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Excitons in inhomogeneous quantum dots

J. M. Ferreyra and C. R. Proetto
Centro Atómico Bariloche and Instituto Balseiro, Comisio´n Nacional de Energı´a Atómica, 8400 Bariloche, Argentina

~Received 14 November 1997!

The properties of excitons in inhomogeneous quantum dots have been theoretically studied in the strong
confinement regime; these dots have an internal structure, with an inner core that behaves as a repulsive
potential for electrons and holes. The model includes a rigorous~macroscopic! treatment of the dielectric
mismatch at the dot boundaries. Analytical~numerical! results are obtained for the ground-~excited-! state
exciton. It is found in all cases that the exciton binding energy decreases by increasing the size of the core
region; on the other hand, the dielectric enhancement of the exciton binding energy becomes even more
pronounced than in homogeneous quantum dots.@S0163-1829~98!02815-X#
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I. INTRODUCTION

The physics of quantum dots~QD’s! is one of the more
active research areas within the field of low-dimensio
semiconductor heterostructures.1,2 In these so-called ‘‘artifi-
cial atoms,’’ the electrons and holes are dynamically c
fined in the three spatial directions, giving rise~in principle!
to an ~atomlike! discrete spectrum for the allowed energi
of the system. This feature makes quantum dots qualitativ
different from quantum wells and quantum wires, where
macroscopic occupation of the nonconfined modes is
sible.

Optical spectroscopy studies are much used for the c
acterization of quantum dots, as they provide a direct fing
print of their electronic spectrum. As in the highe
dimensionality systems, the electron-hole bound p
~exciton! makes a relevant contribution to the optical abso
tion for energies below the fundamental band gap of
semiconductor in question. Accordingly, a considera
amount of experimental and theoretical effort has been
voted to the understanding of such zero-dimensional e
tons. Most of this work concentrates on the case of homo
neous quantum dots~HQD!.3–10 The main feature tha
emerges from these studies is that as the size of the qua
dot decreases, quantum confinement effects significantly
crease both the single-particle energy gap and the elec
hole Coulomb and exchange interactions, leading to a str
dependence of the exciton energy on quantum dot size. H
ever, quite recently, a new type of inhomogeneous qu
tum dot ~IQD! has begun to receive an increasi
consideration.11–16These inhomogeneous quantum dots, a
consequence of a suitable growth procedure, have an inte
potential well that confines the carriers inside the quant
dot. The motivation behind the study of these compos
quantum dots is twofold: first, the additional internal stru
ture of the quantum dot gives extra flexibility for the tailo
ing of the quantum dot discrete energy levels; second,
internal well prevents the carriers from being in the proxi
ity of the quantum dot interface, where a series of not qu
well controlled and/or understood processes becomes p
able ~such as trapping of particles at the interface!.17

While there already exist a few published theoreti
works related to the behavior of excitons in inhomogene
570163-1829/98/57~15!/9061~8!/$15.00
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quantum dots, most of them use rather involved numer
calculation schemes, aimed at giving a quantitative desc
tion of the problem. We take here a different approach, t
produces analytical results for the physically relevant m
nitudes, such as the blueshift of the ground-state exciton w
respect to the band-to-band transition energy. We use for
the strong-confinement approximation~SCA!, first formu-
lated by Efros and Efros18 for the study of the electronic
structure of homogeneous QD’s. As applied to the exci
problem, the SCA asserts that for dot sizes smaller than
exciton Bohr radius, the electron-hole Coulomb interact
can be treated as a perturbation compared with the sin
particle ~kinetic energy! contributions. The SCA has bee
applied quite successfully to the related~but simpler! prob-
lem of the behavior of donor impurities in homogeneo
quantum dots.19 As we explain below, the inhomogeneou
quantum dots produced to date are well inside the regim
this approximation. In contrast with previous theoretic
work on IQD, we include a rigorous treatment of the induc
polarization charges that appear as a consequence of th
electric mismatch at the dot boundaries. As emphasized
Brus3 these bound surface charge densities can yield a q
important contribution to the electronic structure of the Q
Accordingly, we include in this work a generalization of th
usual macroscopic treatment20 of this problem~assigning dif-
ferent dielectric constants to each medium!, to the present
case of inhomogeneous quantum dots. Even though the
tual numbers resulting from our simplified study may be co
sidered tentative, the qualitative aspects of our theory sho
be relevant to the understanding of experimental obse
tions.

The rest of this contribution is organized as follows: Se
II is devoted to the analysis of the single particle states of
model of IQD, in Sec. III we give our analytical and nume
cal results for the ground and lowest-lying exciton states
the strong-confinement approximation, while section IV
devoted to the discussion and conclusions. We include
Appendix with details of the classical electrostatic treatm
of the dielectric mismatch at the dot boundaries.

II. SINGLE-PARTICLE STATES IN INHOMOGENEOUS
QUANTUM DOTS

The main motivation for the present study comes from
experimental and theoretical work of Hauset al.,14 Schoos
9061 © 1998 The American Physical Society
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9062 57J. M. FERREYRA AND C. R. PROETTO
et al.,15 and Bryant16 that studied IQD composed of Cd
~core!/HgS ~well!/CdS ~clad! immersed in water~surround-
ing medium!. This particular heterostructure can be thoug
of as a quantum dot composed of three layers. The inner
outer layers correspond to one semiconductor mate
~CdS!, while the intermediate layer corresponds to a differ
semiconductor material~HgS!. For this particular choice o
semiconductors, as the bottom of the CdS conduction ban
1.35 eV above the bottom of the HgS conduction band, w
the top of the CdS valence band lies 0.65 eV below the
of the HgS valence band, HgS acts as a well material
both electrons and holes. Besides, these relatively la
conduction- and valence-band offsets qualitatively justify
approximation of taking them as infinite barriers. While t
approximation is reasonable for the lowest-lying sing
particle states, it will evidently fail for sufficiently high ex
cited states.

A schematic view of our simplified model of IQD an
corresponding radial potential profile is given in Fig. 1. W
shall assume that the same semiconductor fills the core
clad regions, to which we assign an infinite potential barr
for both electrons and holes and a macroscopic dielec
constant«2, while the intermediate~well! region is occupied
by a second semiconductor, with dielectric constant«1; a
(b) denotes the inner~outer! radius of the IQD.

Using the envelope function approach to the effect
mass approximation, the Hamiltonian for a single parti
with parabolic dispersion relation inside an IQD is given

H52
1

l2

m*

mi*
“

21
1

l
Vs~r !, ~1!

FIG. 1. Schematic view of our model of inhomogeneous qu
tum dot and corresponding potential profile.V0

e (V0
h) is the

conduction-~valence-! band offset between the core, clad, and w
regions, whileEg refers to the well-region semiconductor band ga
All three magnitudes are bulk properties.
t
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al
t
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r
e
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e
e

wherer is the particle coordinate,mi* the particle effective
mass in the well-acting semiconductor (me* for electrons,mh*
for holes!, “

2 is the three-dimensional~3D! Laplacian, and
Vs(r ) corresponds to the self-polarization interaction b
tween the particle and the bound surface charge density
it induces atboth spherical boundaries. From Eq.~A15! of
the Appendix,

Vs~r !5(
l

1

~12 p̄q̄!
S q̄r 2l1

p̄

r ~2l 11!
1

p̄q̄

r D , ~2!

where p̄5ā(2l 11)(«12«2) l /@«1( l 11)1«2l )], q̄5(«1

2«2)( l 11)/@«1l 1«2( l 11)#, andā5a/b; p̄ (q̄) is related
to the presence of ‘‘image’’ charges at the inner~outer! dot
boundary. In writing Eqs.~1!–~2!, we use the effective exci
ton RydbergRy* 5e2/2«1a* 5\2/2m* (a* )2 as the unit of
energy~with 1/m* 51/me* 11/mh* as the inverse of the exci
ton reduced effective mass anda* 5«1\2/m* e2 the exciton
effective Bohr radius!, the outer dot radiusb as the unit of
length, and we have definedl5b/a* . For later use, we give
here the values of the CdS/HgS system paramet
me* 50.036,mh* 50.040,«1511.36,«255.5.15

It is important to note from Eq.~1! that the kinetic energy
scales as 1/l2, while the self-energy contribution scales
1/l. Accordingly, in the strong-confinement regimel,1,
the latter becomes small compared with the former, and
tential energy terms can be treated as perturbations on
particle-in-a-box problem posed by Eq.~1! with Vs(r )[0.

Owing to the spherical symmetry of the problem, we pr
pose a single-particle zero-order separable solution

fnlm~r !5Rnl~r !Ylm~u,f!, ~3!

whereYlm(u,f) are the spherical harmonics, andRnl(r ) are
solutions of the radial eigenvalue equation

H r 2
d

dr2
12r

d

dr
1Fl2

mi*

m*
Enlr

22 l ~ l 11!G J Rnl~r !50.

~4!

The more general solution of Eq.~4! is given by the linear
combination21

Rnl~knlr !5a j l~knlr !1byl~knlr !, ~5!

with j l and yl being the two independent spherical Bes
functions, a and b constants to be determined, andknl

5lAmi* Enl /m* . It should be noted that since the core r
gion ~and consequently the origin! is excluded from the
problem, the irregular functionyl is a permissible solution
for an IQD; from the mathematical point of view, this is th
essential point that distinguished the IQD from the HQ
The eigenvaluesEnl are determined from the hard-wa
boundary conditions

Rnl~knlā!5Rnl~knl!50. ~6!

Application of Eq. ~6! to the explicit solutions of Eq.~5!
yields the single-particle eigenvalue equation

j l~knlā!yl~knl!2 j l~knl!yl~knlā!50, ~7!

-

l
.
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57 9063EXCITONS IN INHOMOGENEOUS QUANTUM DOTS
which for general values ofl is an implicit equation forknl

(and consequently forEnl). If ā50, the solutions of Eq.~7!
are given byj l(knl)50, and we recover the well-known re
sult that the single-particle eigenenergies corresponding
HQD are proportional to the zeros of the regular spher
Bessel function.22 Assuming that we have solved Eq.~7! for
a given value ofl and found thenth solutionknl , the single-
particle energy including the self-energy corrections with
the framework of the SCA can be written as

Enl
sp5

1

l2

knl
2 m*

mi*
1

1

l
^fnlmuVsufnlm&. ~8!

This equation for the single-particle energies deserves s
comments:~a! The second-term, corresponding to the s
face polarization charges is zero for equal dielectric c
stants inside and outside the IQD;~b! This contribution is
positive if «1.«2 ~this is satisfied by most of the physical
realizable IQD!, increasing in consequence the kine
single-particle energies. If«1,«2 , the first two terms in Eq.
~2! change sign but the third remains positive, so some c
cellation exists in the total contribution;~c! From the point of
view of a perturbative expansion in powers of 1/l, Eq. ~8!
includes both zero-order (1/l2) and first-order (1/l) contri-
butions.

For the particular case ofl 5m50 s states, Eq.~7! yields
an explicit solution forkn0 . Taking into account thatj 0(x)
5(sinx)/x, y0(x)5(cosx)/x, after replacement in Eq.~7! we
obtain

kn05
np

~12ā!
, ~9!

and then

En0
sp5

1

l2

m*

mi*
S np

12ā
D 2

1
1

l
^fn00uVsufn00&. ~10!

In the HQD limit ā→0 and taking «15«2, En0
sp

→(np/l)2m* /mi* , while for the ā→1 limit of a spherical

surface,En0
sp diverges as (12ā)22. While it does seem no

possible to generalize this analytical result forl .0, we give
in Figs. 2 (l51) and 3 (l50.5) the results for the lowest
lying single-particle eigenvalues as a function of the w
size, obtained by a numerical solution of Eq.~7!. We present
results for electrons; as the hole effective mass in HgS
quite similar to the electron effective mass, the correspo
ing hole single-particle energies are quite similar to the e
tron single-particle energies. Clearly, all the states have
energy which behaves as (12ā)22 in the limit ā→1. This is
an important feature for the analysis of the exciton state
the next section. It is interesting to note that in the limit
very narrow quantum wells, the single-particle eigenenerg
become quasidegenerate with respect to the angular mo
tum quantum numberl , as in this limit the energy is mainly
determined by the number of nodes of the eigenfunction
the radial direction, which is proportional ton. This increas-
ing importance ofn asā→1 explains the crossings of Fig. 2
Full ~dashed! lines in Figs. 2 and 3 correspond to singl
a
l

e
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n-
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particle energies with~without! dielectric mismatch at the
dot boundaries; as mentioned above, for our choice«1
.«2 , all single-particle states increase their energies in
presence of induced surface bound charges. Note that
effect becomes more noticeable when one moves to
strong confinement regime of Fig. 3. Previous theoreti
calculations for similar systems,15,16 while more realistic~by
using finite barrier potentials and by including the presen
of the surrounding media!, use however a single~average!
dielectric constant for the whole system, thus missing t
effect.

Finally, before leaving this section devoted to the inh
mogeneous quantum dot single-particle properties, we
present the corresponding normalized eigenfunctions, as
will be useful for the qualitative understanding of the excit
results. Starting from Eq.~5!, using one of the two boundar
conditions to eliminatea or b, and imposing the normaliz
ing condition

E
ā

1

drr 2Rnl
2 ~knlr !51, ~11!

FIG. 2. Lowest-lying inhomogeneous quantum dot electr

single-particle energies versus reduced well size;ā50 corresponds

to a homogeneous quantum dot, whileā51 corresponds to a
spherical surface. The results for«1Þ«2 ~full lines! include the
self-energy correction as given by Eq.~8! in the text.

FIG. 3. Same as Fig. 2, but for a smaller inhomogeneous qu
tum dot (l50.5).
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9064 57J. M. FERREYRA AND C. R. PROETTO
it is not hard to obtain the explicit expression for the norm
ized eigenfunctions,

Rnl~knlr !5S 2

Rn,l 11
2 ~knl!2ā3Rn,l 11

2 ~ āknl!
D 1/2

3F j l~knlr !2
j l~knl!

yl~knl!
yl~knlr !G . ~12!

We show in Fig. 4 the squared modulus of the radial eig
functions corresponding to the lowest-lying IQD states,
different IQD core sizes. Three features are worth noti
First, the number of radial nodes is proportional ton, second,
the quasidegeneracy with respect tol in the ā→1 limit of
Figs. 2 and 3 has a complementary manifestation in the
creasing similarity off100 andf110 ~they are indistinguish-
able for ā50.9), and third, asā→1 the wave function is
progressively squeezed into a smaller region, resemblin
delta Dirac distribution function when 12ā!1. We will ex-
ploit this analogy in the next section. Finally, the read
should realize that to this order of perturbation theory~zero
order for the wave functions!, the results of Fig. 4 are inde
pendent of the presence of surface-induced bound cha
they should show up, however, in the first-order perturb
wave functions.

III. EXCITON STATES IN INHOMOGENEOUS
QUANTUM DOTS

We concentrate now on the problem of an electron-h
pair ~exciton! confined in an IQD. The exciton Hamiltonia
is

H52
1

l2

m*

me*
“ re

2 2
1

l2

m*

mh*
“ rh

2 1
1

l
Vs~r e!1

1

l
Vs~r h!

1
1

l
Vc~re ,rh!, ~13!

using the same length (b) and energy (Ry* ) units of the
previous section. The last term in Eq.~13! is the generalized
electron-hole Coulomb interaction, including the induc

FIG. 4. Normalized zero-order single-particle wave functio
~modulus squared! versus the radial coordinate, for three differe

sizes of the well-acting semiconductor (ā50.1, 0.5, and 0.9).
-

-
r
:

n-

a

r

es;
d

e

bound surface charge densities; its derivation is given in
Appendix, where from Eqs.~A11! and ~A12!, by setting
r5re , r 85rh , q152q25e we get the explicit expression

Vc~re ,rh!522(
l 50

`
Pl~cosg!

~12 p̄q̄!
F r ,

l 1
p̄

r ,
~ l 11!GF 1

r .
~ l 11!

1q̄r .
l G ,

~14!

wherePl(cosg) are the Legendre polynomials of orderl , g
is the angle between the electron and hole coordinates~mea-
sured from the origin at the dot center!, and r , (r .) is the
smaller~larger! of r e and r h .

In the strong-confinement regimel,1, the last three
terms of Eq.~13! become small compared with the first tw
and can be treated as perturbations to the zero-order kin
energy contributions. Accordingly, the leading term in t
expansion of the exciton wave function for an electron~hole!
in an nlm (n8l 8m8) state is just the product of the corre
sponding single-particle wave functions,

Caa8~re ,rh!5fa~re!fa8~rh!, ~15!

wherea and a8 denote the full set of single-particle quan
tum numbers. Equation~15! can be considered as the stat
ment of the SCA applied to the quantum dot exciton wa
function.

As the first four terms of Eq.~13! were already considere
in the previous section, we will concentrate on the excito
contribution; we define the exciton binding energy

Ea,a8
ex [2

1

l
^Ca,a8~re ,rh!uVc~re ,rh!uCa,a8~re ,rh!&

~16!

52
1

lE dreE drhfa* ~re!fa8
* ~rh!Vc~re ,rh!fa

3~re!fa8~rh!. ~17!

Defined this way,Ea,a8
ex is a positive magnitude. Replacin

in Eq. ~17! the single-particle solutions given by Eq.~3!, and
Vc by its expression in Eq.~14!, it follows that

Enlm,n8 l 8m8
ex

5
2

lEā

1

drer e
2Rnl

2 ~r e!E
ā

1

drhr h
2Rn8 l 8

2
~r h!C~r e ,r h!,

~18!

where

C~r e ,r h!5 (
l 9m9

4p

~2l 911!~12 p̄q̄!
3@r ,

l 9 1 p̄r ,
2~ l 911!#

3@r .
2~ l 911!1q̄r .

l 9 #3I
mm9m

ll 9l
~ I

m8m9m8

l 8 l 9l 8
!* . ~19!

Finally,

I
mm9m

ll 9l
5E

0

2p

dweE
0

p

duesinueYlm~uewe!

3Yl 9m9~uewe!Yl ,m* ~uewe!, ~20!
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57 9065EXCITONS IN INHOMOGENEOUS QUANTUM DOTS
while I
m8m9m8

l 8 l 9l 8 is given by the same expression, under t
obvious changes of electron for hole angular coordinatel
→ l 8 and m→m8. For given values of the single-particl
electron and hole quantum numbers, these angular integ
can easily be evaluated using the Wigner 3j symbols23,24 in
terms of finite series. Equation~18! for the exciton binding
energy of an IQD seems to be as far as we can proc
analytically for general values of electron-hole sing
particle quantum numbers.

As expected, the ground-state exciton with both the e
tron and hole in single-particles states (l 5 l 85m5m850)
allows a full analytical solution. This is based on the fact th

I
0m90

0l 90
5d l 90dm90 /A4p; from Eq. ~19! we get

C~r e ,r h!5
«12«2

«2
1

1

r .
. ~21!

Substituting Eq.~21! in Eq. ~18!, and after some cumber
some but straightforward integration over the electron a
hole radial coordinates, we obtain

En00,n00
ex 5NH ā

2
lnā1

12ā

2
1

1

16kn0
$A@Ci~2kn0!

2Ci~2kn0ā!#1B@Si~2kn0!2Si~2kn0ā!#%

22sin~4kn0!@Ci~4kn0!2Ci~4kn0ā!#

12cos~4kn0!@Si~4kn0!2Si~4kn0ā!#J
1

2

l

«12«2

«2
, ~22!

where N58/l(12ā), and A58kn0ācos(2kn0)14sin(2kn0),
B58kn0āsin(2kn0)24cos(2kn0). Ci and Si are the cosine an
sine Integral functions, respectively.21 This analytical result
for the ground-state exciton binding energy in an inhomo
neous quantum dot is an important result of this contributi
we will proceed now with its analysis.

First, it is useful to check that some previous results
simpler QD geometries are particular cases of our gen
expression; for instance, in the limitā→0 we should recover
the result first obtained by Brus3 for an exciton confined in a
HQD,

EHQD
ex .

3.572

l
. ~23!

When ā→0, N→8/l, kn0→np, A→0, and B→24. Re-
placing these limiting values in Eq.~22! we obtain

En00,n00
ex ~ ā→0!→

2

lF«11«2

«2
2

Si~2np!

np
1

Si~4np!

2np G .
~24!

Taking«15«2 ~no dielectric mismatch at the dot boundary!,
and n51 ~ground-state exciton!, Eq. ~24! reduces to Eq.
~23!; in doing this, we have used Si(2p).1.418 and
e

als

ed
-

c-

t

d

-
;

r
al

Si(4p).1.492. Note that Eq.~24! is a generalization of
Brus’s result for an arbitrarily exciteds-state exciton.

A second interesting limit is the caseā→1, for a very
narrow width of the well-acting material. Using th
asymptotic expansions of Si and Ci,21 it is not hard to obtain
from Eq. ~22!

En00,n00
ex ~ ā→1!→

2

l

«1

«2
1O~12ā!. ~25!

It is interesting to note than in spite of the apparent div
gence of Eq.~22! in the limit ā→1 @N;(12ā)21#, this is
actually compensated by a similar behavior of the numera
with the net result thanEn00,n00

ex (ā→1) remains finite. This
result for the ground-state exciton on a spherical surface
which we are not aware in any previous report, can be
tained directly from Eq.~18!. For this, one uses the fact tha
when ā→1, the radial~normalized! wave function can be
approximated by a Diracd function centered in the middle o
the well, as can be seen from Fig. 1 for the caseā50.9.
Proceeding in this way, the result above is immediately
tained.

We proceed now with the numerical results for t
ground-state and excited exciton inhomogeneous quan
dots; they are given in Fig. 5, as a function of the well-acti
semiconductor widthā; ā50 corresponds to a HQD, an
ā51 to a spherical surface, whose limiting values for t
ground-state exciton were already analyzed. The first fea
to note is the monotonic decrease withā: binding energies
for IQD excitons are lower than for HQD. This is easy to
understand: asā increases, the electron and hole are progr
sively pushed towards the outer dot boundary, leading to
increase of their mean relative distance, and consequent
a decrease of their binding energy. All exciton binding en
gies in Fig. 5~lower set! except one, converge towards th
‘‘universal’’ limit 2/ l of Eq. ~25!; as a rule, all excitons
where either the electron or the hole havel 50 reach this
value for ā→1. The exception allowed above is thep-like

FIG. 5. Ground- and excited-state exciton binding energies
the inhomogeneous quantum dot as a function of the reduced
size. The lower~upper! set of curves corresponds to the case
equal~different! dielectric constants at the dot boundaries.
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9066 57J. M. FERREYRA AND C. R. PROETTO
exciton, whose binding energy is greater in the limit of
spherical surface~although it is smaller in the HQD limit!.

The upper set of curves in Fig. 4 corresponds to the s
ation «1Þ«2 . The inhomogeneous quantum dot excit
binding energies depend strongly on the dielectric misma
at the dot boundaries. The important increase of the bindin
energies is a direct consequence of the specific choice«1
.«2 . For this choice, both the particle~electron, hole! and
the induced charge at the boundary have the same sig
that all four contributions of the generalized electron-h
Coulomb interaction increase the binding. The increase
just a rigid shift in 2(«12«2)/l«2 if either the electron or
hole havel 50; this condition is enough to restrict the su
in Eq. ~19! only to thel 950 component, which in turn trans
lates into the rigid shift allowed above. Otherwise, the c
rection by the dielectric mismatch at the boundaries beco
a function ofā ~this is the case of thep-like exciton corre-
sponding to both electron and hole in thef110 state!.

It is interesting to note that for almost spherical quant
dots (ā<0.2) the inhomogeneous quantum dot exciton bin
ing energy increases withn. This is because the zero-ord
electronic density fors states, which is proportional toRn0

2 ,
has a maximum atr 50; this becomes higher and narrow
as n increases. The first feature explains the large bind
with increasingn, while the second is associated with th
reverse situation found whenā>0.2.

IV. DISCUSSION AND CONCLUSIONS

In the previous sections we have assumed the validity
the strong-confinement approximation for inhomogene
quantum dots. As a first step, let us check if the approxim
tion is suitable for physically realizable IQD. Taking HgS
the semiconductor well-acting material, we obtaina* ~elec-
trons! .16.7 nm, whilea* ~holes! .15 nm. From here we
obtain a* ~exciton! .31.71 nm. As the typical size in ex
periments isb.8.7 nm, we obtain the estimationl5b/a*
~exciton! .0.7, well inside the regime of applicability of th
SCA.

It is instructive to compare the exciton binding ener
results of Fig. 5 with the single-particle behavior of Figs.
and 3: while the former remains finite in the range 0<ā

<1, the latter increases without limit whenā→1 @as (1
2ā)22#. We arrive then at the important conclusion that t
validity of the strong-confinement approximation extends
yond the, in principle, upper natural limitl.1. The condi-
tion of applicability of the SCA for IQD can be written as

l2~12ā!2!l→l!
1

~12ā!2
. ~26!

If ā→0, we recover the ‘‘natural’’ constraintl!1, but for
ā→1, the condition onl relaxes andl can take values
greater than one. Besides, considering the opposite beh
of single-particle and exciton binding energies as the c
size increases, a blueshift of the band to band excitonic t
sitions can be expected, with the exciton behaving more
an uncorrelated electron-hole pair than as a compo
~bound! particle.
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One of the main conclusions of our work is that we ha
found that the dielectric enhancement effect on the exc
binding energies in inhomogeneous quantum dots is e
more pronounced than in homogeneous quantum dots. T
ing for instance the ground-state exciton binding energy
sults of Fig. 5, the dielectric enhancement effect amount
about one third of the total binding energy atā50 ~HQD!,
while it amounts to more than half of the total binding e
ergy at ā→1 ~limit of a spherical surface!. This increasing
importance of polarization effects is due to the fact that
Coulomb interaction decreases when the core size incre
~see the lower set of curves of Fig. 5!, while the dielectric
enhancement contribution remains essentially the same
that sense, this contribution can be considered as com
mentary to that of Refs. 14–16, where a more realistic mo
of IQD was employed, but the dielectric enhancement eff
was not considered.
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APPENDIX: DIELECTRIC MISMATCH AT THE
INHOMOGENEOUS QUANTUM DOT BOUNDARIES

The aim of this appendix is to give some details on t
calculation of the single-particle self-energy corrections a
the generalized electron-hole Coulomb interaction, both
fects being a consequence of different possible values of
dielectric constants of the dot and the surrounding mediu
From classical electrostatic considerations, it is well kno
that in such situations surface charges bound to the boun
arise that should be included from the outset, as their con
bution may be important. The analysis that follows is
extension of previous calculations for simpler geometri
such as cylindrical quantum wires,25 and spherical3 or cubic6

quantum dots.
The magnitude we want to calculate is the electrical p

tential at the pointr created by a point particle of unit charg
at r 8. Within our model of an inhomogeneous quantum d
with infinite confining barriers, the source particle~electron
or hole! should be located inside a spherical shell of inn
~outer! radius a (b); we adscribe a dielectric constant«1
(«2) to the well ~barrier! semiconductor region. Mathemat
cally, the problem can be conveniently stated as follows:
Green’s functionG(r ,r 8) for our potential problem satisfie
the equation

“ r
2G~r ,r 8!5H 2

4p

«1
d~r2r 8! if a,r ,b,

0 otherwise

~A1!

subject to the boundary conditions~see Fig. 1!
~i! Gcore(r ,r 8)ur 5a25 Gwell(r ,r 8)ur 5a1,
~ii ! Gwell(r ,r 8)ur 5b25Gclad(r ,r 8)ur 5b1,
~iii ! «2dGcore(r ,r 8)/drur 5a25 «1dGwell(r ,r 8)/drur 5a1,
~iv! «1dGwell(r ,r 8)/drur 5b25«2dGclad(r ,r 8)/drur 5b1,
~v! Gcore(r ,r 8) must remain finite whenr→0,
~vi! Gclad(r ,r 8)→0 whenr→`.
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We propose as a solution of Eq.~A1!

G~r ,r 8!5(
lm

Alm~u8,w8!Ylm~u,w!gl~r ,r 8!, ~A2!

and exploit the fact that thed function can be written in
spherical coordinates as

d~r2r 8!5
1

r 2
d~r 2r 8!d~f2f8!d~cosu2cosu8!.

~A3!

Substitution of Eqs.~A2! and~A3! in Eq. ~A1! yields at once
Alm(u8,w8)5Ylm* (u8,w8) and the radial equations

1

r

d2

dr2
@rgl~r ,r 8!#2

l ~ l 11!

r 2
gl~r ,r 8!52

4p

«1r 2
d~r 2r 8!

~A4!

if a,r ,b, and

1

r

d2

dr2
@rgl~r ,r 8!#2

l ~ l 11!

r 2
gl~r ,r 8!50 ~A5!

if a.r or b,r . The solutions of these two equations in t
three different regions are

gl
core~r ,r 8!5Arl1Br2~ l 11!, if r ,a, ~A6!

gl
well~r ,r 8!5H Crl1Dr 2 l ~r ,r 8!

C8r l1D8r 2 l ~r .r 8!
if a,r ,b,

~A7!

and

gl
clad~r ,r 8!5Erl1Fr 2~ l 11!, if r .b. ~A8!

The coefficientsA, B, C, D, C8, D8, E, and F are
functions of r 8 to be determined by the boundary cond
tions ~i!–~vi!, and the symmetry conditiongl

well(r ,r 8)
5gl

well(r 8,r ). Using these seven equations to elimina
seven of the eight unknowns, it is not hard to obtain that

gl
well~r ,r 8!5K@r ,

l 1pr,
2~ l 11!#@r .

2~ l 11!1qr.
l #, ~A9!

where p5(«12«2) la (2l 11)/@«2l 1«1( l 11)# and q5(«1

2«2)( l 11)b2(2l 11)/@«1l 1«2( l 11)#, and r , (r .) is the
smaller ~greater! of r and r 8. To determine the constantK
we must consider the effect of thed function in Eq.~A1!.
Integrating both sides of this equation overr betweenr 8
2h andr 81h ~with h an infinitesimal positive value! a last
boundary condition is obtained for the radial derivative
gl

well(r ,r 8). Using this we obtain

K5
4p

«1~2l 11!
3

1

~12pq!
. ~A10!

Collecting all the results and replacing in Eq.~A2!,
f

Gwell~r ,r 8!5(
lm

Ylm* ~u8,w8!Ylm~u,w!

3
4p

«1~2l 11!~12pq!

3@r ,
l 1pr,

2~ l 11!#@r .
2~ l 11!1qr.

l #.

~A11!

Assigning a chargeq1 to the source particle atr 8 and insert-
ing a test particle of chargeq2 at r , the generalized Coulomb
interaction is

Vc~r ,r 8!5q1q2Gwell~r ,r 8!. ~A12!

Expanding Eq.~A12! we obtain four contributions, whos
physical origin is as follows. The term with nop or q ~the
only one that survives when«15«2) corresponds to the
point charge-point charge Coulomb interaction; the t
terms with onep or q correspond to a point charge-induce
charge interaction, while the remaining term proportional
pq is a consequence of the induced charge-induced ch
interaction. In the absence of dielectric mismatch at
boundaries («15«2), p5q50 and Eq.~A12! reduces to

Vc~r ,r 8!5
q1q2

«1
(
lm

Ylm* ~u8,w8!Ylm~u,w!
4p

~2l 11!
3

r ,
l

r .
~ l 11!

5
q1q2

«1ur2r 8u
. ~A13!

An alternative way of obtaining to this standard result is
maintain the difference in dielectric constants at the bou
aries but to take the bulk limitsa→0 andb→`, recovering
the infinite medium geometry. If onlya→0, p→0 and Eq.
~A12! reduces to

Vc~r ,r 8!5
q1q2

«1
(
lm

Ylm* ~u8,w8!Ylm~u,w!
4p

~2l 11!
r ,

l

3F 1

r .
~ l 11!

1qr.
l G , ~A14!

which is the well-known expression for the Coulomb inte
action between two particles enclosed in a sphere of ra
b.3

The self-energy interaction energy can be obtained fr
Eq. ~A12! by taking q15q25q and r5r 8, and eliminating
the infinite self-energy term that arises for pointlike particle
proceeding in this way we obtain

Vs~r !5
q2

2 (
l

1

~12pq!S qr2l1
p

r 2l 11
1

pq

r D , ~A15!

where we include a factor 1/2 to avoid double counting.
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10S. Öğüt, J. R. Chelikowsky, and S. G. Louie, Phys. Rev. Lett.79,
1770 ~1997!.

11A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steiger
wald, P. J. Carroll, and L. E. Brus, J. Am. Ceram. Soc.112,
1327 ~1990!.

12H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, J. Ph
Chem.97, 895 ~1993!.

13A. Mews, A. Eychmu¨ller, M. Giersig, D. Schoos, and H. Weller
J. Phys. Chem.98, 934 ~1994!.

14J. W. Haus, H. S. Zhou, I. Honma, and H. Komiyama, Phys. R
.

.

B 47, 1359~1993!.
15D. Schooss, A. Mews, A. Eychmu¨ller, and H. Weller, Phys. Rev

B 49, 17 072~1994!.
16G. W. Bryant, Phys. Rev. B52, R16 997~1995!.
17L. Banyai, P. Gilliot, Y. Z. Hu, and S. W. Koch, Phys. Rev. B45,

14 136~1992!.
18Al. L. Efros and A. L. Efros, Phys. Tek. Poluprovodn.16, 1209

~1982! @Sov. Phys. Semicond.16, 772 ~1982!#.
19J. M. Ferreyra and C. R. Proetto, Phys. Rev. B52, R2309~1995!;

C. R. Proetto, Phys. Rev. Lett.76, 2824 ~1996!; J. M.
Ferreyra, P. Bosshard, and C. R. Proetto, Phys. Rev. B55,
13 682~1997!.

20J. D. Jackson,Classical Electrodynamics~Wiley, New York,
1962!.

21M. Abramowitz and I. A. Stegun,Hanbook of Mathematical
Functions~Dover, New York, 1970!.

22L. Schiff, Quantum Mechanics~McGraw-Hill, New York, 1949!.
23J. L. Zhu and X. Chen, Phys. Rev. B50, 4497~1994!.
24A. R. Edmonds,Angular Momentum in Quantum Mechanic

~Princeton University Press, Princeton, 1960!.
25L. Banyai, I. Galbraith, C. Ell, and H. Haug, Phys. Rev. B36,

6099 ~1987!.


