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Numerically stable secular equation for superlattices via transfer-matrix formalism
and application to InAs/In0.23Ga0.77Sb and InAs/In0.3Ga0.7Sb/GaSb superlattices

Frank Szmulowicz*
Wright Laboratory, Materials Directorate, WL/MLPO, Wright-Patterson AFB, Ohio 45433-7707

~Received 22 July 1997; revised manuscript received 3 November 1997!

The numerically stable, Hermitian secular equation for superlattices within the envelope-function approxi-
mation @F. Szmulowicz, Phys. Rev. B54, 11 539~1996!# is derived via the transfer-matrix approach using
Burt’s boundary conditions. In the process, the tangents-only form of the secular equation is related to an
earlier transfer matrix approach@L. R. Ram-Mohan, K. H. Yoo, and R. L. Aggarwal, Phys. Rev. B38, 6151
~1988!# and extended to structures with an arbitrary number of layers per superlattice period. The formalism is
applied to superlattices with two (InAs/In0.23Ga0.77Sb) and three (InAs/In0.3Ga0.7Sb/GaSb) layers per superlat-
tice period, which are of interest for infrared detector and infrared cascade-laser applications, respectively.
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I. INTRODUCTION

The envelope-function approximation~EFA! for calculat-
ing the electronic structure of quantum dots, wires, we
and superlattices1 continues to be popular because of its im
mediate physical appeal, being ‘‘an extremely concise rep
sentation of heterostructure electronic properties...@with# the
computational effort essentially independent of the num
of atoms in the system.’’2 There is active research i
exploring2,3 and overcoming4,5 the physical limitations of the
EFA theory. For example, Wood and Zunger2 showed that
for an accurate description of GaAs/AlAs superlattic
~SL’s! via the EFA, the associatedk•p bulk bands must be
well described, which requires about 30 bands at the z
center.

Increasing the number of bands in the EFA formalism c
accentuate a number of numerical stability problems, incl
ing the occurrence of large exponentials due to the prese
of large, imaginary, spurious exponents.6–8 The recently de-
rived secular equation for superlattices in the EF
formalism8 can successfully handle a large number of ban
It does not require that the bulkk•p Hamiltonian be first
block diagonalized to eliminate the Kramers’ degeneracy
difficult enough procedure for the six- and eight-band EF9

The resulting secular equation is Hermitian, so that its eig
values are real.8 Because of its tangent form, the secu
equation is numerically stable with respect to the occurre
of large exponentials, because for large arguments, the
gents become hyperbolic tangents which are bounded by61.
Since the derivation in Ref. 8 was pursued via a spe
trigonometric approach, its relationship to the earl
transfer-matrix formalism of Ram-Mohan, Yoo, an
Aggarwal6 ~RYA! approach is unclear.

In this paper, the secular equation of Ref. 8 is deriv
through the transfer-matrix approach using Burt’s bound
conditions.4 The technique used to derive the secular eq
tion is then applied to obtain numerically stable forms for t
calculation of the electronic properties of superlattices w
an arbitrary number of layers per superlattice period. Sec
II establishes the notation and develops the transfer-ma
570163-1829/98/57~15!/9081~7!/$15.00
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formalism using the present~SZ! and RYA approaches. A
Kronig-Penney-like equation is derived for SL’s with an a
bitrary number of layers per superlattice period. In Sec.
the transfer-matrix formalism is used to derive the tangen
only form of the secular equation from Ref. 8. The tangen
only form is then derived for an arbitrary number of laye
per superlattice period. The formalism is applied in Sec.
to InAs/In0.23Ga0.77Sb and InAs/In0.3Ga0.7Sb/GaSb superlat
tices, where their electronic structures are calculated and
optical absorption spectrum of InAs/In0.23Ga0.77Sb is shown.
Conclusions are presented last.

II. TRANSFER-MATRIX FORMALISM
FOR COUPLED-BAND EFA

A. Notation

Consider a superlattice~SL! consisting of alternating lay-
ers of materialA of width 2a and materialB of width 2b. In
the zeroth unit cell, materialA ranges between (b,z<b
12a) and materialB between (2b,z<b). The period is
w52a12b. For theN-coupled band EFA formalism,1,4–9

the envelope function for a superlattice minibandM is an
N-component vector F(M ,kiq,z) with components
Fn(M ,ki ,q,z), n51,...,N, where (ki ,q) are wave vectors in
the SL layer plane and in the growth direction, respective
The N-component envelope function satisfies the Bloch
riodicity condition

Fn~M ,kiq,z1w!5eiqwFn~M ,kiq,z!. ~1!

The EFA theory uses the bulkk•p HamiltonianH(ki ,kz)
of order N3N for the constituent materials of the heter
structure. Expanded to second order, the EFA Hamilton
becomes4

H~ki ,kz!5kzH2~ki!kz1
1

2
@H1R~ki!kz1kzH1L~ki!#

1H0~ki!, ~2!
9081 © 1998 The American Physical Society
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9082 57FRANK SZMULOWICZ
where the operatorkz52 id/dz. In Burt’s formalism,4

@H1L#†5H1R . Away from interfaces, define@HIL1H1R#/2
[H1 . MatricesH0(ki), H1(ki), andH2(ki) are Hermitian
and material specific~z dependent!.7

Away from interfaces, in each layer of the heterostructu
the EFA Schro¨dinger equation reads

H2

d2F

dz2 1 iH 1

dF

dz
2~H02E!F50, ~3!

or

d2F

dz2 1 i ~H2!21H1

dF

dz
2~H2!21~H02E!F50. ~4!

Changing the second-order Schro¨dinger equation into a first
order equation doubles the length of the eigenvector, yie
ing the EFA equation6

iV~z! f ~z!5
d f~z!

dz
, ~5!

whereV is of order 2N32N. The forms chosen here~SZ!
and by RYA are as follows:

iVSZ5S 0 I

H2
21~H02E! 2 iH 2

21H1
D , f SZ5S F

F8 D ,

~6a!

iVRYA5S 2 iH 2
21H1/2 H2

21

~H02E!2H1H2
21H1/4 2 iH 1H2

21/2
D ,

f RYA5S F
H2F81 iH 1F/2D . ~6b!

While the second rows of Eqs.~6! contain the Schro¨dinger
equation itself, the first row reduces to a simple identityF8
5F8. The two formalism can be shown to be related via
similarity transformation.10

In regions of constant composition,V is constant, so tha
the formal solution of Eq.~5! is6

f ~z!5eiVzf ~0![T~z! f ~0!, ~7!

wheref (0) is a constant of integration andT(z)[eiVz is the
transfer matrix, which is evaluated by first diagonalizingV.
Let matrix P diagonalize matrixV,

P21VP5K, ~8!

whereK is diagonal,Ki j 5kid i j , i 51,...,2N, which defines a
set of exponents$k%, so that

eiVz5PeiKzP21, ~9!

where

~eiKz! i j 5eikizd i j . ~10!

Because the two formalisms are related by a simila
transformation,10 exponents$k% in both formalisms are the
same, but the associated eigenvectors, which are store
the columns of matrixP(VPi5ki Pi), are not. Exponents
,

-

a

y

as

$k% are the roots of the following determinental equatio
which leads to the same characteristic polynomial ink for
both formalisms,

iVSZ2ki5iVRYA2ki

5iH2k21H1k1~H02E!i50, ~11!

which is equivalent to the startingk•p Hamiltonian, Eq.~2!.
If vector C is the right eigenvector7 of (H2k21H1k
1H0)C5EC, then P5(KC

C ), which establishes the corre
spondence with Eq.~22! of Ref. 8. Using Eqs.~7!–~10!, the
upper half of vectorf (z) has the form

Fn~z!5(
i 51

2N

Cv i exp~ ik iz!ci , ~12!

@see Eq.~19! of Ref. 8# where

ci5 (
m51

2N

Pim
21f m~0!. ~13!

B. Boundary conditions

Burt4 developed an exact EFA that avoidsad hocassump-
tions about the boundary conditions. In practical impleme
tations of Burt’s formalism~see, for example, Foreman5!, the
effective-mass equation for the single and coupled-b
cases has the form of a differential equation with piecewi
constant coefficients. As implemented by Foreman,
boundary conditions require the continuity of the envelo
function F and of the quantityH2F81( iH 1L/2)F, which is
obtained by integrating the Schro¨dinger equation across a
interface. Equivalently, we require the continuity of

S I 0

iH 1L/2 H2
D S F

F8 D5SSZf SZ. ~14a!

In the standard EFA,H15H1L , so that in the RYA ap-
proach,f RYA itself is continuous across an interface.6 How-
ever, with Burt’s boundary conditions, the RYA approa
requires the continuity of

S I 0

i ~H1L2H1R!/4 I D S F
H2F81 iH 1F/2D[SRYA f RYA .

~14b!

Therefore, with Burt’s boundary conditions, it is functional
simpler ~FS! to use

iVFS5S 2 iH 2
21H1L/2 H2

21

~H02E!2H1H2
21H1L/4 2 iH 1RH2

21/2
D ,

f FS5S F
H2F81 iH 1LF/2D , ~14c!

for which f FS is continuous at each interface andSFS5I .

C. Transfer-matrix equations

In what follows, subscripts SZ, RYA, and FS are droppe
Integrating Eq.~5! across one period from2b to b12a, one
finds
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f A~2a1b!5ei2VAaf A~b!5ei2VAaSA
21SBei2VBbf B~2b!

5eiqwSA
21SBf B~2b!, ~15!

where f A,B ,SA,B stand for quantities evaluated at theA,B
side of a particular interface and the last equality employs
Bloch theorem. This leads to the common secular equa
for all three~SZ, RYA, FS! cases,

@~SAei2VAaSA
21!~SBei2VBbSB

21!2eiqw#SBf B~2b!50.
~16!

Define matrixM as

SeiVzS215~SP!eiKz~SP!21[MeiKzM 21, ~17!

where

M[SP. ~18!

Thus defined, matrixM is the same as Eq.~22! of Ref. 8.
Equation 17 can be used to define the final exponential
trix,

eiLz[MeiKzM 21, ~19!

so that the secular equation, Eq.~16!, becomes

@ei2LAaei2LBb2eiqw#SBf B~2b!50, ~20!

in which the unknowns are the energy and vec
SBf B(2b).

The nontrivial solution of Eq.~20! requires that the secu
lar determinant be zero,

iei2LAaei2LBb2eiqwi50. ~21!

The time-reversal symmetry allows us to write this equat
as

i I 2eiqwei2LAaei2LBbi50. ~22!

Integrating Eq. 5 fromb12a to 2b, one finds an equivalen
secular equation,

f B~2b!5e2 i2VBbf B~b!

5e2 i2VBbSB
21SAe2 i2VAaSA

21SBf B~b12a!

5e2 iqwf B~b12a!, ~23!

or

@~SBe2 i2VBbSB
21!~SAe2 i2VAaSA

21!2e2 iqw#SBf B~b12a!

50, ~24!

which requires that

ie2 i2LBbe2 i2LAa2e2 iqwi50. ~25!

Multiplying Eq. ~22! and Eq. ~25! together, one finds a
Kronig-Penney-like equation,

Iei2LAaei2LBb1e2 i2LBbe2 i2LAa

2
2cosqwI50. ~26!

In the one-band limit, Eq.~26! is diagonal with the Kronig-
Penney equation twice on the diagonal. Generalizing toM
layers per superlattice period, one finds11
e
n

a-

r

n

Iei2LAaei2LBb•••ei2LMm1e2 i2LMm•••e2 i2LBbe2 i2LAa

2

2cosqwI50. ~27!

III. TANGENTS-ONLY FORM

A. Derivation

Consider Eq.~24!,

@e2 i2LBbe2 i2LAa2e2 iqw#SBf B~b12a!

5@e2 i2LBbe2 i2~LAa2qw/2!2I #SBf B~2b!50, ~28!

where one of several ways of factoring out exp(2iqw) is
used. Using the operator identity12

e2 i2La5
12 i tan La

11 i tan La
5~11 i tan La!21~12 i tan La!,

~29!

Eq. ~28! can be rewritten as

H F12 i tan~LBb!

11 i tan~LBb!GF12 i tan~LAa2qw/2!

11 i tan~LAa2qw/2!G2I J SBf B~2b!

50. ~30!

To remove the denominators, multiply Eq.~30! on the left by
(11 i tanLBb) and insert the unit matrixI 5@11 i tan(LAa
2qw/2)#@11 i tan(LAa2qw/2)#21 after the curly brackets
which results in

@ tan~LBb!1tan~LAa2qw/2!#X50, ~31!

where

X5cos~LAa2qw/2!e2 i ~LAa2qw/2!SBf B~2b!, ~32!

which can be used to findf B(2b) and then the rest of the
envelope function. This equation corresponds to Eq.~36! of
Ref. 8. Equation~20! also leads to Eq.~31!, but with

X5cosLBbeiLBbSBf B~2b!, ~33!

which corresponds to Eq.~37! of Ref. 8.
This new system of equations has a nontrivial solut

when13

i tan~LAa2qw/2!1tan~LBb!i50; ~34!

other equivalent forms are obtained by different ways of f
toring the exponential in Eq.~28!, for example,

i tan~LAa!1tan~LBb2qw/2!i50, ~35!

or the most symmetric form,

i tan~LAa2qw/4!1tan~LBb2qw/4!i50. ~36!

Of course, in order to evaluate any of the tangents one m
know the matrix diagonalizing its argument, so that, for e
ample, from Eq.~34!,

iMB tan~KBb!MB
211MA tan~KAa2qw/2!MA

21i50.
~37!
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Equations ~31!–~37! represent the central results of th
present paper.

B. Multiple layers per period

For concreteness, consider a three-layer superlattice
layers A (0,z<2a), B @2a,z<2(a1b)#, and C@2(a
1b) ,z<2(a1b1c)]. Integrating the first-order differen
tial equation across each individual layer, one obtains

f A~2a!5ei2VAaf A~0!, ~38a!

f B~2a12b!5ei2VBbf B~2a!, ~38b!

f C~2a12b12c!5ei2VCcf A~2a12b!. ~38c!

The boundary conditions across the interfaces provide
following equations

SA@ei2VAaf A~0!#5SBf B~2a!, ~39a!

SB@ei2VBbf B~2a!#5SCf C~2a12b!, ~39b!

SC@ei2VCcf C~2a12b!#5eiqwSAf A~0!, ~39c!
th

o
m
n
e
al
lu
ge

o
a

ith

e

where the last line employs the Bloch periodicity condition
Besides the energy, there are three unknowns in the p
lem: f A(0), f B(2a), and f C(2a12b). The boundary con-
ditions can be arranged in a 333 matrix, in which each
element is a 2N32N matrix itself:

S exp~2iLAa! 2I 0

0 exp~2iLBb! 2I

2I 0 exp@2i ~LCc2qw/2!#
D

3S SAf A~0!

SBf B~2a!

SCf C~2a12b!
D 50. ~40!

The secular equation can be reduced to a 2N32N equation
in one unknown, sayf A(0), at theprice of retaining the
potentially troublesome exponentials@see, for example, Eq
~24! for two layers and Eq.~27! for multiple layers#. Equa-
tion 40 has a clearly discernible pattern that can be exten
to more than three layers.

To eliminate the exponentials in Eq.~40!, however, use
the half-angle formula, Eq.~29!, which makes it possible to
transform the secular equation into
S tan LAa iI 2 i I

2 i I tan LBb iI

iI 2 i I tan~LCc2qw/2!
D S ~12 i tan LAa!21SAf A~0!

~12 i tan LBb!21SBf B~2a!

@12 i tan~LCc2qw/2!#21SCf C~2a12b!
D 50 ~41!
of

lar
s

he
k-
and the eigenvalue condition is

I tan LAa iI 2 i I

2 i I tan LBb iI

iI 2 i I tan~LCc2qw/2!
I 50. ~42!

Setting the thickness of any one layer to zero leads to
two-layer result, Eq.~34!.

Here, the price for avoiding the uncontrollable growth
the exponentials is an increase in the size of the secular
trix. However, one gains in numerical stability. Another be
efit is that Eq.~41! can be made Hermitian, so that in th
diagonalization of Eq.~42!, the diagonal elements are re
and come in Kramers’ degenerate pairs. At an eigenva
two of the diagonals are zero and the two associated ei
vectors containf A(0), f B(2a), and f C(2a12b) for the
Kramers’ degenerate superlattice miniband.

Equation~42! establishes the pattern for odd number
layers per superlattice period: the tangent matrices for e
e

f
a-

-

e,
n-

f
ch

layer are on the diagonals; above the diagonal, thei j th ele-
ment is the 2N32N unit matrix timesi (21)i 1 j 11; and be-
low the diagonal, the matrix is the Hermitian conjugate
the matrix above the diagonal.

For even numbers of layers, the pattern for the secu
matrix is clear from the following four-layer result for layer
A, B, C, andD ~widths 2a, 2b, 2c, and 2d, respectively!:

I tan LAa tan LBb iI 2 i I

2 i I tan LBb tan LCc iI

iI 2 i I tan LCc tan~LDd2qw/2!

tan LAa iI 2 i I tan~LDd2qw/2!

I 50.

~43!

Alternately, the four-layer result can be obtained from t
five-layer result, with one of the layers having zero thic
ness,
I tan LAa iI 2 i I i I 2 i I

2 i I tan LBb iI 2 i I i I

i I 2 i I tan LCc iI 2 i I

2 i I i I 2 i I tan~LDd2qw/2! i I

i I 2 i I i I 2 i I 0

I 50, ~44!
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where the last row leads to a redundant equation.
Once the roots of the determinental equation are found

diagonalizing the secular equation, the eigenvectors co
sponding to the zero diagonals can be used to solve for
envelope function via the transfer equation, Eq.~7!. For ex-
ample, for three layers, Eq.~41! can be used to findSAf A(0),
SBf B(2a), andSCf C(2a12b), which provide the required
initial values to produce the wave function at anyz via Eq.
~7!. For example, in layerA,

Fv~z!5(
i 51

2N

~MA!v i exp~ ik iz!a i , ~45a!

where

a i5 (
m51

2N

~MA
21! im@SAf A~0!#m . ~45b!

C. Hermiticity

The theory development in Ref. 8 concentrates in gre
detail on the various ingredients that go into the construc
of the secular equation. In particular, from the analytic pro
erties of theM matrix, Eq.~18!, it was shown in Ref. 8 tha
the secular determinants in Eqs.~26!, ~27!, and ~34!–~37!
~which are of order 2N32N! can be rendered Hermitian b
interchanging their first and lastN rows ~or columns!, which
greatly simplifies the subsequent analysis, particularly,
location of the zeroes of the secular determinant.

For more than two layers per superlattice period, the se
lar matrix in Eqs.~41!, ~42!, and~44! @but not Eq.~43!# can
be rendered Hermitian if the firstN rows/columns are inter
changed with the secondN rows/columns and then similarl
for the third with the fourth, the fifth with the sixth, etc. Th
proof follows the lines of Ref. 8.

IV. APPLICATIONS

A. InAs/In 0.23Ga0.77Sb superlattice

The InAs/In0.23Ga0.77Sb superlattice is of interest for in
frared detector applications.7,8,14,15The superlattice used a
an example here is designed to operate as an infrared d
tor with a 10-mm long-wavelength cutoff. The InxGa12xSb
layer is 17.3 Å wide withx50.23 indium mole fraction and
the InAs layer is 43.6 Å wide. The structure is strained to
GaSb substrate oriented in the@001# direction, and the InAs
conduction band–GaSb valence-band overlap is taken t
140 meV. The band gap in this structure is tailored to be 1
meV and the layer widths were chosen to yield maxim
absorption with respect to variations in their widths. T
zero of energy is placed at the bottom of the conduction b
of unstrained bulk InAs. Using the material parameters fr
Ref. 15, the electronic structure and the optical absorp
coefficients are calculated using the formalism develope
this paper in conjunction with the 838 EFA Hamiltonian
and the standard EFA boundary conditions.8 First, the eigen-
ergies are obtained using Eq.~34! and then the wave func
tions are found using Eq.~32!. These wave functions ar
then used to find the optical matrix elements~ki dependent!
by an extension16 of the formalism first derived by Chan
and James.17 Lastly, the optical spectrum is calculated, wi
the necessary Brillouin zone integration performed with
y
e-
he

er
n
-

e

u-

ec-

a

be
0

d

n
in

e

Gilat-Raubenheimer scheme.18 Because of the tangent form
of Eq. ~34!, the secular determinant was on the order of un
and its roots could be easily located by multiplying the d
tinct eigenvalues of the secular matrix, which was first re
dered Hermitian by row interchange. By contrast, the ex
nential form of the secular equation, Eq.~26!, involves
exponentials on the order of 106103 ~spurious imaginary ex-
ponent of 2.36~1/Å! times InAs width of 43.6 Å5103!,
which makes root search impossible. The wave functio
were easily found, normalized, and then used for the ca
lation of the optical oscillator strengths.

Using Eq.~34!, the band dispersions for the superlatti
were calculated, Fig. 1, which shows three main band
LH1, HH1, andC1, where LH, HH, andC are light hole,
heavy hole, and conduction, respectively. The correspond
optical absorption in normal incidence is shown in Fig.
showing absorption comparable to HgxCd12xTe detectors
operating in the same wavelength range.14 For light polarized
in the z direction, Fig. 3, the near-threshold absorption
lower than for normal incidence, but it is a little appreciat
point that the two become comparable at higher energ
Atomic selection rules on the Bloch parts of the total wa
functions allow HH1 toC1 and LH1 toC1 transitions in
normal incidence and LH1 toC1 in z polarization at the
center of the Brillouin zone. However, HH1 toC1 absorp-
tion in z polarization is forbidden and only becomes allow
away from the Brillouin-zone center because of band mix

FIG. 1. The band diagram for the 43.6/17.3 Å InA
In0.23Ga0.77Sb superlattice.

FIG. 2. The optical absorption spectrum in normal incidence
the superlattice of Fig. 1.
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9086 57FRANK SZMULOWICZ
as the result of HH-LH band coupling. A complete discu
sion of the optical response of these structures is deferre
a future publication.

A. InAs/In 0.3Ga0.7Sb/GaSb superlattice

To demonstrate the three-layer formalism, the electro
structure of a 38/29/63 Å InAs/In0.3Ga0.7Sb/InAs superlat-
tice, which is of interest for infrared laser applications,19 was
calculated. To this end, Eq.~41! was used to calculate th
energies as well as the wave functions in conjunction w
the 838 EFA Hamiltonian and the standard EFA bounda
conditions, as above. The structural parameters for the su
lattice correspond to those used by Yanget al.19 for their
type-II infrared cascade laser, except that two thin AlSb l
ers between the InAs and In0.3Ga0.7Sb and InAs and GaSb
layers were eliminated for reasons that will become cl
later. The three-layer code was tested in the two-layer li
by setting one of the layer thicknesses to zero or by hav
two layers have the same material composition; in this lim
the results of the three-layer code invariably agreed to wit
the machine accuracy with the corresponding results of
two-layer code of Sec III A. In evaluating the determina
the secular matrix was diagonalized and roots were identi
by monitoring the change in the sign of the smallest diago
element. Typically, its magnitude did not exceed 1021.

Figure 4 shows the calculated band dispersions for
three-layer superlattice. Because of the large repeat pe

FIG. 3. The optical absorption spectrum inz polarization for the
superlattice of Fig. 1.
-
to

ic

h

er-
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r
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g

t,
n
e

,
d

al
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od

~130 Å!, the band dispersions in the direction of the sup
lattice axis are rather flat. Once the energies are found,
wave functions in all three layers simultaneously can
found from the eigenvector in Eq.~41!. Using the calculated
wave functions, the band character of the levels at the ce
of the Brillouin zone was determined. Table I summariz
the wave-function decomposition of the three most import
levels for the laser structure:C1, HH1, and HH2. In this
structure, electrons are injected electrically intoC1, from
where they deexcite into HH1 by emitting a photon. T
efficiency of this process depends on the overlap between
wave functions for the two levels. According to Table
14.2% of theC1 wave function is in the In0.3Ga0.7Sb layer,
which should ensure strong oscillator strength for t
C1-to-HH1 transition.

According to the present calculation, the onset of las
for the 38/29/63 Å InAs/In0.3Ga0.7Sb/InAs superlattice
should equal theC1-HH1 energy level separation of 13
meV ~9.5 mm!. In actual operation, the device is biased
that the long-wavelength threshold is blueshifted. In ad
tion, the use of AlSb interlayers by Yanget al.19 produces a
stronger confinement of carriers in both the InAs a
In0.3Ga0.7Sb layers, which further blueshifts the thresho
However, Table I indicates that one can obtain good confi
ment of electrons and holes in InAs and In0.3Ga0.7Sb layers,
respectively, while retaining a strongC1/HH1 overlap,
which guarantees strong spatially-indirect optical transitio

FIG. 4. The band diagram for the 38/29/63
InAs/In0.3Ga0.7Sb/GaSb superlattice.
TABLE I. The band decomposition by layer of the HH2, HH1, andC1 levels at the center of the Brillouin
zone in a 38/29/63 Å InAs/In0.3Ga0.7Sb/GaSb superlattice.

HH2 113.21 meV HH1 198.04 meV C1 329.18 meV

InAs C like 0 0 0.561
InAs HH like 0.006 0.010 0
InAs LH like 0 0 0.119
In0.3Ga0.7Sb C like 0 0 0.050
In0.3Ga0.7Sb HH like 0.076 0.823 0
In0.3Ga0.7Sb LH like 0 0 0.092
GaSbC like 0 0 0.055
GaSb HH like 0.918 0.167 0.0
GaSb LH like 0 0 0.095
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The HH2 level serves as an efficient sink19 of electrons
from the HH1 level, which deexcite from HH1 to HH2 b
phonon emission, in the process creating a population in
sion between levelsC1 and HH1. Table I shows that 16.7%
of the wave function for the HH1 level is in the GaSb laye
which should promote a strong coupling of the HH1 to HH
levels. Once in the GaSb layer, the electron is sequenti
injected into the next InAs/In0.3Ga0.7Sb/GaSb period.19

This calculation demonstrates the utility of the prese
formalism for three-layer superlattices. The numerical sta
ity of the formalism was achieved at the price of an enlarg
size of the secular equation. For a limited number of lay
per superlattice period, this should represent an accept
trade off.

CONCLUSIONS

The transfer-matrix approach employing Burt’s bounda
conditions was used to derive the tangents-only form of
secular equation for superlattices within the envelop
function approximation. This form is numerically stable an
Hermitian, and it separates Kramers’ degenerate solutio
B
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er-

r,
2
lly

nt
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ry
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d
ns.

The formalism is extended to any number of layers per
perlattice period. The present results are directly applica
to the calculation of the electronic, elastic, optical, and ma
netic properties of superlattices. The formalism was appl
to the calculation of the electronic structure and the opti
absorption spectrum of InAs/In0.23Ga0.77Sb superlattices for
infrared detector applications. The results show strong
sorption in normal incidence as well as inz polarization
away from the threshold. The three-layer calculation for t
infrared cascade laser structure comprised of
InAs/In0.3Ga0.7Sb/InAs superlattice demonstrates the utili
of the present formalism for multilayer calculations and t
design of laser devices.
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