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Shell filling of artificial atoms within density-functional theory
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The electronic structures of three-dimensional quantum dots described by parabolic and nonparabolic con-
finements are calculated using spin-density-functional theory. For representative cases we determined the
electron-number-dependent capacitive energy, the energy required to add an additional electron to a quantum
dot, by self-consistent solution of the equations using a finite difference method with preconditioned conjugate
gradient minimization. Shell-filling and spin configuration effects are identified, as found in electronic structure
of the atoms. The peak positions of the capacitive energy at the number of electronsN52, 6, and 12 for the
cylindrical symmetric quantum dot are in good agreement with experimental data.@S0163-1829~98!04811-5#
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I. INTRODUCTION

With the development of the x-ray lithography, etchin
and deposition techniques in semiconductor technology,
possible to confine electrons in a small region known a
quantum dot.1 The electronic structure of these confin
electrons is very important and interesting in the area of
sic and applied physics. The confining potential of the or
of a few meV can be chosen experimentally. Many-bo
effects due to the electron-electron interactions show a br
range of electronic structures similar to those of the real
oms. The number of electrons in a quantum dot, denotedN,
which can also be controlled experimentally, affects ma
physical properties of the quantum dot. The dependenc
the chemical potential onN was directly measured throug
single-electron spectroscopy.2–4 By changing the quantum
dot size and the number of electrons, far-infrar
absorption,5–7 capacitance spectroscopy,8 and conductance
measurements2,3 determine the tunneling conductance a
capacitance resulting from the competition of quantum c
finements and Coulomb interactions.

Electron-electron interactions in low-dimensional syste
are calculated through various theoretical approaches9–21

The capacitance of the quantum dot is an interesting con
related to the single-electron tunneling and the Coulo
blockade phenomenon. Recently, Taruchaet al. probed the
electronic states of a few-electron quantum dot throu
single-electron tunneling spectroscopy.4 They also measured
the effects of spin configuration and confirmed Hund’s r
favoring the filling of parallel spins by applying tunab
magnetic fields to the quantum dots. Furthermore, Macu
et al. have calculated the shell-filling behavior of two
dimensional cylindrical quantum dots within the framewo
570163-1829/98/57~15!/9035~8!/$15.00
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of density-functional theory.20,21 Fujito, Natori, and Yasu-
naga studied the many-electron ground state in parab
quantum dots using the unrestricted Hartree-Fock met
and found capacitance oscillations as a function of the e
tron number caused by the shell structure.19

We have calculated the electronic structure of thr
dimensional anisotropic quantum dots through the finite d
ference method with preconditioned conjugate gradient
laxation based on the density-functional theory. T
capacitive energy of up to thirteen electrons is obtain
through a self-consistent total-energy calculation for mo
three-dimensional quantum dots. Since the exclusion p
ciple prevents two same-spin electrons from having the sa
spatial wave function, the spin configuration in the quant
dots plays an important role, as it does in atomic phys
The explicit electron-spin interactions are taken into acco
via spin-density-functional theory, which properly describ
the spin effects of atomic systems. We studied the effect
symmetry and nonparabolicity in the confinement potent
on the electronic structure of the quantum dot. We also co
pared the calculated results of the spin-polarized calculat
with unpolarized total energy calculation, differe
exchange-correlation energy per particle, and the Hartree
proximations.

The outline of this paper is as follows. In Sec. II, w
present our theoretical method. The calculational results
discussion are shown in Sec. III. A brief summary is given
Sec. IV.

II. THEORETICAL METHODS

In the present calculations we assumed the quantum d
well isolated so that the interaction between the dot and le
9035 © 1998 The American Physical Society
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9036 57LEE, RAO, MARTIN, AND LEBURTON
or other conductors in real quantum dots is negligible;
doing so we have not included the effects of gates and a
cent conducting materials. Within the effective mass
proximation and density-functional theory, one can write
simple effective quantum dot Hamiltonian,

H52 1
2 ¹W 21 1

2 vx
2x21 1

2 vy
2y21 1

2 vz
2z21VH~rW !1Vxc~rW !,

~1!

including the external potentials described byvx , vy , and
vz of the anisotropic parabolic three-dimensional potent
HartreeVH(rW), and exchange correlationVxc(rW) as shown in
Eq. ~1!. Rescaled atomic units are used throughout, with
ergy in units of 2 Ry* 5m* e4/\2«2 and lengths in units of
the effective Bohr radiusaB* 5\2«/m* e2. The effective mass
and the dielectric constant are denoted bym* and«, respec-
tively. We used the finite difference formula for the Lapla
ian operator in the Hamiltonian,22,23 with a seven-point sten
cil in each direction, and iteratively diagonalized th
Hamiltonian in three-dimensional Cartesian coordinates w
uniform grids.

Spin-polarized Kohn-Sham equations24,25 were solved
self-consistently to calculate the total energy of the quan
dots. The Hartree potential and energy due to the electron
the quantum dot were obtained by solving the Poisson eq
tion using the preconditioned conjugate gradient meth
The boundary values of Hartree potential were evaluated
ing a multipole expansion of the potential of the charg
density distribution. This method is very efficient compar
to the direct integration of the potential at the surfaces. T
multipole expansion is accurate if the charge distribution
well localized within the computational box. The relaxatio
vectors at the boundary are set to zero for the Dirich
boundary conditions. We have used the generalized-grad
approximation~GGA! for the exchange-correlation energ
and potential to incorporate the effects of the gradient c
rection of the local-density approximation~LDA !. We used
the simplified version of the recent GGA functional by Pe
dew, Burke, and Ernzerhof,26 which satisfies many exac
properties of density-functional theory such as the accu
description of the linear response of the uniform electron
and proper uniform scaling. The GGA expression for t
exchange-correlation energy per particle gives better des
tions of the total energy and the ionization energy for
atoms compared to the LDA.26 For the LDA calculations, we
used the exchange-correlation energy and potential base
the quantum Monte Carlo simulation data of the unifo
electron gas.27

In the present iterative relaxation procedures for solv
the Poisson and Kohn-Sham equations the explicit evalua
and the storage of the Hamiltonian matrix can be avoid
The matrix-vector multiplication is replaced by the finite d
ference operation on the vector represented in th
dimensional space, resulting in a simple linear combinat
of the adjacent components of the vector. This proced
leads to a great saving of computational resources. We u
the preconditioned conjugate gradient type relaxations w
the constraint of orthonormalization conditions between
states to obtain the occupied states and a few lowest u
cupied states~eigenvalues and eigenvectors! of the large size
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of the Hamiltonian matrix.28 We also included the subspac
diagonalization after band by band minimization of t
Kohn-Sham orbitals.29

In the conjugate gradient algorithm the residuals and
searching directions are orthogonal for each different rel
ation step and the relaxations guarantee convergence i
matrix is symmetric positive-definite. The uniform grids giv
a symmetric matrix representation of the nonlocal Laplac
operator in Kohn-Sham and Poisson equations. Roug
speaking, the preconditioning of the relaxation vector can
considered as a procedure of smoothing of the relaxa
vectors in real space. To reduce the number of conjug
gradient relaxation steps, we used the two different prec
ditioning operators found in the literature. For solving t
Poisson equation, we have used the following form of p
conditioning operatorP̂ of fifth order proposed by Hoshi
Arai, and Fujiwara,30 which filters out the high-frequency
components of the relaxation vectoru(rW),

~ P̂u!~rW !5
1

2H u~rW !1 (
DrW5h~61,61,61!

u~rW1DrW !

6 J . ~2!

We also used the preconditioning operator proposed by S
sonen, Puska, and Nieminen31 for the iterative diagonaliza-
tions. We have found that the preconditioning of Hos
Arai, and Fujiwara does not work properly for the relaxati
of especially slow-varying~or low kinetic energy! states, be-
cause the preconditioning of Hoshi, Arai, and Fujiwara
short ranged and has no dependence on the kinetic ener
the current trial wave function.

To accelerate the self-consistency calculations we u
the Pulay-type charge32 density-mixing scheme for each up
and down-spin density during the iterations. This relaxat
minimizes the difference between input and output cha
densities in the self-consistent loop with the constraint
charge conservation. The optimal input charge density is
pressed as a linear combination of a few previous input d
sities. In our calculations we have taken the effective kine
energy cutoff (p/h)2 Ry* '110 Ry* related to the uniform
grid spacingh in aB* as found in usual plane-wave basis s
formulation. We also made convergence tests on phys
observables with respect to the grid spacingh. The typical
number of grid points used for the single-particle wave fun
tion for the large quantum dot in the present calculation
about 138 000.

The total energy of the model quantum dot in densi
functional theory can be expressed as follows:

E5 (
e i
↑
,eF

e i
↑2E $ṼH~rW !1Ṽ xc

↑ ~rW !%r↑~rW !d3r

1 (
e i
↓
,eF

e i
↓2E $ṼH~rW !1Ṽxc

↓ ~rW !%r↓~rW !d3r

1
1

2E VH~rW !@r↑~rW !1r↓~rW !#d3r 1Exc@r↑~rW !,r↓~rW !#,

~3!

where the summations over the single spin eigenenergye i
↑

and e i
↓) are carried on for all states below the Fermi lev
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57 9037SHELL FILLING OF ARTIFICIAL ATOMS WITHI N . . .
eF . The electron densitiesr↑(rW) andr↓(rW) are defined as the
squared summation of the occupied Kohn-Sham orbitals,
Exc@r↑(rW),r↓(rW)# is the total exchange-correlation energ
ṼH(rW), Ṽ xc

↑ (rW), andṼxc
↓ (rW) represent theinput electronic po-

tentials for the Hartree and exchange-correlation~up and
down spin! contributions at each iteration within the se
consistent calculations. All other quantities, i.e.,VH(rW),
r↑(rW), r↓(rW), andExc@r↑(rW),r↓(rW)# are evaluated using th
output charge densities of the self-consistent iteratio
Hence the two quantitiesṼH(rW)1Ṽ xc

↑ (rW) and ṼH(rW)

1Ṽxc
↓ (rW) are very close to the corresponding Hartre

exchange-correlation potentials given by output charge d
sities when self-consistency is established. Thus, the
four terms in Eq.~3! decomposed into up- and down-sp
state contributions, represent the sum of the total kinetic
external potential energy.

To calculate the capacitive energy of a quantum d
which indicates the variation of the dot total energy as
function of the number of electrons, we followed the form
lation of Iafrateet al.18 for the specific dielectric constan
and electron effective mass of the semiconductor mate
system. The chemical potentialm(N) for N electrons can be
defined by the total energy difference between the numbe
N and the number ofN21 electrons as follows:

m~N!5E~N!2E~N21!. ~4!

The chemical potential is the energy required to add
electron to the system withN21 electrons. From the chem
cal potential, one can derive the capacitanceC(N) of the
quantum dots, the energy required to add chargee,1,18

C~N!5
e2

m~N11!2m~N!
. ~5!

The capacitive energye2/C(N) is easily reduced to the
simple relation between1,18 the ionization potentialI (N) and
the electron affinityA(N) of an N particle system as show
in Eq. ~6!:

e2

C~N!
5m~N11!2m~N!

5$E~N11!2E~N!%2$E~N!2E~N21!%

5$E~N21!2E~N!%2$E~N!2E~N11!%

5I ~N!2A~N!. ~6!

Furthermore, in the density-functional theory the capacit
energy is also approximated by the gap defined by the eig
value difference between the lowest unoccupiedeLU(N) and
the highest occupiedeHO(N) states for anN electron system.
The capacitive energy satisfies the relation of

I ~N!2A~N!;eLU~N!2eHO~N!. ~7!

III. RESULTS AND DISCUSSION

A. Cylindrically symmetric confinement „vx5vy…

We calculated the electronic structure of GaAs quant
dots by using the dielectric constant of«512.9 and effective
nd
.
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mass of m* 50.067me . The corresponding energy an
length scales are 2 Ry* 510.96 meV andaB* 5101.88 Å,
respectively. We first considered a system with isotro
confinement in thex-y plane to investigate the effects of th
cylindrical symmetry. Electrons are confined in thez direc-
tion by the relatively strong harmonic potential. We choo
the vz545 meV to approximate the thickness of the qua
two-dimensional electron gas in experiments. From
choice of vz545 meV, we can calculate the characteris
length of harmonic oscillatorl c5vz

21/2 and assign the thick-
ness of two-dimensional model electron gas by 23 l c'10.1
nm. We also treat the cases ofvxÞvy and nonparabolic
confinement in the next subsections. In Fig. 1 we plot
total energyE(N), chemical potentialm(N), and the capaci-
tive energym(N11)2m(N) as a function of the number o
electrons in the quantum dot. The circles, boxes, and
angles represent the confinement potential parametersvx
5vy ~in units of meV! 20, 10, and 4, respectively. Here, w
also show the spin polarization,N↑2N↓/N↑1N↓, whereN↑

andN↓ are integers that denote the number of electrons w
spin up and spin down. The ground states are determine
self-consistent total energy calculations incorporating sp
polarization effects. The capacitive energym(N11)
2m(N) of up to thirteen electrons is obtained throug

FIG. 1. Calculated properties of parabolic quantum dots a
function of the number of electronsN in the dot. The three confine
ment potentials are characterized by the harmonic confinemen
meV units of (vx5vy ,vz)5~20,45!, ~10,45!, and ~4,45!, respec-
tively. The symbols circles, boxes, and triangles represent the ab
quantum dots in descending order ofx-y confinement strength o
potentials. The capacitive energym(N11)2m(N), chemical po-
tential m(N), and total energyE(N) are shown in the top three
panels. In the bottom panel is shown the spin polarization of
lowest-energy state defined as a ratio (N↑2N↓/N↑1N↓) of elec-
trons with spins up (N↑) and down (N↓).
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9038 57LEE, RAO, MARTIN, AND LEBURTON
chemical potential calculations as shown in Eqs.~4! and~5!.
For the three values ofvx(5vy), the total energies increas
monotonically with N. The chemical potential abruptl
changes atN53, N57, andN513 for the case of strong
confinement of external potentials. The electron spins
fully unpolarized forN52, 6, and 12, coinciding with the
peaks of the capacitive energy of the quantum dot an
completely filled shell.

Our three-dimensional model quantum dot with stro
confinement in thez direction has two-dimensional chara
teristics. This can be easily shown by the fact that the fi
excited state in thez direction is found atN513 for the
relative strong confinement ofvz545 meV in the noninter-
acting electron picture.~However, we note that for the larg
est strength of the lateral confinement,vx5vy520 meV, the
energy of the third shell is near the lowest excitation ene
for a state with a node in thez direction.! For the cylindrical
symmetric two-dimensional quantum dot, the simple h
monic potential gives two nonnegative integer quant
numbers for the noninteracting single-particle energy sp
trum, say, (nx ,ny), and form a distinct energy group for eac
spin, $(0,0)%,$(1,0),(0,1)%,$(1,1),(2,0),(0,2)%, . . . , and so
on. These energy groups form a complete shell structur
N52, 6, and 12 for the cylindrical two-dimensional quantu
dot.

The chemical potential plotted vsN is approximately lin-
ear, the slope increasing when a new shell is occupied.
have found that the capacitive energies are peaked at
electron numberN52, 6, and 12 for each case ofvx
(5vy)520, 10, and 4 meV. These peak positions are
qualitative agreement with the experimental measurem
addition energies of cylindrical quantum dots.4 The calcu-
lated peak positions of the capacitive energy are consis
with results of the recent calculations20 which used a two-
dimensional exchange-correlation energy functional wit
the local-density approximation. The capacitive energies
N52 and 6 are large compared to the noninteracting sin
particle energy spacingvx of the quantum dot. The polariza
tions as a function of the number of electrons satisfy Hun
rule, i.e., there is maximum spin polarization for partia
filled shells. In case of the relatively weak confinement
external potentialvx5vy54 meV, the capacitive energie
at N52, 6, and 12 are substantially suppressed, but still
hibit complete unpolarization due to shell filling. The effe
is especially evident in the absence of a peak atN52 when
the confining potential is soft. The capacitive energies
crease as the shell index increases, which is consistent
experimental findings.4 The capacitive energy is another ve
sion of the ionization energy minus electron affinity
density-functional theory as shown in Eq.~6!. The calculated
energy gaps of the three filled shells (N52, 6, and 12! are in
meV units ~17.1, 15.0, 11.5!, ~7.8, 6.6, 5.3!, and ~2.6, 2.1,
1.8! for the three confinements of model quantum dots
descending order ofx-y confinement strengths. The calc
lated energy gap is decreasing as the shell index incre
from one to three for the three quantum dots considered h
This is mainly due to the electron-electron interactions
quantum dots. Thus, we confirmed that both the energy
and capacitive energy decrease as a function of the s
index.
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We compare the capacitive energies by LDA and GG
calculations in Fig. 2 and find no significant difference b
tween two calculations with the different exchang
correlation energy per particle. In the LDA calculations, w
find that the total energy of the spin configuration (N↑,N↓)
5(5,5) is slightly lower~0.08 meV! than that of the spin
configuration~6,4! at the electron numberN510; however,
the energy difference is small compared to the numer
accuracy of our calculations. The spin-unpolarized calcu
tion is generally acceptable for the capacitive energy ca
lations except atN54, where the polarization has loca
maximum with respect toN in spin-polarized total-energy
calculations, in contrast to the unpolarized calculation, wh
has a local minimum. The local maximum feature atN54 is
consistent with the experimental finding.4 We also tested the
Hartree approximation, completely neglecting the exchan
correlation effects, and found that it is not appropriate for
capacitive energy calculations. In the Hartree approximat
at the number of electronsN57 and 10, we found negative
capacitive energies; these unphysical results demonstrat
importance of the exchange-correlation effects. In the H
tree approximation the two-dimensional shell structure is
effectively stabilized, since there are only repulsive inter
tions between electrons, whereas the attractive excha
correlation potential interaction for parallel spin stabiliz
the completely filled shell electronic structures of quantu
dot.

Within the density-functional theory the total energy c
be decomposed into kinetic, external, Hartree, and excha
correlation energies as shown in Eq.~3!. In Fig. 3, we plot
the kinetic and Hartree-exchange-correlation energies
units of the external potential energy to show the relat
importance of their contributions to the total energy. W
found that neither kinetic nor Hartree exchange correlatio
greater than external potential energy for the three shells

FIG. 2. The calculated capacitive energym(N11)2m(N) and
polarizations of the model quantum dot by GGA and LDA a
compared. The circles represent the results of LDA, and the bo
represent the results of GGA. The crosses in capacitive energy
represent the results from the spin-unpolarized version of the G
calculations.
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57 9039SHELL FILLING OF ARTIFICIAL ATOMS WITHI N . . .
shell index increases, the kinetic energy contribution
creases, while the Hartree exchange correlation increa
This shows that in the larger dot the electron-electron in
action is more important. As far as density-functional theo
is concerned, the electronic structure is determined by
effective potential, which includes the external, Hartree, a
exchange-correlation potentials. Therefore the shell-fill
effects can be identified in the effective potentials. Naga
et al.14 have found that the effective potential changes v
little within a shell, but increases relatively more when a n
shell is occupied.

The electron densities of the three filled shells for t
confinement ofvx5vy520 andvz545 meV is shown in
Fig. 4. We selected thex-y plane through the center of th
confinement potentials. The electron density has a sin
maximum at the first filled shell. For the first filled she
(N52), the electron-electron interaction is small compa
to the kinetic and external potential energies, and the w
functions have no node so the density has a maximum a
center of dot. For the second filled shell (N56), due to the
single nodes inx and y direction the density has fou
maxima inx-y plane as shown in Fig. 4. In case of the thi
shell containing twelve electrons, due to the occupation
the states having two nodes density is again maximize
the center.

FIG. 3. The total-energy decomposition of the thre
dimensional model quantum dots into the kinetic, external,
Hartree-exchange-correlation energies within the density-functio
theory are shown. Due to the cylindrical symmetry of the confi
ment potentials, the first three shells are formed atN52, 6, and 12.
The external potential energies are shown in the lower panel an
relative magnitudes of the kinetic~k! and Hartree-exchange
correlation~Hxc! energy with respect to external potential ener
are shown in the upper panel. The Hartree-exchange-correla
contribution is larger in the case ofN512 than the case ofN52.
For the three cases of confinement potentials the same symbo
tations are used as in Fig. 1.
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B. Anisotropic confinement „vxÞvy…

In order to see the effects of asymmetry of confinem
potentials on the electronic structure we considered two
ferent anisotropic confinement potentials in thex-y plane
characterized by (vx ,vy)5(10,20) meV and (vx ,vy)
5(7,10) meV for the fixed confinement ofvz545 meV
along the z direction. The latter case of confinement
closely related to the quad-gate planar quantum dot st
tures in experiment. The results including total ener
chemical potential, capacitive energy, and polarization
shown in Fig. 5. The relative peaks in the capacitive ene
are not much higher than those of the cylindrical symme
dot, partially due to the weakness of the confinement pot

-
d
al
-

he

on
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FIG. 4. The electron densities@in units of 1/(aB* )3] are shown in
the x-y plane through the center the confinement potentials
scribed by (vx5vy ,vz)5~20,45! in units of meV.
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9040 57LEE, RAO, MARTIN, AND LEBURTON
tials. The capacitive energy peaks atN52, 6, and 12 found
for the symmetric confinement potential are not found for
anisotropic confinement potentials. Especially the peak in
pacitive energy atN56 is well suppressed. The polarizatio
is zero for even numbers of electrons for both anisotro
cases of confinement potentials considered here. The se
shell in anisotropic confinement potentials is formed atN
54 due to the symmetry breaking inx-y coordinate ex-
change. In these cases the spin-polarization effects
weaker than for the case of cylindrical symmetric confin
ment potentials. We can assign electronic states to the
dimensional shell without considering interactions betwe
electrons only for a small number of electrons in quant
dot $(0,0)%,$(1,0)%,$(0,1),(2,0)%,$(1,1),(3,0)%, . . . and so
on, for the anisotropicx-y confinement of potential by
(vx ,vy)5(10,20) meV. We can easily confirm the abo
shell structures of the anisotropic quantum dot from
peaks in the capacitive energy atN52, 4, 8, and 12. In the
case of anisotropic confining potential by (vx ,vy)
5(10,20) meV, we found relatively small variations of th
addition energy aroundN55, 6, and 7 as shown in Fig. 5
This is basically a result of the filling procedures of the th
shell characterized by nodes in wave functions$(0,1),(2,0)%
for each spin. To maximize the exchange interaction sp
parallel configuration is preferred during the filling of th
shell. Nagarajaet al.14 pointed out the existence of th
‘‘Coulomb degeneracy,’’ which is related to the lower add
tion energies in quad-gate dot for the charging ofN55, 6,
and 7. This is consistent with our results even their calcu
tions are based on the spin-unpolarized local-density
proximation. Similar situation is also found in case of cyli

FIG. 5. The capacitive energies are calculated for the two
isotropic cases of confinements in meV units of (vx ,vy)5~10,20!
and (vx ,vy)5~7,10!. The circles and boxes represent the~10,20!
and ~7,10! confinement potentials.
e
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drical symmetric potentials (vx5vy) as shown in Fig. 1. For
that case relatively small variations of the addition ene
are found atN57, 8, 9, 10, and 11 that correspond to t
filling of the third shell.

C. Nonparabolic confinement potentials

We include the nonparabolic confinement potentials
shown in Eq.~8! to see the effects of the nonparabolicity
confinement,

V~rW !5a4~x21y2!21a6~x21y2!31a8~x21y2!4. ~8!

The coefficients are set to the valuesa455310210 meV
Å 24, a655310216 meV Å26, and a855310222 meV Å
28. This potential does not change the basic cylindrical sy
metry of the two-dimensional parabolic potentials in Eq.~1!.
For the case of a small number of electrons and relativ
strong lateral confinement potentials, the potential is s
close to parabolic. The electronic structure of the large pa
bolic potentials ofvx5vy520 andvx5vy510 meV with
fixed vz545 meV is almost unchanged by the inclusion
the higher-order terms in the potential. However, for
weaker parabolic potential,vx5vy54 meV, the nonpara-
bolic terms in the potential change spin configurations aN
59 and 10. The total-energy differences between two s
configurations $(N↑,N↓)5(6,3)→(5,4)% and $(6,4)
→(5,5)% are 0.39 and 0.55 meV forN59 and 10, respec-
tively. The node numbers (nx ,ny) in wave function forx-y
directions form a shell structure per spin such as$(0,0)%,

FIG. 6. The capacitive energiesm(N11)2m(N), and polariza-
tions for the two quantum dots are compared. The solid line rep
sents the nonparabolic confinement potentials, while the dotted
represents the confinement of potential byvx5vy54 meV.
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$(1,0),(0,1)%, $(2,0),(0,2)%, and$(1,1)%, . . . , and so on. We
note that$(2,0),(0,2)% and $(1,1)% have the same energy i
the pure harmonic confinement potential, while sh
$(2,0),(0,2)% has lower energy than that of the shell$(1,1)%
after inclusion of the nonparabolic potential. Consequen
the filled shell structures are found atN52, 6, 10, and 12. A
similar energy splitting is found in more realistic square-g
dot electronic structure calculations by Nagarajaet al.14 us-
ing the local-density approximation. In Fig. 6, we plot th
capacitive energy, polarization, and the external potent
versus the distance from the center of dots. The solid
represents the external potential after inclusion of the non
rabolic part of the potential, while the dotted line represe
the parabolic confinement of potential byvx5vy54 meV.
The nonparabolic terms in the confinement potential incre
the capacitive energy relative to the case of the pure p
bolic potential since the nonparabolic terms cause gre
confinement. In the weak parabolic confinement case h
vx5vy54 meV, the capacitive energy atN52 does not
form a peak as shown in Fig. 6. However, the capacit
energy peak atN52 for the nonparabolic confinement
well established after inclusion of the nonparabolic confi
ment potentials. The calculated gaps for the first three sh
are increased in meV units from~2.6, 2.1, 1.8! to ~3.7, 3.6,
2.2! after inclusion of the nonparabolic potentials. This
also consistent with the overall increment in the capacit
energy.

IV. CONCLUSIONS

The electronic structure of the anisotropic parabolic a
nonparabolic quantum dots have been investigated w
.
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three-dimensional confinement potentials using density fu
tional theory within the framework of the generalize
gradient approximation. By performing three-dimension
electronic structure calculations, we confirmed that the s
structures of quantum dots very strongly confined in thez
direction have two-dimensional character. Using a Laplac
operator discretized on uniform grids with a high-order fin
difference method, the Poisson equation and spin-polar
Kohn-Sham equations were solved iteratively with the e
cient preconditioned conjugate gradient relaxation te
niques. The quantization effects due to the confinement,
polarization, and exchange-correlation were compared.
found that in the larger quantum dot the electron-elect
interaction is more important than the effect due to quant
confinement. The capacitive energy for fillings of up to th
teen electrons was obtained by self-consistent total-ene
calculations. The calculated energy gap in the eigenva
spectrum and the capacitive energy are a decreasing fun
of the shell index, and the peak positions of the capacit
energy at the number of electronsN52, 6, and 12 for the
cylindrical symmetric quantum dot are in good agreem
with experimental data.
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