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Shell filling of artificial atoms within density-functional theory
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The electronic structures of three-dimensional quantum dots described by parabolic and nonparabolic con-
finements are calculated using spin-density-functional theory. For representative cases we determined the
electron-number-dependent capacitive energy, the energy required to add an additional electron to a quantum
dot, by self-consistent solution of the equations using a finite difference method with preconditioned conjugate
gradient minimization. Shell-filling and spin configuration effects are identified, as found in electronic structure
of the atoms. The peak positions of the capacitive energy at the number of elddtrdhs6, and 12 for the
cylindrical symmetric quantum dot are in good agreement with experimental[&&th63-182@08)04811-5

. INTRODUCTION of density-functional theor§??! Fuijito, Natori, and Yasu-
naga studied the many-electron ground state in parabolic
With the development of the x-ray lithography, etching, quantum dots using the unrestricted Hartree-Fock method
and deposition techniques in semiconductor technology, it i&nd found capacitance oscillations as a function of the elec-
possible to confine electrons in a small region known as &0n number caused by the shell structtite.
quantum dot The electronic structure of these confined We have calculated the electronic structure of three-
electrons is very important and interesting in the area of badimensional anisotropic quantum dots through the finite dif-
sic and applied physics. The confining potential of the ordeférence method with preconditioned conjugate gradient re-
of a few meV can be chosen experimentally. Many-bodyl@xation based on the density-functional theory. The
effects due to the electron-electron interactions show a broagfPacitive energy of up to thirteen electrons is obtained
range of electronic structures similar to those of the real atthrough a self-consistent total-energy calculation for model
oms. The number of electrons in a quantum dot, denbdied three-dlmensmnal quantum dots. Since the eX(_:Iu5|on prin-
which can also be controlled experimentally, affects manyciP!€ Prevents two same-spin electrons from having the same
physical properties of the quantum dot. The dependence ciPatial wave function, the spin configuration in the quantum
the chemical potential oN was directly measured through 90tS plays an important role, as it does in atomic physics.

single-electron spectroscopy® By changing the quantum The explicit electron-spin interactions are taken into account
dot size and the number of electrons, far-infraredVi@ sp|_n-den5|ty-funct|or_1al theory, which pro_perly describes

absorptior?~’ capacitance spectroscopyand conductance the spin effects of atomic systems. We studied the effects of
measuremert$ determine the tunneling conductance angSymmetry and .nonparabollcny in the confinement potentials
capacitance resulting from the competition of quantum con©" the electronic structure of the quantum dot. We also com-
finements and Coulomb interactions. pared the calculated results of the spin-polarized calculations

Electron-electron interactions in low-dimensional systemdVith unpolarized  total energy calculation, — different
are calculated through various theoretical approaifes. €xchange-correlation energy per particle, and the Hartree ap-
The capacitance of the quantum dot is an interesting concepfeXimations. , ,
related to the single-electron tunneling and the Coulomb 1he outline of this paper is as follows. In Sec. II, we
blockade phenomenon. Recently, Tarughal. probed the present our theoretical method. The calculational results and
electronic states of a few-electron quantum dot througﬁj'scuss'on are shown in Sec. lll. A brief summary is given in

single-electron tunneling spectroscdbyhey also measured Sec. IV.
the effects of spin configuration and confirmed Hund'’s rule
favoring the filling of parallel spins by applying tunable
magnetic fields to the quantum dots. Furthermore, Macucci

et al. have calculated the shell-filling behavior of two- In the present calculations we assumed the quantum dot is
dimensional cylindrical quantum dots within the framework well isolated so that the interaction between the dot and leads

Il. THEORETICAL METHODS

0163-1829/98/5(1.5)/90358)/$15.00 57 9035 © 1998 The American Physical Society



9036 LEE, RAO, MARTIN, AND LEBURTON 57

or other conductors in real quantum dots is negligible; inof the Hamiltonian matrix® We also included the subspace
doing so we have not included the effects of gates and adjaliagonalization after band by band minimization of the
cent conducting materials. Within the effective mass apKohn-Sham orbitalé®
proximation and density-functional theory, one can write the In the conjugate gradient algorithm the residuals and the
simple effective quantum dot Hamiltonian, searching directions are orthogonal for each different relax-
ation step and the relaxations guarantee convergence if the
Ty . R matrix is symmetric positive-definite. The uniform grids give
H=—3V 430X+ 300y + 30,27+ V() + Vi (1), a symmetric matrix representation of the nonlocal Laplacian
() operator in Kohn-Sham and Poisson equations. Roughly
speaking, the preconditioning of the relaxation vector can be
including the external potentials described by, ,, and considered as a procedure of smoothing of the relaxation
, of the anisotropic parabolic three-dimensional potentialvectors in real space. To reduce the number of conjugate
HartreeV,(r), and exchange correlatiofh,(r) as shown in g_rgdignt relaxation steps, we useq the two different.precon-
Eq. (1). Rescaled atomic units are used throughout, with endmpnmg opera}tors found in the literature. I_:or solving the
ergy in units of 2 Ry =m* e*/#2¢2 and lengths in units of Poisson equation, we have used the following form of pre-
the effective Bohr radiua} =#2e/m* e2. The effective mass ~conditioning operatoiP of fifth order proposed by Hoshi,
and the dielectric constant are denotedniily ande, respec- Arai, and Fujiwara’ which filters out the high-frequency
tively. We used the finite difference formula for the Laplac- components of the relaxation vectofr),
ian operator in the Hamiltoniaft;*>with a seven-point sten-
cil in each direction, and iteratively diagonalized the . -1 -
Hamiltonian in three-dimensional Cartesian coordinates with (Pu)(r)= 2 u(m+ >
uniform grids. Ar=h(=ieslsd)
Spin-polarized Kohn-Sham equatiéfi§> were solved We also used the preconditioning operator proposed by Seit-
self-consistently to calculate the total energy of the quantungonen, Puska, and Niemingrfor the iterative diagonaliza-
dots. The Hartree potential and energy due to the electrons itions. We have found that the preconditioning of Hoshi,
the quantum dot were obtained by solving the Poisson equarai, and Fujiwara does not work properly for the relaxation
tion using the preconditioned conjugate gradient methodof especially slow-varyingor low kinetic energy states, be-
The boundary values of Hartree potential were evaluated ugause the preconditioning of Hoshi, Arai, and Fujiwara is
ing a multipole expansion of the potential of the charge-short ranged and has no dependence on the kinetic energy of
density distribution. This method is very efficient comparedthe current trial wave function.
to the direct integration of the potential at the surfaces. The To accelerate the self-consistency calculations we used
multipole expansion is accurate if the charge distribution ishe Pulay-type chardédensity-mixing scheme for each up-
well localized within the computational box. The relaxation and down-spin density during the iterations. This relaxation
vectors at the boundary are set to zero for the Dirichleiminimizes the difference between input and output charge
boundary conditions. We have used the generalized-gradiediensities in the self-consistent loop with the constraint of
approximation(GGA) for the exchange-correlation energy charge conservation. The optimal input charge density is ex-
and potential to incorporate the effects of the gradient corpressed as a linear combination of a few previous input den-
rection of the local-density approximati¢hDA). We used sities. In our calculations we have taken the effective kinetic
the simplified version of the recent GGA functional by Per-energy cutoff ¢r/h)? Ry* ~110 Ry* related to the uniform
dew, Burke, and Ernzerhdf, which satisfies many exact grid spacingh in a% as found in usual plane-wave basis set
properties of density-functional theory such as the accuratgyrmulation. We also made convergence tests on physical
description of the linear response of the uniform electron gagpservables with respect to the grid spacingThe typical
and proper uniform scaling. The GGA expression for thenumber of grid points used for the single-particle wave func-

exchange-correlation energy per particle gives better descrigion for the large quantum dot in the present calculation is
tions of the total energy and the ionization energy for thegpout 138 000.

atoms compared to the LDZ.For the LDA calculations, we The total energy of the model quantum dot in density-
used the exchange-correlation energy and potential based @fhctional theory can be expressed as follows:
the quantum Monte Carlo simulation data of the uniform
electron gag’ ' R
In the present iterative relaxation procedures for solving E= > €l- f {Vu()+V 5 (n}p'(r)dr

u(r+Ar)
—6 | @

the Poisson and Kohn-Sham equations the explicit evaluation €S eF

and the storage of the Hamiltonian matrix can be avoided.

The matrix-vector multiplication is replaced by the finite dif- + > e f Va(n)+ VLM p (N d3r
ference operation on the vector represented in three- el<er

dimensional space, resulting in a simple linear combination 1

of the adjacent components of the_ vector. This procedure + _f Vu(N[p! (N +p (NI +EJp' (), p' (D],
leads to a great saving of computational resources. We used 2

the preconditioned conjugate gradient type relaxations with &)
the constraint of orthonormalization conditions between the

states to obtain the occupied states and a few lowest unoghere the summations over the single spin eigenenetfyy (
cupied stategeigenvalues and eigenvectpos the large size and eil) are carried on for all states below the Fermi level
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€r . The electron densitigs! (r) andp!(r) are defined as the S VT T T T

squared summation of the occupied Kohn-Sham orbitals, and £ A a |

E.dp'(r).p'(r)] is the total exchange-correlation energy. 2 ol A A

Vu(r), V J(r), andV.(r) represent thénput electronic po- ook

tentials for the Hartree and exchange-correlatiop and F -

down spin contributions at each iteration within the self- = 0

consistent calculations. All other quantities, i.e[H(F), ~ 2001

pl(r), pH(r), andE,Jp'(r),p!(r)] are evaluated using the g 1501

output charge densities of the self-consistent iterations. 2 100 -

Hence the two quantitiesV(r)+V [(r) and V(r) 50

+'\7iC(F) are very close to the corresponding Hartree- 1608 B

exchange-correlation potentials given by output charge den- = B o 1

sities when self-consistency is established. Thus, the first g 1200 - o 0

four terms in Eq.(3) decomposed into up- and down-spin = 800 |- o ° 4 7 4

state contributions, represent the sum of the total kinetic and % 400 - o °© . e PP

external potential energy. - . g 8 2
To calculate the capacitive energy of a quantum dot, g og - e

which indicates the variation of the dot total energy as a 5§ | |

function of the number of electrons, we followed the formu- g 0.4 a a a -

lation of lafrateet al® for the specific dielectric constant £ - -1 a B o 1

and electron effective mass of the semiconductor material (Y1 S T

system. The chemical potentia N) for N electrons can be 0 2 4 6 8 10 12

defined by the total energy difference between the number of number of electrons

N and the number o —1 electrons as follows: FIG. 1. Calculated properties of parabolic quantum dots as a

_ _ _ function of the number of electromé in the dot. The three confine-
#(N)=E(N)=E(N—1). ) ment potentials are characterized by the harmonic confinements in
The chemical potential is the energy required to add oneneV units of (,=w,,w,)=(20,49, (10,49, and (4,49, respec-
electron to the system with— 1 electrons. From the chemi- tively. The symbols circles, boxes, and triangles represent the above
cal potential, one can derive the capacita@@) of the  quantum dots in descending orderofy confinement strength of

quantum dots, the energy required to add char,@*é8 pote_ntials. The capacitive energy(N+l)—M(N)_, chemical po-
tential x(N), and total energye(N) are shown in the top three
e? panels. In the bottom panel is shown the spin polarization of the
C(N) (5 lowest-energy state defined as a rath' £ N'/NT+N') of elec-

T a(NTD)—u(N)

The capacitive energpe?/ C(N) is easily reduced to the
simple relation betweért® the ionization potential(N) and
the electron affinityA(N) of an N particle system as shown

trons with spins upN') and down N').

mass of m*=0.067",. The corresponding energy and
length scales are 2 Ry=10.96 meV anda}=101.88 A,

in Eq. (6): respectively. We first considered a system with isotropic
e? confinement in the-y plane to investigate the effects of the
CiN) =u(N+1)—u(N) cylindrical symmetry. Electrons are confined in thelirec-
tion by the relatively strong harmonic potential. We choose
={E(N+1)—E(N)}—{E(N)—E(N-1)} the w,=45 meV to approximate the thickness of the quasi-
two-dimensional electron gas in experiments. From the
={E(N-1)—E(N)}—{E(N)-E(N+1)} choice of w,=45 meV, we can calculate the characteristic
_1(N)—A(N). (6 length of harmonic oscillatdr, = w, Y2 and assign the thick-

ness of two-dimensional model electron gas byl2~10.1
Furthermore, in the density-functional theory the capacitivenm. We also treat the cases of+ w, and nonparabolic
energy is also approximated by the gap defined by the eigerconfinement in the next subsections. In Fig. 1 we plot the
value difference between the lowest unoccupi€dN) and  total energyE(N), chemical potentiak(N), and the capaci-
the highest occupieel'®(N) states for aiN electron system. tive energyu(N+1)— «(N) as a function of the number of

The capacitive energy satisfies the relation of electrons in the quantum dot. The circles, boxes, and tri-
U Ho angles represent the confinement potential paramedgrs
I(N)=A(N)~€e~(N)—€™(N). () = wy (in units of meVj 20, 10, and 4, respectively. Here, we
also show the spin polarizatioh’ —N!/N'+ N, whereN'
Ill. RESULTS AND DISCUSSION andN! are integers that denote the number of electrons with

spin up and spin down. The ground states are determined by

self-consistent total energy calculations incorporating spin-
We calculated the electronic structure of GaAs quantunpolarization effects. The capacitive energy(N+1)

dots by using the dielectric constantsof 12.9 and effective  — w(N) of up to thirteen electrons is obtained through

A. Cylindrically symmetric confinement (w,= wy)
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chemical potential calculations as shown in Ed$.and(5). 30 —T— T T —T—
For the three values ab,(=w,), the total energies increase
monotonically with N. The chemical potential abruptly

changes aN=3, N=7, andN=13 for the case of strong 20 -
confinement of external potentials. The electron spins are
fully unpolarized forN=2, 6, and 12, coinciding with the 10 L

W(N+1)-i(N) (meV)

peaks of the capacitive energy of the quantum dot and a
completely filled shell.

Our three-dimensional model quantum dot with strong o J P S S S T T TS N —
confinement in the direction has two-dimensional charac-

teristics. This can be easily shown by the fact that the first g 08 17 |
excited state in the direction is found atN=13 for the § - T
relative strong confinement @,=45 meV in the noninter- g o4l ]
acting electron picturgHowever, we note that for the larg- 2

est strength of the lateral confinemeaf,= w,=20 meV, the i o = z
energy of the third shell is near the lowest excitation energy oolb——=_s 1 & 1 L&
for a state with a node in theedirection) For the cylindrical 0 2 4 6 8 10 12
symmetric two-dimensional quantum dot, the simple har- number of electrons

monic potential givgs wo _nonn_egative integer quantum £, 5 The calculated capacitive energyN+1)— n(N) and
numbers for the noninteracting single-particle energy SPeGsplarizations of the model quantum dot by GGA and LDA are
trum, say, (,ny), and form a distinct energy group for each compared. The circles represent the results of LDA, and the boxes
spin, {(0,0)},{(1,0),(0,1},{(1,1),(2,0),(0,2), ..., and SO represent the results of GGA. The crosses in capacitive energy plot
on. These energy groups form a complete shell structure aepresent the results from the spin-unpolarized version of the GGA
N=2, 6, and 12 for the cylindrical two-dimensional quantum calculations.

dot.

The chemical potential plotted W is approximately lin- We compare the capacitive energies by LDA and GGA
ear, the slope increasing when a new shell is occupied. Wealculations in Fig. 2 and find no significant difference be-
have found that the capacitive energies are peaked at theveen two calculations with the different exchange-
electron numberN=2, 6, and 12 for each case @,  correlation energy per particle. In the LDA calculations, we
(=wy)=20, 10, and 4 meV. These peak positions are irfind that the total energy of the spin configuratidd! (N})
qualitative agreement with the experimental measurements (5,5) is slightly lower(0.08 meV} than that of the spin
addition energies of cylindrical quantum dét3he calcu-  configuration(6,4) at the electron numbeX=10; however,
lated peak positions of the capacitive energy are consistetthe energy difference is small compared to the numerical
with results of the recent calculatidiswvhich used a two- accuracy of our calculations. The spin-unpolarized calcula-
dimensional exchange-correlation energy functional withintion is generally acceptable for the capacitive energy calcu-
the local-density approximation. The capacitive energies atations except atN=4, where the polarization has local
N=2 and 6 are large compared to the noninteracting singlemaximum with respect tdN in spin-polarized total-energy
particle energy spacin@, of the qguantum dot. The polariza- calculations, in contrast to the unpolarized calculation, which
tions as a function of the number of electrons satisfy Hund’shas a local minimum. The local maximum featuréNat 4 is
rule, i.e., there is maximum spin polarization for partially consistent with the experimental findifigVe also tested the
filled shells. In case of the relatively weak confinement ofHartree approximation, completely neglecting the exchange-
external potentiabv,=w,=4 meV, the capacitive energies correlation effects, and found that it is not appropriate for the
atN=2, 6, and 12 are substantially suppressed, but still exeapacitive energy calculations. In the Hartree approximation,
hibit complete unpolarization due to shell filling. The effect at the nhumber of electrofd=7 and 10, we found negative
is especially evident in the absence of a peak&t2 when  capacitive energies; these unphysical results demonstrate the
the confining potential is soft. The capacitive energies deimportance of the exchange-correlation effects. In the Har-
crease as the shell index increases, which is consistent withee approximation the two-dimensional shell structure is not
experimental finding$.The capacitive energy is another ver- effectively stabilized, since there are only repulsive interac-
sion of the ionization energy minus electron affinity in tions between electrons, whereas the attractive exchange-
density-functional theory as shown in E). The calculated correlation potential interaction for parallel spin stabilizes
energy gaps of the three filled sheld£2, 6, and 12are in  the completely filled shell electronic structures of quantum
meV units(17.1, 15.0, 11.5 (7.8, 6.6, 5.3 and (2.6, 2.1, dot.

1.8) for the three confinements of model quantum dots in  Within the density-functional theory the total energy can
descending order af-y confinement strengths. The calcu- be decomposed into kinetic, external, Hartree, and exchange-
lated energy gap is decreasing as the shell index increasesrrelation energies as shown in E8). In Fig. 3, we plot
from one to three for the three quantum dots considered herthe kinetic and Hartree-exchange-correlation energies in
This is mainly due to the electron-electron interactions inunits of the external potential energy to show the relative
guantum dots. Thus, we confirmed that both the energy gajmmportance of their contributions to the total energy. We
and capacitive energy decrease as a function of the sheibund that neither kinetic nor Hartree exchange correlation is
index. greater than external potential energy for the three shells. As
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FIG. 3. The total-energy decomposition of the three- 02
dimensional model quantum dots into the kinetic, external, and ol
Hartree-exchange-correlation energies within the density-functiona
theory are shown. Due to the cylindrical symmetry of the confine-
ment potentials, the first three shells are formeNat2, 6, and 12.

The external potential energies are shown in the lower panel and th
relative magnitudes of the kinetick) and Hartree-exchange- (b) 6 electrons
correlation(Hxc) energy with respect to external potential energy
are shown in the upper panel. The Hartree-exchange-correlatiol
contribution is larger in the case &f=12 than the case dfi=2.

For the three cases of confinement potentials the same symbol nc"
tations are used as in Fig. 1.

0.6

[S8)

2+

5

1

shell index increases, the kinetic energy contribution de-05
creases, while the Hartree exchange correlation increase
This shows that in the larger dot the electron-electron inter-
action is more important. As far as density-functional theory
is concerned, the electronic structure is determined by the
effective potential, which includes the external, Hartree, and
exchange-correlation potentials. Therefore the shell-filling
effects can be identified in the effective potentials. Nagaraja(c) 12 electrons

?t a|'14_ h"?we found thaj[ the effective _pOtential changes very FIG. 4. The electron densiti¢m units of 1/@}%)°] are shown in
little within a shell, but increases relatively more when a neWye x_y plane through the center the confinement potentials de-

02l

il
it
i

/"‘\ ]
i
I

Nl 1\

shell is occupied. scribed by (y=w,,»,)=(20,45 in units of meV.
The electron densities of the three filled shells for the
confinement ofw,=w,=20 andw,=45 meV is shown in B. Anisotropic confinement (w,# w,)

Fig. .4' we selected_ the-y plane through the_ center of the In order to see the effects of asymmetry of confinement
conf!nement poten_t|als._ The electron dens_lty h_as a SlnglBotentials on the electronic structure we considered two dif-
maximum at the first filled shell. For the first filled shell ferent anisotropic confinement potentials in they plane
(N=2), the electron-electron interaction is small compared.,aracterized by &,,w,)=(10,20) meV and &, ,w,)

to the kinetic and external potential energies, and the wave (7 10) meV for the fiyxed confinement ab,= 45 mélv
functions have no node so the density has a maximum at thgong thez direction. The latter case of confinement is
center of dot. For the second filled sheM€6), due to the  ¢josely related to the quad-gate planar quantum dot struc-
single nodes inx and y direction the density has four tures in experiment. The results including total energy,
maxima inx-y plane as shown in Fig. 4. In case of the third chemical potential, capacitive energy, and polarization are
shell containing twelve electrons, due to the occupation ohown in Fig. 5. The relative peaks in the capacitive energy
the states having two nodes density is again maximized are not much higher than those of the cylindrical symmetric
the center. dot, partially due to the weakness of the confinement poten-
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FIG. 5. The capacitive energies are calculated for the two an- distance (a.u.")

isotropic cases of confinements in meV units ef (w,)=(10,20
and (wy,wy)=(7,10. The circles and boxes represent 116,20
and (7,10 confinement potentials.

FIG. 6. The capacitive energigg N+ 1)— «(N), and polariza-
tions for the two quantum dots are compared. The solid line repre-
sents the nonparabolic confinement potentials, while the dotted line
represents the confinement of potential dy= w,=4 meV.
tials. The capacitive energy peakshNit=2, 6, and 12 found
for the symmetric confinement potential are not found for thedrical symmetric potentialsaf, = wy) as shown in Fig. 1. For
anisotropic confinement potentials. Especially the peak in cathat case relatively small variations of the addition energy

pacitive energy aN=6 is well suppressed. The polarization are found atN=7, 8, 9, 10, and 11 that correspond to the
is zero for even numbers of electrons for both anisotropidilling of the third shell.

cases of confinement potentials considered here. The second
shell in anisotropic confinement potentials is formed\at

=4 due to the symmetry breaking i+y coordinate ex-
change. In these cases the spin-polarization effects are We include the nonparabolic confinement potentials as
weaker than for the case of cylindrical symmetric confine-shown in Eq.(8) to see the effects of the nonparabolicity in
ment potentials. We can assign electronic states to the twgonfinement,

dimensional shell without considering interactions between

electrons only for a small number of electrons in quantum V(F)=a4(x2+y2)2+ ag(xX?+y?)3+ag(x®>+y?* (8

dot {(0,0)},{(1,0)},{(0,1),(2,0},{(1,1),(3,0}, ... and so

on, for the anisotropicx-y confinement of potential by The coefficients are set to the valuag=5x10 % meV
(wy,wy)=(10,20) meV. We can easily confirm the above A %, as=5x10""* meV A~°, andag=5x10"?* meV A
shell structures of the anisotropic quantum dot from the 8. This potential does not change the basic cylindrical sym-
peaks in the capacitive energyNdt=2, 4, 8, and 12. In the metry of the two-dimensional parabolic potentials in EQ.
case of anisotropic confining potential bywy,w,)  For the case of a small number of electrons and relatively
=(10,20) meV, we found relatively small variations of the strong lateral confinement potentials, the potential is still
addition energy aroundl=5, 6, and 7 as shown in Fig. 5. close to parabolic. The electronic structure of the large para-
This is basically a result of the filling procedures of the third bolic potentials ofw,= w,=20 andw,=w,=10 meV with
shell characterized by nodes in wave functi¢(®,1),(2,0}y  fixed w,=45 meV is almost unchanged by the inclusion of
for each spin. To maximize the exchange interaction spinthe higher-order terms in the potential. However, for a
parallel configuration is preferred during the filling of this weaker parabolic potentiaty,= wy,=4 meV, the nonpara-
shell. Nagarajaet all* pointed out the existence of the bolic terms in the potential change spin configurationslat
“Coulomb degeneracy,” which is related to the lower addi- =9 and 10. The total-energy differences between two spin
tion energies in quad-gate dot for the charging\o£5, 6,  configurations {(N'",N')=(6,3)—(5,4)} and {(6,4)

and 7. This is consistent with our results even their calcula— (5,5)} are 0.39 and 0.55 meV fad=9 and 10, respec-
tions are based on the spin-unpolarized local-density agively. The node numbersn(,n,) in wave function forx-y
proximation. Similar situation is also found in case of cylin- directions form a shell structure per spin such{&8,0)},

C. Nonparabolic confinement potentials
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{(1,0),(0,1}, {(2,0),(0,2}, and{(1,1)}, . .., and so on. We three-dimensional confinement potentials using density func-
note that{(2,0),(0,2} and{(1,1)} have the same energy in tional theory within the framework of the generalized-
the pure harmonic confinement potential, while shellgradient approximation. By performing three-dimensional
{(2,0),(0,2} has lower energy than that of the shill,1)}  electronic structure calculations, we confirmed that the shell
after inclusion of the nonparabolic potential. Consequentlystructures of quantum dots very strongly confined in zhe
the filled shell structures are foundMt=2, 6, 10, and 12. A dijrection have two-dimensional character. Using a Laplacian
similar energy splitting is found in more realistic square-gatepperator discretized on uniform grids with a high-order finite
dot electronic structure calculations by Nagareja@l* us- gifference method, the Poisson equation and spin-polarized
ing the local-density approximation. In Fig. 6, we plot the kohn-Sham equations were solved iteratively with the effi-
capacitive energy, polarization, and the external potentialgjent preconditioned conjugate gradient relaxation tech-
versus the distance from the.center (.)f dOt.S' The solid I'm?ﬂques. The quantization effects due to the confinement, spin
;Zggﬁiien;?ttgf tﬁztergtaelnggec\tﬁ:eaifé :Iqutl'?esdlolinngfrteherg:grﬁ yolarization, and exchange-correlation were compared. We
P P ' P ound that in the larger quantum dot the electron-electron

the parabolic confinement of potential by =w,=4 meV. . o :
The nonparabolic terms in the confinement potential increa:s'é1teraCt|0n is more important than the effect due to quantum

the capacitive energy relative to the case of the pure paré:_onfinement. The capacitive energy for fillings of up to thir-

bolic potential since the nonparabolic terms cause greaté?en elgctrons was obtained by self-cons!stent to'_cal-energy
confinement. In the weak parabolic confinement case hergiculations. The calculated energy gap in the eigenvalue
wy=w,=4 meV, the capacitive energy &=2 does not spectrum an_d the capacitive energy are a decreasing funqtlon
form a peak as shown in Fig. 6. However, the capacitiveOf the shell index, and the peak positions of the capacitive
energy peak aN=2 for the nonparabolic confinement is €nergy at the number of electrohs=2, 6, and 12 for the
well established after inclusion of the nonparabolic confine€ylindrical symmetric quantum dot are in good agreement
ment potentials. The calculated gaps for the first three shellith experimental data.

are increased in meV units frof2.6, 2.1, 1.8 to (3.7, 3.6,

2.2) after inclusion of the nonparabolic potentials. This is

also consistent with the overall increment in the capacitive
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