Thomas-Fermi approximation,
Eq. (10) takes a compact and simple form,

(0= | dEde 3] (E)3,E) - BLEB.E)]

X exp[i(E—E")t/h], (7

dn,

dE?

(du,—edU)?+. ...

(11)

From Eqs.(8), (9), and(11), we obtain the equation satisfied
by the second-order characteristic potential tensor

—~ dn, 1
whereb,(E) is the operator that annihilates a carrier in the dn,=——(du,—edU)+

. ; P . dE 2
outgoing channel in probe. The annihilation operator in the

outgoing channe'lﬁa is related to the annihilation operator in
the incoming channed,, via the scattering matris, s : b,

=EBsa55ﬁ wheres,; is a function of energ¥ and a func-

tional of the electric potentidl(r,{V,}). Finally, we com- dn

ment that in evaluating Ed7) we need to take a quantum —Vzuﬁ7+ 4we2d—Euﬁy=4we2<

statistical average o(aL(E)aB(E’))= 8ap0(E—E")f,(E)

wheref ,(E) is the Fermi function of reservoir. Because of a2n 42n

the limitations of Eq(7), our theory will be exact for trans- Byl

port coefficients linear i for ac situations. However this is de2 7 de2 ’ )

not a severe limitation for practical calculatiols. (12)
One of the most important quantities of this theory is the

determination of characteristic potential that arrives natusSince all the quantities involved in this equation are known

rally. As discussed above, this quantity determines the opfrom the linear order calculatiorys, can thus be deter-

eratorsO(). Since the scattering matrix theory used here ishined. Similarly, order by order we can determine higher-

exact to the linear power ab, which is the order we shall ©Order characteristic potentials from results obtained at lower

work on, we only need to considerindependent character- Orders. For instance, the equation satisfiedupy; is found

istic potentials. On the other hand, as we are interested in tH€ be

weakly nonlinear coefficients, it is crucial to consider higher-

order characteristic potential$:us,(r)=d?U(r)/aVsV.,, —V2u, 5+ Ame?

2 2
dnﬁé _d nyu
de2 #7 dg2 ”?

dn

. . qEYsYe
Ugsy(r), etc. For any physical quantity beyond the terms
linear in w or second order in voltage, including the second- 3 3 3
harmonic generation terrtihe term ofwV?), these higher- — Are? w(; e d_nu U.U s+ ﬂu u
order characteristic potentials are necessary. dEs PP ggs AT 3

We now discuss the solution of higher-order characteristic

potentials by explicitly carrying out the calculation of, . d*ng d®n d®ng
In the _weakly nonlinear regime, the variation of_th_e electric - E%yuﬁ Euﬁyuﬁ_ 4E3 Uys )
potential can be expanded in terms of the variation of the c

electrochemical potential w, (13
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where the curly brackst. . .} stands for the cyclic permu-
tation of indicesB, v, and 8. Note that if better models are Ia(w,):f dE(—def)
needed to deal with the screening effect, the term with
dn/dE on the left-hand side of Eq912) and (13) and e?
higher-order equations is replaced by an integration over the —ophe’ > VLS peSus— (9eSup) Sup]
appropriate Lindhard function folded with the characteristic p
potential'*
From Eq.(8) we can derive several important sum rules - %hw 2 \ 2 [ 55'V Sap™ (?Vysaﬂ)saﬁ] .
on the characteristic potential tensor. If all the changes in the
electrochemical potentials are the same, idugz=du, (16)
=du, this corresponds to an overall shift of the electrostatic
potential edU=du. From this we have 2zug=1,  From this result, we immediately realize that the first term on
2 4,Ug,=0. Due to gauge invariance, E¢B) remains the the right-hand side is just the dc contribution to the electric
same ifdU, dug, anddu, are all shifted by the same current. From the second and third terms that are linear'in
amount. This leads t& gug,=3,uz,=0. Using Eq.(12),  andV,, we obtain the linear order emittance
we can confirm that these relations are indeed satisfied. Simi-
lar sum rules can be derived for higher-order characteristic
otentials.
P Let's summarize the scattering matrix theoretical proce- Eap= de( aEf) ([ Sup S~ (9ESep) Sus]
dure. With the characteristic potential tensor calculated, we
explicitly derive the Hamiltonian in a series from E@L). t _
Thz Haymiltonian determines the creation and annﬁfilation +2 I8, NSy ((7vﬁ5a7)5a7]]- 7
operators via equation of motion E() and the scattering

matrix s,z . Finally, using Eq.(7), we compute the electric Thjs result exactly agrees with that obtained previodsie

e

current as a function of voltage. first term of E,,; describes the external contribution to the ac
current, while the second term is from internal response.
lll. APPLICATIONS They are obtained simultaneously from the scattering matrix

theory developed here. Finally, from the gauge invariance

In the following we apply the scattering matrix formalism condition (Ref. 2 edeA, s+ 3. dy Aaﬁzo it is easy to

developed in the last section to two examples: the linear
order emittance and the third-order dc nonlinear conducshow that 4E,5=0, which is a direct consequence Of”
tance. The first example has been examined biilgar and  in Eq. (14). Itis also easy to show that the electric current is
co-workers? and our result is in exact agreement with theirs.conserved, i.eX ,E,z=0.
The second example has not been studied and we shall pro-
vide further numerical results for a resonant tunneling diode. B. Third-order dc nonlinear conductance
The scattering matrix theory developed here can be ap-
) ) ) ) plied to compute dc weakly nonlinear conductance to any
The linear dynamic conductancealled emittanceis the  rder in bias. As an example we now calculate the third-
transmission function of the terms proportional¥g and  5,der dc nonlinear conductan@, .5, which is defined by

oV in the electric current. From E@7) we expand every- expanding the electric current in powers of voltage to the
thing in these variables and obtain third power,

A. Linear dynamic conductance

()=, (‘)gl)f dE(— aEf)[ Agg(a,E,E)
B la:E Gaﬁvﬁ+z Gaﬁyvﬁvy+z Gwﬁvﬁvﬁvyvﬁ
) B By Byé
e
- ﬁﬁw’[szﬁa,zsaﬁ—(&Esaﬁ)saﬁ]] . (19 el (18

where we have used the notatidy,;=Agg(a,E,E) and  Following the same procedure as above in deriving the linear
Sxp=Sap(E,U). The transmission functioA is defined in  emittanceE, 5, by expanding the electric current Eg) and
the usual form as other quantities to third order in bias, it is tedious but

, + ) straightforward to derive
ABBI(Q’,E,E ’U):1a5aﬁéaﬁ’_saﬁ(E’U)saﬁ’(E ,U)(15)

3

e
In deriving Eq. (14), we have used the fact that Gaﬁy(s:%f dE(—def)[{dv oy Aaptedy JeAapdpstc
2 Agp(a,E,E,U)=0. All quantities such a8z, S,z, and
uB.=[(9U(r)/aVB]eq are taken at equilibrium, i.e., évta=_0. +e2(7§Aa35ﬁ,/575]. (19
Using Eq. (3), we separate the operator according to
OP o=V piog+ 2,V,dy , thus Eq.(14) can further be sim-  Note that the second-order characteristic potential tensor has
plified to been implicitly included in Eq19), because
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Again, we emphasize that other higher-order nonlinear
conductances can be calculated in a similar fashion. In gen- 00 T o 22 24
eral, thenth order characteristic potential tensor is needed E

for the (n+1)th order nonlinear conductance. Finally, we
point out that this result, Eq19), can in fact be obtained by for

expanding the following electric current expression tOSolid line: numerical results by solving the full quantum scattering

the third order in voltage, Ia:ze/hEﬁdef(E_EF problem using Green'’s functions. Dashed curve: using the approxi-

_evﬂ)Aaﬁ(E’{\_/v})' mate Breit-Wigner form of the scattering matrix. The units of the
In the following we calculates,;,, from the general re-  gyantities are set by=1, e=1, andm= 1.

sult of Eq. (19) for a double-barrier tunneling diode. For

simplicity let us consider a quaS|—one—d|menS|or_(aD) local density of states, which is needed in the emittance cal-
double-barrier tunneling system where the two barrierséare cylation, can all be determined via the scattering Green’s
functions located at positions= —a andx=a. The barrier  fynction.

strength isV; andV,, respectively. They should be viewed  For the double-barrier diode just discussed, if we do not
as infinitely large planar barriers parallel to e plane and  yse the Breit-Wigner scattering forr@,;;, can only be ob-
transport is along the direction. WhenV;=V,, this is &  tained numerically. For this system the Green’s function
symmetric system, hence the second-order nonlinear condug(x,x’) can be calculated exactfthus from the Fisher-Lee
tance vanishes. In the symmetric case the first nonlinear cqelation'” we obtain the scattering matri,z(E) and hence
efficient comes from the third order, as specified by @8).  the transmission functiom,; from its definition (15). To

If Wesapprommate the scattering matrix by the Breit-Wigner compute 5A,,/5U and the higher-order functional deriva-
form” near a resonance energ¥,, S.s(E)~[6.5 tive, we use Fisher-Lee relation and the tcthat
—iI'I'g/A], whereT', is the decay width of barrie, 8G(Xq,X%2)/ U (X) = G(x41,X)G(X,X,). Hence,
A=AE+iT'/2withI'=T,+T, andAE=E—E,, we obtain

FIG. 1. G411; as a function of the scattering electron eneEy
a double barrier tunneling diode with symmetrical barriers.

a simple expression, 08y, .
30(X) =ihvG(Xq,X)G(X,Xq) (23
e’ r?
Gii— 3(AE)?——|(T2+T5-T Iyl T and
11113hF2(()4(1212)12
A I, x)BX XG0k
_aT2T2 2 2,7 ————=ihv[G(Xy,X")G(X',X) G(X,X
6I'2T'2(AE) H(AE) + 21) 3000300 1 1
For the symmetric case, this expression reduces to +G(x1,X)G(x,X")G(X",x1)], (24

wherev is the velocity of the particle. The energy akg
22) derivat_ives of Eq(19) can be evaluated eprici_tIy using the
numerical procedures documented befot. Finally, the
nonlinear characteristic potential; is obtained from Eq.
which is negative definite and has one minimunA&=0. (12).
Because of the simple nature of the scattering matrix within The numerical result foG,,,, as a function of the scat-
the Breit-Wigner form, a general electric current expressiortering electron energf is plotted as the solid curve in Fig.
has been obtaine‘ﬁja=la(vﬁ). We have thus calculated 1. Around the resonance energy~2.0, G, takes large
G111 from this exact I-V relation, and it agrees exactly with but negative values. Thus for electron Fermi energy in this
the result(22) that comes from Eq(19). range, the current-voltage characteristics will be nonlinear
Most practical transport problems cannot be solved anaand this may result to negative differential resistance. Such a
lytically. It is thus very important to be able to solve them behavior has important significance for practical purpéSes.
numerically. Indeed, a distinct merit of the scattering matrixNotice that the two dips 06,,,; are not exactly the same,
theory presented here is that it allows numerical computasuch an asymmetrical behavior has been observed in other
tion, e.g., Eqs(17) and (19) can be numerically evaluated quantities'® For comparison we also plotte@ashed ling
for explicit scattering potentials of a conductor. We only the result from the Breit-Wigner approximation of the scat-
mention that the functional derivatives of the transmissiortering matrix, Eq.(22). While the negative nature @b,
function A, ; with respect to the potential landscagér) as  and the overall magnitude are similar to the numerical result,
appeared in Eq19), the potential derivatives, and the partial the Breit-Wigner result shows only one dip. This inconsis-

e’I'? 3(AE)?+T7
6h [(AE)2+T3)

1111= —
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tency is completely due to the simple form of the Breit- electric current, Eq(7), should be extended. In addition we
Wigner approximation as it gives a space independent anghould use the Helmholtz equati¢éin Lorentz gauggfor the
constant characteristic potential. The accurate solution usinglectrodynamics instead of the Poisson equation. It is also
the Green'’s function generates space-dependence of varioliportant to note that the theoretical approach of scattering
quantities. matrix developed here is appropriate to transport problems
near equilibrium. Far from equilibrium, one may employ the
V. SUMMARY Keldysh .Green"s func'tion.%l. In add.ition, the elgctrqn-
electron interaction, which is needed in order to maintain the
In summary, we have extended the scattering matrigauge invariance at the nonlinear level, is treated in the
theory that is now appropriate to analyzing linear dynamicdensity-functional sense. Hence the present theory is appli-
conductance to first order in frequency, and weakly nonlineagaple for situations where interactions can be analyzed using
dc conductance order by order in external bias. The CrUCinandom_phase approximation type approach_ This iS, in fact,

ingredient of this development is the characteristic potentiahe typical situation for 2D and 3D mesoscopic conductors.
at weakly nonlinear orders and these potentials appear natu-

rally from the self-consistent Hamiltonian. The theory is cur-
rent conserving and gauge invariant. The physical quantities
involved in this theory are numerically calculable, hence the
present approach can be used to conductors with complicated We thank Mr. Q. R. Zheng for a useful discussion con-
scattering potential landscape for quantitative predictionscerning the electrodynamics used in this work. We gratefully
The formal connection of the scattering matrix theory andacknowledge financial support by various organizations.
the response theory, at the weakly nonlinear ac level, ha3.W. was supported by a research grant from the Croucher
been clarified in our recent wofk. While the response Foundation, a RGC grant from the SAR Government of
theory is very generdt and can be used to analyze weakly Hong Kong under Grant No. HKU 261/95P, and a CRCG
nonlinear dc and ac transport order by order in bias, and fogrant from the University of Hong Kong. Z.S.M. was sup-
ac case to all orders of frequency, we expect that the scatteported by the Foundation of Advanced Research Center of
ing matrix theory should be able to do the same. This papeZhongshan University and NSF-China, and H.G. was sup-
partially fulfills this expectation by extending the scattering ported by NSERC of Canada and FCAR of the Province of
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