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Exciton diamagnetic shift in semiconductor nanostructures

S. N. Walck and T. L. Reinecke
Naval Research Laboratory, Washington, D.C. 20375

~Received 27 August 1997!

A method is presented for calculating the diamagnetic coefficient of an exciton in a semiconductor nano-
structure. The diamagnetic coefficient characterizes the response of a confined exciton to a weak magnetic
field, and gives information about the roles of confinement and of the Coulomb interaction in determining the
optical properties. A general formulation is presented for nanostructures of arbitrary size, shape, and dimen-
sionality. We introduce a generalized gauge transformation that allows us to express the diamagnetic coeffi-
cient in terms of two characterizations of the size of an exciton, one involving confinement and the other
involving the Coulomb interaction. Calculations of the diamagnetic coefficient are given for quantum well,
wire, and dot geometries.@S0163-1829~98!00416-0#
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I. INTRODUCTION

The optical properties of semiconductor nanostructu
are of interest both because of their potential for applicat
in optoelectronic devices and because of the insight t
provide into the nature of confined electrons and holes.
citons dominate the optical properties of these structu
typically producing sharp absorption and luminescence lin
In recent work, in particular, the properties of excitons a
being studied to gain insight into confinement in quant
wires and dots.

Two factors are responsible for the properties of the
citon in a nanostructure. The first is confinement of the el
tron and the hole by the nanostructure. The second is
Coulomb interaction between the electron and the hole. C
finement can be controlled through the size and shape o
nanostructure as well as by the selection of structure
barrier materials to produce various band offsets. Confi
ment localizes the electron and hole, enhancing exciton b
ing energies and oscillator strengths. The Coulomb inte
tion is controlled by the static dielectric constant of t
nanostructure material and produces exciton binding. B
factors significantly influence the energy and oscilla
strength of a confined exciton.

External perturbation of a system, such as the applica
of an electric or magnetic field, can give valuable inform
tion about the exciton. An applied magnetic field has t
effects on the spectroscopically observed energy levels.
first is the spin splitting of levels, which is linear in th
applied field. The second is the diamagnetic shift, an incre
in energy of both of the spin-split levels with magnetic fie
The diamagnetic shift of an exciton in a quantum well h
been treated by a number of authors.1–8 It is our goal to
extend this work to systems with lateral confinement.

In the case of a weak applied magnetic field, the ene
increases quadratically with the applied field. We expect
energy to be quadratic in the magnetic field as long as
energy shifts are small compared to the exciton binding
ergy. This quadratic shift in energy of the exciton emiss
with an applied magnetic field gives information about t
effects of confinement and of the Coulomb interaction
570163-1829/98/57~15!/9088~9!/$15.00
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semiconductor nanostructures. The energy of the exciton
be written

E~B!5E01g1B1g2B21•••. ~1.1!

For a given direction of the applied magnetic field, the d
magnetic shift is characterized by a single number, the d
magnetic coefficientg2, which describes the low-field limit
of the diamagnetic shift.

Exciton diamagnetic coefficients have come to be of c
siderable interest in the study of semiconductor nanost
tures. This is in part because the diamagnetic coefficients
taken to be a measure of the effects of confinement,9 and also
because they are used to estimate exciton bind
energies.10,11Nevertheless, to date there has not been a qu
titative connection between the diamagnetic coefficients
these systems and the effects of confinement. It is part of
intention of the present work to establish this connection

In this paper, we develop a variational technique to c
culate the diamagnetic coefficientg2, and show that it is
related to characterizations of the exciton size. These c
acterizations of exciton size can be seen to arise from
effects of confinement and electron-hole Coulomb inter
tion.

The Hamiltonian for a confined exciton in a magne
field consists of a part independent of magnetic field, a p
linear in magnetic field, and a part quadratic in magne
field. If one were to use perturbation theory to calculate
diamagnetic coefficient with the zero-field states as the
perturbed states, one would need to use enough order
perturbation to include all energy terms proportional toB2.
There are two such energy terms. One comes from the fi
order contribution of the quadratic part of the Hamiltoni
and the other comes from the second-order contribution
the linear part of the Hamiltonian. Each is dependent on
choice of gauge for the magnetic field, but together, they
gauge independent.1 We present a generalized gauge tran
formation that is capable of eliminating the second-ord
contribution of the linear part of the Hamiltonian. Then, t
diamagnetic coefficient is expressed as the expectation v
of the coefficient of the quadratic part of the Hamiltonian
9088 © 1998 The American Physical Society
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In Sec. II we formulate a variational method to calcula
the diamagnetic coefficient. In Sec. III we discuss the me
ing of the four variational parameters used in the proced
and the reduction of the number of parameters neces
when there is symmetry in the confining potential. Sect
IV contains calculations of the diamagnetic coefficient
quantum well, wire, and dot structures and some con
sions.

II. EXCITON DIAMAGNETIC COEFFICIENT

A. General formulation

Within the effective-mass approximation, in the absen
of a magnetic field, the Hamiltonian for an exciton in a co
fined structure is given by

H05 (
i 5e,h

(
a5x,y,z

pia
2

2mia
1Ve~re!1Vh~rh!1Vc~ ure2rhu!,

~2.1!

in which pia is the component of momentum for particlei
~electron or hole! in direction a (x, y, or z), mia is the
effective mass of particlei in directiona, Ve(re) is the po-
tential energy of confinement for the electron,Vh(rh) is the
potential energy of confinement for the hole, andVc(ure
2rhu) is the Coulomb interaction between the electron a
the hole. We useH0 here to designate the Hamiltonian in th
absence of a magnetic field. The Coulomb interaction
tween the electron and hole is

Vc~r !52
e2

er
, ~2.2!

where e5ueu is the hole charge,e is the static dielectric
constant, andr 5ure2rhu is the relative electron-hole coord
nate. We ignore electron and hole spin.

In the presence of a static, uniform magnetic field,
mechanical momentaPia are expressed in terms of the c
nonical momentapia by

Pia5pia2
qi

c
Aa~r i !, ~2.3!

whereqe52e, qh5e, andA is the vector potential of the
magnetic field. Then the Hamiltonian is

H5 (
i 5e,h

(
a5x,y,z

Pia
2

2mia
1Ve~re!1Vh~rh!1Vc~ ure2rhu!.

~2.4!

We can in general write the exciton wave function in t
presence of a magnetic field as

C~re ,rh!5x~re ,rh!e2 if~re ,rh!, ~2.5!

wherex andf are real functions. We then have

^CuHuC&5^xe2 ifuHuxe2 if&5^xueifHe2 ifux&

5^xuH8ux&, ~2.6!

whereH8 is defined as

H85eifHe2 if. ~2.7!
-
re
ry
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e

The ground-state energy of the exciton in a given magn
field is found by minimizing the expectation value of th
Hamiltonian:

E~B!5min
C

^CuHuC&

^CuC&
5min

x,f

^xuH8ux&

^xux&
5min

x,f
^H8&,

~2.8!

where we have introduced the shorthand notation for the
pectation value of an operatorA,

^A&5
^xuAux&

^xux&
. ~2.9!

The functionsx andf that minimize^H8& will vary with B.
Evaluation of Eq.~2.7! with Eq. ~2.4! gives

H85 (
i 5e,h

(
a5x,y,z

P8 ia
2

2mia
1Ve~re!1Vh~rh!1Vc~ ure2rhu!

~2.10!

with

Pia8 5Pia2\
]f

]xia
5pia2

qi

c
Aa~r i !2\

]f

]xia
. ~2.11!

Here we have performed a generalized gauge transforma
It is generalized in the sense that we have added the grad
of a scalar function of six spatial dimensions to the s
dimensional vector potential expressed as a function of e
tron and hole coordinates, rather than the usual thr
dimensional vector potential whose curl gives the exter
magnetic field. We can now form the expectation value
H8 with respect tox. The expectation value of the term
linear in pia vanishes becausex is real, and we have the
result

^H8&5^H0&1 (
i 5e,h

(
a5x,y,z

1

2mia
K Fqi

c
Aa~r i !1\

]f

]xia
G2L .

~2.12!

We are interested in the expansion of the energy in power
B as in Eq.~1.1!. Hence, rather than minimizing the expe
tation value of the Hamiltonian at each value ofB, we ex-
pand the expectation value of the Hamiltonian and minim
the coefficients in the expansion:

^H8&5@^H8&#B501Fd^H8&
dB G

B50

B1F1

2

d2^H8&

dB2 G
B50

B2

1•••. ~2.13!

We allow the functionsf andx to vary withB by expanding
f in a series inB,

f~B!5f01f1B1f2B21•••, ~2.14!

and by allowingx to be determined by a set of variation
parametersa i which we expand in powers ofB,

a i~B!5a i
~0!1a i

~1!B1a i
~2!B21•••. ~2.15!

The coefficients of the powers ofB in Eq. ~2.13! can be
consistently and independently minimized to give
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E05min@^H8&#B50 , ~2.16!

g15minF]^H8&
]B G

B50

,

g25minF1

2

]2^H8&

]B2 G
B50

,

where the minimizations are now with respect toa i
(n) and

f i . Details of this derivation are given in the Appendix. T
result is

g25min
f1

(
i 5e,h

(
a5x,y,z

1

2mia
K F qi

2c
aa~r i !1\

]f1

]xia
G2L ,

~2.17!

where the expectation value is with respect to the exc
ground state at zero magnetic field. We have defined a ve
field a such thatA5(B/2)a. A further simplification results
by definingf̄5(2\c/e)f1. Then we have that the diamag
netic coefficient is given by

g25min
f̄

(
a5x,y,z

H e2

8meac2K Faa~re!2
]f̄

]xea
G2L

1
e2

8mhac2K Faa~rh!1
]f̄

]xha
G2L J . ~2.18!

At this point, we specify thez direction to be the direction
of the magnetic field, and we choose the symmetric gaug
that A5(2 1

2 By, 1
2 Bx,0). Thena5(2y,x,0),

g25min
f̄

H e2

8mexc
2K Fye1

]f̄

]xe
G2L 1

e2

8mhxc
2K Fyh2

]f̄

]xh
G2L

1
e2

8meyc
2K Fxe2

]f̄

]ye
G2L 1

e2

8mhyc
2K Fxh1

]f̄

]yh
G2L

1
e2

8mezc
2K S ]f̄

]ze
D 2L 1

e2

8mhzc
2K S ]f̄

]zh
D 2L J . ~2.19!

In summary, the calculation ofg2, the diamagnetic coef
ficient, proceeds in two steps. First, the expectation valu
the zero-field HamiltonianH0 is minimized to find the bes
wave functionx, which is used to form the expectation va
ues in Eqs.~2.17!, ~2.18!, and ~2.19!. Then, the right-hand
side of Eq.~2.19! is minimized with respect to the functio
f̄(re ,rh) to find the diamagnetic coefficient.

The calculation of the diamagnetic coefficientg2 is thus
expressed in terms of finding the functionf̄(re ,rh), which
minimizes the expression on the right-hand side of E
~2.19!.

B. Quantum well

Before considering the cases of the quantum wire and
quantum dot, we discuss the quantum well. This has b
treated by Nashet al.1 We consider a quantum well in
n
tor

so

of

.

e
n

magnetic field with the field direction perpendicular to t
quantum well plane. For the quantum well, the functionf̄
that minimizes the right-hand side of Eq.~2.19! can be found
exactly.12 It is

f̄52xeyh1xhye . ~2.20!

The quantum well has translational invariance in thex-y
plane, and so it might be expected that the canonical in-pl
center-of-mass momentaPX and PY would commute with
the Hamiltonian~2.4!. This is not the case at finite magnet
field. However, the center-of-mass momentaPX and PY do
commute with the transformed Hamiltonian~2.10!:

@PX ,H8#5@PY ,H8#50. ~2.21!

Additionally, if we denote byH0, H18 , andH28 terms in the
HamiltonianH8 that are independent of magnetic field, lin
ear in the field, and quadratic in the field, we find that

@H0 ,H18#50. ~2.22!

This last point is what makes the transformation~2.20! exact.
If we use perturbation theory to calculate the diamagne
coefficient, we must treatH28 in first order andH18 in second
order. However, sinceH0 and H18 commute, all matrix ele-
ments ofH18 between different eigenstates ofH0 will vanish,
and hence the second-order contribution ofH18 vanishes.
This greatly simplifies the calculation of the diamagnetic c
efficient.

We have, then, that the diamagnetic coefficient for
exciton in a quantum well is given by

g25
e2

8mc2
^r2&, ~2.23!

where the expectation value is with respect to the zero-fi
eigenstate~the eigenstate ofH0), andm is the in-plane re-
duced mass of the exciton. The diamagnetic coefficient c
tains information about the zero-field properties of the ex
ton. In the case of the quantum well, Eq.~2.23! shows that
the diamagnetic coefficient is a measure of the in-pla
electron-hole separation.

C. Lateral confinement

In general, when there is lateral confinement, we can
find exactly the functionf̄ that minimizes the right-hand
side of Eq.~2.19!. We can, however, choose a function
form for f̄ with variational parameters. The parameters
determined by minimizing the energy, which implies min
mizing the right-hand side of Eq.~2.19!.

Consider the transformation generated by

f̄52l1xeyh1l2xhye1lexeye2lhxhyh . ~2.24!

The first two terms are a generalization of Eq.~2.20!. The
third is a gauge transformation for the electron, and
fourth is a gauge transformation for the hole. The meaning
thel ’s and their relationships in various geometries are su
marized in Table I. Using this transformation, we have
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g25 min
l1 ,l2 ,le ,lh

e2

8c2H F ~12le!
2

mey
1

l1
2

mhy
G^xe

2&1F ~11le!
2

mex
1

l2
2

mhx
G^ye

2&22F ~12le!l2

mey
1

~12lh!l1

mhy
G^xexh&

22F ~11le!l1

mex
1

~11lh!l2

mhx
G^yeyh&1F l2

2

mey
1

~12lh!2

mhy
G^xh

2&1F l1
2

mex
1

~11lh!2

mhx
G^yh

2&J . ~2.25!

The following system of linear equations gives the values ofl1, l2, le , andlh , which determine the best result for th
diamagnetic coefficient:

3
^xe

2&
mhy

1
^yh

2&
mex

0 2
^yeyh&

mex

^xexh&
mhy

0
^xh

2&
mey

1
^ye

2&
mhx

^xexh&
mey

2
^yeyh&

mhx

2
^yeyh&

mex

^xexh&
mey

^xe
2&

mey
1

^ye
2&

mex

0

^xexh&
mhy

2
^yeyh&

mhx
0

^xh
2&

mhy
1

^yh
2&

mhx

4 3
l1

l2

le

lh

4 53
^xexh&
mhy

1
^yeyh&

mex

^xexh&
mey

1
^yeyh&

mhx

^xe
2&

mey
2

^ye
2&

mex

^xh
2&

mhy
2

^yh
2&

mhx

4 . ~2.26!

TABLE I. The meaning of particular values ofl ’s. X andY are the center-of-mass coordinates in thex
andy directions, respectively.

l1 l2 le lh

0 0 0 0 symmetric gauge
0 0 1 1 Landau gauge
1 1 0 0 relative electron-hole coordinates, used for quantum

well
l l 0 0 used for cylindrical quantum dot
l1 l2 12l2 12l1 condition forg2 to be independent ofX
l1 l2 l121 l221 condition forg2 to be independent ofY
11l 12l l 2l condition forg2 to be independent ofX andY
i
n
v
b

s
a

c

en

a
en
tia
th

e
lle
t

an-

ic

n-
In summary, the diamagnetic coefficient is calculated
the following way. First, the ground state of Hamiltonia
~2.1! must be found. This is the ground-state exciton wa
function in the absence of a magnetic field, and it can
found in any convenient way. Second, expectation value
the coordinates are calculated with respect to this state
used in Eq.~2.26! to find l1, l2, le , andlh . Finally, these
values are used in Eq.~2.25! to evaluate the diamagneti
coefficient. The values ofl1 andl2 are seen to give infor-
mation about the relative contributions of lateral confinem
and Coulomb interaction to the diamagnetic coefficient.

III. SYMMETRY IN THE CONFINING POTENTIAL

In the previous section, we introduced four variation
parameters in order to calculate the diamagnetic coeffici
Here, we will see that symmetries in the confining poten
place constraints on these parameters, thereby reducing
number.

There are two situations in which simplifications aris
The first case is cylindrical symmetry along an axis para
to the magnetic field. The second is translational symme
in a direction perpendicular to the magnetic field.
n

e
e
of
nd

t

l
t.
l
eir

.
l

ry

A. Cylindrical symmetry

In the case of cylindrical symmetry, there is no mass
isotropy,

mex5mey[me ,

mhx5mhy[mh , ~3.1!

and expectation values ofx coordinates at zero magnet
field must be the same as expectation values ofy coordi-
nates:

^xe
2&5^ye

2&,

^xh
2&5^yh

2&, ~3.2!

^xexh&5^yeyh&.

Solving Eq.~2.26! under these conditions leads to the co
straints

l15l2[l,

le5lh50, ~3.3!
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so that with cylindrical symmetry, only one variational p
rameterl is needed. The expression forl is

l5
^re

2&1^rh
2&2^r2&

2
m

mh
^re

2&12
m

me
^rh

2&

, ~3.4!

with 1/m51/me11/mh , ^re
2&5^xe

2&1^ye
2&, ^rh

2&5^xh
2&

1^yh
2&, and^r2&5^(xe2xh)2&1^(ye2yh)2&.

Expression~3.4! shows thatl is a measure of the relativ
influence of lateral confinement of the electron and hole
electron-hole Coulomb interaction on the diamagnetic co
ficient. If the motion of the electron and hole were uncor
lated by the electron-hole interaction, then^r2&5^re

2&
1^rh

2&, sol50, and the geometry alone determines the d
magnetic coefficient. At the other extreme, with no late
confinement,̂ re

2&→` and ^rh
2&→`, sol51, and the rela-

tive ~in-plane! electron-hole separation alone determines
diamagnetic coefficient through Eq.~2.23!.

Using the value ofl from Eq. ~3.4!, we find that the
diamagnetic coefficient for a structure with cylindrical sym
metry can be written

g25
e2

8c2

l

m
^r2&1

e2

8c2F 1

me
1

l2

mh
2

l

m G^re
2&

1
e2

8c2F 1

mh
1

l2

me
2

l

m G^rh
2&. ~3.5!

The case of cylindrical symmetry illustrates most simp
that in confined structures the lateral confinement and
Coulomb interaction compete to determine the exciton d
magnetic coefficient. In the strong lateral confinement
gime,g2 is a measure of lateral confinement of the elect
and the hole. In the weak confinement regime,g2 is a mea-
sure of in-plane electron-hole separation. The value ol
serves to characterize the relative strength of lateral confi
ment and Coulomb interaction, withl50 corresponding to
the strong-confinement limit, andl51 corresponding to the
weak-confinement limit.

B. Translational symmetry

Let us choose thex axis to be along the direction o
translational symmetry. This would be the case in, for
ample, a quantum wire. Then, the diamagnetic coeffici
must be independent ofX, the exciton center-of-mass coo
dinate in thex direction. This leads to the following con
straints:

le512l2 , ~3.6!

lh512l1 , ~3.7!
d
f-
-

-
l

e

e
-
-
n

e-

-
t

so that in the case of translational symmetry, two variatio
parameters are needed. We findl1 and l2 from the linear
equations

F ^x2&
mhy

1
^yh

2&
mx

^yeyh&
mx

^yeyh&
mx

^x2&
mey

1
^ye

2&
mx

GF l1

l2

G52F ^yh
2&

mhx
1

^yeyh&
mex

^ye
2&

mex
1

^yeyh&
mhx

G ,

~3.8!

where 1/mx51/mex11/mhx and ^x2&5^(xe2xh)2&. Using
these values ofl1 andl2, we find that the diamagnetic co
efficient is given by

g25
e2

8c2H F l2
2

mey
1

l1
2

mhy
G^x2&1F ~22l2!2

mex
1

l2
2

mhx
G^ye

2&

22F ~22l2!l1

mex
1

~22l1!l2

mhx
G^yeyh&

1F l1
2

mex
1

~22l1!2

mhx
G^yh

2&J . ~3.9!

Once again we see that the diamagnetic coefficient is de
mined by the interplay of the lateral confinement and
Coulomb interaction.

IV. QUANTUM WELL, WIRE, AND DOT STRUCTURES

In this section we apply the method developed above
discuss exciton diamagnetic coefficients in quantum we
quantum wires, and quantum dots. Here it is our intention
illustrate the effects of confinement and dimensionality
the exciton properties. For this discussion we use model
these systems. We take the electrons and holes to exi
isotropic bands with massesme50.0665 andmh50.35 in
both the nanostructure and in the barrier material, and
take the background dielectric constant to be 12.5 in e
material. The effects of confinement are represented by
tential barriers for the carriers where 65% of the total off
is in the conduction band and 35% is in the valence band
separate work11,14 we have compared the results of such c
culations with the most recent, detailed data for excito
diamagnetic shifts and binding energies in quantum wi
and quantum dots. The systems studied in that work w
lithographic InxGa12xAs/GaAs structures with widely vary
ing sizes and potential barriers.

As pointed out above, we must first find the ground-st
exciton wave function in the absence of a magnetic field
should be noted that the formulation developed here is ap
cable using any method for calculating the zero-field wa
function. Here we choose a variational technique based o
two-parameter nonseparable variational wave function13
C~re ,rh!5 f e~re! f h~rh!exp$2Aa2@~xe2xh!21~ye2yh!2#1b2~ze2zh!2%, ~4.1!
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in which a andb are the variational parameters. The fun
tions f e(re) and f h(rh) are the ground-state single-partic
wave functions for a confined electron or hole in the str
ture. The parameterb goes with the coordinate perpendicul
to the well plane in the case of the quantum well and para
to the wire direction in the case of the quantum wire. T
quantum dot studied here is taken to have full rotatio
symmetry, so a single parametera5b is used in that case.

Two magnetic-field orientations are studied for the qu
tum well, that of the field perpendicular to the well plane a
that of the field parallel to the well plane. Figure 1 shows
calculated diamagnetic coefficient for an exciton in a qu
tum well with magnetic field perpendicular to the well plan
In this case, Eq.~2.23! is used to evaluateg2, and we do not
need the variational parameters introduced in Sec. II C.
sults are shown for three potential offsets, which cove
wide range. Except for very thin wells, there is a weak d
pendence on potential offset. The basic trend is thatg2 de-
creases with decreasing structure size, which indicates a
duction in the in-plane electron-hole separation. In all cas
the bulk limit of 110.2meV/T2 is approached at large we
widths. For very thin wells~smaller than;5 nm!, the struc-
tures with finite potential confinement show an increase
g2 with decreasing well width, which is an indication that
significant part of the exciton wave function is extending in
the barrier regions. For such thin wells the diamagnetic sh

FIG. 1. Exciton diamagnetic coefficient as a function of qua
tum well width. The magnetic field is perpendicular to the quant
well plane. The total~electron1hole! potential offsets are 100 meV
500 meV, and infinite. The bulk limit of 110.2meV/T2 is shown as
a dashed line.
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approach those of the bulk barrier materials. In the case
infinite barriers, the ideal 2D limit (g2)2D5 3

16 (g2)3D of 20.7
meV/T2 is reached. For the case of the quantum well w
magnetic field perpendicular to the well plane, the diam
netic coefficient is entirely a result of the electron-hole Co
lomb interaction because there is no lateral confinement
the absence of the Coulomb interaction, we find Landau l
els for electrons and holes with linear magnetic-field dep
dences, and no quadratic shift.

Figure 2 shows the calculated diamagnetic coefficient
an exciton in a quantum well with magnetic field parallel
the well plane. In this case, the results of Sec. III B app
with two variational parameters,l1 andl2, required to cal-
culateg2. Here the diamagnetic coefficient is lower than th
in the corresponding case with perpendicular field beca
we now have the influence of lateral confinement in addit
the effect of the Coulomb interaction. Thel ’s required for
the calculation ofg2 for each geometry and magnetic-fie
direction are listed in Table II for both the usual case inclu
ing the Coulomb interaction and also for the case of ignor
the Coulomb interaction.

The value ofg2 in the absence of the Coulomb interactio
is shown in Fig. 2 with a dashed line, and it increases w

-
FIG. 2. Quantum well with magnetic field parallel to the we

plane. The total~electron1hole! potential offset is 1000 meV.~a!
Exciton diamagnetic coefficient as a function of well width. Th
bulk limit of 110.2meV/T2 is shown as a dashed line. The diama
netic coefficient in the absence of the Coulomb interaction is a
shown as a dashed line.~b! Values of variational parametersl1 and
l2 for this structure.
to the
levels.
TABLE II. Variational parameters used in the calculation ofg2 for quantum well, cylindrical quantum
wire, and spherical quantum dot geometries. For the quantum well with magnetic field perpendicular
well plane in the absence of the Coulomb interaction there is no diamagnetic shift, but rather Landau

Structure With Coulomb interaction Without Coulomb interaction

well, B'well plane none n/a
well, Biwell plane l1, l2 none
wire, Biwire axis l none
wire, B'wire axis l1, l2 none
dot l none
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out bound as well width grows. This is because in the
sence of the Coulomb interaction,g2 depends only on expec
tation values of the lateral single-particle coordinates, wh
increase with well width. This is shown in Eq.~3.9! with
l15l250. In this case, the range of magnetic field ov
which the energy shift is quadratic shrinks with increas
structure size, ending in Landau levels in the bulk. For t
wells, the diamagnetic coefficients with and without the Co
lomb interaction converge, showing thatg2 is not sensitive
to the Coulomb interaction in the strong-confinement lim

The values ofl1 andl2 for the calculations that include
the Coulomb interaction are shown in part~b! of the figure.
The small values for thin wells indicate thatg2 is acting as a
measure of lateral confinement in the thin well regim
whereas the values approaching 1 for large wells imply t
g2 is a measure of in-plane electron-hole separation in
large well regime.

Figure 3 shows the calculated diamagnetic coefficient
an exciton in a quantum wire with magnetic field parallel
the wire axis. In this case, there is cylindrical symme
about the wire axis, and the results of Sec. III A apply w
one variational parameterl required to calculateg2. Here
the diamagnetic coefficient is lower than that in the quant
well with either field direction, due to the stronger later
confinement. The value ofl for the calculation including the
Coulomb interaction is shown in part~b! of the figure. The
small values for thin wires indicate thatg2 is acting as a
measure of lateral confinement in the thin well regime, wh
the values approaching 1 for large wires imply thatg2 is a
measure of in-plane electron-hole separation in the large
regime.

Figure 4 shows a comparison of all of the structures a
magnetic-field directions studied. The lower-dimensio
structures have lower diamagnetic coefficients, imply
smaller in-plane electron-hole separations for the larger-

FIG. 3. Quantum wire with magnetic field parallel to the wi
axis. The total~electron1hole! potential offset is 1000 meV.~a!
Exciton diamagnetic coefficient as a function of wire diameter. T
bulk limit of 110.2meV/T2 is shown as a dashed line. The diama
netic coefficient in the absence of the Coulomb interaction is a
shown as a dashed line.~b! Values of variational parameterl for
this structure.
-

h

r

n
-

,
t
e

r

l

e

re

d
l

g
e

structures and stronger lateral confinement for the sma
size structures. In all cases the diamagnetic coefficient
creases with decreasing size.

In conclusion, we have presented a method for calcula
the diamagnetic coefficient of an exciton in a semiconduc
nanostructure. We have introduced a generalized ga
transformation in the calculation of the exciton energy
confined systems. This transformation furnishes parame
that provide measures of the role of lateral confinement
of Coulomb interaction in the diamagnetic shift.
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APPENDIX A: DERIVATION OF EXPRESSION FOR g2

We begin with Eq.~2.12!. To simplify the notation, define

W5 (
i 5e,h

(
a5x,y,z

Fqi

c
Aa~r i !1\

]f

]xia
G2

2mia
. ~A1!

Then,

^H8&5^H0&1^W&. ~A2!

Now, ^H8& depends on the magnetic fieldB in two ways.
First, W depends explicitly onB through the vector potentia
A and the gauge functionf. Second, the expectation value
with respect to the real wave functionx, which depends onB
through the parametersa i . The required first and secon
derivatives of̂ H8& with respect toB are

e

o

FIG. 4. Comparison of diamagnetic coefficient for quantu
well, cylindrical quantum wire, and spherical quantum dot. S
~nm! refers to well width, wire diameter, or dot diameter. The to
~electron1hole! potential offset is 1000 meV.~a! B'well plane.~b!
Biwell plane.~c! B'wire axis.~d! Biwire axis.~e! Spherical quan-
tum dot.
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d^H8&
dB

5 K dW

dBL 1(
i

]^H8&
]a i

da i

dB
~A3!

and

d2^H8&

dB2
5K d2W

dB2 L 12(
i

]

]a i
K dW

dBL da i

dB

1(
i

(
i 8

]2^H8&

]a i]a i 8

da i

dB

da i 8
dB

1(
i

]^H8&
]a i

d2a i

dB2
.

~A4!

1. Calculation of coefficients

We are now ready to calculate the coefficients in exp
sion ~2.13! by evaluating^H8& and its derivatives atB50.
Evaluating Eq.~2.12! at B50 gives

@^H8&#B505@^H0&#B50

1 (
i 5e,h

(
a5x,y,z

\2

2mia
F K S ]f0

]xia
D 2L G

B50

.

~A5!

Since the second term above can give only a positive co
bution, f0 can be at most a constant, which corresponds
an arbitrary phase for the entire wave function, which we
to zero,

f050, ~A6!

and so

@^H8&#B505@^H0&#B50 . ~A7!

Next, evaluating Eq.~A3! at B50 gives

Fd^H8&
dB G

B50

5F K dW

dBL G
B50

1(
i

F]^H8&
]a i

G
B50

Fda i

dB G
B50

.

~A8!

We can simplify each part of this expression. From E
~2.15!, we have that

Fda i

dB G
B50

5a i
~1! . ~A9!

Next, we notice that the functional dependence of^H8& on
a i is the same as the functional dependence of@^H8&#B50 on
a i

(0) for the portion of^H8& that remains whenB is set to
zero. This means that

F]^H8&
]a i

G
B50

5
]

]a i
~0!

@^H8&#B50 . ~A10!

Finally, sinceA is linear inB andf050, W has only qua-
dratic and higher even powers ofB, so

F K dW

dBL G
B50

50. ~A11!

Therefore, Eq.~A8! simplifies to
-

ri-
to
t

.

Fd^H8&
dB G

B50

5(
i

a i
~1!

]

]a i
~0!

@^H8&#B50 . ~A12!

Evaluating the second derivative of^H8& at B50 gives

Fd2^H8&

dB2 G
B50

5F K d2W

dB2 L G
B50

12(
i

a i
~1!F ]

]a i
K dW

dBL G
B50

1(
i

(
i 8

a i
~1!a i 8

~1!F ]2^H8&

]a i]a i 8
G

B50

1(
i

F]^H8&
]a i

G
B50

Fd2a i

dB2 G
B50

. ~A13!

We obtain simplifying expressions that are similar to tho
used for the first derivative above and are

Fd2a i

dB2 G
B50

52a i
~2! , ~A14!

F ]

]a i
K dW

dBL G
B50

5
]

]a i
~0!F K dW

dBL G
B50

50. ~A15!

Substituting these, we have

F1

2

d2^H8&

dB2 G
B50

5
1

2F K d2W

dB2 L G
B50

1
1

2(i
(
i 8

a i
~1!a i 8

~1! ]2

]a i
~0!]a i 8

~0!

3@^H8&#B501(
i

a i
~2!

]

]a i
~0!

@^H8&#B50 .

~A16!

2. Minimization of coefficients

The coefficients that we just calculated must now be m
mized with respect toa i

(n) andf i to give E0, g1, andg2 as
in Eq. ~2.16!.

@^H8&#B50 depends only ona i
(0) ,

]

]a i
~0!

@^H8&#B5050; ~A17!

@d^H8&/dB#B50 depends only ona i
(0) anda i

(1) ,

]

]a i
~0!Fd^H8&

dB G
B50

50, ~A18!

]

]a i
~1!Fd^H8&

dB G
B50

50. ~A19!

This results in the two sets of equations:
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(
i 8

a i 8
~1! ]2

]a i
~0!]a i 8

~0! @^H8&#B5050, ~A20!

]

]a i
~0!

@^H8&#B5050. ~A21!

Note that Eq. ~A21! is the same as Eq.~A17!.
@d2^H8&/dB2#B50 depends ona i

(0) , a i
(1) , a i

(2) , andf1:

]

]a i
~0!F1

2

d2^H8&

dB2 G
B50

50, ~A22!

]

]a i
~1!F1

2

d2^H8&

dB2 G
B50

50, ~A23!

]

]a i
~2!F1

2

d2^H8&

dB2 G
B50

50, ~A24!
rts

K

ev

-

-

Y

pl

.

]

]a i
~0!Fd2^H8&

dB2 G
B50

50, ~A25!

(
i 8

a i 8
~1! ]2

]a i
~0!]a i 8

~0! @^H8&#B5050, ~A26!

]

]a i
~0!

@^H8&#B5050. ~A27!

Note that Eq.~A27! is the same as Eq.~A17! and that Eq.
~A26! is the same as Eq.~A20!. Putting all of this together,
we find

g25min
f1

1

2F K d2W

dB2 L G
B50

. ~A28!

Evaluating this equation with Eq.~A1! gives the desired re
sult, Eq.~2.17!.
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