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Excitons in inhomogeneous quantum dots

J. M. Ferreyra and C. R. Proetto
Centro Afanico Bariloche and Instituto Balseiro, ComisidNacional de Energ Atamica, 8400 Bariloche, Argentina
(Received 14 November 1997

The properties of excitons in inhomogeneous quantum dots have been theoretically studied in the strong
confinement regime; these dots have an internal structure, with an inner core that behaves as a repulsive
potential for electrons and holes. The model includes a rigotmacroscopit treatment of the dielectric
mismatch at the dot boundaries. Analytidalimerica) results are obtained for the groun@xcited) state
exciton. It is found in all cases that the exciton binding energy decreases by increasing the size of the core
region; on the other hand, the dielectric enhancement of the exciton binding energy becomes even more
pronounced than in homogeneous quantum d&8163-182608)02815-X]

I. INTRODUCTION guantum dots, most of them use rather involved numerical
calculation schemes, aimed at giving a quantitative descrip-

The physics of quantum dot®D’s) is one of the more tion of the problem. We take here a different approach, that
active research areas within the field of low-dimensionaProduces analytical results for the physically relevant mag-
semiconductor heterostructure®in these so-called “artifi- NMtudes, such as the blueshift of the ground-state exciton with
cial atoms,” the electrons and holes are dynamically con€SPeCt to the band-to-band transition energy. We use for that
fined in the three spatial directions, giving riée principle) the strong-confinement approximatid6CA), first formu-

o an (atomlike discret trum for the allowed energies 2t€d by Efros and Efrd8 for the study of the electronic
0 an{alo screte spectrum for the allowed energies gy, oy re of homogeneous QD’s. As applied to the exciton

. ! }Sroblem, the SCA asserts that for dot sizes smaller than the
different from quantum wells and quantum wires, where &, iton Bohr radius, the electron-hole Coulomb interaction

macroscopic occupation of the nonconfined modes is fegsan pe treated as a perturbation compared with the single-
sible. _ particle (kinetic energy contributions. The SCA has been
Optical spectroscopy studies are much used for the chagpplied quite successfully to the relatélit simpley prob-
acterization of quantum dots, as they provide a direct fingerem of the behavior of donor impurities in homogeneous
print of their electronic spectrum. As in the higher- quantum dot$® As we explain below, the inhomogeneous
dimensionality systems, the electron-hole bound paiquantum dots produced to date are well inside the regime of
(exciton makes a relevant contribution to the optical absorp-this approximation. In contrast with previous theoretical
tion for energies below the fundamental band gap of thevork on IQD, we include a rigorous treatment of the induced
semiconductor in question. Accordingly, a considerablepolarization charges that appear as a consequence of the di-
amount of experimental and theoretical effort has been deelectric mismatch at the dot boundaries. As emphasized by
voted to the understanding of such zero-dimensional exciBrus’ these bound surface charge densities can yield a quite
tons. Most of this work concentrates on the case of homogdmportant contribution to the electronic structure of the QD.
neous quantum dot§HQD).3'° The main feature that Accordingly, we include in this work a generalization of the
emerges from these studies is that as the size of the quantu#§ual macroscopic treatméfof this problem(assigning dif-
dot decreases, quantum confinement effects significantly if€rent dielectric constants to each medjurto the present
crease both the single-particle energy gap and the electroff@S€ Of inhomogeneous quantum dots. Even though the ac-

hole Coulomb and exchange interactions, leading to a strony@ Numbers resulting from our simplified study may be con-
dependence of the exciton energy on quantum dot size. Ho Sidered tentative, the qualitative aspects of our theory should

ever, quite recently, a new type of inhomogeneous quan-e relevant to the understanding of experimental observa-

: ; - tions.
tum dot (IQD) has begun to receive an increasing . L . ]
consideratiort!1®These inhomogeneous quantum dots, as a _Tge retstdotf t?r:s contlrlb_utlofnﬂ|13 or_galnlzedtasl fOItIO;NS' Sfec.
consequence of a suitable growth procedure, have an internélIS evoted to the analysis ol the single particie states of our

potential well that confines the carriers inside the quantu odel of IQD, in Sec. lll we give our anglytlcal and numeri-
cal results for the ground and lowest-lying exciton states in

dot. The motivation behind the study of these composit ) AR : : .
guantum dots is twofold: first, the additional internal struc%heei/osttergngctzgﬂgiesrgjgi;?rggg'Tg::glﬂ’si\gg'sle V?/(ZCtil:cr;uldve Izn

ture of the quantum dot gives extra flexibility for the tailor- dix with details of the classical electrostatic treat i
ing of the quantum dot discrete energy levels; second, th@‘ppen Ix with details of he classical electrostatic treatmen
of the dielectric mismatch at the dot boundaries.

internal well prevents the carriers from being in the proxim-
ity of the quantum dot interface, where a series of not quite Il SINGLE-PARTICLE STATES IN INHOMOGENEOUS
well controlled and/or understood processes becomes prob-
. . . QUANTUM DOTS
able (such as trapping of particles at the interfatle
While there already exist a few published theoretical The main motivation for the present study comes from the
works related to the behavior of excitons in inhomogeneougxperimental and theoretical work of Haasal,* Schoos
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wherer is the particle coordinaten” the particle effective
mass in the well-acting semiconducton] for electronsmy

for holes, V2 is the three-dimensionaBD) Laplacian, and
V4(r) corresponds to the self-polarization interaction be-
tween the particle and the bound surface charge density that
it induces atboth spherical boundaries. From E\15) of

the Appendix,

- P pg
Vs(r)=2I (1—p_q)(qr2|+r(2'“>+7 i)

where p=a®™D(eg;—e))l/[e (I +1)+e,l)], q=(e;
—eo)(I+1)/[eql +e5(1+1)], anda=a/b; p (q) is related
to the presence of “image” charges at the infieatep dot
boundary. In writing Eqs(1)—(2), we use the effective exci-
ton RydbergRy* =e?/2¢,a* =A2/2m* (a*)? as the unit of
energy(with 1/m* =1/m{ +1/m} as the inverse of the exci-
ton reduced effective mass aad =¢,42%/m* e? the exciton
Valence Band effective Bohr radiug the outer dot radiub as the unit of
length, and we have defined=b/a*. For later use, we give
here the values of the CdS/HgS system parameters:
FIG. 1. Schematic view of our model of inhomogeneous quan-m; =_O.F336,mﬁ =0.040,6,=11.36,6,=5.5"° o
tum dot and corresponding potential profil¥g (Vg) is the Itis Impor;ant tQ note from Eq(1) that thg k'net'c energy
conduction-(valence} band offset between the core, clad, and well Scales as 1%, while the self-energy contribution scales as
regions, whileE refers to the well-region semiconductor band gap. L/A. Accordingly, in the strong-confinement regime<1,
All three magnitudes are bulk properties. the latter becomes small compared with the former, and po-

tential energy terms can be treated as perturbations on the
et al,'® and Bryant® that studied IQD composed of CdS particle-in-a-box problem posed by Ed) with V(r) =0.

. . Owing to the spherical symmetry of the problem, we pro-
(core/HgsS (well)/CdS (clad immersed in watefsurround- : : :
ing mediun). This particular heterostructure can be thoughtpose a single-particle zero-order separable solution
of as a quantum dot composed of three Igyers. The inner a_nd i) =Roy(N) Y m( 6, ®), 3)
outer layers correspond to one semiconductor material
(CdS), while the intermediate layer corresponds to a differentwhereY (6, ¢) are the spherical harmonics, aRg(r) are
semiconductor materigHgS). For this particular choice of solutions of the radial eigenvalue equation
semiconductors, as the bottom of the CdS conduction band is

1.35 eV above the bottom of the HgS conduction band, while , d d 5 m?* ,
the top of the CdS valence band lies 0.65 eV below the top | ' FWLZVEJF A FEmf =1(1+1) | Ru(r)=0.
of the HgS valence band, HgS acts as a well material for 4

both electrons and holes. Besides, these relatively large
conducltion-_ and vale_nce—band off.seys.qualitayivelyjus;ify the  The more general solution of E() is given by the linear
approximation of taking them as infinite barriers. While the ompinatioR®

approximation is reasonable for the lowest-lying single-

p_article states, it will evidently fail for sufficiently high ex- Rui(knit) = aj (Kt + BY  (knif), (5)
cited states.

A schematic view of our simplified model of IQD and With j; andy; being the two independent spherical Bessel
corresponding radial potential profile is given in Fig. 1. Wefunctions, « and B constants to be determined, ang,
shall assume that the same semiconductor fills the core arrd\ Vm{ E,,;/m*. It should be noted that since the core re-
clad regions, to which we assign an infinite potential barriemgion (and consequently the originis excluded from the
for both electrons and holes and a macroscopic dielectriproblem, the irregular functioy, is a permissible solution
constantes,, while the intermediatéwell) region is occupied for an IQD; from the mathematical point of view, this is the
by a second semiconductor, with dielectric constafita  essential point that distinguished the IQD from the HQD.
(b) denotes the inngputen radius of the 1QD. The eigenvaluesE,, are determined from the hard-wall

Using the envelope function approach to the effectiveboundary conditions
mass approximation, the Hamiltonian for a single particle

with parabolic dispersion relation inside an IQD is given by Rni(km@) =Ry (k) =0. (6)
Application of Eq.(6) to the explicit solutions of Eq(5)
1 m* 1 yields the single-particle eigenvalue equation
H=— = — V2+ -Vy(n), (1)

ANmEo A J1( k@)1 (k) = 1 (o) Y1 kni@) =0, (7)
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which for general values dfis an implicit equation fork,, 8
(and consequently fd€,,). If a=0, the solutions of Eq.7)

are given byj(«,) =0, and we recover the well-known re-

sult that the single-particle eigenenergies corresponding to a
HQD are proportional to the zeros of the regular spherical

Bessel functiorf? Assuming that we have solved Eg) for z wl
a given value of and found thenth solutionk,,, the single- N A=
particle energy including the self-energy corrections within “ &7 &
the framework of the SCA can be written as wET Ly e &= ¢,
- L Vo) ®)
[t 3 \Pnim| Vs Pnim/ - ) ) L 1
" )\2 m;k A 00.0 0.2 0.4 0.6 0.8 1.0

. . . . . a (=al
This equation for the single-particle energies deserves some 3 (=ak)

comments:(a) The second-term, corresponding to the sur- FIG. 2. Lowest-lying inhomogeneous quantum dot electron
face polarization charges is zero for equal dielectric congjngle-particle energies versus reduced well sizeD corresponds
stant§ |n3|de and o_uts_lde the_ QD) This Contrlbutlon IS {0 a homogeneous quantum dot, white= 1 corresponds to a
positive if&,> &, (this is satisfied by most of the physically g nerical surface. The results fes# ¢, (full lines) include the

realizable 1QD, increasing in consequence the Kinetic soitenergy correction as given by E@) in the text.
single-particle energies. ¥;<e,, the first two terms in Eq.

(2) change sign but the third remains positive, so some can- | , tHwith ielectri . h h
cellation exists in the total contributiotg) From the point of ~Particle energies withwithoup) dielectric mismatch at the
view of a perturbative expansion in powers of 1Eq. (8) dot boundaries; as mentioned above, for our chaige

includes both zero-order (%) and first-order () contri- >g,, all sing!e—particle states increase their energies in the
butions. presence of induced surface bound charges. Note that the

For the particular case o&=m=0 s states, Eq(7) yields effect becomes more noticeable when one moves to the

an explicit solution fork, . Taking into account thaity(x) strong confinement regime of Fig. 3. Previous theoretical

— (sin/%, yo(X) = (Cos9lx. after replacement in Ed7) we calculations for similar systents;*®while more realistiqdby
obtain » 70 ' using finite barrier potentials and by including the presence

of the surrounding medjause however a singléaverage
nar dielectric constant for the whole system, thus missing this
Kno= —, (9) effect.

(1—a) Finally, before leaving this section devoted to the inho-
mogeneous quantum dot single-particle properties, we will
present the corresponding normalized eigenfunctions, as they

2 will be useful for the qualitative understanding of the exciton
- results. Starting from Ed5), using one of the two boundary
B ($n00 Vsl $noo)- (10 conditions to eliminater or 3, and imposing the normaliz-
ing condition

and then

ESD S
n0
A2 mf

1 m* nm
1_

In the HQD limit a—0 and taking e;=¢,, E}
—(na@/\)?m*/m¥ , while for thea— 1 limit of a spherical 1
surface,E? diverges as (+a) 2. While it does seem not f,drrzRﬁ,(Kn,r)zl, (1)
possible to generalize this analytical result for0, we give a
in Figs. 2 .\=1) and 3 §4 =0.5) the results for the lowest-
lying single-particle eigenvalues as a function of the well 80
size, obtained by a numerical solution of Ed@).. We present
results for electrons; as the hole effective mass in HgS is
quite similar to the electron effective mass, the correspond-
ing hole single-particle energies are quite similar to the elec-
tron single-particle energies. Clearly, all the states have anE

energy which behaves as{h) 2 in the limita— 1. This is =

60

40

an important feature for the analysis of the exciton states of E r=05
the next section. It is interesting to note that in the limit of 2 7 &
very narrow quantum wells, the single-particle eigenenerges | &= g,
become quasidegenerate with respect to the angular momen
tum quantum numbdr, as in this limit the energy is mainly o . ! . . . . ! .

00 02 0.4 06 08 10

determined by the number of nodes of the eigenfunction in
the radial direction, which is proportional to This increas-

ing importance oh asa—1 explains the crossings of Fig. 2. FIG. 3. Same as Fig. 2, but for a smaller inhomogeneous quan-
Full (dashed lines in Figs. 2 and 3 correspond to single- tum dot (\ =0.5).

a (= alb)
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bound surface charge densities; its derivation is given in the
Appendix, where from Eqgs(All) and (Al12), by setting
r=re,rr=rh, g;=—0g,=e we get the explicit expression

20F —— 1,00 "

>

15 |-

S P(cosy)| , P

V(re,rp)=-—2 —r
c( e h) = (1_pq){ < r(<|+1)

—
(1) +tar

>
(14

whereP,(cosy) are the Legendre polynomials of ordery
is the angle between the electron and hole coordinates-
sured from the origin at the dot centeandr_ (r-) is the
S smaller(largep of r, andry,.
In the strong-confinement regime<1, the last three
. terms of Eq.(13) become small compared with the first two,
FIG. 4. Normalized zero-order single-particle wave functionsand can be tr_eatgd as perturb_ations to the Z_ero-order_kinetic-

(modulus squaredversus the radial coordinate, for three different energy_contrlbutlons_. Accordingly, f[he leading term in the
sizes of the well-acting semiconducta?zé 0.1, 0.5, and 0.9). 9xpan5|on of the exciton W.av.e function for an electtbale)

in annlm (n’l'm’) state is just the product of the corre-
it is not hard to obtain the explicit expression for the normal—spondlng single-particle wave functions,
ized eigenfunctions,

=
=
T

WG

P S e e

r (b)

q’aa’(reirh): d)a(re)d)a’(rh)a (15)
1/2
Ry (Kknif)= 2 wherea and a’ denote the full set of single-particle quan-
e R2 |+ (k) —@°R2, | 1(aky) tum numbers. Equatiofl5) can be considered as the state-

ment of the SCA applied to the quantum dot exciton wave
. function.
Ji(kail) = Yi(knl) |- (12) As the first four terms of Eq13) were already considered

Yi(Kni)
o " ~_inthe previous section, we will concentrate on the excitonic
We show in Fig. 4 the squared modulus of the radial eigencontribution; we define the exciton binding energy
functions corresponding to the lowest-lying 1QD states, for

different 1QD core sizes. Three features are worth noting: 1
First, the number of radial nodes is proportionahtsecond, Ef:fa,z — x(\lf,m,(re,rh)|VC(re,rh)|\1fa,0[,(re h)
the quasidegeneracy with respectltin the a—1 limit of

5 J1(kn))

Figs. 2 and 3 has a complementary manifestation in the in- {16
creasing similarity ofe109 and ¢4 (they are indistinguish- 1

able fora=0.9), and third, as—1 the wave function is :_Kf dfef drnd(re) b (rn)Vel(re.rn) d,
progressively squeezed into a smaller region, resembling a

delta Dirac distribution function when-da<1. We will ex- X(re)bar(rn). 17)

ploit this analogy in the next section. Finally, the reader ) ox - N ] )
should realize that to this order of perturbation thetmgro ~ Defined this wayE ' . is a positive magnitude. Replacing
order for the wave functionsthe results of Fig. 4 are inde- in Eq.(17) the single-particle solutions given by E@), and
pendent of the presence of surface-induced bound charge¥; by its expression in Eq14), it follows that

they should show up, however, in the first-order perturbed

i 2 (1 1
wave functions. Ere1)l(m,n’l’m’: Xf;drergRﬁl(re) f;drhrﬁR§r|r(rh)C(revrh)’
Ill. EXCITON STATES IN INHOMOGENEOUS (18
QUANTUM DOTS
where
We concentrate now on the problem of an electron-hole
pair (exciton confined in an IQD. The exciton Hamiltonian A oo
is Clre.p) =2 —————==x[rL+pr=" "]
(o (21" +1)(1=pq)
He- = Mgz LML Sy iy [ gt (U e )
A2 m? o )\2 m ' )\ "Su e T )\ Ysih > ar- mm'm*' m'm’'m’/
1 Finally,
+ _Vc(reirh)v (13)
* " —fzwd fwde iNBY (0
using the same lengthb] and energy Ry*) units of the mam— fo OFe ], C0eSIN%e im( fecpe)

previous section. The last term in E3.3) is the generalized .
electron-hole Coulomb interaction, including the induced XY )" m"(Oe@e) Yim( Oe®e) (20
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"

! !
while 'ImIer is given by the same expression, under the & (100,100)
obvious changes of electron for hole angular coordindtes, "“‘\* ~~~~~~~~~ A
—I|" and m—m’. For given values of the single-particle __ s -”00’“0;‘1' = 1
electron and hole quantum numbers, these angular integral*éﬁ aoo200 00 owm=sg o7
N’

can easily be evaluated using the Wigngrsymbol€324in
terms of finite series. Equatiofl8) for the exciton binding
energy of an IQD seems to be as far as we can proceec
analytically for general values of electron-hole single-
particle quantum numbers.

ex
nlm,n'm'l
-
T
1

E

_________

w

——.

As expected, the ground-state exciton with both the elec- L a00m00) n e L
tron and hole in single-particle states (=1'=m=m’'=0) T T s T
allows a full analytical solution. This is based on the fact that 2 . ' . . . :

o 0.0 02 0.4 0.6 0.8 1.0
| o 00= 8"08uro/ N, from Eq.(19) we get 2 (= a/b)

e1—e, 1 FIG. 5. Ground- and excited-state exciton binding energies for
+—. (21 the inhomogeneous quantum dot as a function of the reduced well
r> size. The lower(uppe) set of curves corresponds to the case of
equal(different dielectric constants at the dot boundaries.

C(rerrh):

Substituting Eq(21) in Eq. (18), and after some cumber-
some but straightforward integration over the electron an

hole radial coordinates. we obtain dSi(47-r):1.492. Note that Eq(24) is a generalization of

Brus’s result for an arbitrarily exciteststate exciton.

2 _ 1-a 1 A second interesting limit is the case—1, for a very
Enoonoo=N 5Ina+ — *1g {A[Ci(2Ky0) narrow width of the well-acting material. Using the
Kno asymptotic expansions of Si and €iit is not hard to obtain

— Ci(2kn0a) ]+ B[ Si(2kn0) — Si(2k0a) I} from Eq.(22)

—2siN4kpg)[Ci(4k,0) — Ci(4kn0a) ] o o 2, o
noonoo(aﬂl)ﬂxs—2+0(1—a). (25)

+2c084x00)[ Si(4 ko) — Si(4xna)]
It is interesting to note than in spite of the apparent diver-
N 2e1-ep (2p gence of Eq(22) in the limit a—1 [N~(1—a)~ 1], this is
N ey, actually compensated by a simil_ar behavior of the numerator,
_ _ with the net result thatE g, ,0(a—1) remains finite. This
where N=8/A(1—a), and A=8knoaC0s(2n0) +4sin(2u),  result for the ground-state exciton on a spherical surface, of
B =8kp0asin(2x,o) —4cos(2g). Ci and Si are the cosine and which we are not aware in any previous report, can be ob-
sine Integral functions, respectivély This analytical result tained directly from Eq(18). For this, one uses the fact that
for the ground-state exciton binding energy in an inhomogewhen a— 1, the radial(normalized wave function can be
neous quantum dot is an important result of this contributionapproximated by a Dirad function centered in the middle of
we will proceed now with its analysis. _ the well, as can be seen from Fig. 1 for the case0.9.
_ First, it is useful to check that some previous results f0lprqceeding in this way, the result above is immediately ob-
simpler QD geometries are partlgular cases of our genergliaq.
expression; for instance, in the lindt—0 we should recover We proceed now with the numerical results for the
the result first obtained by Brﬁﬁor an exciton confined in a ground-state and excited exciton inhomogeneoug guantum

HQD, dots; they are given in Fig. 5, as a function of the well-acting
3.572 s_emiconductor widtha; a=0 corresponds to a HQD, and
E%D:'T. (23 a=1 to a spherical surface, whose limiting values for the

ground-state exciton were already analyzed. The first feature

to note is the monotonic decrease withbinding energies
for 1QD excitons are lower than for HQDThis is easy to

understand: aa increases, the electron and hole are progres-

When a—0, N—8/\, k,—nm, A—0, andB— —4. Re-
placing these limiting values in E§22) we obtain

_ 2[e;+e, Si(2nw)  Si(4nm) sively pushed towards the outer dot boundary, leading to an
Entonod(@—0)— N - 5 . increase of their mean relative distance, and consequently to
2 nm nm a decrease of their binding energy. All exciton binding ener-

(24 gies in Fig. 5(lower sej except one, converge towards the

Takinge,=¢, (no dielectric mismatch at the dot boundary “universal” limit 2/x of Eq. (25); as a rule, all excitons
and n=1 (ground-state exciton Eq. (24) reduces to Eq. Where either the electron or the hole hdve0 reach this

(23); in doing this, we have used Sif@=1.418 and value fora—1. The exception allowed above is thpelike
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exciton, whose binding energy is greater in the limit of a One of the main conclusions of our work is that we have
spherical surfacéalthough it is smaller in the HQD limjit found that the dielectric enhancement effect on the exciton
The upper set of curves in Fig. 4 corresponds to the situbinding energies in inhomogeneous quantum dots is even
ation g,;#¢,. The inhomogeneous quantum dot excitonmore pronounced than in homogeneous quantum dots. Tak-
binding energies depend strongly on the dielectric mismatcling for instance the ground-state exciton binding energy re-
at the dot boundariesThe important increase of the binding sults of Fig. 5, the dielectric enhancement effect amounts to

energies is a direct consequence of the specific chejce about one third of the total binding energy%tto (HQD),
>&,. For this choice, both the particlelectron, holeand  while it amounts to more than half of the total binding en-
the induced charge at the boundary havg the same sign, ¥fgy ata—1 (limit of a spherical surfade This increasing
that all four contributions of the generalized electron-holej5qrtance of polarization effects is due to the fact that the
Coulomb interaction increase the binding. The increase igq,jomp interaction decreases when the core size increases
just a rigid shift in 26, — &)/ A&, if either the electron or  (see the Jower set of curves of Fig), Svhile the dielectric
hole havel =0 this condition is enough to resrict thé SUm gnhancement contribution remains essentially the same. In
in Eq. (19) only to thel =0 component, which in turn trans- that sense, this contribution can be considered as comple-
lates into the rigid shift allowed above. Otherwise, the cor-mentary to that of Refs. 14—16, where a more realistic model
rection by the dielectric mismatch at the boundaries becomesf IQD was employed, but the dielectric enhancement effect
a function ofa (this is the case of thp-like exciton corre- was not considered.
sponding to both electron and hole in the;, state.

It is interesting to note that for almost spherical quantum ACKNOWLEDGMENTS
dots (@=<0.2) the inhomogeneous quantum dot exciton bind-
ing energy increases with. This is because the zero-order
electronic density fos states, which is proportional uaﬁo,
has a maximum at=0; this becomes higher and narrower
asn increases. The first feature explains the large binding
with increasingn, while the second is associated with the

reverse situation found wheae=0.2.
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APPENDIX: DIELECTRIC MISMATCH AT THE
INHOMOGENEOUS QUANTUM DOT BOUNDARIES

The aim of this appendix is to give some details on the
IV. DISCUSSION AND CONCLUSIONS calculation _of the single-particle seIf—ene_rgy cor_rections and
the generalized electron-hole Coulomb interaction, both ef-
In the previous sections we have assumed the validity ofects being a consequence of different possible values of the
the strong-confinement approximation for inhomogeneouslielectric constants of the dot and the surrounding medium.
quantum dots. As a first step, let us check if the approximaFrom classical electrostatic considerations, it is well known
tion is suitable for physically realizable 1QD. Taking HgS asthat in such situations surface charges bound to the boundary
the semiconductor well-acting material, we obtaif (elec-  arise that should be included from the outset, as their contri-
trony =16.7 nm, whilea* (hole9 =15 nm. From here we bution may be important. The analysis that follows is an
obtaina* (exciton =31.71 nm. As the typical size in ex- extension of previous calculations for simpler geometries,
periments ish=8.7 nm, we obtain the estimation=b/a*  such as cylindrical quantum wiré3and sphericdlor cubié
(exciton) =0.7, well inside the regime of applicability of the quantum dots.
SCA. The magnitude we want to calculate is the electrical po-
It is instructive to compare the exciton binding energytential at the point created by a point particle of unit charge
results of Fig. 5 with the single-particle behavior of Figs. 2atr’. Within our model of an inhomogeneous quantum dot
and 3: while the former remains finite in the rang&@ with infinite confining barriers, the source partididectron
<1, the latter increases without limit whem—1 [as P or hole should be located inside a spherical shell of inner

—5)*2]. We arrive then at the important conclusion that the(OUteD radius a (b); we adscribe a dielectric constan

o . S (£5) to the well(barriep semiconductor region. Mathemati-
validity of the strong-confinement approximation extends be- : )

. oo o . cally, the problem can be conveniently stated as follows: the
yond the, in principle, upper natural limit=1. The condi-

tion of applicability of the SCA for IQD can be written as tGhreezzja?iJg:er(r,r ) for our potential problem satisfies

A(1-a)2<N—\<

4
. (26) AT .
(1—a)? V2G(rr)= o Sr—r’y if a<r< D

If EHO, we recover the “natural” constraint<1, but for 0 otherwise

a—1, the condition on\ relaxes and\ can take values subject to the boundary conditiofisee Fig. 1

greater than one. Besides, considering the opposite behavior (i) G®'r,r")|,—a-= G™(r,r")|,_+,

of single-particle and exciton binding energies as the core (i) G"(r,r")|,—p-=G%rr")|, -+,

size increases, a blueshift of the band to band excitonic tran- (iii) £,dG'Yr,r')/dr|,_y-= £,dG""(r,r")/dr|,_ 4+,
sitions can be expected, with the exciton behaving more like (iv) &,dG"(r,r")/dr|,—,-=£,dG"®r,r")/dr|, _+,
an uncorrelated electron-hole pair than as a composite (v) G®r,r') must remain finite when—0,

(bound particle. (vi) G%qr,r'y—0 whenr—s.
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We propose as a solution of EGAL)
Gr,r) =2 Yi(6,¢")Yim(6,)

G(rr)=2 Am(6',¢")Vin(6,9)9(r,1"),  (A2) .

X
_ _ _ _ e1(21+1)(1-pq)
and exploit the fact that thé function can be written in | 0+ D —(+D) |
spherical coordinates as X[re+pro " H]ro" " +ars .

(A11)

1
or—r’)= r—25(r—r )6($= ') s(cosh—cosh). Assigning a charge; to the source particle at and insert-

(A3) ing a test particle of chargg, atr, the generalized Coulomb
interaction is
Substitution of Eqs(A2) and(A3) in Eq. (Al) yields at once
Am(0,¢")=Y}.(0",¢") and the radial equations V(1) =0,0,G"(r 1), (A12)
d? —[rg,(r.,r")]— I(I+l)g|(r’rr):_ 77 S(r—r') Expanding Eq.(A12) we obtain four contributions, whose
I dr2 r eqr? physical origin is as follows. The term with r or q (the
(A4)  only one that survives whems;=¢,) corresponds to the
. point charge-point charge Coulomb interaction; the two
if a<r<b, and terms with onep or g correspond to a point charge-induced
charge interaction, while the remaining term proportional to
1 d? [(1+1) pqg is a consequence of the induced charge-induced charge
T dr —[rgi(r.r )]—r—g|(r r')=0 (A5)  interaction. In the absence of dielectric mismatch at the
boundaries £,==¢,), p=q=0 and Eq.(A12) reduces to
if a>r or b<<r. The solutions of these two equations in the
three different regions are ppu [

_aig , r
V(r,r : 22 Yim(80' 0" )Yim(6, (P)(2|+1)Xr('—j1)
>

gl r,r)=Ar'+Br-*Y if r<a, (A6)

d1d2

gl cr'+or' (r<r) . 1 :ﬁ' (A13)
(r,r')= Crl4D ! (r>r) if a<r<b, gqr—r
(A7) . . . .
An alternative way of obtaining to this standard result is to
and maintain the difference in dielectric constants at the bound-
aries but to take the bulk limits—0 andb— o, recovering
g rr)y=Er'+Fr0*D  if r>b. (Ag)  the infinite medium geometry. If onlg—0, p—0 and Eq.

(A12) reduces to
The coefficientsA, B, C, b, C', D', E, and F are
functions of r’ to be determined by the boundary condi- 0105 .
tions (i)-(vi), and the symmetry conditiorg/*®'(r,r") V(r,r )——z Y (0,0 )Y (6, (’D)(ZITl) L

—g}”e”(r ,I). Using these seven equations to eliminate
seven of the eight unknowns, it is not hard to obtain that 1
X| e rark |, (A14)
g e(rr ) =K[rl+pr e grl], (A9) >

where p=(g;—¢&,)la®@ " Y/[e,l+e,(1+1)] and q=(e;  which is the well-known expression for the Coulomb inter-
—g,)(1+1)b~ @ D/[g,l+e,(1+1)], andr- (r-) is the action between two particles enclosed in a sphere of radius
smaller(greatey of r andr’. To determine the constaitt b.3
we must consider the effect of th& function in Eq.(Al). The self-energy interaction energy can be obtained from
Integrating both sides of this equation overbetweenr’ Eq. (A12) by takingg;=q,=q andr=r’, and eliminating
—n andr’ + 5 (with # an infinitesimal positive valyea last  the infinite self-energy term that arises for pointlike particles;
boundary condition is obtained for the radial derivative of proceeding in this way we obtain

gl"(r,r’). Using this we obtain

9 L P pq
B ! Vs(r)=—2 — qr?'+ —+—, (A15)
K_81(2|+1)X(1—pq)' (A10) 29 (1 pq)\ P21

Collecting all the results and replacing in E&?2), where we include a factor 1/2 to avoid double counting.
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