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Exciton diamagnetic shift in semiconductor nanostructures
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A method is presented for calculating the diamagnetic coefficient of an exciton in a semiconductor nano-
structure. The diamagnetic coefficient characterizes the response of a confined exciton to a weak magnetic
field, and gives information about the roles of confinement and of the Coulomb interaction in determining the
optical properties. A general formulation is presented for nanostructures of arbitrary size, shape, and dimen-
sionality. We introduce a generalized gauge transformation that allows us to express the diamagnetic coeffi-
cient in terms of two characterizations of the size of an exciton, one involving confinement and the other
involving the Coulomb interaction. Calculations of the diamagnetic coefficient are given for quantum well,
wire, and dot geometrie§S0163-18208)00416-(

[. INTRODUCTION semiconductor nanostructures. The energy of the exciton can
be written
The optical properties of semiconductor nanostructures
are of interest both because of their potential for application
in optoelectronic devices and because of the insight they
provide into the nature of confined electrons and holes. Ex-
citons dominate the optical properties of these structured;or a given direction of the applied magnetic field, the dia-
typically producing sharp absorption and luminescence linegnagnetic shift is characterized by a single number, the dia-
In recent work, in particular, the properties of excitons aremagnetic coefficienty,, which describes the low-field limit

being studied to gain insight into confinement in quantumof the diamagnetic shift.
wires and dots. Exciton diamagnetic coefficients have come to be of con-

Two factors are responsible for the properties of the eX_siderable interest in the study of semiconductor nanostruc-
citon in a nanostructure. The first is confinement of the electUreS: This is in part because the diamagnetic coefficients are

tron and the hole by the nanostructure. The second is thtléilken to be a measure of the effects of confinerflent also

Coulomb interaction between the electron and the hole. Corpecaqse()lt[\ey are used 1o estimate exciton binding
; . energies!! Nevertheless, to date there has not been a quan-
finement can be controlled through the size and shape of t

. ftative connection between the diamagnetic coefficients in
nanostructure as well as by the selection of structure an

barri terials d i band offsets. Confi ese systems and the effects of confinement. It is part of the
arrier materials to produce various band OfISets. LOnNN€qyontion of the present work to establish this connection.
ment localizes the electron and hole, enhancing exciton bind- | ¢ paper, we develop a variational technique to cal-

ipg e_nergies and oscillator strgngt_hs. The Coulomb interacémate the diamagnetic coefficient, and show that it is
tion is controlled by the static dielectric constant of the g|ateq to characterizations of the exciton size. These char-
nanostructure material and produces exciton binding. Bothcterizations of exciton size can be seen to arise from the
factors significantly influence the energy and oscillatoreffects of confinement and electron-hole Coulomb interac-
strength of a confined exciton. tion.

External perturbation of a system, such as the application The Hamiltonian for a confined exciton in a magnetic
of an electric or magnetic field, can give valuable informa-field consists of a part independent of magnetic field, a part
tion about the exciton. An applied magnetic field has twolinear in magnetic field, and a part quadratic in magnetic
effects on the spectroscopically observed energy levels. Thigeld. If one were to use perturbation theory to calculate the
first is the spin splitting of levels, which is linear in the diamagnetic coefficient with the zero-field states as the un-
applied field. The second is the diamagnetic shift, an increasgerturbed states, one would need to use enough orders of
in energy of both of the spin-split levels with magnetic field. perturbation to include all energy terms proportionaBto
The diamagnetic shift of an exciton in a quantum well hasThere are two such energy terms. One comes from the first-
been treated by a number of authbm.lt is our goal to  order contribution of the quadratic part of the Hamiltonian
extend this work to systems with lateral confinement. and the other comes from the second-order contribution of

In the case of a weak applied magnetic field, the energyhe linear part of the Hamiltonian. Each is dependent on the
increases quadratically with the applied field. We expect thehoice of gauge for the magnetic field, but together, they are
energy to be quadratic in the magnetic field as long as thgauge independehtWe present a generalized gauge trans-
energy shifts are small compared to the exciton binding enformation that is capable of eliminating the second-order
ergy. This guadratic shift in energy of the exciton emissioncontribution of the linear part of the Hamiltonian. Then, the
with an applied magnetic field gives information about thediamagnetic coefficient is expressed as the expectation value
effects of confinement and of the Coulomb interaction inof the coefficient of the quadratic part of the Hamiltonian.

E(B)=Eg+ y,B+ y,B%+ - - -. (1.1
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In Sec. Il we formulate a variational method to calculateThe ground-state energy of the exciton in a given magnetic
the diamagnetic coefficient. In Sec. Il we discuss the meanfield is found by minimizing the expectation value of the
ing of the four variational parameters used in the procedurélamiltonian:
and the reduction of the number of parameters necessary

when there is symmetry in the confining potential. Section (W[H|W) o (xIH'[x)

IV contains calculations of the diamagnetic coefficient for E(B):ﬂln (P|VP) _TI(:' (xlx) :T'J)'KH )
guantum well, wire, and dot structures and some conclu- ’ ' 2.8
sions.
where we have introduced the shorthand notation for the ex-
IIl. EXCITON DIAMAGNETIC COEFFICIENT pectation value of an operatév,
A. General formulation (x|Alx)
o . o (A)= : (2.9
Within the effective-mass approximation, in the absence (xlx)
of a magnetic field, the Hamiltonian for an exciton in a con-ype functionsy and ¢ that minimize(H') will vary with B.
fined structure is given by Evaluation of Eq(2.7) with Eq. (2.4) gives
p2 P/Z
_ la _ , ia
HO_i:E(-Z‘,h a:;,y,z 2mia +Ve(re)+vh(rh)+VC(|re rh|)v H' = E 2 : +Ve(re)+vh(rh)+vc(|re_rh|)

(2.1) i=eh a=x,y,z 2m|a (2-10)
in which p;,, is the component of momentum for partigle yith

(electron or holg in direction « (X, y, or z), m;, is the

effective mass of particle in direction a, Vg(re) is the po- L) of L)

tential energy of confinement for the electraf,(ry,) is the Plo=Pia=fio —=Pia= LA~
potential energy of confinement for the hole, awig(|r, o

—ry|) is the Coulomb interaction between the electron andiere we have performed a generalized gauge transformation.
the hole. We usél, here to designate the Hamiltonian in the It is generalized in the sense that we have added the gradient
absence of a magnetic field. The Coulomb interaction beof a scalar function of six spatial dimensions to the six-
tween the electron and hole is dimensional vector potential expressed as a function of elec-
tron and hole coordinates, rather than the usual three-
dimensional vector potential whose curl gives the external
magnetic field. We can now form the expectation value of
H’ with respect toy. The expectation value of the term

(2.11

NKig

2
Vc(r)=—%, (2.2

a i

where e=|e| is the hole chargeg is the static dielectric |inear in p;, vanishes becausg is real, and we have the
constant, and=|r,—ry| is the relative electron-hole coordi- egyit
nate. We ignore electron and hole spin.

In the presence of a static, uniform magnetic field, the 1 2
mechanical moment®;, are expressed in terms of the ca- <H'>:<Ho>+__zh > > < cAur)+h— >
nonical momenta;, by e amye Se Ia(2_12)

a; We are interested in the expansion of the energy in powers of
Pia=Pia= T Aulri), (23 B asin Eq.(1.1). Hence, rather than minimizing the expec-
tation value of the Hamiltonian at each value Bf we ex-
whereg.=—¢, gy,=e, andA is the vector potential of the pand the expectation value of the Hamiltonian and minimize

magnetic field. Then the Hamiltonian is the coefficients in the expansion:
P|2 ' 2 ’
_ e _ d(H") 1d%(H")
H= +Vo(re) +Vu(rp) tVe(|re—rnl). N , 2
2, 2 Vel V() Vellre=ral) (H)Y=[(H) g0+ | s ;o B
(2.9 B=0 B=0
We can in general write the exciton wave function in the BRRE (213
presence of a magnetic field as We allow the functionsp andy to vary withB by expanding
_ ; ios irB
V(o) = (e Tp)e e, (g PMaseresis.
— 2
where y and ¢ are real functions. We then have #(B)= o+ 1B+ ¢B+ - - -, (2.149

and by allowingy to be determined by a set of variational

=(ye i¢ —igy— iPHe ¢
(W[H[¥)={(xe™"|H|xe™%) =(x|e""He™""|x) parametersy; which we expand in powers d,

=(x|H'[x), (2.6)

a;(B)=a\V+ o{YB+ a!?B%+ - - .. (2.15
whereH’ is defined as

‘ ‘ The coefficients of the powers & in Eq. (2.13 can be
H' =e'YHe ¢, (2.70  consistently and independently minimized to give
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Eo=min[(H")]g=0, (2.1 magnetic field with the field direction perpendicular to the
quantum well plane. For the quantum well, the functign
. (H") that minimizes the right-hand side of E§.19 can be found
yi=min =g ’ exactly*? It is
B=0
1 82(H'> gz —XeYht XnYe- (2.20
=min 5 ———
72 2 4B? B-0 The quantum well has translational invariance in xhg

o . ) plane, and so it might be expected that the canonical in-plane
where the minimizations are now with respectdff and  center-of-mass momentdy and Py would commute with
¢; . Details of this derivation are given in the Appendix. The the Hamiltonian(2.4). This is not the case at finite magnetic

result is field. However, the center-of-mass momeRta and Py do
5 commute with the transformed Hamiltoni§2.10):
=min Z ! < &a (r-)+ﬁa¢1 >
T2 1 oSy 2mig\ |27 T x| [Py, H']1=[Py,H']=0. (2.2

(2.1 Additionally, if we denote byH,, H;, andH; terms in the
where the expectation value is with respect to the excitorHamiltonianH' that are independent of magnetic field, lin-
ground state at zero magnetic field. We have defined a vectaar in the field, and quadratic in the field, we find that
field a such thatA=(B/2)a. A further simplification results

by defining=(2%c/e) ¢,. Then we have that the diamag- [Ho,H1]=0. (2.22

netic coefficient is given by This last point is what makes the transformati@r20 exact.

5 ek If we use perturbation theory to calculate the diamagnetic
y,=min 2 e < a,(re)— ¢ > coefficient, we must tredt in first order andH; in second
o . .
§ A=Yz 8m,c? MXea order. However, sincély andH; commute, all matrix ele-

2
+ € (2.18 and hence the second-order contribution Hbf vanishes.
8m,,c? ' This greatly simplifies the calculation of the diamagnetic co-
efficient.

At this point, we specify the direction to be the direction We have, then, that the diamagnetic coefficient for an
of the magnetic field, and we choose the symmetric gauge sexciton in a quantum well is given by
that A=(—3By,3Bx,0). Thena=(—y,x,0),

| e? < . b 2> . e’ <
Y>=min Yet —
? & 8me><C2 ° IXe 8mh><C2 . . . .
where the expectation value is with respect to the zero-field

e2 id | e2 0o | eigenstatgthe eigenstate ofl;), and u is the in-plane re-
Xe™ e Xp+ EYA duced mass of the exciton. The diamagnetic coefficient con-
€ h tains information about the zero-field properties of the exci-
2 2 2 2 ton. In the case of the quantum well, E§-23 shows that
e d¢ e d¢ : ) L ) .
+ R B - ) (2.19  the diamagnetic coefficient is a measure of the in-plane

8mec°\ \ IZe 8my,c*\ | 9Zn electron-hole separation.

aa(rh) +

2> } ments ofH; between different eigenstatestdf will vanish,

MXha

e2
20" (2.23

Yh 8u

0_5 2> V2=

B aXh

+
8Me,c? 8m,c2

In summary, the calculation of,, the diamagnetic coef-
ficient, proceeds in two steps. First, the expectation value of
the zero-field Hamiltoniam, is minimized to find the best ~ In general, when there is lateral confinement, we cannot
wave functiony, which is used to form the expectation val- find exactly the functiong that minimizes the right-hand
ues in Egs(2.17), (2.18, and (2.19. Then, the right-hand side of Eq.(2.19. We can, however, choose a functional

side of Eq.(2.19 is minimized with respect to the function form for ¢ with variational parameters. The parameters are

C. Lateral confinement

&(re.ry,) to find the diamagnetic coefficient. determined by minimizing the energy, which implies mini-
The calculation of the diamagnetic coefficiept is thus  mizing the right-hand side of E¢2.19.

expressed in terms of finding the functig(r.,ry,), which Consider the transformation generated by

minimizes the expression on the right-hand side of Eq. _

(2.19. &= —N1XeYnT A oXpYeT NeXeYe™ ApXnYh - (2.29

The first two terms are a generalization of Eg.20. The
third is a gauge transformation for the electron, and the
Before considering the cases of the quantum wire and théourth is a gauge transformation for the hole. The meaning of
guantum dot, we discuss the quantum well. This has beethe\’s and their relationships in various geometries are sum-
treated by Nastet all We consider a quantum well in a marized in Table I. Using this transformation, we have

B. Quantum well
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TABLE |I. The meaning of particular values afs. X andY are the center-of-mass coordinates in the
andy directions, respectively.

A Ao Ne An
0 0 0 0 symmetric gauge
0 0 1 1 Landau gauge
1 1 0 0 relative electron-hole coordinates, used for quantum
well
A N 0 0 used for cylindrical quantum dot
N1 N, 1-\, 1-\; condition for y, to be independent of
N o N1 No—1 condition forvy, to be independent of
1+ 1-\ N -\ condition for vy, to be independent ok andY
2 2 2 2 2
. " || (1-Xe)® A (I+Ne)® A2 (I=Ne)A2 (I=Ap)Ng
Y2= min _Zr | X e (e 2 (XeXn)
)\1,)\2,>\e,)\h8c ey hy ex hx ey hy
(14N N1 (T+ApA, N3 (1A Mo (L2
-2 + (Yeyn)+| =+ (xp)+| =+ (Y- (2.29
Mex Mpx mey mhy Mex Mpx

The following system of linear equations gives the values. gf\,, N\, and\,, which determine the best result for the
diamagnetic coefficient:

[ <Xé> n @ 0 _ (yeyh> (Xexh> il )\l- I <Xexh> + <yeyh>-
mhy Mex Mex mhy mhy Mex
0 R e e Yy | [, (e
rney Mhx mey Mpx 2 mey Mpx
2 2 = 2 2 : (2.26
_ <yeyh> <Xexh> <Xe> n <ye> 0 <Xe> _ <ye>
mex mey mey mex )\e mey mex
<Xexh> _ <yeyh> 0 @ i <yﬁ> @ _ @
L Mhy M Mpy  Mhx ] | )\h_ L Mhy  Mhx ]
|
In summary, the diamagnetic coefficient is calculated in A. Cylindrical symmetry

the following way. First3 the ground state of Har_niltonian In the case of cylindrical symmetry, there is no mass an-
(2.1) must be found. This is the ground-state exciton Wavqsotropy
function in the absence of a magnetic field, and it can be '

found in any convenient way. Second, expectation values of Mex= Mgy =M,
the coordinates are calculated with respect to this state and
used in Eq(2.26) to find A1, A5, \¢, and\;,. Finally, these Mpx= Mpy=M,, (3.2

values are used in Eq2.29 to evaluate the diamagnetic ) ) )
coefficient. The values of,; and\, are seen to give infor- and expectation values of coordinates at zero magnetic

mation about the relative contributions of lateral confinemenfi€ld must be the same as expectation valuey a@oordi-
and Coulomb interaction to the diamagnetic coefficient. ~ nates:

(x)=(ya),

2 2

In the previous section, we introduced four variational ()=, 32
parameters in order to calculate the diamagnetic coefficient. (XXn) = (YY)
Here, we will see that symmetries in the confining potential eh efh/:
place constraints on these parameters, thereby reducing th&olving Eg.(2.26) under these conditions leads to the con-
number. straints

There are two situations in which simplifications arise.
The first case is cylindrical symmetry along an axis parallel N =N,=N\,
to the magnetic field. The second is translational symmetry
in a direction perpendicular to the magnetic field. Ne=A,=0, 3.3

. SYMMETRY IN THE CONFINING POTENTIAL
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so that with cylindrical symmetry, only one variational pa- so that in the case of translational symmetry, two variational

rameter\ is needed. The expression foris parameters are needed. We fing and A, from the linear
equations
2 + 2\ _ /.2
NG i L ca [0 0D Gew [T [OR, G
2i<pg>+2£<pﬁ> Mhy  Mx Kex ! Mhx Mex
mg Mg 2 2 =2 2 !
. 2 > 5 5 5 <yeyh> <X >+ <ye> A <ye> + <yeyh>
W|th2 1/,u=1/£ne+ 1my, <2pe>=<Xe>+<)2/e>, (pry={(Xp) e Moy fx 2 Mex | Mix
+(yn)» and{p®) =((Xe=Xn) ) +{(Ye—Yn))- (3.8

Expression3.4) shows that is a measure of the relative
influence of lateral confinement of the electron and hole anavhere 1fu,=1/mg,+1/my, and (x?)={(xe—xp)?). Using
electron-hole Coulomb interaction on the diamagnetic coefthese values ok, and\,, we find that the diamagnetic co-
ficient. If the motion of the electron and hole were uncorre-efficient is given by
lated by the electron-hole interaction, thep?)=/{p2)

+(p2), son=0, and the geometry alone determines the dia- &2 ([\2 )2 (2-2)2 A2
magnetic coefficient. At the other extreme, with no lateral 3,2:_( 2. —l}<x2)+[—2+ _Zkyg)
confinement(p2)— and(p2)—o, soA=1, and the rela- 8c?(LMey My Me Mhx

tive (in-plane electron-hole separation alone determines the
diamagnetic coefficient through E®.23. (2=Xp)N;  (2—=Np\,

Using the value of from Eq. (3.4), we find that the —2[ +
diamagnetic coefficient for a structure with cylindrical sym-
metry can be written

ox - kYeYh)

A2 (2—))2
== ——(yA L 3.9
Mex My x
2 2 2
e N e|1 A N,
V2T o2 ;<p )+ 8c? E”L m, u {pe) Once again we see that the diamagnetic coefficient is deter-
mined by the interplay of the lateral confinement and the
Coulomb interaction.
e?[1 N\ ] ,
slm M & (pp)- (3.5 IV. QUANTUM WELL, WIRE, AND DOT STRUCTURES

o i i In this section we apply the method developed above to
The case of cylindrical symmetry illustrates most simply giscyss exciton diamagnetic coefficients in quantum wells,
that in confined structures the lateral confinement and thauantum wires, and quantum dots. Here it is our intention to
Coulomb interaction compete to determine the exciton diajjysirate the effects of confinement and dimensionality on
magnetic coefficient. In the strong lateral confinement rey,q ayciton properties. For this discussion we use models of
gime, 7, is @ measure of lateral confinement of the electronese systems. We take the electrons and holes to exist in
and the hole. In the weak confinement regimg,is a mea-  isotropic bands with massas,=0.0665 andm,=0.35 in
sure of in-plane electron-hole separation. The valu\ of poth the nanostructure and in the barrier material, and we
serves to characterize the relative strength of lateral confingzye the background dielectric constant to be 12.5 in each
ment and Coulomb interaction, with=0 corresponding 10 material. The effects of confinement are represented by po-
the strong-confinement limit, and=1 corresponding to the  tentjal barriers for the carriers where 65% of the total offset

weak-confinement limit. is in the conduction band and 35% is in the valence band. In
_ separate work'**we have compared the results of such cal-
B. Translational symmetry culations with the most recent, detailed data for excitonic

Let us choose the axis to be along the direction of diamagnetic shifts and binding energi_es i_n quantum wires
translational symmetry. This would be the case in, for ex-2nd quantum dots. The systems studied in that work were
ample, a quantum wire. Then, the diamagnetic coefficienfithographic InGa _,As/GaAs structures with widely vary-
must be independent of, the exciton center-of-mass coor- INd Sizes and potential barriers.

dinate in thex direction. This leads to the following con- ~ AS pointed out above, we must first find the ground-state
exciton wave function in the absence of a magnetic field. It

straints: should be noted that the formulation developed here is appli-
Ne=1—\>, (3.6 cable using any method for calculating the zero-field wave
function. Here we choose a variational technique based on a
Ap=1—X\q, (3.7 two-parameter nonseparable variational wave funttion

W(re,rn)="fe(re)fa(rn)exp — Vel (xe=Xn) >+ (Y= Yn) °1+ BX(ze—20) %}, (4.1)
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20t \ Infinite Barriers . 1
0 , ] , ] , ] , ] L 0.5
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. . i . . Well Width (nm)
FIG. 1. Exciton diamagnetic coefficient as a function of quan-

tum well width. The magnetic field is perpendicular to the quantum  FIG. 2. Quantum well with magnetic field parallel to the well
well plane. The totalelectront-hole) potential offsets are 100 meV, plane. The totalelectronthole) potential offset is 1000 meMa)
500 meV, and infinite. The bulk limit of 110,2eV/T? is shown as  Exciton diamagnetic coefficient as a function of well width. The
a dashed line. bulk limit of 110.2 ueV/T? is shown as a dashed line. The diamag-
netic coefficient in the absence of the Coulomb interaction is also
in which a« and 8 are the variational parameters. The func-shown as a dashed linga) Values of variational parametexs and
tions fo(re) and f(ry) are the ground-state single-particle X, for this structure.
wave functions for a confined electron or hole in the struc-
ture. The paramete® goes with the coordinate perpendicular approach those of the bulk barrier materials. In the case of
to the well plane in the case of the quantum well and paralleinfinite barriers, the ideal 2D limity,),p= (7>)3p of 20.7
to the wire direction in the case of the quantum wire. TheueV/T? is reached. For the case of the quantum well with
guantum dot studied here is taken to have full rotationaimagnetic field perpendicular to the well plane, the diamag-
symmetry, so a single parameier 3 is used in that case. netic coefficient is entirely a result of the electron-hole Cou-
Two magnetic-field orientations are studied for the quan{omb interaction because there is no lateral confinement. In
tum well, that of the field perpendicular to the well plane andthe absence of the Coulomb interaction, we find Landau lev-
that of the field parallel to the well plane. Figure 1 shows theels for electrons and holes with linear magnetic-field depen-
calculated diamagnetic coefficient for an exciton in a quandences, and no quadratic shift.
tum well with magnetic field perpendicular to the well plane.  Figure 2 shows the calculated diamagnetic coefficient for
In this case, Eq(2.23 is used to evaluatg,, and we do not an exciton in a quantum well with magnetic field parallel to
need the variational parameters introduced in Sec. Il C. Rethe well plane. In this case, the results of Sec. Il B apply
sults are shown for three potential offsets, which cover awith two variational parameters,; andX\,, required to cal-
wide range. Except for very thin wells, there is a weak de-culatey,. Here the diamagnetic coefficient is lower than that
pendence on potential offset. The basic trend is thhatle- in the corresponding case with perpendicular field because
creases with decreasing structure size, which indicates a reve now have the influence of lateral confinement in addition
duction in the in-plane electron-hole separation. In all caseghe effect of the Coulomb interaction. Thes required for
the bulk limit of 110.2ueV/T? is approached at large well the calculation ofy, for each geometry and magnetic-field
widths. For very thin well§smaller than~5 nm), the struc-  direction are listed in Table Il for both the usual case includ-
tures with finite potential confinement show an increase iring the Coulomb interaction and also for the case of ignoring
v, with decreasing well width, which is an indication that a the Coulomb interaction.
significant part of the exciton wave function is extending into  The value ofy, in the absence of the Coulomb interaction
the barrier regions. For such thin wells the diamagnetic shiftss shown in Fig. 2 with a dashed line, and it increases with-

TABLE Il. Variational parameters used in the calculationygffor quantum well, cylindrical quantum
wire, and spherical quantum dot geometries. For the quantum well with magnetic field perpendicular to the
well plane in the absence of the Coulomb interaction there is no diamagnetic shift, but rather Landau levels.

Structure With Coulomb interaction Without Coulomb interaction
well, BL well plane none n/a
well, B|well plane A, Ao none
wire, B||wire axis A none
wire, BL wire axis N1, Ao none

dot N none
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120 ! I T I v ' '/’ I ! 120 T T T T T T T T T
- S L Bulk Limit ——e_ _ _|
100 | Without Coulomb ~ / Bulk Limit  ~ 100
_8of 80 I
g | _ L
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= >
& T ] 60 [
40 - ;l L
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20 L
0 1 20
- }\‘ - I~
- \ (b) { 05 0
_ 0 20 40 60 80 100
1 ! 1 ) 1 . I . 0 Size (nm)
0 20 40 60 80 100
Wire Diameter (nm) FIG. 4. Comparison of diamagnetic coefficient for quantum

. . o _well, cylindrical quantum wire, and spherical quantum dot. Size
FIG. 3. Quantum wire with magnetic field parallel to the wire . refers to well width, wire diameter, or dot diameter. The total

axis_. The_ total(ele(_:tronJrh_oI_ea potential of_fset is 1_000_ mevla) (electront-hole) potential offset is 1000 meVa) B well plane.(b)
Exciton diamagnetic coefficient as a function of wire diameter. TheBHweII plane.(c) B.L wire axis.(d) B|wire axis.(e) Spherical quan-

bulk limit of 110.2 weV/T? is shown as a dashed line. The diamag- tum dot
netic coefficient in the absence of the Coulomb interaction is also '
shown as a dashed lin&) Values of variational parametar for

this structure. structures and stronger lateral confinement for the smaller-

size structures. In all cases the diamagnetic coefficient de-
) o ] creases with decreasing size.
out bound as well width grows. This is because in the ab- |n conclusion, we have presented a method for calculating
sence of the Coulomb interactiop, depends only on expec- the diamagnetic coefficient of an exciton in a semiconductor
tation values of the lateral single-particle coordinates, whicthanostructure. We have introduced a generalized gauge
increase with well width. This is shown in E¢3.9) with  transformation in the calculation of the exciton energy in
A1=N\,=0. In this case, the range of magnetic field overconfined systems. This transformation furnishes parameters

which the energy shift is quadratic shrinks with increasingthat provide measures of the role of lateral confinement and
structure size, ending in Landau levels in the bulk. For thingf Coulomb interaction in the diamagnetic shift.

wells, the diamagnetic coefficients with and without the Cou-
lomb interaction converge, showing thg4 is not sensitive
to the Coulomb interaction in the strong-confinement limit.

The values O'D\l and)\z for the calculations that include This work has been Supported in part by the U.S. Office
the Coulomb interaction are shown in pén of the figure.  of Naval Research. T.L.R. gratefully acknowledges the sup-
The small values for thin wells indicate thgj is acting as a  port of the Alexander von Humboldt Foundation during part
measure of lateral confinement in the thin well regime,of this work. We are grateful for helpful conversations with

whereas the values approaching 1 for large wells imply thak. Bayer and A. Forchel concerning this work.
v, is a measure of in-plane electron-hole separation in the

large well regime.
Figure 3 shows the calculated diamagnetic coefficient for

an exciton in a quantum wire with magnetic field parallel to e begin with Eq(2.12). To simplify the notation, define
the wire axis. In this case, there is cylindrical symmetry
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APPENDIX A: DERIVATION OF EXPRESSION FOR v,

about the wire axis, and the results of Sec. Il A apply with q a2

one variational parametex required to calculatey,. Here [—'Aa(ri)Jrﬁ

the diamagnetic coefficient is lower than that in the quantum W= ¢ IXia (A1)
well with either field direction, due to the stronger lateral iZe,h a=xy,z 2m;, '

confinement. The value of for the calculation including the

Coulomb interaction is shown in pafth) of the figure. The Then,

small values for thin wires indicate that, is acting as a

measure of lateral confinement in the thin well regime, while (H"Yy=(Hg)+{(W). (A2)

the values approaching 1 for large wires imply thatis a

measure of in-plane electron-hole separation in the large wirdlow, (H’) depends on the magnetic fieRl in two ways.

regime. First, W depends explicitly oiB through the vector potential
Figure 4 shows a comparison of all of the structures andd and the gauge functiog#. Second, the expectation value is

magnetic-field directions studied. The lower-dimensionalwith respect to the real wave functign which depends oB

structures have lower diamagnetic coefficients, implyingthrough the parameters;. The required first and second

smaller in-plane electron-hole separations for the larger-sizderivatives offH') with respect toB are
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d(H") [dwW d(H'") de; d(H")
— = — A (1)
dB <dB>+zi da; dB (A3) a5, > Moo (A12)
and
Evaluating the second derivative ¢fi’) atB=0 gives
dXH") [d*W > 9 [dW\ de; , ,
aB?  \dg?/ % oe\dB/dB d(H)| | [dw +23 oft <dW>}
dB® Jg_g dB*/ lg_g 48/ Je=o
(92<H,> dai dai/ 3<H,> dzai
t2 @B B '3 o g P(H')
T dajda; T Jda; dB +2 2 (Vg <1>
(A4) ﬁaiﬁai/ B=0
’ 2,
1. Calculation of coefficients +2 o(H") M (A13)
Tl dai o dB?

We are now ready to calculate the coefficients in expan-

sion (2.13 by evaluating(l—l’) and its derivatives aB=0.  \ye optain simplifying expressions that are similar to those
Evaluating Eq(2.12 atB=0 gives used for the first derivative above and are

[<H,>]B:O:[<HO>]B=O
h? Ao\ 2
+i:e,h a:;,y,z 2mia[<(‘9xia) >L—o.

(A5)

dzai

prev 2a!?, (A14)

B=0
d [dW d dw
; . - . —\T5 (0) =0. (Al5)
Since the second term above can give only a positive contri- da;\ dB/ | _ 0 07 dB B=0
bution, ¢y can be at most a constant, which corresponds to
an arbitrary phase for the entire wave function, which we sePubstituting these, we have

to zero,
1| [ d?w
2|\ dB?
(92

[(H")]g-0=[(Ho)]z-0- (A7) —2 2 aVe) —5— PRCPNE
Next, evaluating Eq(A3) at B=0 gives
ol dBlg_g

S RR(EIS
(8)

dB
We can simplify each part of this expression. From Eq.
(2.15, we have that

1 d*(H’)
2 gg?

¢0 = 01 (AG)

B=0 B=0

and so

9(H")
(9a’i

1%
dai} X[<H,>]B:O+Ei a’i(Z)aai(o)[(H,)]B:o-

(Al6)

2. Minimization of coefficients

The coefficients that we just calculated must now be mini-
mized with respect ta{™ and ¢; to give Eq, 1, andy, as
in Eq. (2.16.

[(H')]g—o depends only om?,

dai

ﬁ = a-(l) . (Ag)

i
B=0

Next, we notice that the functional dependenceldf) on
a; is the same as the functional dependendg Hf ) ]z—, on

J
a{% for the portion of(H’) that remains wheB is set to —5 [(H")]a=0=0; (A17)
zero. This means that da;
AH'Y P [d(H')/dB]g—o depends only om!? and (",
= [(H")]g=o0- (A10)
&ai -0 &ai(o) 9 'd<H/> B

Finally, sinceA is linear inB and ¢,=0, W has only qua- aaiw)_ dB BZO_O’ (AL8)
dratic and higher even powers Bf so

dw J 'd<H’>}

— =0. All —= | =0. (A19)

< dB> B=0 ( ) aai(l)- dB B=0

Therefore, Eq(A8) simplifies to This results in the two sets of equations:
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2 J d2<H/>
(l) _
a;; H' =0, A20 =0, (A25)
E & (0)[< >]B 0~ ( ) &al(o) dBZ 5o
J w_
P (0)[<H )]g=0=0. (A21) .E a W[(H Yg—0=0, (A26)
Note that Eqg. (A21) is the same as EQ.(Al7).
[d*(H')/dB?]g— depends onr!?, ¥, a®, and ¢;: A27)
9 [1d2(H")]
] 2 2 =0, (A22) Note that Eq.(A27) is the same as EqA17) and that Eq.
992 dB . g .
ot 4B=0 (A26) is the same as EqA20). Putting all of this together,
i ] we find
g |1d*(H") o A23
gaV| 2 4B2 e (A23) d?w
bt “B=0 Vo= mm— (A28)
- 1 dBZ B=0
g |1d¥H")
2|2 > =0, (A24)  Evaluating this equation with EqA1) gives the desired re-
dai”| < dB® g, sult, Eq.(2.17).
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