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Exchange and correlation in silicon
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A combination of the coupling constant integration technique and the quantum Monte Carlo method is used
to investigate the most relevant quantities in Kohn-Sham density-functional theory. Variational quantum
Monte Carlo is used to construct realistic many-body wave functions for diamond-structure silicon at different
values of the Coulomb coupling constant. The exchange-correlation energy density along with the coupling
constant dependence and the coupling-constant-integrated form of the pair-correlation function, the exchange-
correlation hole, and the exchange-correlation energy are presented. Comparisons of these functions are made
with results obtained from the local-density approximation, the average density approximation, the weighted
density approximation, and the generalized gradient approximation. We discuss reasons for the success of the
local-density approximation. The insights provided by this approach will make it possible to carry out stringent
tests of the effectiveness of exchange-correlation functionals and in the long term aid in the search for better
functionals.@S0163-1829~98!02115-8#
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I. INTRODUCTION

Within the past decade, great strides have been mad
predicting theoretically the detailed behavior of electrons
matter, which has brought about a deeper understandin
the nature and properties of real materials. A fundame
obstacle to further advances is the difficulty of treating el
tron correlation effects in a fully adequate fashion. This is
old problem, having plagued us since the dawn of quan
mechanics, and in the process of addressing this issue
ous methods have been put forward, among which are m
body perturbation theory, the Hartree-Fock approximati
and density-functional theory. Density-functional theory h
proved the most popular of these techniques, both becau
its relatively low computational cost for the accuracy of t
results obtained, and its wide range of applicability in are
spanning from materials science to biology.

The Kohn-Sham formulation of density-functional theo
is the primary method used in electronic structure calcu
tions for treating the many-body effects in solids. In th
approach the true many-body system is mapped into a fi
tious noninteracting system, whose solution yields the ex
ground-state density and energy of the many-body syst
provided one knows the functional form of the exchang
correlation energyExc@n#. Since the form of this functiona
is currently unknown, approximations have been devised,
most ubiquitous being the local-density approximati
~LDA !, whereExc is written as an integral of a local functio
of the density with a value at each point in space given
that of a homogeneous electron gas. Despite the seem
crude nature of this approximation, this approach has b
successful in many systems, including those that have
idly varying densities. However, when qualitative and qua
titative discrepancies between experiment and theory in
ids arise it is difficult to improve upon the LDA
570163-1829/98/57~15!/8972~11!/$15.00
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systematically, although several schemes have b
devised.1,2

Rather than attempting to model the functional form
Exc@n# directly, many schemes for going beyond the LD
start by breakingExc into constituent contributions usin
known relations. Physical intuition and experience is th
used to model the different terms. For instance, in the av
age density approximation~ADA ! a model is proposed fo
the exchange-correlation hole, while the weighted den
approximation~WDA! models the pair-correlation function.1

Other procedures breakExc into exchange and correlatio
contributions,3,4 while hybrid schemes5–7 describe how the
Coulomb coupling constant dependence of the exchan
correlation energy influencesExc . Unfortunately there are
very few calculations of the form of these functions in re
solids.8 A careful numerical study of these functions can r
veal individual trends and behaviors that may suggest a p
tical approach for going beyond the LDA and provide a te
ing ground for the intricacies of existing and future mode

We have used coupling constant integration and va
tional quantum Monte Carlo~VMC! techniques to calculate
the quantities of central importance in density-function
theory that contribute to the exchange-correlation energy
a realistic inhomogeneous solid, namely, diamond struc
silicon. This procedure utilizes the exact relationship9 be-
tween the exchange-correlation energy,Exc , and the ground-
state many-electron wave functionsCl associated with dif-
ferent values of the Coulomb-coupling constant,l. This
relationship is here written in terms of four equations. T
coupling-constant-integrated pair-correlation functi
ḡ(r ,r 8), the exchange-correlation holerxc(r ,r 8), and the
exchange-correlation energy densityexc(r ) are related by10

exc~r !5
n~r !

2 E dr 8
rxc~r ,r 8!

ur2r 8u
, ~1!
8972 © 1998 The American Physical Society
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rxc~r ,r 8!5n~r 8!$ḡ~r ,r 8!21%. ~2!

The total exchange-correlation energyExc is obtained by
integratingexc(r ) over all space. Writingḡ in terms of its
constituent spin components

ḡ~r ,r 8!5(
a,b

na~r !nb~r 8!

n~r !n~r 8!
ḡab~r ,r 8! ~3!

yields an equation involving the many-electron wave fun
tions:

ḡab~r ,r 8!5
N~N21!

na~r !nb~r 8!
E

0

1

dlE dx3¯dxNuCl

3~ra,r 8b,x3 , . . . ,xN!u2, ~4!

whereN is the number of electrons,na(r ) is the electronic
density for spina, andxi denotes thei th electron’s spatial
and spin components. In an unpolarized system such as

con Eq.~3! reduces toḡ5 1
4 (a,bḡab . The electronic density

of eachCl must equal the density at full coupling (l51).
This condition can be ensured by adding an additional ex
nal potentialvl(r ) to the many-body Hamiltonian in which
the electron-electron interaction is multiplied byl.

In a recent paper8 we briefly described our method. Her
we present new results along with a more complete desc
tion of our procedure. In Sec. II we provide the details of o
approach for calculating the different quantities. We descr
our l-dependent Hamiltonian and wave functions, and
efficient method for Monte Carlo sampling of th
l-dependent pair-correlation function, from which all th
other functions can be calculated. In Sec. III we discuss
form of the pair-correlation function, presenting both its e
change and correlation contributions. We describe
exchange-correlation hole and how itsl dependence influ-
ences its shape. The Monte Carlo calculatedexc(r ) is com-
pared with the form obtained in the LDA, WDA, and ADA
and reasons for the success of the LDA are discussed. Tl
dependence of the exchange-correlation energy is prese
in several approximations and compared with our Mo
Carlo results. Details for obtainingexc(r ) from the Monte
Carlo sampled pair-correlation function are presented in
Appendix.

II. CALCULATIONAL METHODS

A. Hamiltonian

For our calculations we used a simulation cell consist
of 33333 primitive fcc unit cells of the diamond lattice
and containing 216 valence electrons. At a value of the C
lomb coupling constantl the Hamiltonian used in our simu
lations has the form

Ĥl52(
i

1

2
, i

21(
i

V̂ext i1lĤe-e1(
i

vl~r i !, ~5!

where a norm-conserving nonlocal LDA pseudopotentialV̂ext
was used to model the core electrons. We used an elec
electron interaction of the form
-
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Ĥe-e5(
i . j

f ~r i2r j !1(
i
E drn~r !F 1

ur i2r u
2 f ~r i2r !G ,

~6!

where f (r )51/r if r is inside the Wigner-Seitz cell of the
simulation cell, and is zero otherwise. The condition thaf
vanishes outside that Wigner-Seitz cell of the simulation c
centered on the particle in question is equivalent to
‘‘nearest image’’ convention which is widely used in com
puter simulations. This interaction gives smaller Coulom
finite-size effects than the standard Ewald interaction wh
finite simulation cells and periodic boundary conditions a
used to simulate effectively infinite systems.11 The total
electron-electron energy is the expectation value ofĤe-e mi-
nus a double counting term for the electrostatic interactio
The exchange-correlation energy densityexc(r ) has smaller
finite-size effects whenf (r2r 8) is used for 1/ur2r 8u in Eq.
~1! instead of the periodic Ewald interaction.11 Finite-size
effects can alter thel-dependence of quantities such asUxc

l ,
whereExc5*0

1Uxc
l dl. When we performed calculations wit

the Ewald form of the electron-electron interaction, we fou
with increasing system size a change in the shape of
curveUxc

l versusl in addition to a constantl-independent
shift. Using the electron-electron interaction of Eq.~6! re-
duced the magnitude of these finite-size effects.

The ground-state charge densityn(r ) that appears inĤe-e
can be obtained self-consistently by repeating the calc
tion. However, we found that the solution was insensitive
the precise form of the density. In the case of silicon t
LDA density agrees closely with experiment12 and is indis-
tinguishable~within statistical noise! from the density we
obtained atl51 in VMC using either the Ewald interactio
for Ĥe-e or the form in Eq.~6! with the LDA density. At all
values ofl the latter form ofĤe-e was used.

As an initial approximation forvl we used

vl~r !5~12l!E dr 8
n~r 8!

ur2r 8u
1vxc,l51

LDA
„n~r !…2vxc,l

LDA
„n~r !…,

which would ensure that the density was independent ofl in
an LDA calculation. The value ofvxc,l

LDA(n) was obtained
from the exact scaling relation,13 vxc,l

LDA(n)
5l2vxc,l51

LDA (n/l3). This form ofvl yielded charge densitie
in close agreement withnl51(r ). This approximation should
be reliable for systems where the LDA provides an accur
prediction of the ground-state density, which is the case
silicon.12 The small residual deviations from the LDA
density14 were reduced by iteratively modifying thevl po-
tentials and lastly by making a very small adjustment to
one-body functions in the Jastrow term of the wave fun
tions, which caused no discernible change in the total ene
The root-mean-square deviation of the finalnl from the
LDA density was less than 0.58% for all values ofl.

B. Wave function

At each value ofl the wave function used in the VMC
calculations was of the Slater-Jastrow form:
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Cl5D↑D↓expF2(
i . j

ul~ ur i2r j u!1(
i

xl~r i !G , ~7!

whereD↑ andD↓ are Slater determinants containing sing
particle orbitals obtained from an LDA calculation. The tw
body term in the Jastrow factor is written15 in two parts:

ul~r !5u0
l~r !1 f l~r !,

whereu0
l(r ) is fixed andf l(r ) contains variational param

eters. The fixed part ofu has the form

u0
l~r !5

A

r F12expS 2
r

FlD GexpS 2
r 2

L0
2D

and thel dependent cusp conditions are satisfied by set
Fl5AA/l for antiparallel spins andFl5A2A/l for parallel
spins. The value ofL0 was set equal to 0.25LWS whereLWS
is the radius of the largest sphere entirely contained wit
the Wigner-Seitz cell of the simulation cell. This choice
Lo insured thatu0

l(LWS) was effectively zero. A separat
VMC calculation with f l(r ) set to zero was used to dete
mine the optimal value ofA. The variable part oful has the
form

f l~r !5BlS LWS

2
1r D ~LWS2r !21r 2~LWS2r !2(

l 50

M

a l
lTl~ r̄ !,

0<r<LWS,

50, r .LWS,

whereBl and thea l
l are variational coefficients that depen

on the relative spins of the electrons,Tl is thel th Chebyshev
polynomial, and

r̄ 5
2r 2LWS

LWS
.

Thexl function, expanded in a Fourier series, was chose
have the full symmetry of the diamond structure:

xl~r !5(
s

cs
lS (

GPs
PGeiG•r D ,

wheres labels a star of reciprocal latticeG-vectors of the
primitive cell andPG is a phase factor associated with t
nonsymmorphic symmetry operations. At each value ofl in
our VMC calculations we used a total of six nonzero coe
cientscs

l in xl and eight parameters for both the parall
and antiparallel-spinul functions giving a total of 22 param
eters in the wave functions, which were optimized by mi
mizing the variance of the energy16 following the methodol-
ogy described in Ref. 17. Comparison with diffusion Mon
Carlo results showed that our optimized wave function
l51 retrieves 85% of the fixed-node correlation energy.

C. Calculation of pair-correlation function

To obtain the quantities in Eqs.~1!–~4! requires an accu
rate representation ofgab

l throughoutall of the the six-
dimensional spacer3r 8, in contrast to previous calculation
which obtainedgab

l51 at only a few points.18 We have found
-

g

n

to

-

-

r

that an efficient way to calculate and store this information
to expandgab

l as a product of single-particle functions. Th
number of independent coefficients in this expansion w
considerably reduced by making use of the full space gr
symmetry of the crystal.

From Eq.~4! the symmetries satisfied bygab
l follow from

the symmetries ofCl . At eachl the many-body Hamil-
tonianHl in Eq. ~5! and uClu2, the modulus of our Slater
Jastrow wave function of Eq.~7!, are invariant under the
following: S1 , a translation of any single electron by an a
bitrary Bravais lattice vectorT of the simulation cell;S2 ,
simultaneous operation on all the electron coordinates by
arbitrary element$RutR1t% of the crystallographic spac
groupOh

7 of the diamond structure;S3 , an arbitrary permu-
tation of electron coordinates with the same spin, andS4 ,
time-reversal symmetry, i.e., complex conjugation.

SymmetryS1 results from the periodic boundary cond
tions imposed on the simulation cell consisting of 33333
primitive fcc unit cells of the diamond lattice, from which
follows that

gab
l ~r ,r 8!5gab

l ~r1T,r 8!5gab
l ~r ,r 81T! ~8!

with

T5 l 13a11 l 23a21 l 33a3 ,

where theai are a set of primitive vectors for the direct fc
lattice andl 1 ,l 2 ,l 3 are integers. Since the operator associa
with a coordinate transformation$RutR1t% acting on each
electron coordinate is unitary it follows fromS2 that

gab
l ~r ,r 8!5gab

l ~Rr1tR1t,Rr 81tR1t!. ~9!

From Eq.~4! it follows thatgab
l (r ,r 8) is real, whileS3 along

with the form of the VMC wave function in Eq.~7! dictate
that it satisfy the symmetry relation

gab
l ~r ,r 8!5gba

l ~r 8,r !.

Since gab
l (r ,r 8) is a continuous function of the spatia

coordinates, it can be expanded in a product of a comp
set of single particle orthonormal functions. Equation~9!
shows it is advantageous in this expansion to use basis f
tions of the unitary irreducible representations of the gro
Oh

7 . These are denoted19 f tr ,m
kp (r ), wherek is a k vector of

the fcc Brillouin zone consistent with the periodic bounda
conditions,p is an index for the representations of the gro
G(k) of the wave vectork, tP$1,2, . . . ,M (k)% is an index
overM (k) inequivalentk vectors that lie in the ‘‘star’’ ofk,
r P$1,2, . . . ,dp% is the row index of thedp dimensional
‘‘relevant’’ p representation ofG(k), andm is an index for
basis functions that transform according to the same re
sentation but are linearly independent. A matrix elemen
the expansion takes the form

E drE dr 8f tr ,m
kp* ~r !gab

l ~r ,r 8!f t8r 8,m8
k8p8 ~r 8!. ~10!

FromS1 and Bloch’s theorem, which is satisfied by the ba
functionsf, this matrix element will be nonzero only ifk
and k8 are reciprocal lattice vectors of the simulation ce
which Eq.~8! implies they satisfy:
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k5m1
1
3 b11m2

1
3 b21m3

1
3 b3 ,

wherebi are primitive vectors for the reciprocal lattice an
miP$21,0,1%. These 27k vectors can be grouped into fou
distinct stars. By periodicity both integrals in Eq.~10! can be
performed over a simulation cell volume. SymmetryS2
along with the ‘‘orthogonality theorem for matri
representations’’20 imply that

E drE dr 8f tr ,m
kp* ~r !gab

l ~r ,r 8!f t8r 8,m8
k8p8 ~r 8!

5gab;m,m8
l,kp dk,k8dp,p8d t,t8d r ,r 8 .

The expansion therefore takes the form

gab
l ~r ,r 8!5(

kp
(

m,m8
gab;m,m8

l,kp (
t51

M ~k!

(
r51

dp

f tr ,m
kp ~r !f tr ,m8

kp* ~r 8!,

~11!

where the leftmost sum is over the four inequivalentk vec-
tors, each of which has a corresponding nontrivial po
groupG0(k), and the coefficients are independent of the r
tr of the representation. FromS4 and the inversion symme
try of the groupOh

7 the phase factor of the orbitalsf can be
q
g
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t

chosen such thatf tr ,m
kp* (r )5f t8r ,m

kp (r ), whereRtk52Rt8k,

from which it follows that ( t51
M (k)( r51

dp f tr ,m
kp (r )f tr ,m8

kp* (r 8)

is a real function of (r ,r 8). Thusgab;m,m8
l,kp is a real symmetric

function of m,m8. In an unpolarized system like silicon th
coefficientsgab;m,m8

l,kp in the expansion ofgab
l (r ,r 8) satisfy

g↑↑;m,m8
l,kp

5g↓↓;m,m8
l,kp andg↑↓;m,m8

l,kp
5g↓↑;m,m8

l,kp .
In Eq. ~4! one has the freedom to choose which pair

electron coordinates are held fixed when calculating the p
correlation function. By averaging over each choice the no
in the statistical evaluation of the integral can be consid
ably reduced. Defining the quantity

hm,m8
l,kp

~ i , j !52E dr1¯drN

f11,m
kp* ~r i !

n~r i !

f11,m8
kp

~r j !

n~r j !

3uD↑~r1 , . . . ,rN/2!D↓~r ~N/2! 11 , . . . ,rN!

3Jl~r1 , . . . ,rN!u2

with the choicet51 and r 51, where i , j P1, . . . ,N, and

using the fact thatna(r )5 1
2 n(r ) for all a and r in silicon,

one can derive the equation
ne
tor

y
16
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by inserting our Slater-Jastrow wave function in Eq.~4!
whereJl is the exponential Jastrow term appearing in E
~7!, relabeling dummy indices in the integral, and utilizin
S3 . The quantitieshm,m8

l,kp ( i , j ), for all i , j P1, . . . ,N with i
Þ j , are accumulated simultaneously by summing overN
independent configurations distributed according to
square of our Slater-Jastrow wave function using Metrop
sampling:

hm,m8
l,kp

~ i , j !5
2

N (
l 51

N f11,m
kp* ~r i

l !

n~r i
l !

f11,m8
kp

~r j
l !

n~r j
l !

1OS 1

AND .

~12!

For a given size ofN, the statistical noise in the coefficien
gab;m,m8

l,kp was found to be largely independent of the indic
Averaging gab;m,m8

l,kp over different rowstr did not yield a
reduction in the ratio of statistical noise to computation
time of gab

l (r ,r 8), instead it was more efficient to reduce th
noise by increasingN.

We tested the rate of convergence of the expansion
gab

l (r ,r 8) in Eq. ~11! using basis functions of symmetrize
.

e
is

.

l

of

plane waves and LDA orbitals. The symmetrized pla
waves were constructed using the projection opera
technique21 with a plane wave cutoff up to 38 Ry. A 23 R
cutoff was found to be sufficient, corresponding to 82 6
independent coefficientsgab;m,m8

l,kp at each value ofl. The
LDA orbitals consisted of those occupied and unoccup
orbitals of the ground state of silicon with eigenvalues bel
an energy cutoff, chosen such that the number of LDA
bitals corresponded to the number of symmetrized pl
waves. These LDA orbitals displayed a much slower rate
convergence. Symmetrized plane waves had the comp
tional advantage over LDA orbitals of requiring no mo
than 48 plane waves per basis function. This resulted in
computer storage and a faster computation of the term
Eq. ~12!. At eachl all of the coefficients were accumulate
simultaneously with the Monte Carlo metropolis method u
ing approximately 5.8 million statistically independent co
figurations. Forl50, gab;m,m8

l,kp can be generated directl
from the single-particle orbitals of the determinant in Eq.~7!.
By comparing the Monte Carlo sampled and directly calc
lated functions we estimated the statistical error inḡ to be
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FIG. 1. Plots in VMC of~a! gx , and~b! ḡc in the ~110! plane passing through the atoms with one electron fixed at the bond center
atoms and bonds in the~110! plane are schematically represented.
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between 1% and 6%. The noise was largest where the e
tronic density takes its smallest value, and smallest where
electronic density was largest. These estimates were co
tent with the deviations observed atl51 in gab;m,m8

l,kp calcu-
lated with two different sets of 5.8 million statistically inde
pendent configurations. We also used direct calculation
investigate the effects of the finite size of the simulation c
on gab;m,m8

l50,kp , which were found to be unimportant.
The integral overl in Eq. ~4! was evaluated numericall

using five values ofl: 0, 1
4 , 1

2 , 3
4 , and 1. Since the basi

functionsf tr ,m
kp (r ) that appear in Eq.~11! are independent o

l, the integral involved merely a weighted average overl of
the coefficientsgab;m,m8

l,kp . The accuracy of the value of th
integral obtained with five values ofl was investigated by
studying thel dependence of various quantities. With i
creasing l the exchange-correlation energyUxc

l , where
Exc5*0

1Uxc
l dl, was found to decrease smoothly and mon

tonically as has been predicted by Levy and Perdew.22 This
can be seen in Fig. 7, which will be discussed later. Ot
quantities investigated: the Jastrow term in the many-b
wave function andgab

l , displayed a smooth monotonic de
pendence onl. As a further test, the identity

Tl501Exc5Tl511Uxc
l51 ~13!

was found to hold within 0.1%, whereTl51 is the fully
interacting kinetic energy andTl50 is the noninteracting ki-
netic energy appearing in density-functional theory. Few
than five values ofl was insufficient to satisfy this equation
c-
he
is-

to
ll

-

r
y

r

D. Calculation of the exchange-correlation energy density

The exchange-correlation energy densityexc(r ) was cal-
culated using two techniques. One approach involved di
Monte Carlo metropolis sampling with the Slater-Jastr
wave function for each of the five values ofl using the
equation

exc~r !5
1

2E0

1

dl(
i

N

(
j Þ i

N E dx1•••dxNd~r2r i !

3 f ~r2r j !uCl~x1 ,x2 , . . . ,xN!u2

2
1

2E dr 8n~r !n~r 8! f ~r2r 8!,

which follows from combining Eqs.~1!–~4! and replacing
the Ewald interaction, 1/ur2r 8u, with f (r2r 8) to reduce
finite-size effects. The other approach involved a numer
integration over l of the expansion in Eq.~11! for
gab

l (r ,r 8), followed by an analytic integration over the var
abler 8, that appears in Eq.~1!. Both approaches yield iden
tical results in the limit of an infinite cutoff in the symme
trized plane waves of the expansion of Eq.~11!, and an
infinite number of statistically independent configuratio
used in the Monte Carlo metropolis sampling. For a fin
cutoff the expansion in Eq.~11! results in an incorrect cusp23

in gab
l (r ,r 8) when aÞb and r→r 8. Samplinggab

l (r ,r 8)
with a finite number of configurations results in a statistic
violation of the sum rule:

4pE dRR2rxc,ab
l ~r ,R!52da,b ~14!
edral
FIG. 2. Plots in VMC of~a! gx , and ~b! ḡc in the ~110! plane passing through the atoms with one electron fixed at the tetrah
interstitial site. The atoms and bonds in the~110! plane are schematically represented.
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FIG. 3. The spherically averaged exchange-correlation hole in VMC and LDA with~a! one electron fixed at the bond center,~b! one
electron fixed at the tetrahedral interstitial site, and~c! plots ~a! and ~b! superimposed.
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for the spherically averaged exchange-correlation hole al
where

rxc,ab
l ~r ,R!5

1

4pEV
dr 8n~r 8!$gab

l ~r ,r 8!21%,

V:ur2r 8u5R.

This violation is a result of theR2 term in the integral of Eq.
~14!, which magnifies the small statistical errors ingab

l at
largeR that do not cancel completely in the spherical av
aging of the exchange-correlation hole. These small fluc
tions at largeR are also magnified in the evaluation
exc(r ),

exc~r !52pn~r !E
0

1

dlE dRRrxc
l ~r ,R!, ~15!

by the presence ofR in the integral. Our method for remov
ing these errors is described in the Appendix. With this c
rection both procedures yield the same statistical erro
exc(r ) when sampled with the same number of statistica
independent configurations. This serves as a test of the
equacy of the cutoff in the expansion, Eq.~11!, for
gab

l (r ,r 8). It reveals that the violation of the cusp conditio
in gab

l (r ,r 8) whenaÞb asr→r 8 has a smaller effect on th
errors inexc(r ) than our statistical noise, partially because
the R factor in Eq. ~15! that goes to zero where the cus
condition is violated. There was a root-mean square de
tion of 0.5% between both evaluations ofexc(r ). This is
consistent with an estimate of the statistical noise obtai
by comparing the two VMC evaluations ofexc

l50(r ) with the
exact quantity.
-
a-

-
in
y
d-

f

a-

d

III. RESULTS AND ANALYSIS

Recent studies8,18 of the pair-correlation function in bulk
silicon have discussed the form ofgab

l51(r ,r 8) and
ḡab(r ,r 8). Here we consider that the pair-correlation fun
tion can be broken up into exchangegx and correlationḡc
contributionsḡ5gx1ḡc according to the density-functiona
theory definition,24 wheregx5gl50 andḡc5ḡ2gx . Plots of
gx and ḡc around a bond center are shown in Fig. 1, a
around the tetrahedral interstitial site in Fig. 2. Analysis
these and other points in silicon reveal thatgx tends to be
more anisotropic in comparison toḡc . Comparing Figs. 1
and 2 we see thatḡc is larger and deeper at the interstitial si
than at the bond center. The valence electronic densit
over thirty times smaller at the interstitial site than at t
bond center. In our study we found thatḡc tends to be larger
and deeper where the electronic density is smaller; the s
trend that is observed in a homogeneous electron gas.25

From the pair-correlation function the exchang
correlation hole can be easily obtained. In Figs. 3~a! and 3~b!
are plots of the spherically averaged exchange-correla
hole around a bond center and an interstitial site respectiv
Only the spherical average contributes to the exchan
correlation energy. The percentage deviation from the LD
is smaller at the bond center than at the interstitial site, wh
the LDA gives a poor approximation. The size of the dev
tion from the LDA has the same order of magnitude arou
both points as can be seen in Fig. 3~c! where the exchange
correlation holes are superimposed on a plot with the sa
scale and reflected by the fact that the value of the excha
correlation energy density per particle,

exc~r !52pE dRRrxc~r ,R!,

has the same magnitude, as shown in Table I. The abso
-
ral
TABLE I. Monte Carlo ~VMC! and local-density approximation~LDA ! values for the exchange
correlation energy density per particleexc(r ) andexc(r )5n(r )exc(r ) at the bond center and the tetrahed
interstitial sites in silicon. The energies are in atomic units.

Position exc(r ) exc(r )
r VMC LDA VMC LDA % error in LDA

Bond center 20.371 20.381 20.032 4 20.033 3 22.8
Interstitial 20.166 20.133 20.000 459 20.000 368 19.8
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FIG. 4. The spherically averaged exchange-correlation hole in VMC as a function of the Coulomb coupling constantl ranging from no
coupling (l50) to full coupling (l51) with ~a! one electron fixed at the bond center, and~b! one electron fixed at the tetrahedral interstit
site.
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deviation ofexc(r )5n(r )exc(r ) in the VMC from the LDA
is an order of magnitude larger at the bond center beca
n(r ) is over thirty times larger than at the interstitial sit
Satisfaction of the sum rule

4pE dRR2rxc
LDA~r ,R!521 ~16!

implies that if there are positive errors inrxc
LDA(r ,R) for

someR there must be negative errors for other values as
be seen clearly in Fig. 3~b!. This leads to a systematic can
cellation of errors1 in the evaluation ofexc

LDA(r ) in Eq. ~1!.
Figure 4~a! shows how the spherically average

exchange-correlation hole changes continuously at the b
center as one turns on the correlation froml50 ~full ex-
change! to l51 ~full exchange and correlation!. The hole
becomes deeper with increasing Coulomb repulsion as
probability of electrons approaching one another decrea
With increasingl the hole broadens, a trend that was o
served in sine-wave jellium.26 At each value ofl the hole
satisfies the sum rule

4pE dRR2rxc
l ~r ,R!521.

At l50 the hole is everywhere negative. With increasingl
the sum rule is satisfied by a small positive contribution t
develops inrxc

l (r ,R) at R'3 ~a.u.!. In Fig. 4~b! rxc
l (r ,R) is

shown at the interstitial site. The hole becomes deeper w
increasingl with no clear trend of becoming more localize

The WDA ~Ref. 1! can be considered as a procedure t
approximatesḡ keeping the correct prefactorn(r 8) in Eq. ~2!
rather thann(r ) as used in the LDA,

rxc
LDA~r ,r 8!5n~r !$ḡhom

„ur2r 8u,n~r !…21%.

For our comparisons we used the form ofḡ corresponding to
a homogeneous electron gas as parameterized by Perdew
Wang.25 In this nonlocal approximation instead of using t
local value of the density in the argument of the pa
correlation function at each pointr an n̄(r ) is used with a
value chosen to satisfy the sum rule,
se

n

nd

he
s.

-

t

th

t

and

-

E dr 8n~r 8!$ḡhom
„zr2r 8z,n̄~r !…21%521.

The quantityexc
WDA(r ) was evaluated self-consistently an

the differenceexc
VMC(r )2exc

WDA(r ) is shown in Fig. 5. Com-
paring with results of our previous paper,8 which looked at
deviations of the VMC from the LDA and ADA reveals tha
the WDA gives a better pointwise agreement ofexc(r ) with
the VMC than the LDA with the VMC. Quantitatively the
root-mean-square deviation ofexc(r ) from exc

VMC(r ), was
3.0% for exc(r )5exc

WDA(r ), 4.9% for exc(r )5exc
LDA(r ), and

2.0% for exc(r )5exc
ADA(r ). The largest errors in the LDA

occur in the bonding region where the electronic density
largest and changing rapidly, and around the pseudoat
where it is smallest and changing rapidly. The sharp featu
near the extrema of the electronic density result from
local nature ofexc

LDA(r ). The true nonlocal functional in-
cludes information about the charge density in the neighb
ing region that tends to smooth out such sharp features.
this reason the non-local ADA and WDA yield better over
agreement with our VMC result. The better agreement of
ADA with the VMC over the WDA may result from the
nature of the ADA which is designed to reproduce the ex
exc(r ) in the limit of weak density variations while the WDA
is not. The total integrated exchange-correlation energiesExc
are shown in Table II. We have combined our VMC res
with a more accurate diffusion Monte Carlo calculation27,28

to obtain a ‘‘pure estimate,’’29 denoted DMC, of the
exchange-correlation energy atl51, Uxc

l51 , and the kinetic
energy atl51, Tl51. These numbers along with the kinet
energy atl50, Tl50, were plugged into the identity, Eq
~13!, to obtain our DMC value ofExc .

The close agreement between the LDA and VM
exchange-correlation energies is due to a real-space ca
lation between the bonding regions and the region around
pseudoatom and partially explains why the LDA does
well in describing silicon. Although both the ADA and th
WDA give a smaller root-mean square deviation ofexc(r )
from exc

VMC(r ) in comparison to the LDA, they do not yield
as complete a cancellation of errors as the LDA in the to
Exc . The statistical error of 0.5% in the VMC evaluation
exc

VMC(r ) is an order of magnitude smaller than the deviatio
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FIG. 5. ~Color! Contour plot in the~110! plane passing through the atoms forexc
VMC(r )2exc

WDA(r ). The atoms and bonds in the~110!
plane are schematically represented. The contours are in atomic units.
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observed between the LDA and VMC and four times sma
than the deviations between the WDA and VMC, and AD
and VMC. ~Note that the same nonlocal LDA pseudopote
tial was used in all schemes.!

The largest error in our VMC calculations arises from t
use of approximate forms of the many-body wave functio
Cl , which account for 85% of the fixed-node correlatio
energy atl51 and a larger proportion for smaller values
l. We estimate that a DMC calculation in silicon of rea
space quantities such asexc(r ) andrxc(r ,r 8) would require a
hundredfold greater computational resources to obtain
same statistical accuracy as our VMC results. This gre
cost arises from a combination of the following:~1! a smaller
step length is required in DMC to reduce the time step b
thus a greater number of steps are necessary to genera
same number of uncorrelated electron configurations, and~2!
the necessity of calculating the local energy at each step
r

-

s

e
er

s,
the

In

the absence of the DMC result forexc(r ) we can only specu-
late how this quantity would differ from our VMC result. W
would expect that an accurate physical result like the DM
would also tend to smooth out the sharp features inexc(r )
resulting from the local approximation of the LDA.

As is well known, the LDA yields values ofEx that are
too large and values ofEc that are too small, resulting in a
cancellation of errors. Shown in Fig. 6,ex

VMC(r )2ex
LDA(r )

reveals that LDA exchange tends to overestimate almost
erywhere whileec

LDA(r ) tends to underestimate almost e
erywhere. The exchange-correlation energy den
exc(r )5ex(r )1ec(r ) therefore involves a cancellation be
tween the exchange and the correlation contributions.

The cancellation between the exchange and the corr
tion that occurs in the LDA can be seen in more detail
studying thel dependence of the exchange-correlation
FIG. 6. ~Color! Contour plots in the~110! plane passing through the atoms for~a! ex
VMC(r )2ex

LDA(r ), and~b! ~a! ec
VMC(r )2ec

LDA(r ). The
atoms and bonds in the~110! plane are schematically represented. The contours are in atomic units.
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ergy. Shown in Fig. 7 is the Monte Carlo data compared w
self-consistent calculations using different models~mod! for
the exchange-correlation functional, where we used the g
eral formula:13

Uxc
l,mod@n#5Ex

mod@n#1
]

]l
~l2Ec

mod@n1/l#!,

in which n1/l(x,y,z)5 (1/l3) n(x/l,y/l,z/l). All of these
models with the exception of the GGA2 over-estimate the
exchange,Ex5Uxc

l50 , while they all underestimate the co
relation, Ec5*0

1dlUxc
l 2Ex . The shape of these curve

is important for schemes where thel integral is approxi-
mated using a two-point integration formula5,6 at l50 and
l51 within some model. Detailed numerical results a
shown in Table II. There is numerical evidence in atoms30,31

that the LDA provides a more accurate description ofUxc
l as

l→1. Our DMC results show closer agreement with t
LDA of Uxc

l at l51 than atl50 in silicon. We are cur-

TABLE II. Values for the exchange energy,Ex5Uxc
l50 , the

exchange-correlation energy,Exc5*0
1Uxc

l dl, andUxc
l51 . The ener-

gies are in units of eV per atom. The statistical errors are indica
for the VMC and DMC results.

Ex Exc Uxc
l51

LDA 227.66 232.75 235.64
ADA 227.56 232.67 235.57
WDA 227.37 233.00 236.25
GGA 229.10 233.03 235.80
VMC 229.15 232.7360.01 234.9760.01
DMC 229.15 233.2360.08 235.5560.05
th
on

of

el
h

n-
rently carrying out a DMC calculation ofUxc

l as a function of
l. We anticipate that this will introduce a negative corre
tion to our VMC results, with a magnitude that increas
monotonically withl ~no change atl50 and a maximum
change atl51).

IV. CONCLUSIONS

Coupling constant integration and VMC have been co
bined to calculate the principal quantities in densi
functional theory that contribute to the exchange-correlat
energy in silicon. The pair-correlation function was found
have a correlation contribution that was more localized a
isotropic than its exchange contribution. With increasi
Coulomb repulsionl, the electron ‘‘digs’’ out a deepe
exchange-correlation hole that exhibits a longer range.
success of the LDA in silicon can be viewed as a result
several errors that cancel in the evaluation of the to
exchange-correlation energy,

d

FIG. 7. Plots ofUxc
l versus the Coulomb coupling constantl in

VMC, LDA, WDA, ADA, and GGA. The statistical error bars in
VMC are smaller than the symbols.
of
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als
ver
arp

ller
nal
~1! It is sufficient to give an adequate representation of
spherical average of the exchange-correlation hole since
this averaged quantity contributes toExc . The LDA provides
a much better description of the spherical average,rxc

l (r ,R),
than rxc

l (r ,r 8). ~2! Performing the integral overR in the
evaluation ofexc

l (r ) results in a systematic cancellation
errors, becauserxc

LDA(r ,R) satisfies the sum rule in Eq.~16!.
~3! In calculating the integral overl, we found a cancellation
between the exchange contribution,exc

LDA, l50(r ), which
tends to overestimate almost everywhere, with the corr
tion contribution @the remaining contribution toexc

LDA(r )],
which tends to underestimate almost everywhere.~4! In sili-
e
ly

a-

con our VMC results revealed a real-space cancellation
errors in the LDA exchange-correlation energy dens
exc

LDA(r ). This cancellation partially corrects the local a
proximation of the LDA, which tends to exhibit sharp fe
tures, i.e., large errors, in the exchange-correlation ene
density near those points in space where the charge dens
rapidly varying and has an extremum. Nonlocal function
such as the ADA and WDA, which average the density o
a neighboring region, were found to smooth out these sh
features.

The computational cost of our method is much sma
than an alternative procedure for studying density-functio
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theory that extracts the exchange-correlation potential by
inversion of the Kohn-Sham equations using a quant
Monte Carlo calculated electron density.30 This alternative
procedure has thus far been limited to small atoms30,32 and
model solids.33,34Our test calculations have revealed that t
different quantities that contribute to the exchang
correlation energy are less sensitive to numerical noise
small errors in the wave function. Our method is thus imm
diately applicable to solids, molecules, and atoms. These
future calculations of the quantities that contribute to
exchange-correlation energy will provide a detailed a
practical testing ground for new and existing functionals.
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APPENDIX

At each l a sum rule satisfied by the pair-correlatio
function has the form

(
b

E dr 8nb
l~r 8!$gab

l ~r ,r 8!21%521, ~A1!

wherenb
l(r 8) andgab

l (r ,r 8) are the spin-dependent comp
nents of the density and the pair-correlation function resp
tively, sampled from the same wave function. In this app
dix the l dependence of the density is made explicit. T
a

lde

J.

ss
ny
n

-
nd
-
nd
e
d

-
ch

-
s
t

1
nd
e

c-
-

e

small differences~less than 0.58%! betweennl andnl51 do
not show up in plots of the exchange-correlation hole but
have an effect onexc(r ) if not treated properly. Here we
define the quantity:

ñ a
l~r !5na

l~r !S (
b

E dr 8nb
l~r 8!gab

l ~r ,r 8!

N21
D ,

using the statistically sampled expansion, Eq.~11!, for
gab

l (r ,r 8). In general ña(r )Þna(r ) since the statistica
noise, as described in Sec. II D, can lead to violations of
sum rule, Eq.~A1!, at eachr . Next we define a new pair
correlation function:

g̃ ab
l ~r ,r 8!5

na~r !nb~r 8!

ña~r ! ñb~r 8!
gab

l ~r ,r 8!

and a corresponding exchange-correlation hole,

r̃ xc,ab
l ~r ,r 8!5 ñ b

l~r 8!$ g̃ ab
l ~r ,r 8!21%.

Utilizing the orthonormality of the basis functionsf tr ,m
kp (r ),

a new set of coefficients can be obtained for an expansio
the form of Eq.~11! for g̃ ab

l (r ,r 8). By construction the sum
rule

(
b

E dr 8 ñ b
l~r 8!$ g̃ ab

l ~r ,r 8!21%521

is satisfied. The deviations ofñ l(r ) from nl51(r ) are the
same size as the deviations ofnl(r ) from nl51(r ). The
small differences observed betweeng̃ ab

l (r ,r 8) and
gab

l (r ,r 8) are only discernable whenr is far from r 8 where
gab

l (r ,r 8)'1. However, the quantityexc(r ) is sensitive to

whether one usesr xc
l or r̃ xc

l in Eq. ~15!, with the choice of

r̃ xc
l resulting in smaller statistical errors.
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