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Ballistic transport and electronic structure
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The role of the electronic structure in determining the transport properties of ballistic point contacts is
studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi
surface. The essential physics is first clarified for simple models. For real materials the band structure is taken
into account using parameter-free local-spin-density approximation calculations. In magnetic metallic multi-
layers the electronic structure gives rise to a large difference in conductance between the parallel and antipar-
allel configurations. For Co/Cu and Fe/Cr multilayers the dependence of the conductances on the layer thick-
nesses and the crystal orientations is investigated for the geometries with the current perpendicular, parallel,
and at an angle to the interface planes. In spite of the absence of spin-dependent scattering at defects, the
ballistic giant magnetoresistance effects in the perpendicular geometry can be as large as 120% and 230% in
Co/Cu and Fe/Cr multilayers, respectively.@S0163-1829~98!04612-8#
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I. INTRODUCTION

Most experimental studies of electrical transport are in
diffusive transport regime, in which the sample dimensio
are much larger than the mean free path. In this regime
conductivity is determined both by the electronic structure
the material and by the scattering at defects. This can
illustrated within the free-electron model with two com
monly used expressions for the Drude conductivity,

sDrude5e2H n

mJ t5
2e2

h H kF
2

3pJ l . ~1!

The diffusive conductivity depends both on electronic str
ture parameters~in curly brackets! such as the Fermi wav
vectorkF or the ratio between the densityn and the massm
of the electrons, and on scattering parameters such as
mean free path l or the relaxation timet. This division into
an electronic structure part and a scattering part is not un
since the electronic structure also plays a role in determin
the scattering properties. The relaxation time, for exam
depends on the density of states at the Fermi energy.
factorization of Eq.~1! into electronic structure and scatte
ing contributions is an artifact of the free-electron model. F
general band structures and scattering mechanisms the
aspects are strongly entwined and a simple factorization d
not exist. This complicates the evaluation of the effect t
the electronic structure has on the transport properties.

In the ballistic transport regime the sample dimensio
are much smaller than the mean free path. In this regime
conductance does not depend on the scattering propertie
only on the band structure and on the device geometry
570163-1829/98/57~15!/8907~20!/$15.00
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was pointed out by Sharvin1 that electrical transport in bal
listic samples is a sensitive tool to study Fermi surface pr
erties, as has been demonstrated by electron focu
experiments.2,3 In studies of electrical transport throug
single ballistic point contacts attention has often been
cussed on the nonlinear phenomena in the current-vol
characteristics. The observed deviations from Ohm’s law
be used for a spectral analysis of the interaction mechani
of the conduction electrons with elementary excitations
metals.4–6 The conductance in the linear response regime
just a constant that appears to be not very interesting. E
in relatively well defined microfabricated point contacts7,8

the cross-sectional area of the contact is not accura
known. This prevents the experimental determination of
conductance per unit area, which is a material specific
rameter that contains information on the electronic structu
In fact, usually a theoretical estimate for this paramete
used to determine the area of the cross section from the m
sured conductance.

Recently, we identified a situation in which the measu
ment of the conductance of a single ballistic point cont
gives rise to interesting new effects in the linear respo
regime.9 For magnetic metallic multilayers consisting of a
ternating magnetic and nonmagnetic layers and the cur
flowing perpendicular to the interface planes we predic
that the conductance in the ballistic regime should incre
by more than a factor of 2 when the relative orientation
the magnetizations of adjacent magnetic layers is chan
from antiparallel to parallel. This change in conductan
arises from the difference in electronic structure between
antiparallel and the parallel configuration. The alignment
the magnetization can be realized experimentally by app
8907 © 1998 The American Physical Society
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ing an external magnetic field to antiferromagnetica
coupled magnetic multilayers. The large change in resista
induced by applying a magnetic field to such systems is
ferred to as the giant magnetoresistance~GMR! effect. Even
if the cross-sectional area of the point contact is not kno
the relative resistance change can still be measured a
rately since the experiment can be done using a single
tact.

Experimentally the GMR effect10–12 has up to now only
been observed in the diffusive transport regime. Some in
experiments13–15on very small samples have been perform
but thus far ballistic transport in magnetic multilayers has
been realized. The GMR effect has been the subject of
tense investigation mainly because of the advantage
promises for magnetic recording and sensing. Most meas
ments are made in the geometry with the current flow
parallel to the interface planes, the so-called current-in-pl
~CIP! geometry. The experimentally more challengi
current-perpendicular-to-plane~CPP! geometry16–18 results
in an enhanced GMR and should also help to clarify
origin of the effect because of the higher symmetry and
clearer role of the interfaces as compared to the CIP ge
etry. In addition to the CIP and CPP geometries the cond
tance can also be measured in the so-called CAP geome19

in which the current flows at an angle to the interface plan
There is consensus about the conditions under which

GMR effect occurs, namely, when the magnetizations
neighboring ferromagnetic layers, which are initially o
ented antiparallel or at random, are aligned by applying
external magnetic field. A satisfactory microscopic expla
tion of the physical processes causing the GMR is still la
ing, however. Most theories that attempt to explain the GM
by spin-dependent scattering at defects, either in the bul
at the interfaces, do not treat the underlying electronic str
ture realistically. Instead, transport is assumed to be m
ated by thes electrons, which are described by a parabo
band with some appropriate effective mass20–30or by a non-
degenerate tight-binding band.31–33The magnetism, which is
associated with the tightly boundd electrons, is introduced
in terms of phenomenological scattering or tight-binding p
rameters. Studies of transport in the diffusive regime that
take into account the complicated band structure of
multilayer34–39 suffer from strong intertwining of electroni
structure and scattering effects that is inherent to the di
sive regime and that complicates the interpretation of
results. A clear distinction between band structure and s
tering contributions can only be obtained at the cost of m
ing approximations in the transport theory, such as the st
independent relaxation-time approximation.34,37 The validity
of such approximations is, however, not clear. Furthermo
the choice of a realistic model for the disorder, either mic
scopic or phenomenological, is far from trivial.

In this paper we calculate the conductance of a balli
point contact in the linear response regime with emphasis
its dependence on the electronic structure. In addition
model calculations that clarify the basic physics we carry
first-principles electronic structure calculations based on
local-spin-density approximation. The parameter-free res
for the ballistic conductance can in principle be compa
directly with experiment. For magnetic multilayers we fin
that a perfectly periodic structure without any defects s
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ports a giant MR. This is in contrast with the common bel
that GMR is mainly due to spin-dependent defect scatter
For Co/Cu multilayers this surprising result can be ascrib
almost entirely to the fact that we realistically take into a
count the hybridization between the free-electron-likes elec-
trons and the heavierd electrons~see Sec. V C!; this hybrid-
ization is neglected in the simple theories. Before trying
understand the GMR in dirty multilayers it would be ve
desirable to have some insight into the transport propertie
ideal multilayers. In this paper an attempt is made to prov
such insight. Besides being of interest for future experime
in the ballistic regime we believe that our calculations a
also relevant for the interpretation of present measurem
in the diffusive regime.

The method that we use to study ballistic transport
magnetic multilayers can be applied straightforwardly
other materials. Go´mez Abal, Llois, and Weissmann40 calcu-
lated the ballistic magnetoresistance in the FeRh interme
lic compound. The magnetic moments on the Fe sites
FeRh are coupled antiferromagnetically but can be alig
by applying an external magnetic field. The correspond
magnetoresistance calculated in Ref. 40 is as large as 40
Experimentally,41 the dependence of the resistance on
external magnetic field is highly nonmonotonic. A theore
cal description of this dependence is still lacking but w
require the self-consistent calculation of the~probably non-
collinear! magnetic structure of FeRh as a function of t
external magnetic field. The changes in resistance that
company the metamagnetic phase transitions in both m
netic multilayers and intermetallic compounds are induc
by changes in electronic structure. The same mechanism
counts for the magnetoresistances that are calculated in
diffusive regime using a spin- and state-independ
relaxation-time approximation for multilayers,34,37 the FeRh
compound,40 and uranium compounds.42,43 This mechanism
was invoked earlier to explain resistance anomalies aro
the magnetic ordering temperatures in rare-earth metals.44,45

Weissmannet al.46 considered the ballistic transport i
Co/Ni multilayers in which all layers are magnetic an
strongly ferromagnetically coupled. This system does not
through a metamagnetic phase transition and therefore
not exhibit a giant magnetoresistance effect. The Co/Ni m
tilayers are of interest because of the oscillatory behavio
the resistance as a function of the layer thicknesses.47

Mathon48 has calculated ballistic transport through Co/C
and Fe/Cr multilayers of finite thickness sandwiched b
tween infinite leads of Cu and Cr, respectively. The valu
he calculates for the MR are similar but not identical to t
ones we obtained in Ref. 9. This discrepancy is partly due
small differences in the electronic structure48 but, more im-
portantly, also due to the difference between the ‘‘finite
geometry considered by Mathon and the ‘‘infinite’’ geomet
considered by us; these two geometries are depicted s
matically in Figs. 2~a! and 2~b!, respectively, of Ref. 49~not
shown!. Similarly, different experimental geometries~such
as ‘‘finite,’’ ‘‘infinite,’’ or as in Ref. 14 ‘‘semi-infinite’’ !
should be distinguished. Direct comparison between the
and experiment is possible only for the same geometry.
similarity between our results and those of Mathon48 indi-
cates, however, that the effect of the geometry on the res
obtained so far is only minor. Besides the ballistic regim
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Mathon also considered transport through multilayers w
fluctuating layer thicknesses.48

The organization of this paper is as follows. In Sec.
derivations are presented of the expression for the ball
conductance that is valid for a general electronic structu
This expression is evaluated in Sec. III for free-electr
tight-binding, and Kronig-Penney models and in Sec. IV
realistic bulk materials using first-principles band-structu
calculations. The ballistic transport and magnetoresistanc
Co/Cu and Fe/Cr multilayers are discussed in Secs. V
VI, respectively. Our results are summarized in Sec. V
Short accounts of part of this work were given in Ref. 9 a
a number of conference proceedings.49–52

II. BALLISTIC TRANSPORT

In this section the general expression for the ballistic c
ductance is derived. Consider two semi-infinite electro
separated by an insulating barrier and only connected v
small opening in the barrier. This device is referred to a
classical ballistic point contact when the diameter of
opening is much smaller than the mean free path and m
larger than the electron wavelength.53 The resistance of suc
a point contact is determined by the ballistic motion of t
electrons through the opening.1 Even though the electron
passing through the constriction are not scattered out of t
Bloch states, the conductance of the point contact is fi
due to its finite cross sectionA. A sufficiently small opening
is a small perturbation to the unconnected electrodes an
lowest order, does not disturb the equilibrium distributi
functions of the electrons in the two electrodes. The net c
rent is given by the difference in the number of electro
incident upon the opening from each side per unit time. T
for a small voltage differenceV between the electrodes~and
at low temperatures! the currentI in the transport directionn̂
is6

I 5AeVe
1

2 (
ns

E dqW

8p3 un̂•vW ns~qW !ud„«ns~qW !2EF…, ~2!

wherevW ns(qW ) and «ns(qW ) are the velocity and the energy
respectively, for a state with Bloch vectorqW , band indexn,
and spin indexs. The velocity of a Bloch state can be ob
tained from the band structure using

vW ns~qW !5
1

\
¹qW«ns~qW !. ~3!

The factor 1/2 in Eq.~2! appears because only electro
moving towards the opening contribute to the current. T
integration overqW can be replaced by an integration over t
corresponding sheet of the Fermi surface FS~ns!. The ballis-
tic or Sharvin conductanceG(n̂)5I /V can then be written
as54

G~ n̂!5
e2

h

A

4p2

1

2 (
ns

E
FS~ns!

dS

uvW ns~qW !u
un̂•vW ns~qW !u. ~4!
h

I
ic
e.
,
r
e
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SincevW ns(qW ) at EF is always normal to the Fermi surface
G(n̂) can be expressed in terms of the projectionsSns(n̂) of
FS~ns! in the directionn̂:

G~ n̂!5
e2

h

A

4p2

1

2 (
ns

Sns~ n̂!. ~5!

The above derivation of the ballistic conductance is ana
gous to the calculation of molecular effusion of a dilute g
through a small hole in response to a pressure gradient.
amount of gas that flows through the aperture per unit tim
in that case directly related to the equilibrium velocity d
tribution function of the molecules. Experiments in the r
gime where the mean free path of the gas is much larger
the dimensions of the hole were undertaken in 1908
Knudsen55 to test the predictions of the kinetic theory o
gases. The ballistic regime of electrical transport is theref
sometimes referred to as the Knudsen regime and the S
vin conductance as the Knudsen conductance.54

The expression for the ballistic conductance can alter
tively be derived from the Landauer-Bu¨ttiker formalism.56

For a general band structure the Landauer conductance
mula can be written in terms of incoming and outgoi
Bloch states that are labeled by the componentqW i of the
Bloch vector parallel to the insulating plane~i.e., perpendicu-
lar to n̂! and by the indicesn ands:

G~ n̂!5
e2

h (
qW ins,qW i8n8s8

utqW ins,qW
i8n8s8u

2. ~6!

The calculation of the transmission probabilitie
utqW ins,qW

i8n8s8u
2 from the incident modeqW i8n8s8 to the trans-

mitted modeqW ins is in general difficult. In the ballistic re-
gime, however, this calculation is trivial because the mo
are not scattered at all and the transmission probability
trix is simply the unit matrix. The conductance then becom

G~ n̂!5
e2

h (
s

Ns~ n̂!, ~7!

whereN(n̂) is the number of conducting channels for tran
port in directionn̂. The number of channels can be count
by noting that the density of transverse modes equalsA/4p2

and that only the propagating modes moving towards
contact should be taken into account. This gives Eq.~5!
again and thus the two derivations yield the same result.

The above discussion is limited to the three-dimensio
case. For electrical transport in two-dimensional elect
gases in semiconductor nanostructures57,58 the two-
dimensional case is relevant. In two dimensionsA is the
width of the constriction and the density of transverse mo
equalsA/2p. The right-hand sides of Eqs.~2!, ~4!, and ~5!
should therefore be multiplied by a factor 2p in the two-
dimensional case.

We briefly compare the formalism for the ballistic regim
with an approach used by others to study transport in
diffusive regime where scattering at defects should be ta
into account. Defect scattering in magnetic multilayers h
not yet been calculated from first principles and approxim
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tions have been employed instead. In the relaxation-time
proximation to the Boltzmann equation the diagonal com
nent of the conductivity tensor in, for example, thex
direction is given by

sxx5e2(
ns

E dqW

8p3 tns~qW !ux̂•vW ns~qW !u2d„«ns~qW !2EF…,

~8!

with tns(qW ) the relaxation time of stateqW ns. Oguchi34 and
Zahnet al.37 made the additional approximation thattns(qW )
does not depend onqW andn. The spin-polarized conductivity
can then be factorized into a scattering term and an electr
structure term, of which the latter can be evaluated with
any free parameters. In the constant-relaxation-time appr
mation the electronic structure part of Eq.~8! for the diffu-
sive conductivity resembles that of Eq.~2! for the ballistic
conductance, except that the weighting over states is dif
ent by a factorux̂•vW ns(qW )u. We emphasize that the choice
a constant relaxation time is rather arbitrary. Equally w
the mean free pathl ns(qW )5tns(qW )uvW ns(qW )u could be chosen
to be independent ofqW andn. The same electronic structur
term as in the ballistic expression would be obtained by t
ing the mean free path in thex direction constant in Eq.~8!.
For CPP transport this would correspond to a sta
independent mean free number of traversed interface24

Note that in the calculation of the ballistic conductance su
approximations are not required.

III. MODEL CALCULATIONS

Before evaluating the Sharvin conductance from fi
principles, it is instructive to first consider the results f
several simple models.

A. Free-electron model

The simplest model for the electronic structure is the fr
electron model with a single parabolic band. The Fermi s
face of a free-electron gas in three dimensions is a sph
the projections of the two hemispheres are circles with rad
kF , thus Ss(n̂)52pkF

2 , independent ofn̂. By substitution

of Ss(n̂) in Eq. ~5! and using spin degeneracy the we
known free-electron expression for the Sharvin conducta
GFE is obtained:

GFE5
2e2

h

AkF
2

4p
. ~9!

Note the resemblance ofGFE to the electronic structure pa
sDrude in Eq. ~1!.

In two dimensions the Fermi surface is a closed line in
two-dimensional Brillouin zone. For a free-electron gas
projection of the Fermi circle equals 4kF from which we
obtain57,58

GFE
2D5

2e2

h

AkF

p
, ~10!

where the factor 2 comes from spin degeneracy.
p-
-
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B. Tight-binding model

In general the Sharvin conductance depends on the tr
port direction. This can be illustrated using a neare
neighbor tight-binding model for a square lattice in two d
mensions. The dispersion relation depends on the on
potential«0 and the hopping matrix elementt:

«TB
2D~qW !5«022t~cosqxa1cosqya!, ~11!

wherea is the lattice parameter. The dispersion relation~11!
determines the shape of the Fermi surface as a functio
the band filling. When the Fermi energy is close to the b
tom ~top! of the band, the Fermi surface resembles the fr
electron~hole! Fermi circle, as shown schematically in Fi
1~a! @Fig. 1~c!#. As EF approaches the center of the band, t
Fermi surface starts to deviate from the free-electron beh
ior and exactly at half-filling it becomes a square, as sho
in Fig. 1~b!. The Fermi surface always has the fourfold sym
metry of the underlying square lattice. From Fig. 1~b! it fol-
lows that the projection, and therefore the conductance,
pends onn̂; at half-filling the projection in the~10! direction
is a factor& larger than the projection in the~11! direction.
The Sharvin conductance is thus anisotropic even fo
square lattice, in contrast to the diffuse conductivity. By an
lyzing the shape of the Fermi surface as a function of
band filling we obtain, for a spin-degenerate band,

GTB
2D~10!5

2e2

h

A

a

1

p
arccosS uEF2«0u

2t
21D , ~12a!

GTB
2D~11!5

2e2

h

A

a

&

p
arccos

uEF2«0u
4t

. ~12b!

We used the fact that the boundaries of the projections al
the~10! and the~11! directions are located on the linesqy50
and qy5qx , respectively, independent of the band fillin
The numbers of conducting channels in the~10! and ~11!
directions are shown in Fig. 2 as a function of the ba
filling together with extrapolations of the free-electron a
hole behavior near the top and bottom of the band, resp
tively.

For a nearest-neighbor tight-binding model on a cubic
tice in three dimensions the Fermi surface cannot be a
lyzed as easily as in the two-dimensional case. We there
resort to numerical methods to calculate the projection.
Appendix A a suitable adaptation of the tetrahedro
method59–61 is described, including a discussion of its acc
racy. This tetrahedron method will be used in the next s

FIG. 1. The shape of the Fermi surface~thick line! for a nearest-
neighbor tight-binding model on a square lattice in two dimensio
as a function of the band filling. The large squares are the bou
aries of the first Brillouin zone, the hatched areas represent the fi
states. ~a! «024t&EF!«0 ; ~b! EF5«0 ; ~c! «0!EF&«0

14t.
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tions in combination with first-principles band-structure c
culations to evaluate the conductances of bulk materials
multilayers. For the three-dimensional~3D! tight-binding
model, the numbers of conducting channels in the~100!,
~110!, and~111! directions calculated numerically as well a
the free-electron and hole extrapolations, from the top
bottom of the band, respectively, are shown in Fig. 3. T
anisotropy in the Sharvin conductance is less pronoun
than in the two-dimensional case. Our results for the~100!
direction are in good agreement with the calculations
Todorov62 except for the finite-size effects, which resu
from the finite cross section used in Ref. 62. In Appendix
an alternative calculation of the conductance in the~100!
direction is given that agrees excellently with the result o
tained using the tetrahedron method.

FIG. 2. The number of conducting channels per spin as a fu
tion of the Fermi energy for a nearest-neighbor tight-binding mo
on a square lattice in two dimensions. The on-site potential«0 is
chosen as the zero of energy. The solid and the dashed lines a
numbers of conducting channels for transport in the~10! and ~11!
directions, respectively. The dashed-dotted line shows for ener
smaller and larger than«0 the free-electron and the free-hole b
havior, respectively.

FIG. 3. The number of conducting channels per spin as a fu
tion of the Fermi energy for a nearest-neighbor tight-binding mo
on a cubic lattice in three dimensions. The on-site potential«0 is
chosen as the zero of energy. The solid, dashed, and dotted line
the numbers of conducting channels for transport in the~100!,
~110!, and ~111! directions, respectively. The dashed-dotted li
shows for energies smaller and larger than«0 the free-electron and
the free-hole behavior, respectively. The numbers of channels w
calculated using 483 k points in the first Brillouin zone.
-
nd

d
e
d

y

-

C. Kronig-Penney model

The Kronig-Penney model has been used by several
thors to study the effect of a modulated potential in t
growth directionz on the transport properties of magnet
multilayers.24,25,27–30,12The effect of such a potential on th
conductance can be significant in the CPP geometry and
instructive to study this model in the ballistic limit. The po
tential landscape for the Kronig-Penney model is depicted
Fig. 4. First we consider the limit in which the potential
only a weak perturbation on the free-electron result. In F
5~a! a cross section of the unperturbed Fermi sphere is p
ted in an extended zone scheme. When the multilayer pe
dA1dB is larger than half the Fermi wavelengthlF , several
Bragg planes cut the Fermi sphere. The perturbed Fermi
face will ~almost always! intersect these Bragg planes pe
pendicularly, as is well known from nearly-free-electro
theory.63 Gaps open in the projection of the Fermi surface
the z or CPP direction, as shown in Fig. 5~b!. This reduces
the projected area and thus the conductance. The positio
the gaps is determined by the multilayer period, their size
the strength of the potential. Near the edge of the projec
the gaps become wider because electrons that meet the
faces under grazing incidence can be reflected more easi
similar nearly-free-electron analysis for the CIP directio
shows that the opening of the gaps decreases the proje
of the Fermi surface on one side of the Bragg planes,
increases it on the opposite side. These two contributi
nearly cancel, causing only a small effect of the potential
the CIP conductance.

c-
l

the

es

c-
l

are

re

FIG. 4. The potential landscape for the Kronig-Penney mode
a multilayer consisting of materialsA andB with layer thicknesses
dA anddB , respectively. Only the situation that both materials a
metallic is considered, i.e., that the potential stepU is smaller than
the Fermi energyEF .

FIG. 5. ~a! The cross section of the unperturbed Fermi sph
~thick line! at qx50. The spacing between the Bragg planes rep
sented by the dashed lines equals 2p/(dA1dB), which correspond
to the multilayer perioddA1dB in the z direction.~b! The projec-
tion ~black area! of the perturbed Fermi surface in thez or CPP
direction. The positions of the gaps~white rings! in the perturbed
Fermi surface correspond to the positions where the Bragg pla
cut the unperturbed Fermi sphere.
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We study the ballistic conductance in the CPP direct
G(CPP), as a function of the layer thicknesses and
height of the potential stepU. Using the cylindrical symme-
try of the Fermi surface its projection can be calculated
merically by determining forqi from 0 to kF how many of
the corresponding components of the Bloch vectors in thz
directionq' are real and correspond to a conducting chan
Figure 6~a! shows the dependence ofG(CPP) on the layer
thicknessesdA anddB for a constant value ofU. For dB50
the free electron result is retrieved. FordA50 the bulk con-
ductance of materialB is obtained that is only (12U/EF)
timesGFE due to the reduction of the Fermi wave vector
the bulk of materialB by the potential step.24 For large layer
thicknesses the number of gaps increases but their size
come smaller andG(CPP) converges to some finite valu
that is lower than either of the bulk conductances. The
pendence of this asymptotic value ofG(CPP) onU is shown
in Fig. 6~b! and derived in Appendix C. The main reductio
of G(CPP) comes from statesqW i that are propagating in ma
terial A but evanescent in materialB.24 The additional reduc-
tion of G(CPP) is due to the perturbation by the potential
the states that are propagating in both materials. The co
bution of the states that are evanescent in materialB de-
creases exponentially withdB .

For finite values of the layer thicknesses, oscillations a
from the interference of the propagating states between

FIG. 6. ~a! The Sharvin conductance in thez or CPP direction
for the Kronig-Penney model withU/EF50.2, 0.5, or 0.8 as a
function of the layer thicknessesdA ~solid lines! and dB ~dashed
lines! with the other layer thickness constant and equal to 20lF .
The dotted lines are the asymptotic values fordA ,dB@lF . ~b! The
dependence of the Sharvin conductance fordA ,dB@lF on the
height of the potential step. The dashed line represents the app
mate result obtained by Bauer in Ref. 24.
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ferent interfaces@see Fig. 6~a!#. Mathon, Villeret, and Itoh64

studied similar oscillations in the transmission through trila
ers. From the approach used in Appendix C it is obvious t
the ballistic conductance of a multilayer is intimately relat
to the transmission through a single barrier, i.e., a trilayer
Fig. 7 the dependence ofG(CPP) on dA is plotted for
U/EF50.8 for large layer thicknesses. In Ref. 64 tw
asymptotic oscillation periods are identified: one from t
stationary point of the Fermi surface (lF/2) and the other
from the cutoff point due to the potential step that is equa
(lF/2)(EF /U). The oscillations shown in Fig. 7 correspon
very well with these two oscillation periods. This is anoth
manifestation of the close relationship between the sin
barrier scattering properties and the ballistic conductanc
the multilayer. Figure 7 also shows that the asymptotic va
obtained from Eq.~C8! and plotted in Fig. 6~b! corresponds
very well with the value around which the numerical resu
oscillate for large but finite layer thicknesses.

IV. BULK MATERIALS

We now turn to the calculation of the ballistic condu
tance for real materials. To obtain a realistic description
the electronic structure that does not contain any free par
eters we calculate band structures in the local-spin-den
approximation~LSDA!. The only input for such calculation
is the species and the positions of the atoms. The LS
provides an accurate, though not exact, description of Fe
surfaces.65,66 Note that the conductance as an integra
property is not very sensitive to the details of the Fer
surface topology. We make use of the linear-muffin-tin o
bital ~LMTO! method in the atomic-spheres approximati
~ASA!.67,68For the bulk calculations presented in this secti
the electronic structure was calculated self-consistently us
a mesh of 123 k points in the first Brillouin zone. Unless
stated otherwise a basis ofs, p, andd orbitals is used; the
effect of f states is discussed below. To evaluate the pro
tion of the Fermi surfaces use is made of the tetrahed
method described in Appendix A. Good convergence w
obtained using interpolation grids with as many as 483 k
points in the first Brillouin zone.

xi-

FIG. 7. The oscillations of the ballistic conductance as a fu
tion of dA around the asymptotic value~dotted line! for the Kronig-
Penney model withU/EF50.8 anddB520lF .
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Figure 8 shows the ballistic conductance of bulk Cu
three different transport directions. The Sharvin conducta
depends onn̂ but the anisotropy is small compared to that
the tight-binding model. This can partly be explained by t
close-packed structure of the face-centered-cubic crysta
which each atom has 12 nearest-neighbor atoms compar
6 nearest-neighbor atoms in the more open simple-cubic
tice considered in the model calculation. To indicate the c
tributions from different bands the conductance is plotted
a function of the energy keeping the Cu band structure
modified. Obviously, only the value at the Fermi energy
relevant for the linear response regime. The free-electron
havior of Eq.~9! is also shown, assuming a density of o
free electron per Cu atom.63 Around the Fermi energy the
ballistic conductance corresponds very well with the fre
electron estimate of 0.5731015 V21 m22 at EF . For ener-
gies around 3 eV below the Fermi energy the ballistic c
ductance is significantly larger due to the high density
electrons of mainlyd character. The enhancement is, ho
ever, considerably less pronounced than in the correspon
density of states plot69 ~not shown! due to the weighting in
Eqs.~4! and~5! with the velocity, which is much smaller fo
the relatively flat bands in this energy range. For energ
more than 6 eV below the Fermi energy there is only o
band that has mainlys character. The Sharvin conductan
in this regime is shifted in energy with respect to the fre
electron line but has the same slope, which means that
curvature of this band corresponds to the free-electron m

In magnetic materials the degeneracy between the ma
ity and the minority spin electrons is broken. The ballis
conductance then depends on the spin direction due to
spin dependence of the electronic structure. In Fig. 9
Sharvin conductance is shown for bulk fcc Co. For the m
jority spin the dependence of the conductance on the b
filling resembles that of Cu, except that the width of t
bands with mainlyd character is larger. The calculated~spin!
magnetization of Co is 1.63 Bohr magneton (mB) per atom,
which yields an estimate for the density of free majority-sp
electrons of 0.32 per atom. The corresponding free elec

FIG. 8. The ballistic conductance per spin for bulk fcc copper
a function of the energy for a rigid band structure. The Fermi
ergy is chosen as the zero of energy. The solid, dashed, and d
lines are the Sharvin conductances for transport in the~100!, ~110!,
and ~111! directions, respectively. The conductances were ca
lated using 483 k points in the first Brillouin zone. The dashed
dotted line shows the free electron result obtained using Eq.~9! and
the parameters from Ref. 63.
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estimate for the ballistic conductance is 0.4331015

V21 m22, which is only about 10% smaller than the calc
lated value in Fig. 9. For the minority spin thed-like bands
are shifted to higher energies. At the Fermi energy this
sults in a minority spin conductance which is more th
twice the majority spin conductance. In contrast to the res
for Cu and the majority spin of Co, no reasonable fre
electron estimate can be given for the minority-spin cond
tance of Co, which reflects the complicated band struct
for the Co minority spin around the Fermi energy.

In the expansion of the wave function only a limited num
ber of partial waves are taken into account. To estimate
influence of the cutoff in angular momentum we compare
Sharvin conductances atEF for Cu and Co calculated usin
spd andspd f bases. As shown in Table I the difference

s
-
ted

-

FIG. 9. The ballistic conductance for bulk fcc cobalt as a fun
tion of the energy for a rigid band structure. The Fermi energy
chosen as the zero of energy. The solid and dashed lines ar
Sharvin conductances for transport in the~100! direction for the
majority and minority spin electrons, respectively. The cond
tances were calculated using 483 k points in the first Brillouin zone.

TABLE I. The Sharvin conductances per spin~in units
1015 V21 m22! in the ~100!, ~110!, and~111! directions for a num-
ber of cubic metals. Most calculations are performed using anspd
basis and for the experimental lattice constanta which is taken
from Ref. 68. For Co and Cu results obtained using anspd f basis
are also listed, as well as the conductance for Cu using the ex
mental lattice constant of Co and vice versa.

a ~Å! basis spin ~100! ~110! ~111!

fcc Cu 3.614 spd 0.55 0.58 0.55
fcc Cu 3.614 spd f 0.55 0.58 0.55
fcc Cu 3.549 spd 0.57 0.60 0.57
fcc Co 3.549 spd maj 0.48 0.49 0.45
fcc Co 3.549 spd f maj 0.47 0.47 0.43
fcc Co 3.614 spd maj 0.47 0.49 0.45
fcc Co 3.549 spd min 1.16 1.09 1.10
fcc Co 3.549 spd f min 1.19 1.11 1.13
fcc Co 3.614 spd min 1.12 1.05 1.06
fcc Ni 3.523 spd maj 0.48 0.49 0.45
fcc Ni 3.523 spd min 1.38 1.36 1.34
bcc Fe 2.861 spd maj 0.48 0.42 0.43
bcc Fe 2.861 spd min 0.92 0.89 0.93
bcc Cr 2.885 spd 0.63 0.57 0.59
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negligible for Cu, the largest deviation bein
0.00331015 V21 m22 for the ~100! direction. For Co the
differences are significantly larger but do not exceed 4%.
attribute this deviation mainly to the small change in t
magnetic moment of Co. The magnetization of Co decrea
from 1.63 to 1.59mB /atom whenf orbitals are included. This
gives rise to a decrease of 6% in the estimated density of
electrons in the majority-spin band, which corresponds t
decrease of 4% in the Sharvin conductance, in reason
agreement with the calculated values for the Co majo
spin.

In multilayers the layers of the constituent bulk materi
are strained. We therefore evaluate the dependence o
Sharvin conductance on the atomic volume by perform
calculations for Cu using the experimental lattice constan
Co and vice versa~see Table I!. For Cu the increase in th
conductance for a smaller lattice parameter can be un
stood in terms of the free-electron model. From Eq.~9! we
expect an enhancement of 3.7% in the Sharvin conducta
when the lattice constant decreases by 1.8%. The calcu
enhancements for Cu are 3.7%, 3.5%, and 3.3% for
~100!, ~110!, and~111! directions, respectively. For Co at th
lattice parameter of Cu the magnetization is increased
1.67mB /atom, which is due to the reduced overlap of atom
orbitals. The reduction of the conductance for the majo
spin due to the larger lattice parameter is almost exactly c
celed by the enhancement due to the larger magnetic
ment. For Cu and for either spin of Co the changes in
conductance due to the 1.8% change in the lattice param
are smaller than 4%.

The calculations can be straightforwardly carried out
other materials. Besides the results for Cu and Co, Tab
also displays the Sharvin conductances atEF for fcc Ni and
bcc Fe and Cr.

V. Co/Cu MULTILAYERS

The method of calculation for multilayers is similar
that for bulk materials in the previous section. Using t
LMTO method in the ASA the band structures of magne
multilayers are calculated for both parallel~P! and antiparal-
lel ~AP! alignment of the magnetizations in adjacent ma
netic layers that are separated by nonmagnetic layers.
section focuses on~100! oriented Con /Cun multilayers,
wheren is the number of atomic layers of each material in
unit cell that is repeated periodically in the growth directio
Results are also obtained for a Co3/Cu3 multilayer in the
~111! orientation.

A. Technical aspects

The lattice distortion that arises from the 1.8% lattice m
match between Co and Cu is taken into account using
model from Ref. 70, which was based upon the results
total-energy calculations: the in-plane lattice paramete
chosen to be that of bulk fcc copper, the cobalt layer
tetragonally distorted keeping the bond lengths betw
nearest-neighbor atoms constant. The lattice constants in
calculations are chosen to be 1% smaller than the experim
tal ones in order to be close to the total-energy minimum
calculations in the local-density approximation; the bulk l
tice parameter of Cu is thus taken to be 3.578 Å.
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The charge and spin densities in the P configurations
calculated self-consistently using a basis ofs, p, d, and f
orbitals and meshes of approximately 1400k points in the
first Brillouin zone. From the self-consistent potentials t
band structures are determined using anspd basis and dif-
ferent meshes containing up to 55 000k points in the first
Brillouin zone. The projections of the Fermi surfaces a
then calculated by the tetrahedron method described in
pendix A. For Co4/Cu4 in the P configuration we performe
the self-consistent calculations of the charge and spin de
ties both using anspdand using anspd f basis. The conduc-
tances~calculated with anspd basis! differed by less than
3%.

The band structures in the AP configurations are cal
lated from potentials obtained by interchanging the spin d
sities from the corresponding P configurations on alterna
Con /Cun cells. By calculating the potentials in the AP co
figuration for n51 andn52 self-consistently, we checke
that this procedure has only a minor effect on the final
sults: forn52 the difference in the magnetic moment on t
Co atoms is as small as 0.01mB and the relative changes i
the conductances do not exceed 1%. Whenn is odd the
charge density on the Cu atom in the center of the laye
the AP configuration is taken equal to the charge density
bulk Cu. Alternatively, the average of the charge densit
for the majority and minority spins in the P configuration c
be used; for Co3/Cu3 the conductances in the AP configur
tion that follow from these two choices differ by approx
mately 1%.

From the above discussion it is clear that there are sev
sources of~minor! inaccuracy. Fortunately, the conductan
is not very sensitive to the precise parameters used in
calculation, changing typically by a few percent when ind
vidual parameters are changed. The overall error bars of
conductances are estimated to be smaller than 10%. Th
sufficiently accurate for our present study in which we a
interested in changes in the conductance that are large~gi-
ant!. In the following we will quote the calculated conduc
tances without error bars.

B. „100… orientation

Figures 10~a! and 10~b! show the projections of the Ferm
surfaces in the CPP direction for the two spins of a~100!
oriented Co5/Cu5 multilayer in the P configuration. The tota
black area is a measure of the conductance although it sh
be noted that different sheets of Fermi surface might be p
jected on top of each other, which is not visible in the figur
but which is taken into account in the numerical results. T
projection for the majority spin resembles the free-elect
projection, which is a circle. As in Fig. 5~b! for the Kronig-
Penney model the projection is split up into a series of rin
separated by minigaps~the ‘‘white’’ rings! due to the pres-
ence of a periodic multilayer potential. Furthermore, t
free-electron circle is distorted in a way that reflects the fo
fold symmetry of the underlying lattice. This is similar to th
effect found for the tight-binding model in Fig. 1~b!. The
projection for the minority spin is more difficult to interpre
and certainly not free-electron like, which is caused by
complicated Fermi surface of the Co minority-spin electro
It is clear that the total projected area and thus the numbe
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57 8915BALLISTIC TRANSPORT AND ELECTRONIC STRUCTURE
channels available for conduction is much smaller than
the majority spin. In the language of the Kronig-Penn
model this corresponds to a higher potential step. So
states~the thin lines! have no dispersion in the directio
normal to the multilayer planes and can be identified
quantum-well states. Because their velocity is perpendic
to n̂, their contribution to the CPP transport is negligib
Figure 10~c! shows the projection of the Fermi surface of t
same multilayer in the AP configuration. Because the pro
tions for spin-up and spin-down electrons are identical, o
one is shown. The projection in the AP configuration is mo
similar to the projection for the minority spin than to that f
the majority spin in the P configuration. The number of ga
is, however, twice as large for the AP configuration beca
the unit cell is doubled. The magnetoresistance is define

MR5
Gmaj1Gmin22GAP

2GAP
, ~13!

with Gmaj andGmin the conductances in the P configurati
for the majority- and the minority-spin electrons, respe
tively, and GAP the conductance of either spin in the A
configuration. The CPP MR for the Co5/Cu5 multilayer of
Fig. 10 is 120%. We thus predict the unexpected result

FIG. 10. Projections inside the first Brillouin zone of differe
Fermi surfaces for a~100! oriented Co5 /Cu5 multilayer on a plane
parallel to the interfaces.~a! Majority spin and~b! minority spin in
the parallel configuration;~c! either spin in the antiparallel configu
ration.
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transport measurements in the ballistic regime will find v
ues for the CPP MR comparable to those measured in
diffusive limit.71,72

Figure 11 summarizes the results for layer thicknes
varying from n51 – 8. The thickness dependences in t
CPP geometry can be interpreted in terms of the Kron
Penney model, compare Figs. 6~a! and 11~a!. For small layer
thicknesses the conductances decrease rapidly withn, which
arises at least partly from states that are evanescent in e
Co or Cu. An additional contribution to the enhanced co
ductances at smalln might originate from the deviations o
the potentials near the interfaces from the bulk potenti
which can smooth the discontinuity and modify the height
the potential step for thin layers. The magnetic moments
the central Co atoms, for example, are, forn51 – 4, slightly
reduced compared to the bulk value~by at most 0.2mB!. For
larger layer thicknesses the conductances approach a
stant value. Small oscillations of the conductance as a fu
tion of the number of monolayers are observed for both sp
in the AP configuration and for the P minority spin, reflec
ing quantum size effects on the conductance. Qualitativ
the most important effect for the CPP geometry can be c
in terms of the ‘‘semiclassical’’ model of Ref. 24: the resi
tance for the minority-spin channel in the P configuration
approximately equal to that of either channel in the AP co
figuration but is shunted by the ‘‘open’’ majority-spin cha
nel. Quantitatively, however, the present realistic calcu
tions yield much larger results for the magnetoresista
than could be expected on the basis of the simple estim
made in Ref. 24.

FIG. 11. The layer thickness dependences for~100! oriented
Con /Cun multilayers of the MR~filled circles! and of the conduc-
tances for the majority~diamonds! and the minority~squares! spin
in the parallel configuration and for both spins in the antipara
configuration~open circles!. ~a! CPP geometry,~b! CIP geometry.
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8916 57KEES M. SCHEP, PAUL J. KELLY, AND GERRIT E. W. BAUER
For the CIP geometry it is not very instructive to plot th
Fermi surface projection because many sheets of Fermi
face are projected on top of each other due to the redu
size of the Brillouin zone in thez direction. The numerica
calculations are, however, straightforward and the results
shown in Fig. 11~b!. Unless stated otherwise our calculatio
for the CIP geometry are for the current along a~100! direc-
tion, results along a~110! direction being very similar~see
below!. As in the CPP case the conductances saturate
large layer thicknesses. For the majority spin in the P c
figuration the conductance is approximately the average
the bulk conductances of Cu and Co. This corresponds to
simple interpretation of two layers contributing to the co
ductance in parallel. For the minority spin the multilay
conductance is considerably smaller than the average o
bulk conductances and the simple interpretation bre
down. The conductance of either spin in the AP configu
tion is approximately the average ofGmaj and Gmin . The
calculated CIP MR of Co/Cu is only a few percent, which
much smaller than the values that are observed experim
tally in the diffusive regime.73

The breakdown of the simple interpretation for t
minority-spin conductance can be understood as follows
the limit of thick layers the Bloch states of anA/B multilayer
are linear combinations of bulk Bloch states of materialsA

andB. The velocityvW i of multilayer Bloch statei at qW i and
EF can then be written in terms of the velocitiesvW j

A andvW k
B

of the bulk Bloch statesj and k in materialsA and B, re-
spectively, atqW i andEF as

vW i5(
j

ua i j u2vW j
A1(

k
ub iku2vW k

B , ~14!

wherea i j and b ik are the coefficients of the linear expa
sion. The local density of states for a multilayer in the thi
layer limit is the same as in the bulk from which we obta
the relations

(
i

ua i j u25
dA

dA1dB
, ~15a!

(
i

ub iku25
dB

dA1dB
. ~15b!

For the calculation of the conductance using Eq.~2! the sum
of the absolute values of the velocities in directionn̂ is
needed. Employing Eqs.~14! and ~15! and the relation
u( ixi u<( i uxi u yields

(
i

un̂•vW i u<
dA

dA1dB
(

j
un̂•vW j

Au1
dB

dA1dB
(

k
un̂•vW k

Bu.

~16!

The equality in Eq.~16! only holds if all velocity compo-
nentsn̂•vW j

A and n̂•vW k
B have the same sign. This condition

fulfilled in the CIP geometry for the majority spin of Co/C
multilayers and the multilayer conductance is the averag
the bulk conductances weighted by the layer thicknesse
similar point was made for the diffusive conductivity in th
Kronig-Penney model by Levy.12 The argument break
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down, however, if not all velocity components in directionn̂
have the same sign. In that case the inequality in Eq.~16!
applies and the multilayer conductance is reduced comp
to the averaged bulk conductances. This is consistent w
our results for the minority spin. Weissmannet al.46 find for
Co/Ni multilayers in the CIP geometry that the multilay
conductance is approximately equal to the weighted aver
of the bulk conductances for the majority spin whereas i
considerably smaller for the minority-spin conductance; t
result is also consistent with our interpretation.

The physical origin of the reduction of the multilayer co
ductance in the CIP geometry is elucidated in Fig. 12 fo
state that is localized in one layer. In Fig. 12~a! there is only
one sheet of Fermi surface and the two bulk Bloch sta
with energyEF and wave vectorqW 5(qW i ,6q') have velocity
components that are the same in the CIP but opposite in
CPP direction. In this case the velocity in the CIP direction
not altered by the reflection at the interfaces. In Fig. 12~b!
there are two sheets of Fermi surface and states can b
flected into states on the other sheet of the Fermi surface
have an opposite velocity component along the interfac
Due to the mixing by the intersheet scattering the multila
Bloch states are linear combinations of bulk states from
two different sheets, which slows down the multilayer Blo
electrons and thereby reduces the conductance. The re
tion of the multilayer conductance in the CIP geometry
this case thus originates from reflection, which changes
velocity direction along the interface, even though the refl
tion is ‘‘specular’’ in the sense thatqW i is conserved. In the
CPP geometry, reduction of the multilayer conductance
curs even in the case of a single sheet of Fermi surface
cause the two states atqW i have opposite velocity componen
perpendicular to the interfaces.

In principle, the intersheet scattering in magnetic mu
layers depends on the magnetic configuration and
thereby give rise to a finite CIP MR. From the low valu
obtained for the CIP MR we conclude that this mechanism
not very effective in Co/Cu. This probably indicates that t
intersheet scattering occurs predominantly by reflection
states in the Co minority layers and that this reflection har
depends on the potential landscape beyond the directly a
cent Cu layers. For Fe/Cr multilayers the mechanism of
tersheet scattering turns out to be more efficient in genera
a CIP MR and we will elaborate on this in Sec. VI.

FIG. 12. Schematic representation of a single scattering pat
a quantum-well state for~a! a single sheet and~b! two sheets of
Fermi surface. In~b! the states at different sheets have oppos
velocity components along the interfaces. There is no transmis
through the interfaces that are indicated by the thick black line
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57 8917BALLISTIC TRANSPORT AND ELECTRONIC STRUCTURE
Besides for the CPP and CIP geometries the conducta
can also be calculated for the CAP geometry19 in which the
current flows at an angle to the interface planes. Figure
shows for a~100! oriented Co5/Cu5 multilayer the depen-
dences of the conductances and the MR onn̂. The majority-
spin conductance is only weakly dependent on the trans
direction as expected. The dependences ofGmin andGAP can
roughly be described by a constant term plus a term pro
tional to usinuu with u the angle betweenn̂ and the~001! or
CPP direction. The constant term can be interpreted as
projection of spherical parts of the Fermi surface repres
ing propagating states. Theusinuu term then arises from part
of the Fermi surface that have their normals perpendicula
the ~001! direction, which is characteristic for quantum-we
states. In reality such a strict division between propaga
and quantum-well states is too crude, of course. The con
tances and the MR depend only weakly on the CIP direct
the main anisotropy in multilayers is thus between CPP
CIP.

C. sp-d hybridization

The large value we calculate for the CPP MR is in str
ing contrast to what one would expect on the basis of sim
models that ascribe the GMR effect completely to sp
dependent scattering at defects. In the simplest free-elec
models potential steps are absent and the electronic stru
does not depend on the magnetic configuration at all. In
ballistic regime where defect scattering is absent the MR
then expected to vanish. To understand the origin of the
crepancy between the simple models and the realistic ca
lations we investigate the effect of hybridization between
d electrons and the free electrons in thesp band. This hy-
bridization is neglected in most early theories.20–33 In our
calculations we switch thesp-d hybridization off by setting
the matrix elements between thesp and thed orbitals in the
LMTO structure constants equal to zero, but keeping

FIG. 13. The dependences on the direction of transport fo
~100! oriented Co5 /Cu5 multilayer of the MR~filled circles! and of
the conductances for the majority~diamonds! and the minority
~squares! spin in the parallel configuration and for both spins in t
antiparallel configuration~open circles!. The CPP geometry corre
sponds to the~001! direction, ~100! and ~110! are two CIP direc-
tions. The spacing between adjacent tick marks on the horizo
axis corresponds to a rotation of the transport direction by 15°.
conductances were calculated using 72372312 k points in the first
Brillouin zone.
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potentials unchanged. The band structure for bulk Cu w
out sp-d hybridization, as shown in Fig. 14~b!, mimics the
electronic structure adopted in simple models: a single ne
parabolic band crossing localizedd bands without mixing. In
contrast, the correct calculation that includessp-d hybridiza-
tion displays strong anticrossing of different bands, as sho
in Fig. 14~a!. For Cu the difference in electronic structu
around the Fermi energy is small, and the same is true for
majority spin in Co. For the minority spin, however, th
Fermi energy lies in thed bands where the modifications i
the band structure due to hybridization are substantial.

The projections of the Fermi surfaces for a~100! oriented
Co5/Cu5 multilayer without sp-d hybridization in Fig. 15
are strikingly different from the projections withsp-d hy-
bridization in Fig. 10. The projections of thesp parts of the
unhybridized Fermi surfaces are free-electron like, with o
small distortions due to the fourfold rotational symmetr
Because the diameters of the circles are greater than
width of the first Brillouin zone the Fermi surfaces are fold
back at the zone boundaries. The minigaps formed by
periodic multilayer potential are small but clearly resolve
For the minority spin in the P configuration and for bo
spins in the AP configuration there are alsod states presen
at EF . These bands are confined to a single magnetic la
and have only small widths in the direction perpendicular
the interfaces. These quantum-well states hardly contrib
to transport perpendicular to the interfaces. The positions
the quantum-well states are the same in Figs. 15~b! and 15~c!
because the width of the wells is the same. A careful anal
shows that the lines in Fig. 15~c! are slightly narrower,

a

al
e

FIG. 14. The band structures of bulk Cu~a! with and~b! without
sp-d hybridization. The Fermi energy of the hybridized bands
chosen as the zero of energy.
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which is due to the larger interwell spacing in the AP co
figuration. The MR decreases from 120% to 3% when
sp-d hybridization is discarded. A similar calculation fo
Co4/Cu4 yields a reduction from 78% to 1%. Such low va
ues were already estimated from a simple model using r
istic parameters.24 The effect of the multilayer potential o
the unhybridized free electrons is thus negligible.

By mimicking the band structure that is assumed in
simple models we retrieve a nearly vanishing ballistic M
In the correct calculations the free electrons hybridize w
the d electrons, which results in a strong coupling to t
‘‘magnetic lattice’’ and a greatly enhanced reflection at t
interfaces. GMR in the ballistic regime is thus induced
hybridization and theories that neglect this hybridization
not describe the effect correctly. The effect of the hybridiz
tion can be ~partially! mimicked by the Kronig-Penney
model only by adopting potential steps that are much lar
than the real ones.

D. „111… orientation

It is straightforward to obtain results for different cryst
orientations. In Fig. 16 the projections of the Fermi surfa
of a ~111! oriented Co3/Cu3 multilayer are shown. The quali

FIG. 15. Projections inside the first Brillouin zone of differe
Fermi surfaces for a~100! oriented Co5 /Cu5 multilayer on a plane
parallel to the interfaces. In the calculations thesp-d hybridization
is omitted. Thesp parts of the Fermi surface are gray and thed
parts are black.~a! Majority spin and~b! minority spin in the par-
allel configuration;~c! either spin in the antiparallel configuration
-
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tative features of the projections are similar to the ones
the ~100! orientation shown in Fig. 10, except that in th
~111! orientation the rotational symmetry along thez axis is
sixfold. In Figs. 16~b! and 16~c! two very clear examples o
strongly confined quantum-well states are observed. The
culated conductance in the CPP geometry areGmaj50.41,
Gmin50.32 andGAP50.26, all in units of 1015 V21 m22.
This results in a CPP MR of 40%. The MR in the CIP g
ometry is only 4%.

VI. Fe/Cr MULTILAYERS

The GMR effect was originally discovered in multilaye
consisting of Fe and Cr.10,11 In this section results are pre
sented for both~100! and ~110! oriented Fe/Cr multilayers.

A. Technical aspects

Bulk Fe and Cr both have a bcc structure and their latt
constants differ by less than a percent. In the multilayer c
culations we therefore neglect any tetragonal distortions
assume a common bcc lattice for Fe and Cr with a latt

FIG. 16. Projections inside the first Brillouin zone of differe
Fermi surfaces for a~111! oriented Co3 /Cu3 multilayer on a plane
parallel to the interfaces.~a! Majority spin and~b! minority spin in
the parallel configuration;~c! either spin in the antiparallel configu
ration.
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57 8919BALLISTIC TRANSPORT AND ELECTRONIC STRUCTURE
parameter of 2.844 Å, which is 99% of the average of
experimental bulk values, as was the case for Co/Cu m
layers in Sec. V A.

In Fe/Cr multilayers there is an extra complication due
the spin-density wave in Cr, which causes an approxima
two-monolayer oscillation of the magnetization along t
~100! direction. The magnetic moment of a Cr monolayer
an interface is strongly antiferromagnetically coupled to
moment of the adjacent Fe layer. Since adjacent Cr mo
layers couple antiferromagnetically, the spin-density wav
frustrated for an even number of Cr monolayers in the
configuration and for an odd number in the AP configurati
In the other magnetic configurations the spin-density w
fits nicely in between adjacent Fe layers. To take the sp
density wave into account correctly we perform the calcu
tions in both the P and the AP configuration se
consistently.

All calculations in this section are performed using
spd basis. The results we present for the CIP geometry
calculated along a~100! direction; we checked that the re
sults along other CIP directions are not very different.

B. „100… orientation

In Fig. 17 the projections of the Fermi surfaces for a~100!

FIG. 17. Projections inside the first Brillouin zone of differe
Fermi surfaces for a~100! oriented Fe4 /Cr4 multilayer on a plane
parallel to the interfaces.~a! Majority spin and~b! minority spin in
the parallel configuration;~c! either spin in the antiparallel configu
ration.
e
ti-

ly

t
e
o-
is
P
.
e
-
-

re

oriented Fe4/Cr4 multilayer are shown. In contrast to th
majority-spin projections for Co/Cu multilayers it is impo
sible to analyze the projections for Fe/Cr multilayers in ter
of simple models because the Fermi surfaces of both Fe
Cr are very complicated for either spin direction. Figure
shows a nice example of quantum-well formation: t
majority-spin states near the corners of the Brillouin zo
that are propagating in the P configuration are confined
form quantum-well states in the AP configuration because
the absence of corresponding minority-spin states.

In Table II the conductances and MR values are summ
rized for a large number of~100! oriented Fen /Crm multilay-
ers. Most calculations are forn1m5even because fo
n1m5odd the unit cell in the P configuration contain
2(n1m) atoms compared ton1m atoms forn1m5even.
Except for very thin layers the calculated MR in the CP
geometry lies between 70% and 230%, again comparabl
the experimental values in the diffusive regime.17 In contrast
to Co/Cu where most of the current is carried by t
majority-spin electrons, the conductance in Fe/Cr is do
nated by the minority-spin bands, which can be underst
from the better matching of the bulk band structures of
and Cr for this spin direction.

The large number of different layer thicknesses in Ta
II makes it possible to analyze the results as a function on,
m, andn1m. We find that the CPP MR depends mainly o
the Fe thickness. Figure 18~a! shows the dependence of th

FIG. 18. The iron layer thickness dependence for~100! oriented
Fen /Cr6 multilayers of the MR~filled circles connected by dotted
line! and of the conductances for the majority~diamonds! and the
minority ~squares! spin in the parallel configuration and for bot
spins in the antiparallel configuration~open circles!. The filled
circles that are not connected by the dotted line are the MR va
for Fen /Crm multilayers with mÞ6. ~a! CPP geometry;~b! CIP
geometry.
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conductances and the MR in the CPP geometry onn for
~100! oriented Fen /Cr6 multilayers and also the CPP MR fo
Fen /Crm . The thickness dependence of the conductances
sembles those for Co/Cu multilayers in Fig. 11~a! and those
for the Kronig-Penney model in Fig. 6~a!. A pronounced
quantum size effect is found in the CPP MR mainly due
oscillations inGmaj andGAP. The amplitude of the oscilla
tions in the MR forn52 – 6 is larger than the spread in th
MR due to variations in the Cr thickness. The relative
weak dependence of the MR on the Cr thickness implies
the spin-density wave being frustrated or not makes on
minor difference to the GMR effect. The fact that the osc
lations can be measured for a constant Cr thickness is ad
tageous for experimental observation of the quantum-size
fect in the MR because the Cr thickness can be chosen
that the interlayer exchange coupling is antiferromagnetic
all Fe thicknesses.

Table II also contains the results for the CIP geome
All CIP conductances are smaller than the weighted avera
of the bulk conductances for Fe and Cr, as was the case

TABLE II. Values of the calculated conductancesG ~in units
1015 V21 m22! in both the CPP and the CIP geometry for seve
~100! oriented Fen /Crm multilayers.Gmaj (Gmin): conductance of
the majority~minority! spin in the parallel configuration.GAP : con-
ductance per spin in the antiparallel configuration~both spins are
the same!. The magnetoresistance is defined asMR5(Gmaj

1Gmin22GAP)/2GAP .

CPP CIP
Gmaj Gmin GAP MR Gmaj Gmin GAP MR

Fe1 /Cr3 0.52 0.29 0.32 25% 0.58 0.27 0.4526%
Fe1 /Cr5 0.40 0.44 0.21 101% 0.48 0.44 0.36 26%
Fe1 /Cr6 0.41 0.62 0.17 193% 0.51 0.58 0.32 70%
Fe1 /Cr7 0.32 0.49 0.18 119% 0.41 0.51 0.32 46%
Fe2 /Cr4 0.48 0.61 0.31 77% 0.58 0.60 0.44 36%
Fe2 /Cr6 0.33 0.62 0.27 75% 0.50 0.61 0.42 33%
Fe2 /Cr8 0.28 0.62 0.25 78% 0.41 0.63 0.39 33%
Fe3 /Cr3 0.36 0.49 0.13 231% 0.45 0.49 0.29 62%
Fe3 /Cr5 0.26 0.53 0.14 191% 0.36 0.57 0.31 48%
Fe3 /Cr6 0.28 0.52 0.13 199% 0.43 0.56 0.31 58%
Fe3 /Cr7 0.18 0.60 0.13 203% 0.34 0.65 0.31 59%
Fe4 /Cr4 0.26 0.41 0.12 185% 0.48 0.47 0.31 55%
Fe4 /Cr6 0.15 0.46 0.11 175% 0.39 0.54 0.30 56%
Fe4 /Cr8 0.16 0.46 0.10 199% 0.37 0.54 0.30 51%
Fe5 /Cr3 0.23 0.42 0.15 117% 0.45 0.48 0.26 78%
Fe5 /Cr5 0.17 0.42 0.15 97% 0.35 0.52 0.27 58%
Fe5 /Cr6 0.17 0.41 0.14 106% 0.31 0.45 0.30 25%
Fe5 /Cr7 0.14 0.40 0.16 69% 0.31 0.51 0.30 38%
Fe6 /Cr4 0.28 0.44 0.12 195% 0.47 0.50 0.29 68%
Fe6 /Cr6 0.23 0.40 0.11 175% 0.45 0.51 0.29 64%
Fe6 /Cr8 0.19 0.43 0.12 155% 0.39 0.51 0.29 56%
Fe7 /Cr3 0.16 0.44 0.14 108% 0.36 0.49 0.30 42%
Fe7 /Cr5 0.15 0.40 0.12 125% 0.32 0.51 0.28 48%
Fe7 /Cr6 0.20 0.41 0.11 166% 0.39 0.46 0.27 57%
Fe7 /Cr7 0.14 0.42 0.10 170% 0.31 0.50 0.27 50%
Fe8 /Cr4 0.27 0.42 0.11 212% 0.48 0.48 0.29 66%
Fe8 /Cr6 0.18 0.42 0.11 174% 0.42 0.50 0.29 59%
Fe8 /Cr8 0.17 0.42 0.12 140% 0.40 0.50 0.30 51%
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the minority spin in the Co/Cu multilayers. We tried to fit th
data in Table II by the simple model of effective bulk co
ductances in parallel, but the calculated layer thickness
pendence does not follow such simple behavior, which pr
ably indicates that our calculations are not in the asympt
regime. Figure 18~b! shows the results for the CIP geomet
as a function of the Fe thickness. The spread in MR asm is
changed~for constantn! compared to the amplitude of th
oscillations in the MR as a function ofn is larger than for the
CPP geometry. The most surprising result from Table II a
Fig. 18~b! is that the calculated CIP MR lies in between 25
and 80%, in contrast to the nearly vanishing CIP MR f
Co/Cu multilayers. The only exception is the Fe1/Cr3
multilayer for which the CIP MR is even negative, an atyp
cal result that can be ascribed to the very thin layers. T
calculated values are substantially smaller than the maxim
observed value of 220%.74

A CIP MR of around 50% for large layer thicknesses c
be interpreted in terms of the backscattering mechanism
was discussed in Sec. V in relation to Fig. 12. Whereas
Co/Cu multilayers the intersheet scattering is restricted to
Co minority-spin electrons, for Fe/Cr multilayers it occu
for either spin direction in both Fe and Cr. Particularly in t
nonmagnetic~Cu or Cr! layer the reflection is expected to b
sensitive to the magnetic configuration because this laye
directly adjacent to two magnetic layers. In Cr, which h
multiple sheets of Fermi surface, reflection can give rise t
reduction of the CIP conductance, which makes an impor
difference between Co/Cu and Fe/Cr multilayers. Howev
such a reduction does not only require a finite reflection
this reflection should also couple different sheets of Fe
surface. We expect that the intersheet scattering is relati
strong for the~100! orientation because of the atomic stru
ture of the interface as represented schematically in Fig.
In the ~100! orientation of a bcc multilayer the density o
atoms in the atomic planes is low whereas the differ
atomic planes are close together, which gives rise to an
terface that is not very flat, even though it is atomica
sharp. From a Kronig-Penney type of model it can be und
stood that interfaces that are modulated periodically wit
period larger thanlF/2 give rise to scattering between di
ferent sheets of the back-folded Fermi surface. The am
tude of this intersheet scattering depends on the height o
potential step and on the amplitude of the interface modu
tion. The contribution of the ‘‘potential step’’ to the inter
sheet scattering depends on the magnetic configuration
the spin direction and can in combination with the lar
modulation amplitude in the~100! orientation give rise to a
considerable decrease in the CIP conductance when sw
ing from the P to the AP configuration. The large values
obtain for the CIP MR indicate that this mechanism is qu
effective in ~100! oriented Fe/Cr multilayers. Note that th
CIP MR that arises from the modulation of the interface h
the same origin as the MR in the CPP geometry.

We briefly discuss the effect ofsp-d hybridization on the
transport properties of Fe/Cr multilayers. For a~100! ori-
ented Fe4/Cr4 multilayer the MR in both the CPP and th
CIP geometry is approximately 65% when the hybridizati
is switched off. These large values for the MR arise from
d electrons that are present atEF for both spin directions in

l
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both Fe and Cr and that contribute to the current in para
to the free-electron-likesp electrons. This is in contrast t
the situation for Co/Cu discussed in Sec. V C where thd
electrons are localized in the Co minority layers and do
contribute to the MR.

C. „110… orientation

To check our explanation for the large CIP MR for th
~100! orientation, we performed calculations for the~110!
orientation in which the density of atoms in the atom
planes is a factor& larger than in the~100! orientation while
the different atomic planes are further apart by the sa
factor. The interfaces are therefore much flatter, as is cle
seen in Fig. 19. The calculated results for the~110! oriented
Fen /Crn multilayers are summarized in Table III. The co
ductances in the CIP geometry are larger than for the~100!
orientation, especially for the majority-spin channel, whi
we ascribe to reduced intersheet scattering due to the sm
amplitude of the interface modulation. The multilayer co
ductance for the majority spin is slightly larger than the a
erage of the bulk conductances of Fe and Cr, which proba

FIG. 19. Schematic representation of the positions of the at
near the interfaces of~100! and ~110! oriented Fe/Cr multilayers
The white and hatched spheres represent the Fe and Cr atom
spectively. In the top views perpendicular to the interfaces
atomic plane on either side of the interface is shown. Twice
many atomic planes are shown in the side view.

TABLE III. Values of the calculated conductancesG ~in units
1015 V21 m22! in both the CPP and the CIP geometries for seve
~110! oriented Fen /Crn multilayers. For explanation of the quant
ties, see Table II.

CPP CIP
Gmaj Gmin GAP MR Gmaj Gmin GAP MR

Fe3 /Cr3 0.34 0.45 0.18 120% 0.61 0.56 0.53 9%
Fe4 /Cr4 0.21 0.37 0.16 85% 0.58 0.53 0.53 4%
Fe5 /Cr5 0.24 0.36 0.15 94% 0.60 0.52 0.53 6%
Fe6 /Cr6 0.20 0.33 0.15 79% 0.58 0.53 0.54 3%
l
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indicates that our results are not in the asymptotic regime
Fig. 20 the MR values for~100! and~110! oriented Fen /Crn
multilayers are compared. For the CIP geometry the diff
ence between the two orientations is striking. The MR in
~110! orientation is only a few percent, as in the Co/Cu m
tilayers, which we ascribe to the smaller sensitivity to t
‘‘potential steps’’ due to the flatter interfaces. The reducti
of the multilayer conductance for the minority spin in the
configuration does not give rise to a significant MR, whi
probably indicates that this reduction mainly arises fro
states that are confined in the Fe minority layer. The diff
ence between the~100! and the~110! orientations indicates
that the CIP MR is very sensitive to the interface structu
down to the monolayer level. For the CPP MR the differen
is much less pronounced, which indicates that transport p
erties in this geometry are less sensitive to details of
interface structure.

Note that for fcc multilayers such as Co/Cu the interfa
modulation is more similar for different crystal orientation
than for bcc multilayers such as Fe/Cr. Due to the clo
packed structure of the fcc lattice the interfaces for the~100!
and ~111! orientations are quite flat. The relation betwe
intersheet scattering and the microscopic structure of the
terface can be studied more explicitly by using methods t
are capable of calculating transmission and reflection coe
cients for single interfaces.75–77

VII. DISCUSSION

We have shown that the conductance of classical balli
point contacts can be calculated rigorously and param

s

re-
e
s

FIG. 20. The layer thickness dependences of~a! the CPP MR
and ~b! the CIP MR for Fen /Crn multilayers in the~100! ~filled
circles! and ~110! ~open circles! orientation. Note that the laye
thicknesses are plotted in nanometers because the thicknes
monolayer is different for the two orientations.
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free by using electronic structure calculations in the loc
spin-density approximation. For Co/Cu and Fe/Cr multila
ers in the CPP geometry a large ballistic GMR is predict
We hope that this prediction will stimulate experimen
studies of transport in the ballistic regime. Ballistic poi
contacts have already been fabricated for both nonmagn4

and magnetic5 bulk metals. The fabrication of magnetic mu
tilayers of high structural quality in nanometer sized conta
remains an experimental challenge.13–15

Our calculations not only predict the values of the co
ductances, they also make a detailed analysis feasible o
role of the electronic structure in determining the transp
properties. We find that thesp-d hybridization is of crucial
importance for the GMR in Co/Cu multilayers. In Fe/Cr th
contribution of thed electrons to the MR is important eve
in the unhybridized case. Neither of these effects is ta
into account in theories that assume that the current is ca
exclusively by free-electron-likes electrons. For the CPP
geometry the effect of hybridization can be~partially! mim-
icked by adopting potential steps which are much larger t
the real ones. The ballistic CIP MR of~100! oriented Fe/Cr
multilayers cannot be obtained by adjusting the parame
of the Kronig-Penney model because it is essential to t
into account multiple bands. These results indicate tha
describe the electrical transport in transition metal multila
ers correctly the electronic structure should be taken
account in a realistic manner, preferably usingab initio
methods.

Although our calculations are directly applicable only
the ballistic regime we believe that they are also relevant
diffusive transport. It would be very surprising if none of th
band-structure effects discussed above survives into the
fusive regime. For the CPP geometry, in particular, the
fluence of the band structure is very important.27,31 We find
that the ballistic MR saturates at about 90% for Co/Cu m
tilayers and between 70% and 230% for Fe/Cr multilaye
comparable with the experimental values for Co/Cu~Refs.
71 and 72! and Fe/Cr~Ref. 17! obtained in the diffusive
regime at low temperatures. The CPP MR can thus be
plained by differences in the number of conduction chann
alone. Indeed, Asano, Oguri, and Maekawa31 have pointed
out that the MR in the CPP geometry does not depend c
cally on interface defect scattering. Our results for~100! and
~110! oriented Fe/Cr multilayers also indicate that the C
MR is not too sensitive to the interface structure. The res
for the ballistic CPP MR should therefore be indicative f
the experimental CPP MR.31 In terms of Eq.~8! this can be
ascribed to a spin- and state-independent mean free nu
of traversed interfaces, which corresponds to sp
independent diffuse scattering that is located predomina
at the interfaces.

The calculated MR values in the CIP geometry are mu
smaller than the highest experimental values of 115%
Co/Cu~Ref. 73! and 220% for Fe/Cr~Ref. 74! indicating that
some additional scattering mechanism is important. Inde
Asano, Oguri, and Maekawa31 find that the CIP MR depend
critically on interface defect scattering. Our results for~100!
and ~110! oriented Fe/Cr multilayers also indicate that t
CIP MR is very sensitive to the interface morphology dow
to the monolayer level. In a sense, the ‘‘specula
qW i-conserving scattering between different sheets of Fe
l-
-
.
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surface for ideal interfaces resembles diffuse scattering
rough interfaces. Also experimentally the CIP MR strong
depends on the structural properties of the interface.78 Still,
we believe that the results derived in the ballistic limit ha
an even more general significance. Spin-dependent sur
roughness scattering, which contributes to the GMR in
CIP geometry, is inextricably connected with the existen
of strong spin-dependent reflection at ideal interfaces.79 This
means that a large CPP effect as calculated by the pre
method is an important condition for a giant MR, either CP
or CIP.

In summary, we have shown that in the ballistic limit th
transport properties can be evaluated rigorously us
parameter-free calculations based on the local-spin-den
approximation. The calculated CPP-MR is comparable to
perimental values, even though defect scattering has b
completely disregarded. We hope that this will stimulate e
perimental studies of transport in multilayers in this regim
To describe the effect it is of crucial importance to take in
account the complete hybridization. We emphasize thatno
empirical parameters or other phenomenological input h
been used.
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APPENDIX A: TETRAHEDRON METHOD

In this appendix we describe an adaptation of the tetra
dron method59–61used to calculate the Fermi surface proje
tions. A uniform grid ofk points is adopted that divides th
Brillouin zone into parallelepipeds. Each parallelepiped c
be divided into six tetrahedra in four different ways ov
which we average the calculated projections afterwards.
contribution of each tetrahedron to the projection of t
Fermi surface is calculated separately. For a particular
ergy band the energies at the four corners of the tetrahe
are denoted by« i , with i the index of the corner. Thek point
of the corneri is denoted bykW i . The labeling is such tha
«1<«2<«3<«4 . We illustrate the calculation for the situa
tion depicted schematically in Fig. 21 where the Fermi e
ergyEF lies in between«3 and«4 . The pointKW i at which the
Fermi surface intersects the line betweenkW4 and kW i ~with
i 51,2,3! is obtained by linear interpolation:

KW i5kW41
«42EF

«42« i
~kW i2kW4!. ~A1!

From the vectorsKW i the projection in the directionn̂ of the
Fermi surface inside the tetrahedron can be calculated a

S~ n̂!5 1
2 un̂•~KW 22KW 1!3~KW 32KW 1!u. ~A2!
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The projections are calculated in a similar way whenEF lies
in between«2 and «3 or in between«1 and «2 . The errors
due to the linear interpolation cancel exactly for adjac
tetrahedra for the same sheet of Fermi surface, except w
the tetrahedron contains an edge of the projected sheet.
crossing of two sheets of Fermi surface the errors do
cancel either. For a uniform grid the total error vanishes
sufficiently fine meshes with the number ofk points to the
power22/3, which can be understood as the error that ar
from approximating the projected area by the area of a p
gon. In the main text we quote the values extrapolated to
infinite number ofk points unless stated otherwise.

To test the accuracy of the tetrahedron method we
calculate the Sharvin conductance in the~100! direction for a
nearest-neighbor tight-binding model on a cubic lattice
three dimensions. The results are compared with an alte
tive calculation presented in Appendix B. The absolute d
ference between the two independent numerical calculat
in Table IV is as small as 1024. For the mesh containing 483

k points as was used in Fig. 3 the error is always smaller t
1023 ~see Table IV!.

Figure 22 shows the dependence of the Sharvin cond
tance in different directions for bulk copper as a function
the number ofk points used in the Brillouin zone integration

FIG. 21. Schematic representation of a tetrahedron used in
numerical calculation of the projection of the Fermi surface for

case that«3,EF,«4 . The pointskW i represent the corners of th
tetrahedron. The Fermi surface~hatched region! inside the tetrahe-

dron is approximated by a triangle with vertices at the pointsKW i .

TABLE IV. The number of conducting channels per spin cha
nel in the~100! direction for a nearest-neighbor tight-binding mod
on a cubic lattice in three dimensions as a function of the b
filling. The values are calculated either using the tetrahed
method~for which both the results for a finite mesh of 483 k points
and the results extrapolated to an infinitely finek mesh are given! or
by numerical evaluation of the integral in Eq.~B6!. All values have
an absolute accuracy of 1024.

N(A/a2)
u«02EFu/2t 483 k points Extrapolated Eq.~B6!

0.0 0.6311 0.6305 0.6304
0.5 0.6071 0.6065 0.6066
1.0 0.5000 0.5000 0.5000
1.5 0.3081 0.3083 0.3083
2.0 0.1845 0.1848 0.1848
2.5 0.0848 0.0852 0.0852
t
en
t a
ot
r

s
-
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st

a-
-
ns

n

c-
f

The difference between the extrapolated value and the v
obtained using 483 k points is smaller than 0.0131015

V21 m22. This provides an upper limit for the error arisin
from the Brillouin zone integration. Because of the syste
atic convergence for large numbers ofk points we expect the
errors in the extrapolated values to be considerably sma

Plots similar to Fig. 22 were made for the results p
sented in the text. Good convergence was obtained also
the calculations for the multilayers. The error due to the B
louin zone integration is typically smaller tha
0.0131015 V21 m22. Our adaptation of the tetrahedro
method is thus sufficiently accurate for our present calcu
tions.

APPENDIX B: 3D TIGHT-BINDING MODEL

In this appendix we derive a simple expression for t
Sharvin conductance in the~100! direction for a nearest-
neighbor tight-binding model in three dimensions. This c
culation is similar to the method used to simplify the expre
sion for the density of states.80 The dispersion relation is

«TB~qW !5«022t~cosqxa1cosqya1cosqza!, ~B1!

with «0 the on-site potential,t the hopping matrix element
anda the lattice constant. Since the projections of the co
stant energy surfaces are much more complicated than in
two-dimensional case, the ballistic conductance is now c
culated directly from Eq.~4!. For transport in thex direction

un̂•vW ~qW !u5
2ta

\
usin qxau. ~B2!

The d function is expressed as a Fourier integral:

d~z!5
1

2p E
2`

`

dseizs. ~B3!

Subsequently the integrations over the components of
Bloch vectorqW are carried out by using the standard integr

he
e

FIG. 22. The dependence of the calculated Sharvin conducta
on the number ofk points used in the Brillouin zone integration
The solid, dashed, and dotted lines are linear fits to the calcul
points for the~100! ~closed circles!, ~110! ~open circles!, and~111!
~diamonds! directions, respectively. The calculations were done
ing 123, 183, 243, 303, 363, 423, and 483 k points in the first
Brillouin zone.
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E
0

p

dfe2 iz cosf sin f52
sin z

z
, ~B4!

and

E
0

p

dfe2 iz cosf5pJ0~z!, ~B5!

whereJ0(z) is a Bessel function of order zero. The Sharv
conductance can then be expressed in terms of a single
gration as

GTB~100!5
2e2

h

A

a2

2

p E
0

`

ds
sin s

s
J0

2~s!cos
u«02EFus

2t
.

~B6!

The numerical evaluation of the integral yields the valu
shown in Table IV. Foru«2EFu52t the Fermi surface is a
slightly distorted octahedron of which the projection is e
actly half the area of the first Brillouin zone. The valu
0.5000 in Table IV is therefore exact.

We performed a similar calculation for the two
dimensional situation. In that case also the final integral o
the variables can be evaluated and Eq.~12a! is recovered.

APPENDIX C: KRONIG-PENNEY MODEL
FOR LARGE LAYER THICKNESSES

In this appendix we calculate for the Kronig-Penn
model the value ofG(CPP) in the limit of large layer thick-
nesses. The periodic potential is a periodic arrangemen
scatterers, in this case potential barriers of heightU and
width dB with interbarrier spacingdA ~see Fig. 4!. The trans-
mission amplitude of one scatterer is written
AT(qW i)exp@id(qWi)#, with T(qW i) the transmission probability
and d(qW i) a phase shift, which are functions of the mo
index qW i . For a periodic arrangement of symmetric barrie
the band structure is given by81

cosq'dA5
1

AT~qW i!
cos@k'

AdA1d~qW i!#, ~C1!

whereq' is thez component of the Bloch wave vector an
k'

A is the perpendicular wave vector in the bulk of mater
A. The expectation value for the number of conducting ch
nelsN at qW i is obtained by integrating over a small range
qW i and in three dimensions this corresponds ford@lF to
averaging over different layer thicknesses. By this proced
all quantum oscillations are integrated over and
asymptotic or average value is retained. The average~de-
noted by angular brackets! over dA can be obtained by sim
ply counting the states withucosq'dAu<1 in Eq.~C1!, which
yields

^N~qW i!&dA
512

2

p
arccosAT~qW i!. ~C2!
te-
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To perform the averaging overdB we note that the thicknes
dependent transmission probability for two equivalent sc
terers in series~potential steps in this case! with a propagat-
ing state in between can be written as82

T~qW i!5@11b~qW i!cos2 f~qW i!#
21, ~C3!

wheref(qW i) is half the phase accumulated between the
tential steps for modeqW i , which depends linearly ondB .
The transmission probability averaged overdB is related to
b(qW i) by

^T~qW i!&dB

2 5
1

b~qW i!11
~C4!

as can be confirmed by averaging Eq.~C3! over f(qW i). Av-
eraging the number of conducting channels overdB yields

^N~qW i!&dA ,dB
5

1

2p E
0

2p

df~qW i!^N~qW i!&dA

512
4

p2 E
0

p/2

dw arctan@Ab~qW i!cosw#.

~C5!

The total conductance is obtained by summing over
transverse modes. The average probability for a propaga
stateqW i to be transmitted over the potential barrier is giv
by

^T~qW i!&dB
5

2k'
Ak'

B

~k'
A!21~k'

B!2 , ~C6!

in which

k'
B5A~12U/EF!kF

22qi
2. ~C7!

For the evanescent states the transmission probabilities
to zero exponentially with increasing thickness of the barr
and they do not contribute to the conductance for large la
thicknesses. By integrating overqW i and by using Eqs.~C4!–
~C7! we obtain

GKP~CPP!

GFE
512

U

EF
2

4U

p2EF
E

0

p/2

dw

3E
1

EF /U

ds arctan
cosw

2As~s21!
, ~C8!

This function is plotted in Fig. 6~b!. The first term on the
right-hand side of Eq.~C8! corresponds to the bulk conduc
tance of materialA. The second gives the reduction due
the states that are evanescent in materialB and do not con-
tribute to the conductance.24 The last term describes the re
duction in the conductance from the states that are propa
ing in both materials but are partially reflected at ea
interface.
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