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Exchange and correlation in silicon
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A combination of the coupling constant integration technique and the quantum Monte Carlo method is used
to investigate the most relevant quantities in Kohn-Sham density-functional theory. Variational quantum
Monte Carlo is used to construct realistic many-body wave functions for diamond-structure silicon at different
values of the Coulomb coupling constant. The exchange-correlation energy density along with the coupling
constant dependence and the coupling-constant-integrated form of the pair-correlation function, the exchange-
correlation hole, and the exchange-correlation energy are presented. Comparisons of these functions are made
with results obtained from the local-density approximation, the average density approximation, the weighted
density approximation, and the generalized gradient approximation. We discuss reasons for the success of the
local-density approximation. The insights provided by this approach will make it possible to carry out stringent
tests of the effectiveness of exchange-correlation functionals and in the long term aid in the search for better
functionals.[S0163-182608)02115-9

[. INTRODUCTION systematically, although several schemes have been
devised'?

Within the past decade, great strides have been made in Rather than attempting to model the functional form of
predicting theoretically the detailed behavior of electrons inExd n] directly, many schemes for going beyond the LDA
matter, which has brought about a deeper understanding éfart by breakingE,. into constituent contributions using
the nature and properties of real materials. A fundamentdfnown relations. Physical intuition and experience is then
obstacle to further advances is the difficulty of treating electiSed to model the different terms. For instance, in the aver-
tron correlation effects in a fully adequate fashion. This is arfig€ density approximatioADA) a model is proposed for
old problem, having plagued us since the dawn of quantun%he exc_:han.ge—correlatmn hole, wh|_Ie the wglghted Qensny
mechanics, and in the process of addressing this issue vaf@PProximationWDA) models the pair-correlation function.
ous methods have been put forward, among which are man Jther prpceéjlires.bredkxc. into excggpge and correlation
body perturbation theory, the Hartree-Fock approximationéontrIbUtlon g \_/vh|Ie hybrid schem describe how the
and density-functional theory. Density-functional theory has oqum_b coupling constant dependence of the exchange-
proved the most popular of these techniques, both because %(?rrelanon energy influences,c. Unfortunately there are

its relatively low comoutational t for th ; f th very few calculations of the form of these functions in real
s relatively low computational cost for the accuracy of €458 A careful numerical study of these functions can re-
results obtained, and its wide range of applicability in area

X i X X Yeal individual trends and behaviors that may suggest a prac-
spanning from materials science to biology. tical approach for going beyond the LDA and provide a test-
~ The Kohn-Sham formulation of density-functional theory jng ground for the intricacies of existing and future models.
is the primary method used in electronic structure calcula- “\we nave used coupling constant integration and varia-
tions for treating the many-body effects in solids. In thisjonal quantum Monte Carl¢VMC) techniques to calculate
approach the true many-body system is mapped into a fictithe quantities of central importance in density-functional
tious noninteracting system, whose solution yields the exagheory that contribute to the exchange-correlation energy for
ground-state density and energy of the many-body systena realistic inhomogeneous solid, namely, diamond structure
provided one knows the functional form of the exchange-silicon. This procedure utilizes the exact relationShiye-
correlation energy, n]. Since the form of this functional tween the exchange-correlation energy,, and the ground-
is currently unknown, approximations have been devised, thetate many-electron wave functiods, associated with dif-
most ubiquitous being the local-density approximationferent values of the Coulomb-coupling constant, This
(LDA), whereE,, is written as an integral of a local function relationship is here written in terms of four equations. The
of the density with a value at each point in space given byeoupling-constant-integrated  pair-correlation  function
that of a homogeneous electron gas. Despite the seemingtyr,r’), the exchange-correlation hole(r,r'), and the
crude nature of this approximation, this approach has beegxchange-correlation energy density(r) are related b}
successful in many systems, including those that have rap-
idly varying densities. However, when qualitative and quan- n(r)
titative discrepancies between experiment and theory in sol- e (r)= f dr’
ids arise it is difficult to improve upon the LDA 2

Px(r.r")
e
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The total exchange-correlation ener§y,. is obtained by =]

integratinge,(r) over all space. Writingg in terms of its
constituent spin components

wheref(r)=1/r if r is inside the Wigner-Seitz cell of the
simulation cell, and is zero otherwise. The condition that
3) vanishes outside that Wigner-Seitz cell of the simulation cell
centered on the particle in question is equivalent to the
“nearest image” convention which is widely used in com-
yields an equation involving the many-electron wave func-puter simulations. This interaction gives smaller Coulomb
tions: finite-size effects than the standard Ewald interaction when
finite simulation cells and periodic boundary conditions are

&r,r,)zz na(r)nﬁ(r )—

@B n(ryn(r’) as(rr)

_ , N(N—-1) (1 used to simulate effectively infinite systertsThe total
Jap(rir')= o (nn (r’)fo dAJ dxg x| ¥ electron-electron energy is the expectation valuél gf, mi-
R nus a double counting term for the electrostatic interactions.
X(ra,r' B, Xz, ... Xn)|%, (40  The exchange-correlation energy dengify(r) has smaller

_ _ . finite-size effects whei(r—r’) is used for 4t —r’| in Eq.
whereN is the number of electronsi,(r) is the electronic (1) ihgteaqd of the periodic Ewald interactidh Finite-size

density for spina, andx; denotes theth electron’s spatial effects can alter th-dependence of quantities suchla,

and spin components. In an unpolarized system such as S'I\'A'/hereExczféU)’:Cd)\. When we performed calculations with

= 1 ~ H H . .
con Eq.(3) reduces t@=32,,50as- The electronic density the Ewald form of the electron-electron interaction, we found
of eachW must equal the density at full coupling €1).  with increasing system size a change in the shape of the
This condition can be ensured by adding an additional exters e U?«: versus\ in addition to a constant-independent
nal potentialv,(r) to the many-body Hamiltonian in which gt Using the electron-electron interaction of E6) re-
the electron-electron interaction is multiplied hy duced the magnitude of these finite-size effects.

In a recent pap&me briefly described our method. Here i . o
we present new results along with a more complete descrip- The ground-state charge densiffr) that appears ilie..

tion of our procedure. In Sec. Il we provide the details of ourcan be obtained self-consistently by repeating the calcula-

: . o . tion. However, we found that the solution was insensitive to
approach for calculating the different quantities. We descrlb(?he precise form of the density. In the case of silicon the
our A-dependent Hamiltonian and wave functions, and al ; il ; e
efficient method for Monte Carlo sampling of the DA density agrees closely with experim&hand is indis

X -dependent pair-correlation function. from which all thetinguishable(within statistical noisg from the density we
P ntp ' . obtained al =1 in VMC using either the Ewald interaction
other functions can be calculated. In Sec. Il we discuss the

form of the pair-correlation function, presenting both its ex-10f He-e O the form in Eq.(6) with the LDA density. At all
change and correlation contributions. We describe the&alues of\ the latter form ofH... was used.
exchange-correlation hole and how ksdependence influ-  As an initial approximation fov, we used

ences its shape. The Monte Carlo calculatgedr) is com-

pared with the form obtained in the LDA, WDA, and ADA, n(r’)
and reasons for the success of the LDA are discussed\ The ,, (r):(l—)\)f dr’ +v;?f:l(n(r))—kaf(n(r)),
dependence of the exchange-correlation energy is presenteci [r—r’'] ' ’

in several approximations and compared with our Monte

Carlo results. Details for obtaining,(r) from the Monte  which would ensure that the density was independent iof

Carlo sampled pair-correlation function are presented in thgn LDA calculation. The value Of)LE';\(n) was obtained

. Xi
Appendix. from the exact scaling relatiod, vior(n)

=N2uon_1(n/A®). This form ofv, yielded charge densities
Il. CALCULATIONAL METHODS in close agreement with, _,(r). This approximation should
be reliable for systems where the LDA provides an accurate
prediction of the ground-state density, which is the case in
For our calculations we used a simulation cell consistingsjlicon!?2 The small residual deviations from the LDA
of 3X3X 3 primitive fcc unit cells of the diamond lattice, density* were reduced by iteratively modifying the, po-
and containing 216 valence electrons. At a value of the Coutentials and lastly by making a very small adjustment to the
lomb coupling constant the Hamiltonian used in our simu- one-body functions in the Jastrow term of the wave func-
lations has the form tions, which caused no discernible change in the total energy.
1 The root-mean-square deviation of the fing| from the
A, = _zi Evi2+2i vexti+)\ﬂe-e+zi o\(r),  (5) LDA density was less than 0.58% for all valuesxaf

A. Hamiltonian

where a horm-conserving nonlocal LDA pseudopoteﬁt’@{ B. Wave function

was used to model the core electrons. We used an electron- At each value ofA the wave function used in the VMC
electron interaction of the form calculations was of the Slater-Jastrow form:
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that an efficient way to calculate and store this information is
‘I’x:DTDleXF{_Z UA(|ri_rJ‘|)+Z X)L D 1o expandg), ; as a product of single-particle functions. The
- ' number of independent coefficients in this expansion was
whereD! andD/! are Slater determinants containing single-considerably reduced by making use of the full space group
particle orbitals obtained from an LDA calculation. The two- symmetry of the crystal.
body term in the Jastrow factor is writt€rin two parts: From Eq.(4) the symmetries satisfied fy), 5 follow from
u"(r)zué(r)+f“(r), :gﬁiasgmmﬁ]trliées ofV, . At eazch)\ the many-body Hamil—_
N g. (5) and|¥,|%, the modulus of our Slater
whereu)(r) is fixed andf*(r) contains variational param- Jastrow wave function of Eq(7), are invariant under the

eters. The fixed part af has the form following: S;, a translation of any single electron by an ar-
bitrary Bravais lattice vectoll of the simulation cell;S,,
N A r r2 simultaneous operation on all the electron coordinates by an
Up(r)=| 1—ex = ex T2 arbitrary element{R|rr+t} of the crystallographic space
0

groupoﬁ of the diamond structureS§;, an arbitrary permu-
and thex dependent cusp conditions are satisfied by settingation of electron coordinates with the same spin, aid
F*= JA/\ for antiparallel spins anB*= \J2A/\ for parallel ~ time-reversal symmetry, i.e., complex conjugation.

spins. The value of ; was set equal to 0.25,5 whereL s SymmetryS; results from the periodic boundary condi-
is the radius of the largest sphere entirely contained withiions imposed on the simulation cell consisting of 3x3
the Wigner-Seitz cell of the simulation cell. This choice of primitive fcc unit cells of the diamond lattice, from which it
L, insured thatu}(Lys) was effectively zero. A separate follows that

VMC calculation withf*(r) set to zero was used to deter-

mine the optimal value C(A) The variable part ofi* has the Iap(riT)=Qop(r+T.r" ) =gou(r.r'+T) ®)
form with

M
L — T=1,3a;+1,3a,+133az,
”“)ZBX(TWSH (Lus—1)+12(Lys=1)2Z, alTy (1), 138012324538
=0

where thea; are a set of primitive vectors for the direct fcc
lattice and 4 ,1,,l 5 are integers. Since the operator associated

O<r<Lws.  with a coordinate transformatiofR| 7z +t} acting on each
electron coordinate is unitary it follows fro, that
=0, r>st,
A " — ~N '
whereB" and thea! are variational coefficients that depend Fap(r, 1) =0op(Rr+ mztt,Rr + 72+ 1). 9

on the relative spins of the electrorig,is thelth Chebyshev

polynomial, and From Eq.(4) it follows thatgﬁw(r,r’) is real, whileS; along

with the form of the VMC wave function in Eq7) dictate
that it satisfy the symmetry relation

— 2r—Lys
r=———0rm.
Lws Fap(Far ) =Gpalr" 1)
The x* function, expanded in a Fourier series, was chosento N o . : ,
have the full symmetry of the diamond structure: Since g,,(r,r') is a continuous function of the spatial

coordinates, it can be expanded in a product of a complete
e \ .. set of single particle orthonormal functions. Equati
x'(r)= ES: Cs GEE:S Pee™" |, shows it is advantageous in this expansion to use basis func-

tions of the unitary irreducible representations of the group
wheres labels a star of reciprocal lattioB-vectors of the oﬁ, These are denoté?jqb{‘rpm(r), wherek is ak vector of
primitive cell andPg is a phase factor associated with the the fcc Brillouin zone consistent with the periodic boundary
nonsymmorphic symmetry operations. At each valua @i conditions,p is an index for the representations of the group
our VMC calculations we used a total of six nonzero coeffi—g(k) of the wave vectok, te{1,2,... M(k)} is an index
cientsc} in x* and eight parameters for both the parallel- over M (k) inequivalent vectors that lie in the “star” ok,
and antiparallel-spin® functions giving a total of 22 param- re{1,2,...dp} is the row index of thed, dimensional
eters in the wave functions, which were optimized by mini-“relevant” p representation of(k), andm is an index for
mizing the variance of the enertjyfollowing the methodol-  basis functions that transform according to the same repre-
ogy described in Ref. 17. Comparison with diffusion Monte sentation but are linearly independent. A matrix element in
Carlo results showed that our optimized wave function forthe expansion takes the form
A =1 retrieves 85% of the fixed-node correlation energy.

1 o kpx N ’ k'p’ '
C. Calculation of pair-correlation function f er A’ der (M) Qa1 1) b e (1) (10

To obtain the quantities in Eqél)—(4) requires an accu- FromS; and Bloch’s theorem, which is satisfied by the basis
rate representation of, throughoutall of the the six- functions ¢, this matrix element will be nonzero only i
dimensional spacexr’, in contrast to previous calculations andk’ are reciprocal lattice vectors of the simulation cell,
which ob'[ainect;g;l at only a few points® We have found which Eq.(8) implies they satisfy:



k=my 5 b;+my3by,+ms3bs,

whereb; are primitive vectors for the reciprocal lattice an
m;e{—1,0,1}. These 27 vectors can be grouped into four
distinct stars. By periodicity both integrals in E§0) can be
performed over a simulation cell volume. Symmeify
along with the “orthogonality theorem for matrix
representations®® imply that

| ar [ araten

_ ~Nkp
_ga[;;m,mr5k,k’5p,p’5t,t’5r,r’ .

)\ k/ !
r)gaﬁ(r!r,) t,rp,’m,(l")

The expansion therefore takes the form

M(k) dp

2 2 (ol (),
11

where the leftmost sum is over the four inequivalkntec-

gaﬁ(r r) E 2 gz’gr:nmr
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chosen such thaptPs(r)= ¢ (1), whereRk=—Ryk,

tr,m’(r,)
N, kp .
is a real function of (,r’). Thusga o 1S @ regl symmetrlc
function of m, m . Inan unpolarlzed system like silicon the
coefﬂuentsgaﬁ mm: N the expansion ogaﬂ(r r') satisfy

O i =) fom ANAGN =g

In Eq. (4) one has the freedom to choose which pair of
electron coordinates are held fixed when calculating the pair-
correlation function. By averaging over each choice the noise
in the statistical evaluation of the integral can be consider-

ably reduced. Defining the quantity

d’ﬁ?n( ri ¢11m/(ri)

hhKe (L)) = 2f dry---dry

tors, each of which has a corresponding nontrivial point

groupGo(k), and the coefficients are independent of the rowWith the choicet=1 andr=1, wherei,je1,.

tr of the representation. Fro, and the inversion symme-
try of the groupoﬁ the phase factor of the orbitals can be

n(r;) n(r;)
X[Dy(rg, .o INR)D(F(N2y 10 -+ - FN)
X‘])\(rl! EEE) !rN)l2
...N, and

using the fact thah(r)=3n(r) for all « andr in silicon,
one can derive the equation

/\k Ak
hoobi(d, ) + Z Z hoponi(i,7) if o=
t=1 j=1 N
ke ¢ : J' = > +1 ]——+1
Yopymm: =\ # i#j
N N
& N /\kp .. N 2 /\kp
Z Z mm’(l7])+ Z Z mm'(Z] lfa¢13
=1 J=¥+1 i=¥+l 1=1

by inserting our Slater-Jastrow wave function in E¢)

plane waves and LDA orbitals. The symmetrized plane

where J, is the exponential Jastrow term appearing in Eq.waves were constructed using the projection operator
(7), relabeling dummy indices in the integral, and utilizing techniqué! with a plane wave cutoff up to 38 Ry. A 23 Ry

S3. The quantltleshm m,(| j), foralli,jel,... N with i
#j, are accumulated simultaneously by summing aver

cutoff was found to be sufficient, corresponding to 82 616

independent coefficientgzgﬁn o at each value oh. The

independent configurations distributed according to thg pA orbitals consisted of those occupied and unoccupied
square of our Slater-Jastrow wave function using Metropoligyrbitals of the ground state of silicon with eigenvalues below

sampling:

)\kp

mm'(lJ) Nl 4 n(r)

S (D) A1 (1)) o(i)
n(r}) VN

12

For a given size ofV, the statistical noise in the coefficients
N kp
gaﬁ’ m,m’

Averagmgg , over different rowstr did not yield a

amm

an energy cutoff, chosen such that the number of LDA or-
bitals corresponded to the number of symmetrized plane
waves. These LDA orbitals displayed a much slower rate of
convergence. Symmetrized plane waves had the computa-
tional advantage over LDA orbitals of requiring no more
than 48 plane waves per basis function. This resulted in less
computer storage and a faster computation of the terms in

was found to be largely independent of the indices.Eq. (12). At eachh all of the coefficients were accumulated

simultaneously with the Monte Carlo metropolis method us-

reduction in the ratio of statistical noise to computationaling approximately 5.8 m|II|on statistically independent con-

time ofgaﬁ(r r'), instead it was more efficient to reduce the figurations. For\ =0, g

noise by increasingy.

mm Can be generated directly
from the single-particle orbltals of the determinant in ER).

We tested the rate of convergence of the expansion dBy comparing the Monte Carlo sampled and directly calcu-

gfw(r,r’) in Eqg. (11) using basis functions of symmetrized

lated functions we estimated the statistical errogito be
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(b)

FIG. 1. Plots in VMC of(a) g, and(b) g. in the (110 plane passing through the atoms with one electron fixed at the bond center. The
atoms and bonds in th@ 10 plane are schematically represented.

between 1% and 6%. The noise was largest where the elec- D. Calculation of the exchange-correlation energy density
tronic density takes its smallest value, and smallest where the 11,4 exchange-correlation energy dengify(r) was cal-

electronic density was largest. These eStiTﬂes Were COnSisylated using two techniques. One approach involved direct

tent with the deviations observedXt1 in g, o, calcu-  Monte Carlo metropolis sampling with the Slater-Jastrow
lated with two different sets of 5.8 million statistically inde- wave function for each of the five values &f using the
pendent configurations. We also used direct calculations tequation

investigate the effects of the finite size of the simulation cell

on gZ:_O'kp, , which were found to be unimportant. 11 &8
ThgrinhTegral oven in Eq. (4) was evaluated numerically €xel )= Efo d)\Z 129&. dxy- - dxya(r=ry)
using five values of: 0, %, 3, 2, and 1. Since the basis
functions P (r) that appear in Eq(11) are independent of XF(r=rp[ WX, %z, ... x|
\, the integral involved merely a weighted average ovef

1
the coefficientsgzg;%m, . The accuracy of the value of the - Ej dr'n(r)n(r’)f(r—r"),

integral obtained with five values of was investigated by

studying the\ dependence of various quantities. With in- which follows from combining Eqgs(1)—(4) and replacing
creasing A the exchange-correlation enerdy:., where the Ewald interaction, If—r’|, with f(r—r’) to reduce
EXC: féU;Cd)\’ was found to decrease Smooth'y and mono.finite'siz.e effects. The other approaph in.VOIVed a numerical
tonically as has been predicted by Levy and Perfe®ihis ~ integration over\ of the expansion in Eq.(11) for
can be seen in Fig. 7, which will be discussed later. Othe@s(r.1"), followed by an analytic integration over the vari-
quantities investigated: the Jastrow term in the many-bodgbler’, that appears in Ed1). Both approaches yield iden-
wave function ancgﬁﬁ, displayed a smooth monotonic de- tical results in the limit of an infinite cutoff in the symme-

pendence on. As a further test, the identity trized plane waves of the expansion of H4l), and an
infinite number of statistically independent configurations

used in the Monte Carlo metropolis sampling. For a finite
T4 E =T 1+ UM (13)  cutoff the expansion in Eq11) results in an incorrect cuép
in ghu(r,r’) when a# B andr—r’. Samplingg)4(r.r’)

o N with a finite number of configurations results in a statistical
was found to hold within 0.1%, wherg&"~" is the fully  \jiolation of the sum rule:

interacting kinetic energy ant* ~° is the noninteracting ki-
netic energy appearing in density-functional theory. Fewer N B
than five values ok was insufficient to satisfy this equation. A | ARRpy o1 R)= = 84 (14)

WA 0,,,,,',
Y ’,’,’,’,’,’,’1
{4y

FIG. 2. Plots in VMC of(a) g,, and(b) g in the (110 plane passing through the atoms with one electron fixed at the tetrahedral
interstitial site. The atoms and bonds in #id.0) plane are schematically represented.
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FIG. 3. The spherically averaged exchange-correlation hole in VMC and LDA (&jtbne electron fixed at the bond centés) one
electron fixed at the tetrahedral interstitial site, &odplots (a) and (b) superimposed.

for the spherically averaged exchange-correlation hole at ll. RESULTS AND ANALYSIS

where Recent studiés® of the pair-correlation function in bulk

1 silicon have discussed the form og’;;l(r,r’) and
A _ = Y IVIION "_ 9.5(r,r"). Here we consider that the pair-correlation func-
Pxc.apll:R) 47TJ-er () iGag(rr) = 1, tioﬁ can be broken up into exchangg and correlationg,
contributionsg=g,+ g, according to the density-functional
Q:fr—r'|=R. theory d_efinitionz,4 whereg,=g*~% andg.=g— gx- Plots of
gy and g, around a bond center are shown in Fig. 1, and
around the tetrahedral interstitial site in Fig. 2. Analysis of
these and other points in silicon reveal tligttends to be
more anisotropic in comparison @.. Comparing Figs. 1
and 2 we see thaj; is larger and deeper at the interstitial site
4han at the bond center. The valence electronic density is
over thirty times smaller at the interstitial site than at the
bond center. In our study we found thgttends to be larger
and deeper where the electronic density is smaller; the same
trend that is observed in a homogeneous electrorfyas.
From the pair-correlation function the exchange-
correlation hole can be easily obtained. In Figs) and 3b)
by the presence @R in the integral. Our method for remov- are plots of the spherically averaged exchange-correlation
ing these errors is described in the Appendix. With this cor10le around a bond center and an interstitial site respectively.
rection both procedures yield the same statistical error ifPNly the spherical average contributes to the exchange-
e.(r) when sampled with the same number of statisticallycorrelation energy. The percentage deviation from the LDA
independent configurations. This serves as a test of the aéf Smaller at the bond center than at the interstitial site, where
equacy of the cutoff in the expansion, Eqll), for the LDA gives a poor approximation. The size of the devia-
ghs(r.r'). It reveals that the violation of the cusp condition tion from the LDA has the same order of magnitude around
in gﬁﬁ(r,r’) whena# B asr—r' has a smaller effect on the both points as can be seen in Figc)3where the e_xchange-
errors ine,.(r) than our statistical noise, partially because Ofcorrelatlon holes are superimposed on a plot with the same

the R factor in Eq.(15) that goes to zero where the cusp scale and reflected by the fact that the value of the exchange-

condition is violated. There was a root-mean square deviagorrelanon energy density per particle,

tion of 0.5% between both evaluations ef(r). This is

This violation is a result of th&? term in the integral of Eq.
(14), which magnifies the small statistical errors ggﬁ at
large R that do not cancel completely in the spherical aver-
aging of the exchange-correlation hole. These small fluctu
tions at largeR are also magnified in the evaluation of
xc(r),

1
exc(r)=27rn(r)fod)\f dRRo}(r,R), (15)

consistent with an estimate of the statistical noise obtained exc(r)=27rf dRRo(r,R),
by comparing the two VMC evaluations ej;fo(r) with the
exact quantity. has the same magnitude, as shown in Table |. The absolute

TABLE I. Monte Carlo (VMC) and local-density approximatiofLDA) values for the exchange-
correlation energy density per particg.(r) ande,.(r)=n(r)e.(r) at the bond center and the tetrahedral
interstitial sites in silicon. The energies are in atomic units.

Position €x(r) ey(r)
r VMC LDA VMC LDA % errorin LDA
Bond center —-0.371 —-0.381 —-0.0324 —-0.0333 —-2.8

Interstitial —0.166 —0.133 —0.000 459 —0.000 368 19.8




8978 HOOD, CHOU, WILLIAMSON, RAJAGOPAL, AND NEEDS 57

0.01 0.0010
0.0000
-0.01
-0.0010
3 T
= -003 £ -0.0020
& &
-0.0030
-0.05
-0.0040
-0.07 -0.0050
0.0 20 40 6.0 8.0 0.0 20 4.0 6.0 80 100
R (a.u.) R{a.u)

FIG. 4. The spherically averaged exchange-correlation hole in VMC as a function of the Coulomb coupling conasteying from no

coupling (\ =0) to full coupling \ =1) with (a) one electron fixed at the bond center, dbdone electron fixed at the tetrahedral interstitial
site.

deviation ofe,(r)=n(r)e(r) in the VMC from the LDA = i

is an order of magnitude larger at the bond center because f dr'n(r){g""(r —r'|,n(r))-1}=-1.
n(r) is over thirty times larger than at the interstitial site.

Satisfaction of the sum rule WDA

The quantitye,."(r) was evaluated self-consistently and

the differencee,“(r) — e A(r) is shown in Fig. 5. Com-

47Tf dRR'zp)I:CDA(r,R): -1 (16) pari.ng. with results of our previous pagewhich looked at
deviations of the VMC from the LDA and ADA reveals that
the WDA gives a better pointwise agreementegf(r) with

. . . ) oL DA
implies that if there are pQS|tlve errors Wtc (r,R) for the VMC than the LDA with the VMC. Quantitatively the
someR there must be negative errors for other values as can VMC

be seen clearly in Fig.(B). This leads to a systematic can- ;o(c));mfean-squa_reW%iwan: 955“150 from_eXCLDA(r), Waj
cellation of error§in the evaluation oB2*(r) in Eq. (1). 0% forex(r)=e,. (r), 4.9% fore,(r)=e; (r), an

XC
_ oADA H
Figure 4a) shows how the spherically averaged 2.0% for e (r)=e,. (r). The largest errors in the LDA

exchange-correlation hole changes continuously at the boq%ccur In thde br?”d'f‘g regu_)(;} whergz the elgctrr]onlc degsny IS
center as one turns on the correlation frans0 (full ex-  'ar9est and changing rapidly, and around the pseudoatoms

change to A=1 (full exchange and correlationThe hole where it is smallest and changing rapidly. The sharp features

becomes deeper with increasing Coulomb repulsion as thec2' the extremE\D/?f the electronic density resu_lt fro”.‘ the
probability of electrons approaching one another decrease!@c@! nature ofe,c™(r). The true nonlocal functional in-

With increasing\ the hole broadens, a trend that was ob-Cludes information about the charge density in the neighbor-
served in sine-wave jelliuff At each value ofx the hole ing region that tends to smooth out such sharp features. For

satisfies the sum rule this reason the non-local ADA and WDA yield better overall
agreement with our VMC result. The better agreement of the
ADA with the VMC over the WDA may result from the
4 REoM(r R =—1. nature_ of the.ADA which is de_s,lgneq tq reproc!uce the exact
Wf dRR (1R e.(r) in the limit of weak density variations while the WDA

_ . . I . is not. The total integrated exchange-correlation eneifjgs
At A=0 the hole Is everywhere negative. With increasing are shown in Table Il. We have combined our VMC result

the sum rule is satisfied by a small positive contribution thaR/vith a more accurate diffusion Monte Carlo calculatoit

develops inpﬁcl(r,R) atR~3 (a.u). In Fig. 4b) px(r.R) is _to obtain a “pure estimate?® denoted DMC, of the

shown at the interstitial site. The hole becomes deeper W'tgxchange-correlation energyXt1, UN"1, and the kinetic
’ XC ’

increasing\ with no clear trend of becoming more localized. _ A=1 : L
The WDA (Ref. 1) can be considered as a procedure thaenergy an=1,T" . These numbers along with the kinetic

— A=0 . . .
approximateg keeping the correct prefacta(r’) in Eq. (2) tenergy an=0, T , were plugged into the identity, Eq,

. (13), to obtain our DMC value oE,..
rather tham(r) as used in the LDA, The close agreement between the LDA and VMC

exchange-correlation energies is due to a real-space cancel-
P 2A(r, I =n(n){g"™™(r—r’'|,n(r))—1}. lation between the bonding regions and the region around the
o pseudoatom and partially explains why the LDA does so
For our comparisons we used the formgoforresponding to  well in describing silicon. Although both the ADA and the
a homogeneous electron gas as parameterized by Perdew apgha give a smaller root-mean square deviationegf(r)
Wang? In this nonlocal approximation instead of using the from e/°(r) in comparison to the LDA, they do not yield
local value of the density in the argument of the pair-as complete a cancellation of errors as the LDA in the total
correlation function at each poimtann(r) is used with a E,.. The statistical error of 0.5% in the VMC evaluation of

value chosen to satisfy the sum rule, ey (r) is an order of magnitude smaller than the deviations



57 EXCHANGE AND CORRELATION IN SILICON 8979

0.0014

0.0008

0.0002

-0.001

FIG. 5. (Color) Contour plot in the(110) plane passing through the atoms &°(r)—el\>*(r). The atoms and bonds in tf&10
plane are schematically represented. The contours are in atomic units.

observed between the LDA and VMC and four times smallethe absence of the DMC result feg(r) we can only specu-
than the deviations between the WDA and VMC, and ADA |ate how this quantity would differ from our VMC result. We
and VMC. (Note that the same nonlocal LDA pseudopoten-youyld expect that an accurate physical result like the DMC
tial was used in all schemgs. _ _ would also tend to smooth out the sharp features,jfr)
The largest error in our VMC calculations arises from the egiting from the local approximation of the LDA.
use of approximate forms of the many-body wave functions ¢ is” well known, the LDA yields values &, that are
W, which account for 85% of the fixed-node correlation large and values @& that are too small, re;ulting in a
energy at\=1 and a larger proportion for smaller values of cancellation of errors. Shown in Fig. GL’MC(r)—e;DA(r)

N. We estimate that a DMC calculation in silicon of real- Is that LDA h tends t timate al ¢
space quantities such ag(r) andp,(r,r’) would require a reveass tha ,_Sli(c ange tends to °Ve"?s Imate almost ev-
(r) tends to underestimate almost ev-

hundredfold greater computational resources to obtain thEfYwhere whileeg : _
same statistical accuracy as our VMC results. This greate@fywhere. The exchange-correlation energy —density
cost arises from a combination of the followir(@) a smaller  €xc(r) =ex(r) +e4(r) therefore involves a cancellation be-
step length is required in DMC to reduce the time step biasiween the exchange and the correlation contributions.

thus a greater number of steps are necessary to generate theThe cancellation between the exchange and the correla-
same number of uncorrelated electron configurations(2nd tion that occurs in the LDA can be seen in more detail by
the necessity of calculating the local energy at each step. Istudying thex dependence of the exchange-correlation en-

0.00186
0.00108

0.000305

-0.00125

FIG. 6. (Color) Contour plots in th&110) plane passing through the atoms farey°(r) —ekPA(r), and(b) (a) eyM°(r) —ePA(r). The
atoms and bonds in th@10) plane are schematically represented. The contours are in atomic units.
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TABLE Il. Values for the exchange energf,=U} %, the -27.0
exchange-correlation ener@xff(l)uﬁcd)\, and Uﬁfl. The ener-
gies are in units of eV per atom. The statistical errors are indicated -29.0
for the VMC and DMC results. 3
g -310
Ey Eic Ui ®
LDA —27.66 -32.75 —35.64 s
ADA —27.56 —32.67 —35.57 -350
WDA —-27.37 —33.00 —36.25 370
GGA —29.10 —33.03 —35.80 0.00 0.25 0.50 0.75 1.00
VMC —29.15 —32.73+0.01 —34.97+0.01 A
bDMC —29.15 —33.23+0.08 —35.55+0.05 FIG. 7. Plots ofu}, versus the Coulomb coupling constantn

VMC, LDA, WDA, ADA, and GGA. The statistical error bars in

o ) ~ VMC are smaller than the symbols.
ergy. Shown in Fig. 7 is the Monte Carlo data compared with

self-consistent calculations using different mod@®d for  rently carrying out a DMC calculation &}, as a function of
the exchange-correlation functional, where we used the genx. We anticipate that this will introduce a negative correc-
eral formula®® tion to our VMC results, with a magnitude that increases
monotonically with\ (no change ah=0 and a maximum
U= Eftn]+ - (CET i ), chenge ah=1).
IV. CONCLUSIONS

in which n_m(x,y,z)z (1/.)‘3) n(x/)\,y/)é,z/)\). Al .Of these Coupling constant integration and VMC have been com-
models with thex:egceptl_on of the G oner-_esnmate the bined to calculate the principal quantities in density-
exchangeEx= llJXC ,}\wh|le they all underestimate the cor- functional theory that contribute to the exchange-correlation
relation, E.=[od\Uy.—E,. The shape of these curves gnergy in silicon. The pair-correlation function was found to
is important for schemes where theintegral is approxi-  paye a correlation contribution that was more localized and
mated using a two-point integration formtifaat A\=0 and  isotropic than its exchange contribution. With increasing
A=1 within some model. Detailed numerical results areCoulomb repulsion\, the electron “digs” out a deeper
shown in Table II. There is numerical evidence in atdtiS  exchange-correlation hole that exhibits a longer range. The
that the LDA provides a more accurate descriptiotJgf as  success of the LDA in silicon can be viewed as a result of
A—1. Our DMC results show closer agreement with theseveral errors that cancel in the evaluation of the total
LDA of UQC at A=1 than at\=0 in silicon. We are cur- exchange-correlation energy,

|
€xc(T)
! n(r) [ 1 /A ! ] /
— =2 - Q:r—r|=R
Ex. /dr/ﬂ dA 5 /dR 4R g /er Pec(r, )|, |r — 1|

pic(n R)

exe(T)

(1) It is sufficient to give an adequate representation of thecon our VMC results revealed a real-space cancellation of
spherical average of the exchange-correlation hole since onbrrors in the LDA exchange-correlation energy density
this averaged quantity contributeskg.. The LDA provides  elDA(r). This cancellation partially corrects the local ap-

a much better description of the spherical averaddr.R),  proximation of the LDA, which tends to exhibit sharp fea-
than p(r.r’). (2) Performing the integral oveR in the  yyres, je., large errors, in the exchange-correlation energy
evaluation ofej(r) results in a systematic cancellation of gensity near those points in space where the charge density is
errors, becausp,;” (r,R) satisfies the sum rule in EGL6).  rapidly varying and has an extremum. Nonlocal functionals
(3) In calculating the integral ovex, we found a cancellation such as the ADA and WDA, which average the density over

between the exchange contributiog;>™*~%(r), which a neighboring region, were found to smooth out these sharp
tends to overestimate almost everywhere, with the correlafeatures.
tion contribution[the remaining contribution t@)&CDA(r)], The computational cost of our method is much smaller

which tends to underestimate almost everywhételn sili- than an alternative procedure for studying density-functional
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theory that extracts the exchange-correlation potential by asmall differencegless than 0.58%betweem, andn, -, do
inversion of the Kohn-Sham equations using a quanturmot show up in plots of the exchange-correlation hole but can
Monte Carlo calculated electron densifyThis alternative have an effect ore,(r) if not treated properly. Here we
procedure has thus far been limited to small atffsand  define the quantity:

model solids**34Our test calculations have revealed that the

different quantities that contribute to the exchange- S [ drmdengh e
correlation energy are less sensitive to numerical noise and _ 3 AU )Gapll,
small errors in the wave function. Our method is thus imme- nh(r)=nk(r) N_1 :

diately applicable to solids, molecules, and atoms. These and
future calculations of the quantities that contribute to theusing the statistically sampled expansion, Edl), for
exchange-correlation energy will provide a detailed andgﬁﬁ(r,r’). In generaln(r)#n,(r) since the statistical
practical testing ground for new and existing functionals. npjse, as described in Sec. Il D, can lead to violations of the

sum rule, Eq.(Al), at eachr. Next we define a new pair-
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APPENDIX
PN I[N r _ J—
At each X a sum rule satisfied by the pair-correlation % J'dr Np(rAGap(rr) =1} =-1

function has the form _
is satisfied. The deviations af *(r) from n*=%(r) are the

. - N1
dr'mNr gt a(rr)— 1= —1, Al same size as the deviations of(r) from n*=(r). The
% f Fa(r)Gap(r )~ 1) A small differences observed betweef );B(r,r’) and

A ’ H H ’
N N . g,4(r,r') are only discernable whenis far fromr’ where
wherenp(r”) andga[,(r,r’) are t_he spm-d_epender!t compo- ’C‘vﬂ(r r'y~1. However, the quantitg,.(r) is sensitive to
nents of the density and the pair-correlation function respecgaﬂ ' ' ’ e

. . . X ~N : :
tively, sampled from the same wave function. In this appenWhether one useg;. or p,. in Eq. (15, with the choice of
dix the A dependence of the density is made explicit. Thep Qc resulting in smaller statistical errors.
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