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Numerically stable secular equation for superlattices via transfer-matrix formalism
and application to InAs/Ing ,4Ga, ,-Sb and InAs/Ing ;Ga, ;Sb/GaSb superlattices
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The numerically stable, Hermitian secular equation for superlattices within the envelope-function approxi-
mation[F. Szmulowicz, Phys. Rev. B4, 11 539(1996)] is derived via the transfer-matrix approach using
Burt's boundary conditions. In the process, the tangents-only form of the secular equation is related to an
earlier transfer matrix approa¢h. R. Ram-Mohan, K. H. Yoo, and R. L. Aggarwal, Phys. Rev3& 6151
(1988] and extended to structures with an arbitrary number of layers per superlattice period. The formalism is
applied to superlattices with two (InAsfpGa, 77Sb) and three (InAs/yGa, ;Sb/GaSh) layers per superlat-
tice period, which are of interest for infrared detector and infrared cascade-laser applications, respectively.
[S0163-182698)03015-X

I. INTRODUCTION formalism using the preseri62) and RYA approaches. A
Kronig-Penney-like equation is derived for SL’s with an ar-
The envelope-function approximatiggFA) for calculat-  bitrary number of layers per superlattice period. In Sec. Ill,
ing the electronic structure of quantum dots, wires, wellsthe transfer-matrix formalism is used to derive the tangents-
and superlatticéscontinues to be popular because of its im- only form of the secular equation from Ref. 8. The tangents-
mediate physica| appeaL being “an extreme|y concise repreonly form is then derived for an arbitrary number of Iayers
sentation of heterostructure electronic propertisith] the ~ Per superlattice period. The formalism is applied in Sec. IV

computational effort essentially independent of the numbef© INAS/INy 2558 775 and InAs/lp :G&, ;Sb/GaSb superlat-
of atoms in the system.z There is active research in HCES, where their electronic structures are calculated and the

exploring”® and overcoming® the physical limitations of the optical absorption spectrum of InAs{pGa, 7:Sb is shown.

EFA theory. For example, Wood and Zungshowed that Conclusions are presented last.
for an accurate description of GaAs/AlAs superlattices

(SL’s) via the EFA, the associatdd p bulk bands must be II. TRANSFER-MATRIX FORMALISM
well described, which requires about 30 bands at the zone FOR COUPLED-BAND EFA
center. i

A. Notation

Increasing the number of bands in the EFA formalism can
accentuate a number of numerical stability problems, includ- Consider a superlattiggsL) consisting of alternating lay-
ing the occurrence of large exponentials due to the presend#s of materiah of width 2a and materiaB of width 2b. In
of large, imaginary, spurious exponefit§.The recently de- the zeroth unit cell, materiah ranges betweenb<z<b
rived secular equation for superlattices in the EFA+2a) and materiaB between (-b<<z<b). The period is
formalisnf can successfully handle a large number of bandsW=2a+2b. For the N-coupled band EFA formalisrh}~°
It does not require that the buk-p Hamiltonian be first the envelope function for a superlattice minibakidis an
block diagonalized to eliminate the Kramers' degeneracy, &-component vector F(M,kq,z) with components
difficult enough procedure for the six- and eight-band EFA. F.(M k;,q,2), v=1,...N, where k;,q) are wave vectors in
The resulting secular equation is Hermitian, so that its eigenthe SL layer plane and in the growth direction, respectively.
values are redl.Because of its tangent form, the secular The N-component envelope function satisfies the Bloch pe-
equation is numerically stable with respect to the occurrencéodicity condition
of large exponentials, because for large arguments, the tan-
gents become hyperbolic tangents which are boundetd hy F,(M,k,q,z+w)=¢e9"F (M,kq,z). (1)
Since the derivation in Ref. 8 was pursued via a special
trigonometric approach, its relationship to the earlier

transfer-matrix formalism of Ram-Mohan, Yoo, and . .
Aggarwa? (RYA) approach is unclear. of order NXN for the constituent materials of the hetero-

In this paper, the secular equation of Ref. 8 is derivedstructure. Expanded to second order, the EFA Hamiltonian

through the transfer-matrix approach using Burt's boundar)pecomeé

conditions? The technique used to derive the secular equa-

tion is then applied to obtain numerically stable forms for the 1

calculation of the electronic properties of superlattices with ~ H(Kj ko) =kzHa(kpk+ 5 [Hir(ki)kz+kHy (k)]

an arbitrary number of layers per superlattice period. Section

Il establishes the notation and develops the transfer-matrix +Ho(ky), 2

The EFA theory uses the buk p HamiltonianH (k; ,Kk,)
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where the operatok,=—id/dz. In Burt's formalism? {k} are the roots of the following determinental equation,
[H,.]'=H.r. Away from interfaces, defingH, +H;gz]/2  which leads to the same characteristic polynomiak ifor
=H,. MatricesHq(k), H1(k;), andH,(k;) are Hermitian  both formalisms,
and material specifi&z dependent’

Away from interfaces, in each layer of the heterostructure, 1252 K| = Qrya—KI|
the EFA Schrdinger equation reads = [H,k2+H k+ (Ho— E)| =0, (11)

d’F  dF which is equivalent to the startirig p Hamiltonian, Eq(2).
Hz gz t1H1 g7~ (Ho—B)F=0, 3 |f vector C is the right eigenvectdr of (H,k?®+Hk
+Hy)C=EC, thenP=({.), which establishes the corre-
or spondence with Eq22) of Ref. 8. Using Eqs(7)—(10), the
2p dE upper half of vectorf(z) has the form

W+i(H2)71H1 E_(Hz)il(Ho_E)on- 4 2N

. F.(2)=2>, C, exp(iki2)c;, (12)
Changing the second-order Sctilnger equation into a first- i=1

order equation doubles the length of the eigenvector, yield
ing the EFA equatioh [see Eq(19) of Ref. § where

2N
df(z — -1
iQ(2)f(z)= d(z), (5) Ci ;1 Pi. f.(0). (13
where(} is of order NX 2N. The forms chosen her&2) B. Boundary conditions

and by RYA are as follows: .
Burt* developed an exact EFA that avos hocassump-

0 I F tions about the boundary conditions. In practical implemen-

iﬂszz( 1 ) ) , fsr= ( =t ) tations of Burt’s formalisnisee, for example, Foremnthe
Hz(Ho—E) —iHz H, effective-mass equation for the single and coupled-band
(6a) cases has the form of a differential equation with piecewise-
constant coefficients. As implemented by Foreman, the

-1 -1
To —iHZ THy/2 H2 boundary conditions require the continuity of the envelope
RYA T (Ho—E)—HH, Hy /4 —iHH,Y2)" function F and of the quantityH,F’ + (iH . /2)F, which is
obtained by integrating the Sclinger equation across an
= interface. Equivalently, we require the continuity of
fRYA:(HZF’JriHlF/Z : (6b)
| 0 E
While the second rows of Eq$6) contain the Schidinger iHy /2 H,/\F’ =Sszfsz- (143

equation itself, the first row reduces to a simple idenfity )
=F’. The two formalism can be shown to be related via aln the standard EFAH;=H,, , so that in the RYA ap-

similarity transformatiort® proach,frya itself is continuous across an interfatilow-
In regions of constant compositiofy, is constant, so that €ver, with Burt's boundary conditions, the RYA approach
the formal solution of Eq(5) is® requires the continuity of
f(2)=€"2((0)=T(2)f(0), Y ! 0 ( F )ES ¢
0z i(Hy —Hqp)/4 | \HF'+iH F/2] — “RYATRYA:

wheref(0) is a constant of integration afidz) =e"** is the (14b)

transfer matrix, which is evaluated by first diagonaliziilg

Let matrix P diagonalize matrix), Therefore, with Burt’s boundary conditions, it is functionally
simpler (FS) to use

PlQP=K, (8)
- _ N —iH; Hy /2 Hy !
whereK is diagonalK;; =k; g;; , i=1,...,2N, which defines a i Qps= _1 , —1a ]
set of exponentgk}, so that (Ho=E)—HiH; "Hy /4 —iHgH, /2
ei(),Z: PeiKZP_l, (9) B F
fes=| H,F +iHy Fr2) (149
where
_ . for which fgs is continuous at each interface aSgs=1.
(eIKZ)ij — elkiz5ij ) (10)

Because the two formalisms are related by a similarity C. Transfer-matrix equations

transformatior!? exponents{k} in both formalisms are the In what follows, subscripts SZ, RYA, and FS are dropped.
same, but the associated eigenvectors, which are stored betegrating Eq(5) across one period from b to b+ 2a, one
the columns of matrixP(QP;=k;P;), are not. Exponents finds
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fA(2a+ b) — eiZQAafA(b) — eiZQAaS;:LSBeiZQBbe( _ b) eiZAAaeiZABb_ . -eiZAMm+ e_iZAMm- . _e—iZABbe—iZAAa

— S 1S, fu(— ), (15 2
where f5 5,54 g Stand for quantities evaluated at tAeB —cosqw‘ =0. (27)
side of a particular interface and the last equality employs the
Bloch theorem. This leads to the common secular equation
for all three(SZ, RYA, F9S cases, lll. TANGENTS-ONLY FORM
[(Sae'??4%5, 1) (Spe'*?8°S5 1) — 9] Spfg(—b) =0. A. Derivation

(16) Consider Eq(24),
Define matrixM as [e 12A8bg=i2Ana_ g=iaW]S f (b + 2a)

{Qzq—1_ iKz -1— iKzpg—1 . .
se®’s _(Sp)e (SP) =Me™M "7, (17) :[eﬂZABbele(AAafqW/Z)_I]SBfB(_b)ZO, (28)

where . . .
where one of several ways of factoring out exjgw) is
M=SP. (18  used. Using the operator identify
Thus defined, matribM is the same as Eq22) of Ref. 8. on 1—i tanAa _ L _
Equation 17 can be used to define the final exponential ma-€"' a=m=(1+l tanAa) (1—-i tanAa),
trix, (29)
grz=Mmelkzpm 1, (19  Eg. (29 can be rewritten as
so that the secular equation, E@6), becomes 1—i tan(Agh)][1—i tan( A xa—qwi2) les ;
[el2MA2gi2ABD _ glaW S fo(—b) =0, (20) 1+i tanAgh)||1+i tanAja—qw/2)| | 7B e(—D)
in which the unknowns are the energy and vector =0. (30

Sefe(—h).
The nontrivial solution of Eq(20) requires that the secu-
lar determinant be zero,

To remove the denominators, multiply E§0) on the left by
(1+i tanAgb) and insert the unit matrix=[1+i tan(A,a
—qw2)][1+i tan(Apa—qwi2)] " after the curly brackets,

||ef2Aa2gi2A8D  glaw| =, (21) which results in
The time-reversal symmetry allows us to write this equation [tanAgb) +tan A pa—qw/2) ] X=0, (31
as where

1 — giavei2Aaagi2Aeb] = . (22)

X=cog A a—qw/2)e (Aaa-aw2g £ (—b), (32
Integrating Eq. 5 fronb+ 2a to —b, one finds an equivalent

secular equation which can be used to finfig(—b) and then the rest of the

envelope function. This equation corresponds to ([86) of

fa(—b)=e 2% (b) Ref. 8. Equation(20) also leads to Eq31), but with
= e 120805 15, 012035, 15, f o (b + 2a) X=cosAgbe"e"Sgfg(—b), (33
—e 1MW 4(b+2a), (23) which corresponds to Eq37) of Ref. 8.
This new system of equations has a nontrivial solution
or whert?
[(Sge™'27e°S5 1) (Sae 120425, 1) —e 719 Spfg(b+ 2a) [tan( A xa—qw/2) + tan Agb) | =0; (34
=0, (24 other equivalent forms are obtained by different ways of fac-

which requires that toring the exponential in Eq28), for example,

[tan(A pa) + tan(Agb—qw/2)|| =0, (35

or the most symmetric form,

||e_i2ABbe_i2AAa_e_qu”:0. (25)

Multiplying Eg. (22) and Eg. (25 together, one finds a
Kronig-Penney-like equation, [tan( A pa—qw/4) +tanAgb—qw/4)|=0.  (36)

gi2Apagi2Agb | o=i2Agbg—i2Aa Of course, in order to evaluate any of the tangents one must
2 cosqw| =0. (26) know the matrix diagonalizing its argument, so that, for ex-

ample, from Eq(34),

In the one-band limit, Eq(26) is diagonal with the Kronig-
Penney equation twice on the diagonal. Generalizing/1to Mg tar(KBb)MglJr M tar(KAa—qw/Z)M,ng:O.
layers per superlattice period, one filids (37
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Equations (31)—(37) represent the central results of the where the last line employs the Bloch periodicity conditions.
present paper. Besides the energy, there are three unknowns in the prob-
lem: fA(0), fg(2a), andf(2a+2b). The boundary con-
B. Multiple layers per period ditions can be arranged in @@ matrix, in which each

) . _element is a RIX 2N matrix itself:
For concreteness, consider a three-layer superlattice with

layers A (0<z=2a), B [2a<z=<2(a+b)], and C[2(a exp(2i Aaa) ml 0
+b) <z=2(a+b+c)]. Integrating the first-order differen- 0 exp(2i Agb) —1
tial equation across each individual layer, one obtains )
=1 0 exg2i(Acc—qw/2)]
fa(2a) =e'2243f ,(0), 38
A( ) A( ) ( a SAfA(O)
fa(2a+ 2b) = e 2% 4(2a), (38b) x| Sgfe(2a) | =0 (40
Scfc(2a+2b)
— Al2Q
fo(2a+2b+2c)=e""c*f5(2a+2b). (389 The secular equation can be reduced to\a2N equation
The boundary conditions across the interfaces provide th# one unknown, sayf,(0), at theprice of retaining the
following equations potentially troublesome exponentidlsee, for example, Eq.
_ (24) for two layers and Eq(27) for multiple layer3. Equa-
Sa[e'243f ,(0)]=Sgfg(2a), (399  tion 40 has a clearly discernible pattern that can be extended
. to more than three layers.
Sg[e'28Pf5(2a)]=Scfc(2a+ 2b), (39b) To eliminate the exponentials in E¢0), however, use
' . the half-angle formula, Eq29), which makes it possible to
Sc[e'?ctf(2a+2b)]=€'9"S,f A(0), (390 transform the secular equation into
|
tanAxa il —il (1—i tan A qa) " 1SAfA(0)
—il  tanAgb il (1—i tan Agb) !Sgfg(2a) =0 (41

il il tan( A cc— qw/2) [1-i tanAcc—qw/2)] 1Scfc(2a+2Db)

and the eigenvalue condition is layer are on the diagonals; above the diagonal,i tkie ele-
_ _ ment is the AIX 2N unit matrix timesi(—1)'"1**; and be-
tan Apa i —il low the diagonal, the matrix is the Hermitian conjugate of
—il tan Agb il =0. (42 the matrix above the diagonal.

i il tan( A cc— qwi2) For even numbers of layers, the pattern for the secular
ct™q matrix is clear from the following four-layer result for layers
Setting the thickness of any one layer to zero leads to thé, B, C, andD (widths 2a, 2b, 2c, and &, respectively:
two-layer result, Eq(34).
Here, the price for avoiding the uncontrollable growth of

the exponentials is an increase in the size of the secular ma: tanAxa tanAgb 1 il

trix. However, one gains in numerical stability. Another ben- —il tanAgb tanAcc il

efit is that Eq.(41) can be made Hermitian, so that in the il —il tanAcc  tan(Apd—qwi2) =0.
diagonalization of Eq(42), the diagonal elements are real ) )

and come in Kramers' degenerate pairs. At an eigenvalue,|| fan A2 il —il tan(Apd—qw/2)

two of the diagonals are zero and the two associated eigen-

vectors containf,(0), fg(2a), and fc(2a+2b) for the

Kramers' degenerate superlattice miniband. Alternately, the four-layer result can be obtained from the
Equation(42) establishes the pattern for odd number offive-layer result, with one of the layers having zero thick-

layers per superlattice period: the tangent matrices for eachess,

tan A a il —il il =il
=il tan Agb il =il il
il —il tan Acc il —il{| =0, (44
=il il =il tanN Apd—qw/2) il
il =il il =il 0
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where the last row leads to a redundant equation. 400 ' '

Once the roots of the determinental equation are found by 300 c1 .
diagonalizing the secular equation, the eigenvectors corre- »00 | |

sponding to the zero diagonals can be used to solve for the S

envelope function via the transfer equation, EQ). For ex- E 100 | HH1 i
ample, for three layers, E41) can be used to fin8,f A(0), - o I —
Sgfg(2a), and Scf-(2a+2b), which provide the required g’ i |
initial values to produce the wave function at anyia Eq. & -100 LH1

. L ]
(7). For example, in layeA, -200 /

2N -300 HH2 b
FU(Z):; (Ma)yi explikiz) e, (453 400 T 0 0.02 0 002 0.04
q (1/A) k (1/A)
where
N FIG. 1. The band diagram for the 43.6/17.3 A InAs/
_ In b superlattice.

€= 2 (M3 )i Safa(0)],.- (45 ~ Moaf7SD SUP

=

Gilat-Raubenheimer schemf®Because of the tangent form
of Eq. (34), the secular determinant was on the order of unity

The theory development in Ref. 8 concentrates in greate@nd its roots could be easily located by multiplying the dis-
detail on the various ingredients that go into the constructiofiinct eigenvalues of the secular matrix, which was first ren-
of the secular equation. In particular, from the analytic prop-dered Hermitian by row interchange. By contrast, the expo-
erties of theM matrix, Eq.(18), it was shown in Ref. 8 that nential form of the secular equation, E®6), involves
the secular determinants in Eqg6), (27), and (34)—(37) exponentials on the order of & (spurious imaginary ex-
(which are of order X 2N) can be rendered Hermitian by ponent of 2.36(1/A) times InAs width of 43.6 A=103),
interchanging their first and ladt rows (or columng, which ~ which makes root search impossible. The wave functions
greatly simplifies the subsequent analysis, particularly, thavere easily found, normalized, and then used for the calcu-
location of the zeroes of the secular determinant. lation of the optical oscillator strengths.

For more than two layers per superlattice period, the secu- Using Eg.(34), the band dispersions for the superlattice
lar matrix in Eqs.(41), (42), and(44) [but not Eq.(43)] can  Were calculated, Fig. 1, which shows three main bands—
be rendered Hermitian if the firl rows/columns are inter- LH1, HH1, andC1, where LH, HH, andC are light hole,
changed with the secorid rows/columns and then similarly heavy hole, and conduction, respectively. The corresponding
for the third with the fourth, the fifth with the sixth, etc. The optical absorption in normal incidence is shown in Fig. 2,

C. Hermiticity

proof follows the lines of Ref. 8. showing absorption comparable to Mg, ,Te detectors
operating in the same wavelength rartg€or light polarized
IV. APPLICATIONS in the z direction, Fig. 3, the near-threshold absorption is
lower than for normal incidence, but it is a little appreciated
A. InAs/In o ,4Gag 7Sb superlattice point that the two become comparable at higher energies.

The InAs/In, ,Ga, --Sb superlattice is of interest for in- Atomic selection rules on the Bloch parts of the total wave
frared detector applicatioi$'*'®The superlattice used as functions allow HH1 toC1 and LH1 toC1 transitions in
an example here is designed to operate as an infrared detetormal incidence and LH1 t€1 in z polarization at the
tor with a 10um long-wavelength cutoff. The JGa _,Sb  center of the Brillouin zone. However, HH1 ©1 absorp-
layer is 17.3 A wide withx=0.23 indium mole fraction and tion in z polarization is forbidden and only becomes allowed
the InAs layer is 43.6 A wide. The structure is strained to adway from the Brillouin-zone center because of band mixing
GaSb substrate oriented in th@01] direction, and the InAs
conduction band—-GaSb valence-band overlap is taken to be = 4000

)

140 meV. The band gap in this structure is tailored to be 120 § 3500 _17'3A/43'6A x=0.23

. : . A InAs/InGaSb SL
meV and the layer widths were chosen to yield maximum 7~ 140 meV overla
absorption with respect to variations in their widths. The § 3000 ¢ o P 1
zero of energy is placed at the bottom of the conduction band © 2s00 | Mermal incidence 1
of unstrained bulk InAs. Using the material parameters from % 2000 L ;
Ref. 15, the electronic structure and the optical absorption S " /e
coefficients are calculated using the formalism developed in ¢ 1500 ¢ O
this paper in conjunction with the>88 EFA Hamiltonian 2 1000 P
and the standard EFA boundary conditi§ri&rst, the eigen- g | Pt
ergies are obtained using E@®4) and then the wave func- a 500 s LHitoC
tions are found using Eq32). These wave functions are < % 5o 200 300 400 500 600
then used to find the optical matrix elemefks dependent Energy(meV)

by an extensiolf of the formalism first derived by Chang

and Jame$! Lastly, the optical spectrum is calculated, with  FIG. 2. The optical absorption spectrum in normal incidence for
the necessary Brillouin zone integration performed with thethe superlattice of Fig. 1.
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< 10000 s . . 600
‘e 17.3A/43.6A x= 0.23
) InAs/InGaSb SL 00 | c1
o 8000 1" 140 meV overiap Total s —
2 o
;fé_’ 6000 | LH1 to 01—" E 200} o _HH1
- z-polarization e - HH2
O 4000 | 7 S o T e
P 2 — HH4
g .-’-. ------- w HH LH2
2 . 5
E  Lo0o | HH1 to C1| 200 [ __— | ———————— 3]
5 HH6
@ T—— LH4
2 0 , -400 . : ' : ‘ :
100 200 2300 200 500 600 -0.03 -0.02 -0.01 0 0.1 0.02 0.03 0.04 0.05
Energy(meV) a(1/A) k (1/4)
FIG. 3. The optical absorption spectrumzipolarization for the FIG. 4. The band diagram for the 38/29/63 A
superlattice of Fig. 1. InAs/Ing :Ga& ;Sb/GaShb superlattice.

as the result of HH-LH band coupling. A complete discus-;3g &) the hand dispersions in the direction of the super-
sion of the optical response of these structures is deferred Yttice axis are rather flat. Once the energies are found, the

a future publication. . ) .
wave functions in all three layers simultaneously can be
. found from the eigenvector in E¢41). Using the calculated
A. InAsfIn o Gag Sb/GaSh superlattice wave functions, the band character of the levels at the center
To demonstrate the three-layer formalism, the electroni®f the Brillouin zone was determined. Table | summarizes
structure of a 38/29/63 A InAs/jnGa, -Sb/InAs superlat- the wave-function decomposition of the three most important
tice, which is of interest for infrared laser applicatidfisyas  levels for the laser structure€l, HH1, and HH2. In this
calculated. To this end, Eq41) was used to calculate the structure, electrons are injected electrically ir@d, from
energies as well as the wave functions in conjunction withwhere they deexcite into HH1 by emitting a photon. The
the 8x8 EFA Hamiltonian and the standard EFA boundaryefficiency of this process depends on the overlap between the
conditions, as above. The structural parameters for the supenave functions for the two levels. According to Table I,
lattice correspond to those used by Yaeigall® for their ~ 14.2% of theC1 wave function is in the §1;Ga ;Sb layer,
type-Il infrared cascade laser, except that two thin AISb laywhich should ensure strong oscillator strength for the
ers between the InAs andJrGa, ;Sb and InAs and GaSb C1-to-HH1 transition.
layers were eliminated for reasons that will become clear According to the present calculation, the onset of lasing
later. The three-layer code was tested in the two-layer limifor the 38/29/63 A InAs/lgsGa,;Sb/inAs superlattice
by setting one of the layer thicknesses to zero or by havinghould equal theC1-HH1 energy level separation of 131
two layers have the same material composition; in this limitmeV (9.5 um). In actual operation, the device is biased so
the results of the three-layer code invariably agreed to withirthat the long-wavelength threshold is blueshifted. In addi-
the machine accuracy with the corresponding results of thtion, the use of AISb interlayers by Yareg al'® produces a
two-layer code of Sec Ill A. In evaluating the determinant,stronger confinement of carriers in both the InAs and
the secular matrix was diagonalized and roots were identifiethy ;G& ;Sb layers, which further blueshifts the threshold.
by monitoring the change in the sign of the smallest diagonaHowever, Table | indicates that one can obtain good confine
element. Typically, its magnitude did not exceed 10 ment of electrons and holes in InAs ang l&a, ;Sb layers,
Figure 4 shows the calculated band dispersions for theespectively, while retaining a stron@1/HH1 overlap,
three-layer superlattice. Because of the large repeat periagihich guarantees strong spatially-indirect optical transitions.

TABLE I. The band decomposition by layer of the HH2, HH1, & levels at the center of the Brillouin
zone in a 38/29/63 A InAs/xGa, ;Sb/GaSh superlattice.

HH2 113.21 meV HH1 198.04 meV C1 329.18 meV
InAs C like 0 0 0.561

InAs HH like 0.006 0.010 0

InAs LH like 0 0 0.119

Ing sGa 7Sb C like 0 0 0.050

Ino sGa ,Sb HH like 0.076 0.823 0

Ing sGa, ;Sb LH like 0 0 0.092
GashC like 0 0 0.055
GasSb HH like 0.918 0.167 0.0

GaSb LH like 0 0 0.095
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The HH2 level serves as an efficient siflof electrons  The formalism is extended to any number of layers per su-
from the HH1 level, which deexcite from HH1 to HH2 by perlattice period. The present results are directly applicable
phonon emission, in the process creating a population invetto the calculation of the electronic, elastic, optical, and mag-
sion between level€1 and HH1. Table | shows that 16.7% netic properties of superlattices. The formalism was applied
of the wave function for the HH1 level is in the GaSb layer, to the calculation of the electronic structure and the optical
which should promote a strong coupling of the HH1 to HH2 absorption spectrum of InAs{p{Ga, ;;Sb superlattices for
levels. Once in the GaSb layer, the electron is sequentiallinfrared detector applications. The results show strong ab-
injected into the next InAs/lxGa, ;Sb/GaSb period® sorption in normal incidence as well as mpolarization

This calculation demonstrates the utility of the presentaway from the threshold. The three-layer calculation for the
formalism for three-layer superlattices. The numerical stabilinfrared cascade laser structure comprised of an
ity of the formalism was achieved at the price of an enlargednAs/In, :Ga, ;Sb/InAs superlattice demonstrates the utility
size of the secular equation. For a limited number of layer®f the present formalism for multilayer calculations and the

per superlattice period, this should represent an acceptabtiesign of laser devices.
trade off.
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