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Scattering matrix theory for nonlinear transport
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We report a scattering matrix theory for dynamic and nonlinear transport in coherent mesoscopic conductors.
In general this theory allows predictions of low-frequency linear dynamic conductance, as well as weakly
nonlinear dc conductance. It satisfies the conditions of gauge invariance and electric current conservation, and
can be put into a form suitable for numerical computation. Using this theory we examine the third-order
weakly nonlinear dc conductance of a tunneling diode.@S0163-1829~98!03916-2#
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I. INTRODUCTION

Quantum transport under a time-dependent field in coh
ent mesoscopic systems is the subject of many re
studies.1–7 Another problem of interest is the nonlinear co
ductance of such a system, whether under a time-depen
field or not.8 A difficult theoretical issue is the prediction, fo
a general mesoscopic conductor, for the transport coeffici
as a function of the ac field frequency and the bias volta
Once these parameters are known, one can predict u
information such as the nonlinear current-voltage charac
istics in the dc case, the emittance in the linear frequen
linear voltage ac case, and further nonlinear dynamic c
ductance. Indeed, it is now possible to experimentally m
sure the nonlinear ac transport properties such as the se
harmonic generation, as has been demonstrated by se
laboratories.9–11

When a conductor is subjected to time-varying exter
fields such as an ac bias voltage, the total electric cur
flowing through the conductor consists of the usual part
current plus the displacement current. The presence of
latter is crucial, such that the total electric current is co
served. Hence, for a theory to deal with ac transport, in p
ciple one should include the displacement current into
consideration. Because a displacement current origin
from induction, and the necessary condition for electric
duction is the electron-electron~e-e! interaction, one thus
concludes that an important ingredient for ac transport the
should be the consideration of e-e interactions. These is
have been emphasized by Bu¨ttiker and Christen.12 On the
other hand, for dc transport undernonlinear conditions, a
necessary requirement is the gauge invariance:8 the physics
should not change when electrostatic potential everywhe
changed by the same constant amount. Gauge invari
puts severe conditions on the form of the nonlinear trans
coefficients. From these physical arguments, it is clear
ac as well dc nonlinear transport contains ingredients
570163-1829/98/57~15!/9108~6!/$15.00
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were not needed when dealing with the familiar dc line
transport.12

The problems of current conservation and gauge inv
ance have been recognized in the literature. For conduc
that maintain quantum coherence, Bu¨ttiker and his co-
workers have developed an approach2 based on the single
electron scattering matrix theory to deal with the linear
dynamic conductance as well as the second-order nonli
conductance coefficients. The original scattering ma
theory was invented to investigate dc linear transport coe
cients, as is represented by the Landauer-Bu¨ttiker
formulation.13 Such a theory calculates particle current fro
the scattering matrix, thus a direct application to the ac s
ation would violate current conservation.2,12 To solve this
problem, the scattering matrix theory for ac transport co
sists of two steps.2,12 First, it calculates the particle curren
and finds that this current is not conserved. Second, it c
siders the e-e interaction that alters the scattering pote
landscape, and this effect generates an internal response
cancels exactly the nonconserved part of the particle cur
thereby restoring the current conservation. For the
second-order nonlinear conductance coefficient, similar c
siderations led to the desired gauge invariance.

In a recent work, the authors have developed a mic
scopic and general theoretical formalism for electric
sponse that is appropriate for both dc and ac weakly non
ear quantum transport.14 That formalism was based on th
response theory and it formalized the connection of the
sponse theory to the scattering matrix theory at the wea
nonlinear level. One of the useful conceptual advances of
general formalism14 was the introduction of a frequency
dependent characteristic potential at the nonlinear level.
characteristic potential describes the changes of scatte
potential landscape of a mesoscopic conductor when
electrochemical potential of an electron reservoir is p
turbed externally.2 It is the nonlinear order characteristic po
tential that allowed us to analyze the weakly nonlinear
9108 © 1998 The American Physical Society
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57 9109SCATTERING MATRIX THEORY FOR NONLINEAR TRANSPORT
response,14 as well as the nonlinear dc conductance, order
order in the bias voltage. In contrast, so far the scatte
matrix theory can be applied up to the second-order non
earity and linear order ac.

Using the concept of nonlinear characteristic potential
veloped in the response theory,14 we have found that the
scattering matrix theory can actually be further developed
apply to higher-order nonlinear dc situations. In additio
recognizing that an ac transport problem requires the s
consistent solution of the Schro¨dinger equation coupled with
Maxwell equations, we have found a way to derive both
external and internal responses inequal footingwithin the
scattering matrix approach. It is the purpose of this pape
report these results. In particular, we shall start from
scattering matrix theory and formulate an approach tha
appropriate for analyzing linear order dynamic conducta
and the weakly nonlinear dc conductance beyond the sec
order. We emphasize the properties of electric current c
servation and gauge invariance, and these properties
maintained by considering electron-electron interactio
The approach developed here is particularly useful for n
linear dc conductance calculations, and we shall analyze
third-order weakly nonlinear transport coefficient for
double-barrier tunneling diode. Since the approach prese
here can be cast into a form that allows numerical comp
tion, many further applications of it to complicated devi
structures can be envisioned.

The rest of the article is organized as follows. In the n
section we present the development of the formalism. S
tion III presents two applications of this formalism: the line
ac dynamic conductance and the third-order nonlinear c
ductance. Finally, a short conclusion is included in Sec.

II. THEORETICAL FORMALISM

In this section we briefly go through the formal develo
ment of our scattering matrix theory and concentrate more
the conceptually important physical quantities that will
needed.

We start by writing the Hamiltonian of the system in th
presence of an external time-dependent field as

H5(
am

~Ēam1eVa cosvt !aam
† ~Ēam ,t !aam~Ēam ,t !,

~1!

whereaam
† is the creation operator for a carrier in the incom

ing channelm in probe a, eVa cosvt is the shift of the
electrochemical potentialma away from the equilibrium state
associated withmeq, i.e., eVa cosvt5ma2meq. The energy
Ēam is a functional of the internal electrical potential lan
scapeU(r ,$Va%) that depends onVa in the low-frequency
regime. PotentialU includes the internal response to the e
ternal perturbation and it generates such effect as the
placement current. In generalU is also an explicit function
of time ~or of the ac frequencyv) as discussed in Ref. 14
but in this work we shall only be concerned with the d
namic conductance to first power ofv, and for this caseU is
static. Note that we have explicitly includedU into the
Hamiltonian, which helps in dealing with both external a
internal responses in equal footing. The self-consistent
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ture of this Hamiltonian is clear:U must be determined, in
general, from the Maxwell equations where the charge d
sity is obtained from solving the quantum-mechanical pro
lem of the Hamiltonian.

Next let us consider the series expansion of the energ
terms of the potential landscapeU,

Ēam1eVacos~vt !5Eam1eÔa
~1!cos~vt !1e2Ôa

~2!

3@cos~vt !#21•••, ~2!

where the operatorsÔa
( i ) are a spatial integration of thei th

ordercharacteristic potential~see below! folded with thei th
order functional derivative ofEam with respect to the poten
tial landscapeU(r ). For instance, the linear order operato
which is linear in voltageVb , is given by

Ôa
~1![(

b
~dab1]Vb

Eam!Vb , ~3!

where

]Vb
E [ E d3r ub~r !

dE

deU~r !

with ub(r )[]U(r )/]Vb the linear order characteristi
potential.2 The expressions for higher-order operatorsÔa

( i )

are more difficult to write down in a general form, but the
are proportional to thei th power of the bias. In addition, the
can be easily determined after we formally obtain the tra
mission function and then apply the current conservation
gauge invariance to the results. Using Eq.~2!, the Hamil-
tonian now reads

H5(
am

FEam1(
i

Ôa
~ i !~cosvt ! i Gaam

† ~Ēam ,t !aam~Ēam ,t !.

~4!

The operatorsaam(Ēam ,t) satisfy the equation of motion

ȧam~Ēam ,t !5
1

i\
@aam~Ēam ,t !,H#, ~5!

which can be integrated because the time dependence ofH is
simple. For instance, to linear order in voltage, we only ne
to useÔ(1) in the Hamiltonian and the result is

aa,m~Ēam ,t !5aam~Ēam!

3exp S 2
i

\
FEamt1

eÔa
~1!

v
sin vtG D .

Its Fourier transform is given by
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ãa~E!5E dtaa~Ēa ,t !eiEt/\

5aa~E!2
e

2\v
Ôa

~1!@aa~E1\v!2aa~E2\v!#

1
e2

8\2v2
~Ôa

~1!!2@aa~E12\v!

22aa~E!1aa~E22\v!#1•••

5(
n

1

n!
S 2eÔa

~1!

2\v
D n

~e\v]E2e2\v]E!naa~E!, ~6!

where we have suppressed the indexm andaa is in a vector
form of the operatorsaam . In Eq. ~6! the physics is trans
parent: aa(E6\v) is just the one-photon sideband an
aa(E62\v) corresponds to the second harmonic gene
tion. More tedious expressions can be obtained if high
order operatorsÔ( i ) are included in the Hamiltonian.

To calculate the total electrical current, we shall apply
formula derived in Ref. 15, which is exact up to linear ord
of v and for larger frequency it is an approximation to
space-dependent expression of the current operator

I a~ t !5
e

hE dEdE8@ ãa
†~E! ãa~E8!2 b̃a

†~E!b̃a~E8!#

3exp @ i ~E2E8!t/\#, ~7!

whereb̃a(E) is the operator that annihilates a carrier in t
outgoing channel in probea. The annihilation operator in the
outgoing channelb̃a is related to the annihilation operator
the incoming channelãa via the scattering matrixsab : b̃a

5(bsab ãb wheresab is a function of energyE and a func-
tional of the electric potentialU(r ,$Va%). Finally, we com-
ment that in evaluating Eq.~7! we need to take a quantum
statistical average of̂aa

†(E)ab(E8)&5dabd(E2E8) f a(E)
wheref a(E) is the Fermi function of reservoira. Because of
the limitations of Eq.~7!, our theory will be exact for trans
port coefficients linear inv for ac situations. However this i
not a severe limitation for practical calculations.15

One of the most important quantities of this theory is t
determination of characteristic potential that arrives na
rally. As discussed above, this quantity determines the
eratorsÔ( i ). Since the scattering matrix theory used here
exact to the linear power ofv, which is the order we shal
work on, we only need to considerv-independent character
istic potentials. On the other hand, as we are interested in
weakly nonlinear coefficients, it is crucial to consider high
order characteristic potentials:14 udg(r )[]2U(r )/]Vd]Vg ,
ubdg(r ), etc. For any physical quantity beyond the term
linear inv or second order in voltage, including the secon
harmonic generation term~the term ofvV2), these higher-
order characteristic potentials are necessary.

We now discuss the solution of higher-order characteri
potentials by explicitly carrying out the calculation ofudg .
In the weakly nonlinear regime, the variation of the elect
potential can be expanded in terms of the variation of
electrochemical potentialdm,
-
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edU~r !5(
b

ub~r !dmb1
1

2(bg
ubg~r !dmbdmg1 . . . ,

~8!

whereub is the characteristic potential,ubg ~which is sym-
metric in b andg) is the second-order characteristic pote
tial tensor, and (•••) are higher-order terms written in
similar fashion. Because we are only interested in ac tra
port to the first power of frequencyv, the electrodynamics is
solved by the Poisson equation

2¹2dU~r !54pe2dn~r !54pe2(
a

dna~r !, ~9!

wheredna is the variation of the charge density at contacta
due to a change in electrochemical potential at that cont
There are two contributions to the charge density at con
a: the injected charge density due to the variation of
chemical potential at contacta, and the induced charge den
sity dnind,a due to the electrostatic potential. Hence,

dna5
dna

dE
dma1

1

2

d2na

dE2
dma

21•••1dnind,a , ~10!

wheredna /dE is the injectivity, which is the local density o
state at contacta, andd2na /dE2 is the energy derivative o
the injectivity. The induced charge density involves t
Lindhard function. Using the Thomas-Fermi approximatio
Eq. ~10! takes a compact and simple form,

dna5
dna

dE
~dma2edU!1

1

2

d2na

dE2
~dma2edU!21•••.

~11!

From Eqs.~8!, ~9!, and~11!, we obtain the equation satisfie
by the second-order characteristic potential tensor

2¹2ubg14pe2
dn

dE
ubg54pe2S d2nb

dE2
dbg2

d2ng

dE2
ub

2
d2nb

dE2
ug1

d2n

dE2
ubugD .

~12!

Since all the quantities involved in this equation are kno
from the linear order calculation,ubg can thus be deter
mined. Similarly, order by order we can determine high
order characteristic potentials from results obtained at lo
orders. For instance, the equation satisfied byubgd is found
to be

2¹2ubgd14pe2
dn

dE
ubgd

54pe2S d3nb

dE3
dbgdbd2

d3n

dE3
ubugud1H d3nb

dE3
ugud

2
d3nb

dE3
dbgud1

d3n

dE3
ubgud2

d3nb

dE3
ugdJ

c

D ,

~13!
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57 9111SCATTERING MATRIX THEORY FOR NONLINEAR TRANSPORT
where the curly bracket$ . . . %c stands for the cyclic permu
tation of indicesb, g, andd. Note that if better models ar
needed to deal with the screening effect, the term w
dn/dE on the left-hand side of Eqs.~12! and ~13! and
higher-order equations is replaced by an integration over
appropriate Lindhard function folded with the characteris
potential.14

From Eq.~8! we can derive several important sum rul
on the characteristic potential tensor. If all the changes in
electrochemical potentials are the same, i.e.,dmb5dmg
5dm, this corresponds to an overall shift of the electrosta
potential edU5dm. From this we have (bub51,
(bgubg50. Due to gauge invariance, Eq.~8! remains the
same if dU, dmb , and dmg are all shifted by the sam
amount. This leads to(bubg5(gubg50. Using Eq.~12!,
we can confirm that these relations are indeed satisfied. S
lar sum rules can be derived for higher-order characteri
potentials.

Let’s summarize the scattering matrix theoretical pro
dure. With the characteristic potential tensor calculated,
explicitly derive the Hamiltonian in a series from Eq.~4!.
The Hamiltonian determines the creation and annihilat
operators via equation of motion Eq.~5! and the scattering
matrix sab . Finally, using Eq.~7!, we compute the electric
current as a function of voltage.

III. APPLICATIONS

In the following we apply the scattering matrix formalis
developed in the last section to two examples: the lin
order emittance and the third-order dc nonlinear cond
tance. The first example has been examined by Bu¨ttiker and
co-workers,2 and our result is in exact agreement with thei
The second example has not been studied and we shall
vide further numerical results for a resonant tunneling dio

A. Linear dynamic conductance

The linear dynamic conductance~called emittance! is the
transmission function of the terms proportional toVb and
vVb in the electric current. From Eq.~7! we expand every-
thing in these variables and obtain

I a~v8!5(
b

Ôb
~1!E dE~2]Ef !H e2

h
Abb~a,E,E!

2
e2

2h
\v8@sab

† ]Esab2~]Esab!sab#J , ~14!

where we have used the notationAab[Abb(a,E,E) and
sab[sab(E,U). The transmission functionA is defined in
the usual form as

Abb8~a,E,E8,U !51adabdab82sab
† ~E,U !sab8~E8,U !.

~15!

In deriving Eq. ~14!, we have used the fact tha
(bAbb(a,E,E,U)50. All quantities such asAab , sab , and
ub5@]U(r )/]Vb] eq are taken at equilibrium, i.e., atVa50.
Using Eq. ~3!, we separate the operator according
Ôb

(1)]E5Vb]E1(gVg]Vg
, thus Eq.~14! can further be sim-

plified to
h

e
c

e

c

i-
ic

-
e

n

r
-

.
ro-
.

I a~v8!5E dE~2]Ef !S (
b

Vb

e

h
Aab

2
e2

2h
\v8(

b
Vb@sab

† ]Esab2~]Esab!sab#

2
e2

2h
\v8(

g
Vg(

b
@sab

† ]Vg
sab2~]Vg

sab!sab# D .

~16!

From this result, we immediately realize that the first term
the right-hand side is just the dc contribution to the elec
current. From the second and third terms that are linear inv8
andVb , we obtain the linear order emittance

Eab5E dE~2]Ef !
e2

4p i H @sab
† ]Esab2~]Esab!sab#

1(
g

@sag
† ]Vb

sag2~]Vb
sag!sag#J . ~17!

This result exactly agrees with that obtained previously.2 The
first term ofEab describes the external contribution to the
current, while the second term is from internal respon
They are obtained simultaneously from the scattering ma
theory developed here. Finally, from the gauge invarian
condition ~Ref. 2! e]EAab1(g]Vg

Aab50, it is easy to

show that(bEab50, which is a direct consequence ofÔb
(1)

in Eq. ~14!. It is also easy to show that the electric current
conserved, i.e.,(aEab50.

B. Third-order dc nonlinear conductance

The scattering matrix theory developed here can be
plied to compute dc weakly nonlinear conductance to a
order in bias. As an example we now calculate the thi
order dc nonlinear conductanceGabgd , which is defined by
expanding the electric current in powers of voltage to
third power,

I a5(
b

GabVb1(
bg

GabgVbVg1(
bgd

GabgdVbVgVd

1•••. ~18!

Following the same procedure as above in deriving the lin
emittanceEab , by expanding the electric current Eq.~7! and
other quantities to third order in bias, it is tedious b
straightforward to derive

Gabgd5
e3

3hE dE~2]Ef !@$]Vg
]Vd

Aab1e]Vg
]EAabdbd%c

1e2]E
2Aabdbgdgd#. ~19!

Note that the second-order characteristic potential tensor
been implicitly included in Eq.~19!, because
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]Vg
]Vd

Aab5]Vg
E dAab

dU~r1!

]U~r1!

]Vd
dr1

5E S d

dU~r2!

dAab

dU~r1! Dudugdr1dr2

1E dAab

dU~r1!
udgdr1 . ~20!

Again, we emphasize that other higher-order nonlin
conductances can be calculated in a similar fashion. In g
eral, thenth order characteristic potential tensor is need
for the (n11)th order nonlinear conductance. Finally, w
point out that this result, Eq.~19!, can in fact be obtained by
expanding the following electric current expression
the third order in voltage, I a52e/h(b*dE f(E2EF
2eVb)Aab(E,$Vg%).

In the following we calculateG1111 from the general re-
sult of Eq. ~19! for a double-barrier tunneling diode. Fo
simplicity let us consider a quasi-one-dimensional~1D!
double-barrier tunneling system where the two barriers ard
functions located at positionsx52a andx5a. The barrier
strength isV1 andV2, respectively. They should be viewe
as infinitely large planar barriers parallel to they-z plane and
transport is along thex direction. WhenV15V2, this is a
symmetric system, hence the second-order nonlinear con
tance vanishes. In the symmetric case the first nonlinear
efficient comes from the third order, as specified by Eq.~19!.
If we approximate the scattering matrix by the Breit-Wign
form8 near a resonance energyEr , sab(E);@dab

2 iAGaGb/D#, whereGa is the decay width of barriera,
D5DE1 iG/2 with G5G11G2 andDE[E2Er , we obtain
a simple expression,

G11115
2e3

3hG2F S 3~DE!22
G2

4 D ~G1
21G2

22G1G2!G1G2

26G1
2G2

2~DE!2GF ~DE!21
G2

4 G23

. ~21!

For the symmetric case, this expression reduces to

G111152
e3G1

2

6h

3~DE!21G1
2

@~DE!21G1
2#3

, ~22!

which is negative definite and has one minimum atDE50.
Because of the simple nature of the scattering matrix wit
the Breit-Wigner form, a general electric current express
has been obtained:8 I a5I a(Vb). We have thus calculate
G1111 from this exact I-V relation, and it agrees exactly wi
the result~22! that comes from Eq.~19!.

Most practical transport problems cannot be solved a
lytically. It is thus very important to be able to solve the
numerically. Indeed, a distinct merit of the scattering mat
theory presented here is that it allows numerical compu
tion, e.g., Eqs.~17! and ~19! can be numerically evaluate
for explicit scattering potentials of a conductor. We on
mention that the functional derivatives of the transmiss
functionAab with respect to the potential landscapeU(r ) as
appeared in Eq.~19!, the potential derivatives, and the parti
r
n-
d

c-
o-

r

n
n

a-

-

n

local density of states, which is needed in the emittance
culation, can all be determined via the scattering Gree
function.

For the double-barrier diode just discussed, if we do
use the Breit-Wigner scattering form,G1111 can only be ob-
tained numerically. For this system the Green’s functi
G(x,x8) can be calculated exactly16 thus from the Fisher-Lee
relation17 we obtain the scattering matrixsab(E) and hence
the transmission functionAab from its definition ~15!. To
computedA11/dU and the higher-order functional deriva
tive, we use Fisher-Lee relation and the fact18 that
dG(x1 ,x2)/dU(x)5G(x1 ,x)G(x,x2). Hence,

ds11

dU~x!
5 i\vG~x1 ,x!G~x,x1! ~23!

and

d2s11

dU~x!dU~x8!
5 i\v@G~x1 ,x8!G~x8,x!G~x,x1!

1G~x1 ,x!G~x,x8!G~x8,x1!#, ~24!

wherev is the velocity of the particle. The energy andVg
derivatives of Eq.~19! can be evaluated explicitly using th
numerical procedures documented before.7,19 Finally, the
nonlinear characteristic potentialu11 is obtained from Eq.
~12!.

The numerical result forG1111 as a function of the scat
tering electron energyE is plotted as the solid curve in Fig
1. Around the resonance energyEr'2.0, G1111 takes large
but negative values. Thus for electron Fermi energy in t
range, the current-voltage characteristics will be nonlin
and this may result to negative differential resistance. Suc
behavior has important significance for practical purpose20

Notice that the two dips ofG1111 are not exactly the same
such an asymmetrical behavior has been observed in o
quantities.16 For comparison we also plotted~dashed line!
the result from the Breit-Wigner approximation of the sc
tering matrix, Eq.~22!. While the negative nature ofG1111
and the overall magnitude are similar to the numerical res
the Breit-Wigner result shows only one dip. This incons

FIG. 1. G1111 as a function of the scattering electron energyE
for a double barrier tunneling diode with symmetrical barrie
Solid line: numerical results by solving the full quantum scatter
problem using Green’s functions. Dashed curve: using the appr
mate Breit-Wigner form of the scattering matrix. The units of t
quantities are set by\51, e51, andm5

1
2.
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tency is completely due to the simple form of the Bre
Wigner approximation as it gives a space independent
constant characteristic potential. The accurate solution u
the Green’s function generates space-dependence of va
quantities.

IV. SUMMARY

In summary, we have extended the scattering ma
theory that is now appropriate to analyzing linear dynam
conductance to first order in frequency, and weakly nonlin
dc conductance order by order in external bias. The cru
ingredient of this development is the characteristic poten
at weakly nonlinear orders and these potentials appear n
rally from the self-consistent Hamiltonian. The theory is cu
rent conserving and gauge invariant. The physical quant
involved in this theory are numerically calculable, hence
present approach can be used to conductors with complic
scattering potential landscape for quantitative predictio
The formal connection of the scattering matrix theory a
the response theory, at the weakly nonlinear ac level,
been clarified in our recent work.14 While the response
theory is very general14 and can be used to analyze weak
nonlinear dc and ac transport order by order in bias, and
ac case to all orders of frequency, we expect that the sca
ing matrix theory should be able to do the same. This pa
partially fulfills this expectation by extending the scatteri
matrix theory to higher orders of nonlinearity. We point o
that to go beyond the linear frequency, the expression
v.

g-
d
ng
us

ix
c
r

al
l

tu-
-
s

e
ted
s.
d
as

or
er-
er

t
r

electric current, Eq.~7!, should be extended. In addition w
should use the Helmholtz equation~in Lorentz gauge! for the
electrodynamics instead of the Poisson equation. It is a
important to note that the theoretical approach of scatte
matrix developed here is appropriate to transport proble
near equilibrium. Far from equilibrium, one may employ t
Keldysh Green’s functions.21 In addition, the electron-
electron interaction, which is needed in order to maintain
gauge invariance at the nonlinear level, is treated in
density-functional sense. Hence the present theory is ap
cable for situations where interactions can be analyzed u
random-phase approximation type approach. This is, in f
the typical situation for 2D and 3D mesoscopic conducto
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